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Abstract

Let Z be a smooth Fano variety satisfying the condition that the rank of the Grothendieck group
of Z is one more than the dimension 6f Let w denote the total space of the canonical line bundle
of Z, considered as a non-compact Calabi—Yau variety. We use the theory of exceptional collections
to describe t-structures on the derived category of coherent sheaves.drhe combinatorics of
these t-structures is determined by a natural action of an affine braid group, closely related to the
well-known action of the Artin braid group on the set of exceptional collectiong.on
0 2005 Elsevier Inc. All rights reserved.

1. Introduction

Let Z be a smooth Fano variety, and denotedsy the total space of its canonical
bundle, which we shall think of as a non-compact Calabi—Yau variety. Varieties of this sort
are often called local Calabi—Yau varieties in the physics literature. The aim of this paper
is to use exceptional collections of sheavesZoto study certain sets of t-structures in the
derived categories of coherent sheavesZoendw;. We shall describe the combinatorics
of these t-structures by introducing graphs, whose vertices are the t-structures, and whose
edges correspond to the operation of tilting a t-structure with respect to a simple object in
its heart.
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It turns out that the structure of the resulting graphs can be described using natural ac-
tions of braid groups. The appearance of braid groups in this context is perhaps not too
surprising given the well-known action of the Artin braid group on sets of exceptional
collections discovered by Bondal [8] and Gorodentsev and Rudakov [16,17]. In fact Sec-
tion 3 of this paper, which deals with t-structures in the derived category obnsists of
a rephrasing of part of the theory of exceptional collections and mutations developed by
the Rudakov seminar [26] in the language of t-structures and tilting. Much of this story
was presumably known to the participants of this seminar. In Section 4 though we consider
t-structures on the derived category of coherent sheaves phere our results seem to be
new.

The main motivation for this work is that in a forthcoming paper [9] we shall use our
results in the cas& = P? to describe an open subset of the space of stability conditions
[8] on the local Calabi—Yau threefol@p2(—3). A related reason for studying this problem
is that the graphs of t-structures we construct bear a close resemblance to certain graphs
of quiver gauge theories constructed by the physicists Feng, Hanany, He and Igbal [13].
The edges of the physicists’ graphs come from an operation which they call Seiberg dual-
ity. We hope that studying the relationship between the physicists’ computations and the
homological algebra described here will lead to some useful insights.

Throughout we shall assume that the varigtyhas a full exceptional collection and
satisfies

dmK(Z)@ C=1+dimZ. (M

Examples of such varieties include projective spaces, odd-dimensional quadrics [20] and
certain Fano threefolds [23]. In fact our main interest is in the ¢aseP?. Other cases

not satisfying(t), such asZ = P! x P!, are more interesting and difficult, but not so well
understood at present (see however [14] and [18,21,27]).

To understand the technical significance of the assumggtinrrecall that the class of
strong exceptional collections is not closed under mutations. On the other hand, Bondal
and Polishchuk [6] introduced a class of strong exceptional collections (see Section 3.1 for
the definition), closed under mutations, which they referred to as geometric collections, and
showed that these collections exist only on varieties satisfgingrhey also showed that
any full exceptional collection consisting entirely of sheaves on such a variety is automat-
ically geometric. We shall work with full, geometric collections throughout, but following
[12] we prefer to call thenexcellent collections, since there is nothing particularly unge-
ometric about collections such &9, O(1, 0), ©(0, 1), O(1, 1)) on P! x P! which do not
satisfy Bondal and Polishchuk’s conditions.

1.1. Let D = D?(CohZ) denote the bounded derived category of coherent sheaves
on Z. Rickard’s general theory of derived Morita equivalence [25] shows that any full,
strong, exceptional collectio(Ey, ..., E,—1) in D gives rise to an equivalence of cate-
gories

n—1

Hom’D(@ E;, —) D — D’ (Mod A),

i=0
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where ModA is the category of finite-dimensional right-modules for the algebra

(B

i=0

As explained by Bondal [5], the finite-dimensional algelraan be described as the path
algebra of a quiver with relations with verticé3 1, ...,n — 1}. We shall always assume
that the collection(Ey, ..., E,_1) is an excellent collection; the quiver then takes the form

dy dp dn-1
[ ] [ ) [ ) e [ ] [ )

with d; = dimHomp (E;_1, E;) arrows connecting vertex— 1 to vertex:.

Pulling back the standard t-structure ®iMod A) gives a t-structure o whose heart
A C D is an abelian category equivalent to MédWe call the subcategorie$ C D ob-
tained from excellent collections in this way exceptional. Any exceptional subcategory is
of finite length and has simple objectsSy, ..., S,_1 corresponding to the vertices of the
quiver. These simple objects have a canonical ordering coming from the ordering of the
exceptional object&;, or equivalently from the ordering of the vertices of the quiver.

Each simple objecs; defines a torsion pair il whose torsion part consists of direct
sums of copies of;. Performing an abstract tilt in the sense of Happel, Reiten and Smalg
[19] leads to a new abelian subcategory 4 C D which we refer to as the left tilt ofl at
the simples;. It turns out that, providing > 0, the category t, A C D is also exceptional,
and in fact corresponds to an excellent collectiorDimbtained from the original one by
a mutation. In contrast, the subcategory l4 has rather strange properties in general (see
Example 3.7).

The fact that mutations of exceptional collections give rise to an action of the Artin
braid group now translates as

Theorem 3.6. The Artin braid group A,, actson the set of exceptional subcategories of D.
For each integer 1 <i < n — 1 the generator o; acts by tilting a subcategory at its ith
simple object.

It is convenient to introduce a graghtrc(Z) whose vertices are exceptional subcate-
gories of D, and in which two vertices are linked by an edge if the corresponding abelian
subcategories are related by a tilt at a simple object. In theZas#®?2 we shall show that
the action of Theorem 3.6 is free. It follows that each connected componé&rt (i#2) is
the Cayley graph of the standard system of generators of the grpup

1.2. Consider now the categor’(Cohwz). Any excellent exceptional collection
(Eo, ..., E,—1) in D determines an equivalence

n—1
Hom,, (@n*Ei, —) : Db (Cohwz) — D?(Mod B),
i=0
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wherer :wz — Z is the projection, and Mo# is the category of finitely generated right-
modules for the algebra

n—1
B =End,, <@n*Ei>.

i=0

Note that the algebr& is infinite-dimensional. Nonetheless can again be described as
the path algebra of a quiver with relations with verti¢®sl, ..., n — 1}. This time the
quiver is of the form

e o
g |
A

with d; arrows from vertex — 1 to vertexi for 1 <i <n — 1 as before, and
do=dimHomp(E,—1 ® wz, Eo)

arrows connecting vertex— 1 to vertex O.

Consider the full subcategofy,, ¢ D”(Cohwy) consisting of objects supported on the
zero sectiorZ C wz. The equivalence above determines a t-structur®gmwhose heart
is an abelian subcategofy C D, equivalent to the category of nilpotent representations
of the algebraB. Abelian subcategorie8 c D, obtained in this way will again be called
exceptional. Any exceptional subcategoryZey is of finite length and has simple ob-
jectsSp, ..., S,—1 corresponding to the vertices of the quiver. These simple objects have
a canonical ordering coming from the ordering of the exceptional objéets .., E,,_1),
and for 1<i < n — 1, the abelian subcategory,Ll3 C D,, is also exceptional, and corre-
sponds to an excellent collectionIh obtained from the original one by a mutation.

The key new feature of the Calabi—Yau situation concerns the subcategafy The
simple objectsS; of an exceptional subcategoly C D, are spherical objects. It fol-
lows from work of Seidel and Thomas [28] that there are associated autoequivalences
&5, € AutD,, and we shall show that the image of the subcategggBLC D, under
the autoequivalencég, , is an exceptional subcategoryDf,.

A subcategorys c D, will be called quivery if there is an autoequivaleres AutD,,
such that the subcatego®(55) C D,, is exceptional. Thus, quivery subcategorief
are finite length abelian categories, and from what was said above, they remain quivery
under the operation of tilting at a simple object. A slightly subtle point is that the simple
objectsSy, ..., S,—1 of a quivery subcategor$$ C D,, have no canonical ordering, only



T. Bridgeland / Journal of Algebra 289 (2005) 453-483 457

a cyclic ordering coming from the arrows in the corresponding quiver. Let us define an
ordered quivery subcategory to be a quivery subcatefjaryD,, together with an ordering
of its n simple objectsSo, ..., S,—1) compatible with the canonical cyclic ordering.

The combinatorics of the set of quivery subcategorie®gfis controlled not by the
Artin braid groupA,,, but by a groupB, which is a quotient of the annular braid group
CB,, or alternatively, a semidirect product of the affine braid graps by the cyclic
groupZ,. The reader is referred to Section 2.1 for the precise definitions of these groups.

Theorem 4.11. Thereisan action of the group B, on the set of ordered quivery subcate-
goriesof D,,. For eachinteger 0 < i < n — 1 the element 7; acts on the underlying abelian
subcategories by tilting at the ith simple object.

Introduce a grapi®te, (Z) whose vertices are the quivery subcategorieBgf and in
which two vertices are joined by an edge if the corresponding subcategories are related by
a tilt at a simple object. In the cage= P? we shall show that the action of Theorem 4.11
is free, and it follows that each connected component of the geaph(P?) is the Cayley
graph for the standard system of generaters. ., t,_1 of the affine braid groupi,,_1.

2. Preliminaries: Braid groupsand tilting

This section consists of various basic facts and definitions we shall need; we include the
material here for the reader’s convenience, and to fix notation.

2.1. Braid groups

Given atopological spacd, define the configuration spaceroflistinct, ordered points
in M

Co(M)={(mo,....my_1) e M": i % j=m £m;}.

The symmetric grouft’,, acts freely onC,,(M) permuting the points.

The standard:-string Artin braid group A,, is defined to be the fundamental group of
the space”, (C)/X,. As is well known (see for example [4]), it is generated by elements
o1, ...,0,—1 Subject to the relations

0;0j0; =000 for |i —]| =1,
oioj=ojo; for|i—j|>1
The centre of4,, is generated by the element
y=(01---0p-1)" = (0p-1---01)".

To visualize elements of the groufy, one can project points i@, (C) to a far away line in
C to obtain a set ofi points inR; a loop in the configuration space can then be thought of
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as a braid om strings. The elementary generatefscorrespond to théth string passing
under thei — 1)st.
We shall need the following easy result later.

Lemma 2.1. The element
d=(o1--0p-1)(01+++04—2) - (0102)01 € Ay
has the property that § 10,8 = o, _; for 1<i <n — 1.
Proof. For1< j <n—1setf; =o01---0;. We are required to prove that

0iBn-1Bn—2---B1=Bn-1Bn—2--- B1Ou—i.

First supposé > 1. By induction orm we can assume that

0i—1Bn—2---B1=Pu—2-- B1On—i.

Multiplying both sides byg,_1 and noting that for ki <n — 1 we haveg,_10;_1 =
oi By—1 gives the result. To prove the result whiea 1 note first that,,_1 commutes with
Bj if j <n —3. Thus we are reduced to proving

01Bn-1Bn—2 = Bn-1Bn—1.
This follows by repeatedly applying the relatieys,—1 = B,-10,—1. O

Then-string @z > 2) annular braid group is defined to be the fundamental group of the
spaceC,(C*)/X,. Itis generated by elementsindexed by the cyclic groug,,, together
with a single element, subject to the relations

rTr 1:r;+1 for all i,
LT =TT forli — j|=1,
LT =TT forli — j| > 1.

For a proof of the validity of this presentation see [22]. Of more interest to us will be the
guotient group

B, =CB, /(r”)

The subgroup ofB, (or CB,) generated by the elements, ..., t,_1 is an affine braid
group; we denote ifl,,_1.

To visualize elements of these groups one can project points (@*) out from the
origin onto a large circle to obtaim points in S1; a loop in the configuration space can
then be thought of as a braid @fstrings lying on the surface of a cylinder. The element
corresponds to thah string passing under th@ — 1)st; the element corresponds to the
twist which for each takes point to pointi + 1.
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Proposition 2.2. There isa short exact sequence

1— Fy —> By = Ay/{y) — 1,
where F,, isthe free group on n generators. The homomorphism # is defined by
h(ry=o01---0,_1 and h(t;))=o0; forl<i<n-—1,
and its kerndl is freely generated by the elements
o = ri(rl~--rn_1)r_(i+l), 0<i<n—-1

Proof. We give two proofs, one geometric and the other algebraic. In geometric terms,
note that the spac€,(C*)/ %, is homotopic toC,;+1(C)/ %, where ¥, C X, 1 is the
subgroup fixing: € {0, 1, ..., n}. Forgetting the last point gives a fibration

Cl‘l-‘rl(C)/En — Cy (C)/En

whose fibre isC \ {mo, ..., m,—_1}. This gives an exact sequence

1— F, — CB, 2> A4, — 1.

Drawing suitable pictures it is easy enough to see thatts on generators as claimed
in the statement, and that the elemedatscorrespond to loops in the fibre which freely
generate the fundamental group®f {mo, ..., m,—_1}. Sincea(r") = y the result follows
by taking quotients.

To see the result using just the presentatioB,pfve follow an argument of Chow [11].
It is easy to check that the formula in the statement defines a homomorphiSB), —
A,, and that the elements lie in its kernel and generate a normal subgraim CB,,.
Furthermore: has a sectiom,, — CB,, sending; to t; for 1 <i <n — 1, and the induced
homomorphismAd,, — CB, /K is surjective because i6B,/K one has = t1---1,,—1.
It follows that K is the kernel ofi.

The only non-trivial part is to show th& c CB, is freely generated by the elemeats
To see this, one needs to exhibit a representatid@Byfin which they act freely. Lef,
be the free group on generatofsindexed byi € Z,, and define an action @B, on F,
by automorphisms using the formulagx;) = x; 1 and

7 (Xi) = Xi+1, Ti(Xi41) = x;llxz'xz'ﬂ, Ti(x;)=x; forj¢{i,i+1}.

Then the element; acts by sending eacty to xixjxi_l and it follows that they; generate
the free group of inner automorphismsgf. O
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2.2. T-structures and tilting

The reader is assumed to be familiar with the concept of a t-structure [2,15]. The fol-
lowing easy result is a good exercise.

Lemma 2.3. A bounded t-structure is determined by its heart. Moreover, if A C D isa
full additive subcategory of a triangulated category D, then A is the heart of a bounded
t-structure on D if and only if the following two conditions hold:

(a) if A and B are objects of .A then Homp (A, B[k]) =0 for k <0,
(b) for every non-zero object E € D thereareintegersm < n and a collection of triangles

0=

m+1 Em+2‘>"">En—l—>En:E

Enm E
AN / AN / kN /
AN N N\
N AN AN
A A

m+1 m—+2 Ay
with A;[i] € A for all ;.

It follows from the definition that the heart of a bounded t-structure is an abelian cate-
gory [2]. In analogy with the standard t-structure on the derived category of an abelian
category, the objectd;[i] € A are called the cohomology objects df in the given
t-structure, and denoted’ (E).

Note that the group AuP of exact autoequivalences &f acts on the set of bounded
t-structures: ifA C D is the heart of a bounded t-structure abd Aut D, thend (A) C D
is also the heart of a bounded t-structure.

A very useful way to construct t-structures is provided by the method of tilting. This
was first introduced in this level of generality by Happel, Reiten and Smalg [19], but the
name and the basic idea go back to a paper of Brenner and Butler [7].

Definition 2.4. A torsion pair in an abelian categagyis a pair of full subcategorie¥, F)
of A which satisfy Homy (T, F) =0 for T € 7 and F € F, and such that every object
E € A fits into a short exact sequence

0O-T—E—-F—0

for some pair of object¥ € 7 andF € F.

The objects off andF are called torsion and torsion-free. The proof of the following
result [19, Proposition 2.1] is pretty-much immediate from Lemma 2.3.

Proposition 2.5 (Happel, Reiten, SmalgPuppose A isthe heart of a bounded t-structure
on a triangulated category D. Given an object E € D let H' (E) € A denote the ith coho-
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mology object of E with respect to this t-structure. Suppose (7, F) isatorsion pair in A.
Then the full subcategory

A*=|EeD: H(E)=0fori ¢{-1,0}, HY(E)e F and HY(E) € T}
isthe heart of a bounded t-structure on D.

In the situation of the lemma one says that the subcategbiyg obtained from subcat-
egory A by tilting with respect to the torsion paif, 7). In fact one could equally well
considerA*[—1] to be the tilted subcategory; we shall be more precise about this where
necessary. Note that the p&F[1], 7) is a torsion pair ind* and that tilting with respect
to this pair gives back the original subcategetyvith a shift.

Now supposed C D is the heart of a bounded t-structure and is a finite length abelian
category. Note that the t-structure is completely determined by the set of simple objects
of A; indeedA is the smallest extension-closed subcategorpafontaining this set of
objects. Given a simple objeste A define(S) C A to be the full subcategory consisting
of objectskE € A all of whose simple factors are isomorphictoOne can either views)
as the torsion part of a torsion theory @nin which case the torsion-free part is

F={E e A: Homy(S, E) =0},
or as the torsion-free part, in which case the torsion part is
T ={E € A: Homy(E, S) =0}.
The corresponding tilted subcategories are
LsA={EeD: H(E)=0fori ¢{0,1}, HYE) e FandHY(E) € (S}
RsA={EeD: H(E)=0fori ¢ {-1,0}, H™YE) e (S)andH®(E) € T}

We define these subcategoriesdfto be the left and right tilts of the subcategodyat
the simpleS respectively. It is easy to see th#t—1] is a simple object of k.4, and that
if this category is finite length, thengR 1;Ls.A = A. Similarly, if Rs A is finite length
Lg[l] RS A=A.

The following obvious result will often be useful.

Lemma 2.6. The operation of tilting commutes with the action of the group of autoequiva-
lences on the set of t-structures. Take an autoequivalence @ € AutD. If A C D isthe heart
of a bounded t-structure on D and has finite length and S € A is simple, then @ (A) C D
isthe heart of a bounded t-structure on D and hasfinite length, @ (S) isa simple object of
®(A), and

Los) @A) =D(Ls A).

Proof. This is a straightforward application of the definitionsa
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3. Exceptional collectionsand t-structureson D

Throughout this sectio@ will be a smooth Fano variety ari? will be its bounded
derived category of coherent sheaves. We shall assume throughaoZtsatisfies the con-
dition

dmK(Z)@ C=1+dimZ. (M

Although this is not necessary everywhere, some of the definitions would need to be mod-
ified for more general cases, and it is not clear exactly how this should be done (see [18]
for a more general approach).

3.1. Exceptional collections and mutations

We start by recalling some of the theory of exceptional collections developed by Bondal,
Gorodentsev, Polishchuk, Rudakov and others. For more information and proofs of some
of the following facts the reader is referred to the original papers [5,6,16,17,26].

An objectE € D is said to beexceptional if

C ifk=0
H nf‘D E,E)= i
omp (E, £) {O otherwise.

An exceptional collection in D (or on Z) of lengthrn is a sequence of exceptional objects
(Eo, ..., E,_1) of D such that

n—1>i>j>0 = Homk(E;, E;)=0 forallkeZ.
The exceptional collectiotEy, ..., E,—1) in D isfull if for any E € D
Homly(E;, E)=0 forall0<i<n-—1landalkeZ = E=0.
An exceptional collectioliEy, ..., E,—1) isstrongif forall 0 <i, j <n — 1 one has
Hont,(E;, Ej) =0 fork #0.
As we shall see in the next subsection, strong exceptional collections define equivalences
of D with derived categories of module categories. Pulling back the standard t-structure
allows us to define new t-structures ®h Thus if we are interested in t-structures Bn
exceptional collections are not enough: we need strong collections.

Given two objectsE and F of D, define a third object & F of D (up to isomorphism)
by the triangle

Lg F — Homiy(E, F) ® E —> F,

where ‘ev’ denotes the canonical evaluation map. It is easy to see that i) is an
exceptional collection then so (kg F, E). The object lg F is called thdeft mutation of
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F through E. Mutations of this form define a braid group action on exceptional collections
[5,16,17].

Theorem 3.1 (Bondal, Gorodentsev, Rudakovijhe braid group A, acts on the set of
exceptional collections of length n in D by mutations. For 1 <i < n — 1, the generating
element o; acts by

oi(Eg,...,En_1)=(Eo,....,Ei2,Lg,_Ei,Ei_1,Eiq1,..., Ex1).

Strong exceptional collections do not remain strong under mutations in general. A good
example is the strong collectiqg®, O(1, 0), O(0, 1), O(1, 1)) on P! x P! which mutates
to give the non-strong collectiof®, O(0, 1)[—1], O(1, 0), O(1, 1)).

A helixin D is an infinite sequence of objedt’;);<z such that for eache Z the cor-
respondinghread (E, ..., E;+,—1) is a full exceptional collection i®, and the relation

(01 -0n-1)(Eit1, ..., Eizn) =(Ei, ..., Eitn-1)

is satisfied. Clearly a heliXE;);cz is uniquely determined by the full exceptional col-
lection (Eo, ..., E,_1); we say that the helix igenerated by (Eo, ..., E,—1). Bondal
[5, Theorem 4.2] showed that any heliX; ), satisfies

Ei ,=E Q@wy; foralliecZ. (1)

These definitions certainly need to be modified for variefie®ot satisfying(t).
We shall call a heliXE;);cz in D excellent if for all i < j one has

Hont,(E;, E;)) =0 unlessk = 0.

Such helices were callegkometric by Bondal and Polishchuk. An exceptional collection
(Eo, ..., E,—1) will be calledexcellent if it is a full collection which generates an excellent
helix. Equivalently this means that the collection is full, and for any integefsi0j <
n—1andanyp <0

Hon, (E;, E; ® wh) =0 unlessk =0.

In particular an excellent collection is strong. Bondal and Polishchuk showed that any
full exceptional collection of sheaves on a variety satisfyihgis automatically excellent
[6, Proposition 3.3].

The importance of excellent collections is the following result [6, Theorem 2.3].

Theorem 3.2 (Bondal, Polishchuk)Any mutation of an excellent collection is again excel-
lent.

The motivating example for all this theory is the sequence of line bundles

(0,0Q),...,0(-1)
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onP"~1, which is an excellent collection of length The fact that it is full is the essential
content of Beilinson’s theorem [1]. The helix generated by this collection ig{2&9); 7.

3.2. The homomorphism algebra

Let (Ep, ..., E,_1) be a full, strong exceptional collection 1. The general theory of
derived Morita equivalence [25] shows that the functor

n—1

f:Hom-D(@E,-, —> :D — D(Mod A)

i=0

is an equivalence, where Meadis the category of finite-dimensional right-modules for the
algebra

(B

i=0

This algebra is called theomomorphism algebra of the collection(E, ..., E,_1). Note
that A is finite-dimensional and has a natural grading

n—1
A=Pa=
k=0

The degree zero part has a basis consisting of the idempotents

n—1
&5 Homp(E;, Ej).
k=0 j—i=k

¢i =idg, € Endp(E),
and there are corresponding simple right-moddigs. ., 7,1 defined by
dimg(Te;) = 6;;.
It is easy to check that all simple modules are of this form.

Proposition 3.3 (Bondal) Let (Eo, ..., E,—1) beafull, strong exceptional collectionin D,
and define a new collection by

(Fo, ..., Fy_1) =68(Eo, ... Ex_1),

where § € A,, isthe element defined in Lemma 2.1. Then these two collections are dual, in
the sense that

Homty (E;, Fu-1-1j1) = [o Iotlherv{/i:;

The objects F; are unique with this property.
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Proof. This is basically Lemma 5.6 of [5]. Just note that in Bondal's notation
8(E07 MR En—l) = (L}’l—l En—lv cee Ll El’ EO)?
where for 1< i <n — 1 the object |LE; is definedto be kyLg, ---Lg, , Ei. O

Under the equivalenc&, the objectE; € D is mapped to the projective modudeA
corresponding to the vertéxLemma 3.3 shows that the object

Sj=F,-1-lJj]
is mapped to the simple modulg. Note also that Lemma 2.1 shows that mutations of the
collections(Ey, ..., E,—1) and(Fy, ..., F,,—1) correspond to each other.
As an example, take the collectio®, O(1), ..., O(n — 1)) in D(P*~1). The dual col-
lection, in the sense of Lemma 3.3, is

(2" 'n-1,....2%,0),

where 2’ = \' T* is the sheaf of holomorphic-forms onP"~1. This can be checked
directly by computing the cohomology groups of Proposition 3.3.

Proposition 3.4 (Bondal, Polishchuk)Let (Eo, ..., E,,—1) be an excellent collection in D
and let A be the corresponding homomor phism algebra with its natural grading. Then A
isgenerated over Ag by A1 and is Koszul.

Proof. For the first statement it is enough to show that fat D< j <n — 1, the natural
map

Homp (E;, E; 1) ® Homp(E; 1, E;) — HOMp(E;, E)
is surjective. Thus it is enough to show that
Homy, (E;, Lg,_, Ej) =0.
This statement follows from the fact that the collectiEo, ..., E,—1) is strong, which

in turn follows from Theorem 3.2.
The condition thatd is Koszul is equivalent to the statement that the Yoneda algebra

n—1
A! = End;‘ (@ Tj)
j=0

is generated in degree one. Under the equivalefiaescribed above, the simple mod-
ules7; correspond to the objects = F,_1—;[j]. By Theorem 3.2 the dual exceptional
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collection(Fo, ..., F,_1) is also excellent, and it follows that the algebtais the homo-
morphism algebra of the collectiqi, ..., F,_1). Since the argument above shows that
this is generated in degree one, the result follows.

The homomorphism algebra of an excellent collection can naturally be thought of as
the path algebra of a quiver with relations. The quiver hagertices{0,1,...,n — 1}
corresponding to the idempotents and for each Xi <»n — 1 has

d; = dim Homp(E;_1, E})

arrows going from vertex — 1 to vertex.

dy dy dy-1
[ ) [} [ ] ... [} [ ]

Since the algebra is Koszul the relations are quadratic [3].
3.3. Tilting and mutations
Given an excellent collectio(Ey, ..., E,—1) in D, the corresponding equivalence
n—1
F= Homb(@Ei, —) D — D(Mod A)
i=0

allows one to pull back the standard t-structureZoMod A) to give a t-structure o
whose heart

A(Eop,...,E,—1) CD

is equivalent to the abelian category MédLet us call the subcategories Bf obtained
from excellent collections in this wagkceptional . Note that any exceptional subcategory is
a finite length abelian category withsimplesSy, ..., S,_1. These simples have a uniquely
defined orderindgSo, ..., S,—1) in which

Hory(S;, S;) =0 unless — j =k >0. 2)
Thus it is possible to talk about thith simple objectS; of an exceptional subcategory.
Proposition 3.5. Let (Eo, ..., E,—1) be an excellent collection in D, and let S; denote

the ith simple object of the exceptional subcategory A(Eo, ..., E,—1) C D. Then for each
integer 1 <i <n — lthereisan identification of subcategories of D

Ls, A(Eg,...,E,_1) = A(U,'(Eo, A En—l))-
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Proof. Put(Eg, ..., E, ;) =o0;(Eo,..., E,_1) and set

A= A(Eo, ..., Es1), A'=A(Ey, ..., E,_q).

Let (So, ..., S,—1) be the simple objects ofl with their canonical ordering. The subcat-
egory Lg; A is obtained by tiltingA4 with respect to the torsion theoxy”, ), whereT
consists of direct sums ¢f, and

F=|{E € A: Homy(S;, E) =0}.

Note thatS; € F for every;j #i. It will be enough to show thatl’ C L, A, because if two
bounded t-structures have nested hearts then they are the samedSha=finite length
it will be enough to show that every simple object.4fis contained in eithe? [-1] or
in F.

Recall that if(Fy, ..., F,—1) is the dual exceptional collection td&o, ..., E,—1) then
S; = Fu—1-;[j]. Let(Sp, ..., S,_;) be the simple objects of” with their canonical or-
dering. By Lemma 2.1, the dual collection¢ay, ..., E, ;) is

(F(/]s“"Fr/lf]_)Zail—i(FOa"'sFl‘l—l)’

and S} = F,;_j_l[j]. Forj¢{i —1i} we haveS} =S; so thatS} € F. Furthermore,
S!_1 = Si[—1]. Thus the only thing to check is th&f e F.
Now F’ F,—;, and rewriting the defining triangle

n—i—1=" LF

n—i—1

Lr

n

iy Fui —> HOM (Fyi 1, Fyi) ® Fyi 1 —> Fu_i,
we obtain a triangle
Homb (Si, S )[-11® S —> S;_1 —> S,

where we have used (2) to see that Ho#;, S; 1) is concentrated in degree 1. Rewriting
this triangle again shows th&f is a universal extension id

0— Si-1—> S/ — EXt}4(S,-, Si—)®S8i —0,
and applying the functor Hop(S;, —) it follows thats; € 7. O

Using this lemma the braid group action on exceptional collections described in
Lemma 3.1 can be translated into the following form.

Theorem 3.6. The Artin braid group A, acts on the set of exceptional subcategories of D.
For each integer 1 < i <n — 1 the generator o; acts by tilting a subcategory at its ith
simple object.



468 T. Bridgeland / Journal of Algebra 289 (2005) 453-483

As a final remark in this section, suppogecC D is an exceptional subcategory of
D with corresponding ordered simple obje¢#, ..., S,—1). The categories §, A and
Rs, ; A are not covered by the above results. In general these categories are rather strange,
as the following example shows.

Example 3.7. Consider the casel = A(O, O(1)) ¢ D?(CohP) corresponding to the
excellent collection®, ©(1)) onPL. The dual collection i§O(—1), ©) so that the sim-
ple objects ofA are So = O and S1 = O(—1)[1]. The only objectsE € A satisfying
Homy (So, E) = 0 are direct sums of copies ¢fi. Performing a left tilt at the simple
So leads to a categoryh A which is finite length and has two simple objesfs= O[—1]
ands] = O(=D[1]. Since

Extly (Sp, S1) = 0= Exty (57, Sp),

the categoryd’ is semisimple, and so every object in the derived catefigryt’) is a direct
sum of copies of shifts of;, and.S;. In particular, the only exceptional objectsi.A")
are shifts ofS, ands; . It follows immediately thatD (A’) is not equivalent td* (CohP?),
so that the bounded t-structure whose hear’iss unfaithful.

4. Spherical collectionsand t-structureson D,
Recall our general assumptiaf:is a smooth Fano variety satisfying
dmK(Z)@ C=1+dimZ,

andwy is the canonical bundle ¢f, which we view both as an invertibl®,-module, and
as a quasi-projective variety with a fibratian w; — Z. The inclusion of the zero section
in wz will be denoteds : Z — wyz. Define

D, C D (Cohwy)

to be the full subcategory consisting of objects all of whose cohomology sheaves are sup-
ported on the zero sectiod C wz. Of course, when we say an objeEte Cohwy is
supported onZ we mean only that its reduced support is contained jrthe scheme-
theoretic support of will in general be some non-reduced fatteningZzgfand E will not

be of the forms, F for any F € CohZ.

4.1. Therolled-up helix algebra

Let (Eo, ..., E,—1) be an excellent collection i® and let(E;);cz be the helix it gen-
erates. The graded algebra

@ [ Homp(E: E))

k>0 j—i=k



T. Bridgeland / Journal of Algebra 289 (2005) 453-483 469

is a variant of what Bondal and Polishchuk called the helix algebra. It carries a natural
Z-action coming from the isomorphisms

®wz :HOMp(E;, E;) — HOMp(E;_,, Ej_,).
Define the rolled-up helix algebra to be the invariant subalgebra
Z
B= [EB [ Homp(E;. E,-)] )
k>0 j—i=k

The degree zero paRy has a basis consisting of the idempotents

ei= [] ide, e [[Endp(E).

J=ti (n) J
and there are corresponding simple righimodulesT; defined by
dim(c(Tje,') = 5,’].

In contrast to the situation with the finite-dimensional algebras considered in the last sec-
tion these will not be the only simplB-modules.

Proposition 4.1. Let (Ep,..., E,—1) be an excellent collection on D and let B be the
associated rolled-up helix algebra. Then the functor

F,, = Hom, (@n E;, ) : Db (Cohwz) — D”(Mod B)

is an equivalence of categories.

Proof. Note thatr.(O,,,) = @pgo wé. The adjunctiont* -, together with the projec-
tion formula shows that for arbitrary objedisand F of D(Z)

Hont, (7*E, n* F) = ) Homi, (E, F ® o).

p<0

Since(Eo, ..., E,_1) is a excellent collection, it follows that

n—1
Emf”l (IG%” E’) - [O otherwise.
Applying the adjunctiont* - 7z, again shows that for any obje&te D,

Honf, (7*E;,E)=0 forallkeZ = m.(E)=0
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But the functorr, is an exact functor on the category Gel) and has no kernel, so this
implies thatE = 0. The statement then follows from the general theory of derived Morita
equivalence [25]. O

Under the equivalencé,,, the objectr*E; is mapped to the projective module =
e¢;B,and if (Fp, ..., F,,_1) is the dual collection t@Ey, ..., E,_1) as in Lemma 3.3, then
the object

Sj= S*(Fn—l—j[j]) 3)
is mapped to the simple module.

Proposition 4.2. If (Eo, ..., E,—1) isan excellent collection in D then the corresponding
rolled-up helix algebra B is generated over Bg by By and is Koszul.

Proof. This is entirely analogous to the proof of Proposition 3.4. It is basically a corollary
of Bondal and Polishchuk’s result (Theorem 3.21

The graded algebr® can naturally be viewed as the path algebra of a quiver with
relations. The quiver has vertices{0, 1, ...,n — 1} corresponding to the idempotents
e; € Bg. Foreach K i <n — 1there are

d; =dimHomp(E;_1, E;)

arrows from vertex — 1 to vertexi. The only difference to the quivers considered in the
last section is that there are now

do=dimHomp(E,_1, E,)

arrows from vertex: — 1 to vertex 0. Thus the quiver is a cycle

o
g |
A

As before, the Koszul property implies that the relations are quadratic.
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Example 4.3. SetZ = P"~! and consider the diagonal action of the cyclic grédpon
affine spac&” with weights exg2ri/n). The quotient varieti = C"/Z, has an isolated
singularity; blowing it up gives the varietyz; the resulting birational morphism; — X
contracts the zero sectichC wz, and is a crepant resolution of singularities.

The abelian category &, -equivariant coherent sheaves©@his tautologically equiv-
alent to the module category Ma& of the corresponding skew group algebRa=
Clx1, ..., x,] * Z,. We claim that the ringr is in fact isomorphic to the rolled-up he-
lix algebraB of the helix(O(i));cz on Z, so that in this very special case, the equivalence
F, can be thought of as an incarnation of the McKay correspondence.

To prove the claim, note first that the degree zero part of both graded algebraR is
the same, namely a semisimple algebra spanned by idempagents ¢,,_1. Furthermore,
forall 0<i < j < n — 1there are natural identifications

ejBej =ejRej =C[xy,.. Lxn ]V,

where the right-hand side is the space of polynomials of degree congrugnt tanod-
ulon. Itis easy to check that the maps

¢iBej @ ejBey — e;Bey, eiRej @ ejRer — e;Rey
correspond to multiplication of polynomials, and so the claim follows.

A right-moduleM over B is said to benilpotent if there is some natural numbersuch
that M B, = 0. Let Moch B C Mod B denote the thick abelian subcategory consisting of
nilpotent modules. Since any module satisfyiigg1 = 0 is a direct sum of copies of the
simple modulesT;, one sees that M is a finite length category with simple objects
To, ..., T,—1. In fact it is the smallest extension-closed subcategory of Bl@dntaining
each moduld;.

Let Dg(Mod B) c D*(Mod B) be the full subcategory consisting of objects whose co-
homology modules are nilpotent. It is not immediately clear whether this category can be
identified with the derived categoy? (Modp B). A similar question arises as to whether
D, is the derived category of the subcategory of @ghconsisting of sheaves supported
on the zero section. But these questions will not be important for us.

Lemma 4.4. The equivalence
F.,:D?(Cohwz) — D’ (Mod B)
of Proposition 4.1 restricts to give an equivalence of full subcategories
Fu Dy — D5(Mod B).

Proof. This is immediate sinc®,, is the smallest full triangulated subcategoryloton-
taining the objectsS; and Dg(Mod B) is the smallest full triangulated subcategory of
D’(Mod B) containing the simple moduld§. O
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4.2. Spherical collections

In Section 3, rather than working directly with a given exceptional subcategdB of
we worked with the corresponding set of projective objects, which formed an exceptional
collection(Ey, ..., E,—1). We then used the braid group action on exceptional collections
to get a handle on the combinatorics of the exceptional subcategories. Of course, we could
equally well have worked with the simple objects of a given exceptional subcategory, which
are closely related to the dual exceptional collectibg, . .., F,—1).

In the next subsection we shall be interested in certain finite length abelian subcategories
of D,,. Neither the projective nor the simple objects of these subcategories form exceptional
collections. However, in this case, the simples are what Seidel and Thomas [28] called
spherical objects, and together they form what we shall call a spherical collection. In this
subsection we define an action of the gra@jpon the set of spherical collections 1,,;
this will be used in the next subsection to analyse the combinatorics of the corresponding
subcategories dP,,,.

Let n be the dimension of the varietyz. An objectS € D,, is spherical if

C ifk=0orn
H = ’
OWK(Dw(S’ 5) [ 0 otherwise

Sincewyz has trivial canonical bundle, and any obj&ct D,, has compact support, Serre
duality gives an isomorphism of functors

Homp, (S, —) = Homp, (—, S[n)".
The following result then follows from constructions given in [28].

Proposition 4.5 (Seidel, Thomas)f S € D,, is spherical then there is an autoequivalence
&g € AutD,, such that for any F € D, thereisatriangle

Homp, (S, F) ® S — F — ®s(F).
Furthermore, ®g11) = @5, and one hasrelations
s, 0 P, 0 ‘1’511 = Do (5),
for any pair of spherical objects Sy, S2 € D,,,.

The autoequivalenceBg associated to spherical objects are often callést functors.
A ready supply of spherical objects ary is obtained by extending exceptional objects on
Z C wyz by zero.

Lemma4.6. If E € D isexceptional then s, E € D, isspherical. More generally, if £ and
F are objects of D satisfying Hont, (E, F) = 0= Hont,(F, E) for all k # 0, then one
has

Hom, (siE,s«F)=Homp(E, F) ® Homp(F, EY*[—n].
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Proof. If s: Z — Y is the inclusion of a smooth projective subvari&tyn a smooth quasi-
projective varietyY then a standard calculation shows that for any pair of objgéciad F
of D (CohZ) there is a spectral sequence

q
Hom@(E,F@o/\N) = Hom) ™ (s,E, 5. F),

where is the normal bundle of in Y. Our result follows by taking’ to be the total
space ofvz, so that\ = wz, and computing Hom(E, F ® wz) using Serre duality. O

Define a spherical collection of lengthin D,, to be an ordered collection of spherical
objects(Sp, ..., S,—1). The following action of the grou,, should be compared with the
action of A,, on exceptional collections described in Theorem 3.1. The formula given here
is justified by Proposition 4.10 below.

Lemma 4.7. The group B, acts on the set of length n spherical collectionsin D,,. The
generator r acts by

r(S05 Sl7 MR S}’l*l) = (SnfL SOa MR Sn72),
andfor 1 <i <n— 1, thegenerator t; acts by
Ti (S07 e Sn—l) = (501 ) Si—21 Sl[_l]s (pS,' (Si—1)7 Si+la e Sn—l)-

Proof. Note first that it is not necessary to define the actiomgadincerg = r ~1r1r. As-
sumen > 3 and consider the relation oty = 121172 This is easy to check directly using

the relations of Lemma 4.5; up to isomorphism both sides take the spherical collection
(So, ..., S,_1) to the collection

(S2[—2], @5, (SD[—1], @5, P5,(S0), S3. - - » Sp—1)-
The other relations are either obvious or follow from this by conjugating.byc
Note that the group of exact autoequivalence®gfacts on the set of spherical collec-
tions in the obvious way: i® € AutD,, is an exact autoequivalence, affg, ..., S,_1) is
a spherical collection, then

@ (S0, - -» Su-1) = (P(S0), .-, P (Su—1))-

The elements; = ri(z1---7,_1)r~¢*D e B, defined in Lemma 2.2 act on spherical col-
lections by autoequivalences.

Lemma4.8.If (So, ..., S,—1) isaspherical collectionin D, then

;i (S0, ..., Sp—1) = Ps, (S0, ..., Sp—1) for0O<i<n—1
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Proof. This is a simple computation using the definition of the actioB,pin Lemma 4.7.
We leave the details to the readera

4.3. T-structures and tilting

Let (Eop,..., E,—1) be an excellent collection i and let B be the correspond-
ing rolled-up helix algebra. The standard t-structure ®H(Mod B) induces one on
Do(Mod B) in the obvious way, and pulling this back using the equivalence

Fo:Dy— Do(Mod B)
of Lemma 4.4 gives a bounded t-structure®n whose heart
B(EOv ce Ei’l*l) C Da)

is equivalent to MogB. Let us call the subcategories Df, obtained from excellent col-
lections inD in this wayexceptional.

We shall also define guivery subcategory of>,, to be one of the form® (B) c D,
for some autoequivalencg € AutD,, and some exceptional subcategdtyC D. Note
that the analogous definition in the last section would have given nothing new, since if
@ € AutD and A C D is an exceptional subcategory corresponding to the excellent col-
lection (Eo, ..., E,—1) then®(A) c D is the exceptional subcategory corresponding to
the excellent collectio® (Eo, ..., E,_1).

Any quivery subcategory oD, is a finite length abelian category withsimple ob-
jectsSo, ..., S,—1. By (3) and Lemma 4.6 these simple objects are spherical. They have a
canonical cyclic ordering in which

Hom, (S;.5;)=0 unless 6<k <n andi — j =k modn. (4)

If B=DB(Ey,...,E,_1)Iisanexceptional subcategory then its simples are given by (3), and
thus have a canonical orderinfo, ..., S,—1) compatible with the above cyclic ordering.

One consequence of the following result is that this statement does not extend in an obvious
way to quivery subcategories.

Proposition 4.9. Let (Ep, ..., E,—1) be an excellent collection in D, and let (E;);cz be

the helix it generates. If (So, ..., S,—1) are the simples in the exceptional subcategory

B(Eo, ..., E,—1) with their canonical ordering, then &g, ,(S,—1, So, ..., Sy—2) are the

simplesin B(E_1, Eo, ..., E,_2) with their canonical ordering.

Proof. Let (Fy, ..., F,—1) =8(Eo, ..., E,—1) be the dual collection. Since
(E-1,...,Ey2)=(01---04-1)(Eo0, ..., Ep-1),

Lemma 2.1 shows that the dual collectionfo_1, ..., E,—2) is

(F(Sa LR Fy;_l) = (O—}’lfl' : 'Ul)(FOa ceey anl) = (LFO(F1)9 LR LFO(Fn71)7 FO)‘
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Thusif(Sy, ..., S, _,) are the simples i8(E_1, ..., E,_2) with their canonical ordering,
then

So = s«(Fo) and S}:s*(LFOF,,_j[j]) forl<j<n-1

For each K j <n—1, pushing forward the definition of a mutation and using Lemma 4.6
gives a triangle

S*(LFO Fn—j[j - 1]) - Home(S*Fo, S*Fn—j) ®S*(F0[j - 1]) g s*(Fn—j[j - 1])
Rotating the triangle and using (3) we can reinterpret this as a triangle
Homp, (Sp-1. Sj-1) ® Su—1 — Sj—1 = s« (L gy Fa—jlj])-

From the definition of the twist functobg, , it follows that S, = @5, ,(S;-1) for 1 <
Jj <n — 1. Finally, any spherical obje¢te D, satisfiesds(S) = S[1 — n]. Applying this
to 5,1 shows thatS, = @5, , (S,—1) which completes the proof.O

An ordered quivery subcategory ¥, is defined to be a quivery subcategory together
with an ordering of its simple objects compatible with the canonical cyclic ordering (4).
Note that an ordered quivery subcategory determines and is determined by the correspond-
ing spherical collectioriSo, ..., S;—-1).

Proposition 4.10. Suppose (So, ..., S,—1) are the ordered simples of an ordered quivery
subcategory B C D,,. Then for any 0 < i < n — 1 the tilted subcategory Ls, B C D, isa
quivery subcategory, and its simple objects with their canonical cyclic order are given by
the spherical collection 7;(So, ..., S,—1).

Proof. By applying a power of to the spherical collectioSo, . .., S,—1) and thus chang-

ing the ordering of the simples we can assume that the simple we tiliSat & in other
words, we can take= 1. Furthermore, it is easy to see that we can apply an autoequiva-
lence ofD,, without affecting the hypotheses or the conclusion of the proposition. Thus,
we may assume that

BZB(E07 MR Enfl)

is an exceptional subcategory, and using Proposition 4.9, we may assume further that
(So, ..., S,—1) have the corresponding canonical ordering.
Consider the mutated exceptional collection

(Eg..... E,_q) =01(Eo, ..., Ey_1).

We claim that the tilted subcategorygsl(55) is the exceptional subcategor§’ =
B(Ey, ..., E,_;). The proof of this goes in exactly the same way as that of Proposition 3.5.
The simple objects oB’ with their canonical ordering are given by

(Sl[—l], S1, 82, ..., Snfl),
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wheres; is the universal extension
0— So— S; — Ext;(S1, So) ® S1— 0.

As in Proposition 3.5 it follows thal8’ = L, (8). But by the definition of the twist functor
S1 = @s,(So) so the result follows. O

Combining this result with Lemma 4.7 gives our main theorem.

Theorem 4.11. There is an action of the group B,, on the set of ordered quivery subcate-
goriesof D,,. For each integer 0 < i < n — 1 theelement t; acts on the underlying abelian
subcategories by tilting at the ith simple object.

We conclude this section with a remark concerning the exact sequence

1— Fn—>Bn—h>An/(y)—>1

of Lemma 2.2. Consider an ordered quivery subcatedgry D,, and its imagel3, =
7(B1) under the action of an element B,,. Using Proposition 4.9 we can find exceptional
subcategories; andB;, of D,, such that each subcategdsy, with the chosen ordering of
its simples, is related to the corresponding exceptional subcatéjowith the canonical
ordering of its simples, by an autoequivalenége AutD,,. Then the two exceptional
collections defining3; andB3, are related by the action of some element of the cheet

in A,. We shall not need this fact in what follows and we leave the proof to the reader.

5. Thecase Z =P?

In this section we study in more detail the case wies: P2 is the projective plane.
ThusD denotes the derived categdByf (CohP?) andD,, denotes the full subcategory of
'Db(COha)]pz) consisting of objects whose cohomology sheaves are supported on the zero
section. Note that in this case; is the line bundle?(—3). An exceptional collection of
length three will be called an exceptional triple.

5.1. Markov triples
Exceptional collections of? were studied in detail by Gorodentsev and Rudakov [16,
17]. They discovered a connection between exceptional triples and a certain Diophantine

equation called the Markov equation.

Definition 5.1. A Markov triple is an ordered triple of positive integdis b, ¢) satisfying
the equation

a’®+ b?+ % = abe.

The set of Markov triples will be denotéiar.
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A good proof of the following result is given by Bondal and Polishchuk [6, Exam-
ple 3.2].

Proposition 5.2 (Gorodentsev, Rudakov)f (Eo, E1, E2) is a strong exceptional triple
in D, then the positive integers (a, b, ¢) defined by

a=dimHomp(Eg, E1), b=dimHomp(E1, E?), c=dimHomp (Eq, E2)
forma Markov triple.

It turns out that the spacBtar carries a natural action of the group R3LZ). Recall
that

PSL2,2) = Zg* Zo = (w, v: w3 =0v?=1)

wherew, v andu = wv can be represented by the matrices

(10 (0 -1 (0 1
“={1 1) "Z\1 o) "YT\-1 1)

respectively. Define an action of P&, Z) on the seDltar of Markov triples by the oper-
ations

w:(a,b,c)— (c,a,b), vi(a,b,c)— (b,a,ab —c).
The following result is due to Markov. For the readers convenience, and since we could not
find the exact statement in the literature, we include a proof, essentially lifted from Cassels
[10].
Proposition 5.3. The induced action of the normal subgroup
rs= Zip % g x Lup = (v, wilvw, wvufl) cPSL2,7)

of index three on the set Mtar of Markov triplesis free and transitive.

Proof. For the description of "2 as a free product see [24, Theorem 1.3.2]. Define the
weight of a Markov triple(a, b, ¢) to be the productbc. It is enough to show that for any
Markov triple (a, b, ¢) # (3, 3, 3), exactly one of the triples

(b,a,ab —c), (c,ac—b,a), (bc —a,c,b), (5)

has smaller weight. Indeed, this implies that for e&chb, c) € Mar there is a unique
element ofl"3 taking (a, b, ¢) to (3,3, 3).

To prove the claim, first suppose thatb, ¢ are not all distinct. Without loss of gener-
ality assume thak = c. Thena? + 2b? = ab? andb dividesa. Writing a = db it follows
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thatd divides 2, and the only possibilities a8, 3, 3) and (6, 3, 3), for which the claim
can be checked directly.

Thus we can assume thatb, ¢ are distinct, and without loss of generality we can take
a > b > c¢. Note that

clab—c) = a® + b2,

Sincea? + b2 > 2 it follows thatab — ¢ > ¢ so that the first triple of5) has larger weight
than(a, b, ¢). The same argument applies to the second triple.

Reducing modulo three shows that eacla @b andc is divisible by three. Consider the
guadratic function

F(6) =12+ b2+ c? — the.

This has roots: andbc — a. Since f(b) < 3b% — b%c < 0 it follows thatb lies between
these two roots, and hensde — a < a. Thus the third triple of (5) has smaller weight than
(a,b,c). O

It is natural to view the points dbtar as the vertices of a graph, with two triples being
connected by an edge if they are obtained one from the other by one of the generators
w~lvw, wow ! of I'3. Clearly, the resulting graph is a tree, and is just the Cayley graph of
I3 with respect to the given generators. This tree is known as the Markov tree; it is perhaps
most natural to draw it in the hyperbolic plane because (R3R) is the corresponding
group of isometries.

5.2. T-structureson D

Gorodentsev and Rudakov showed thathp, E1, E2) is an exceptional triple irD
then each objecE; is a shift of a locally-free sheaf de?. They also proved the following
transitivity result.

Proposition 5.4 (Gorodentsev, RudakavJhe braid group A3 acts transitively on the set
of exceptional triples of sheaves on P2.

It follows that an exceptional triple i® is excellent if and only if it is a shift of an
exceptional triple of sheaves. L&ttt (P?) denote the set of exceptional subcategorieB of
We consideGte(IP?) as a graph in which two subcategories are linked by an edge if they
are related by a tilt at a simple. Proposition 5.4 implies that the connected components of
the graphSte(P?) are indexed by the integers, and all components are isomorphic.

It is well known that there is a short exact sequence

1—7—> A3 L5 PSL2.7) —> 1.

1

where the mapf takes the generatoes;, oo of B3 to the elementsv—1v andvw 1 of

PSL(2, Z) respectively. The kernel of is generated by the element= (o102)3.
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We can define a map
T:6te(P?) — Mar

by sending an exceptional subcategoty- D with ordered simplegSo, S1, S2) to the
triple of positive integers

a=dimHom,(S1, So), b =dimHom, (S, S1), ¢ =dimHon? (S, So).

These form a Markov triple by Proposition 5.2 since the Homs between the simples are
just the Homs between the objects of the exceptional collection dual to the one defining

Theorem 5.5. The action of the group Az on the set Gtr(P?) of exceptional subcategories
of D isfree. Themap T isequivariant, which isto say

T(c A)=f(o)T(A),

for any exceptional subcategory .A C D and any element o € A3. Two subcategoriesliein
the samefibre of T precisely if they are related by an autoequivalence of D.

Proof. First we show thafl is equivariant. Letd = A(Ep, E1, E2) be an exceptional
subcategory oD. If

(Fo, F1, F2) = 8(Eo, E1, E2)
is the dual collection, then the simple objects. éfwith their canonical ordering are
(F2, F1[1], Fo[2]). If we apply oy to A then by Lemma 2.1 the dual collection changes
by o2. Thus the new simples até1, L 7, (F2)[1], Fo[2]). Consider the defining triangle
L, (F2) = Homp(F1, F2) @ F1— Fa.
Applying the functor Homp (—, F1) immediately gives

Homp (L7, (F2), F1) = Homp (F1, F2).

Applying the functor Honp (Fp, —) and using the fact that the mutated collection is strong
gives a short exact sequence

0— Homp (Fo, Lk, (F2)) = Homp (F1, F2) ® Homp (Fo, F1) — Homp(Fo, F2) — 0.
ThusifT(A) = (a, b, ¢) then
T(al(A)) =(a,ab—c,b)= (w_lv)(a, b,c)= f(o1)T(A).

A similar argument fow, completes the proof of equivariance.
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Next we show that the action of3 is free. Suppose an elemente A3 fixes an ex-
ceptional subcategod C D. Since the action of PSP, Z) on Mar is transitive we may
assume that'(A4) = (3, 3, 3). By Proposition 5.3, the stabilizer subgroup@f 3, 3) in
PSL(2, Z) is generated byv. Since f(¢) = w and the kernel off is generated by 3 it
follows thato = ¢¥ for some integek.

By the relation (1) the element = ¢2 acts on exceptional collections by twisting by
the anticanonical bundle. K is any ample line bundle o@ then the only objects g
satisfyingE ® L = E are those supported in dimension zero, and these cannot be excep-
tional since they are not rigid. Since the elemeht= 3 of A3 fixes .4, and hence the
exceptional objects which define it, it follows that= 0, which proves that the action is
free.

For the last statement, note first that one implication is trivial sificis defined in
terms of dimensions of Hom spaces, and these are preserved by autoequivalences. For the
converse, observe that the action of Aubn Gtr(P?) commutes with the action ofz,
so it will be enough to check that if two exceptional subcategadesand A, both lie
over (3, 3, 3) then they differ by an autoequivalence. By Proposition 5.4 the actiotgof
on &te(P?) is transitive (up to shift) so we can assume tHat= A(O, O(1), O(2)) and
A =0 (A) for someo € As. But as abovey = ¢* for some integek, and so

Az =0 (A1) = A(OK), Ok + 1), Ok + 2)),
which differs from.A; by tensoring with the line bundi@(k). O
5.3. T-structureson D,

Consider now the corresponding picture for the categegy The exact sequence of
Proposition 2.2 takes the form

1—> Z%Z %7 —> By -2 PSL(2,7Z) —> 1,
where the mag is given by
+1 1—-i

gr)=w, g(r,-):wi vw fori € Zs.

Let Str,, (P?) denote the set of ordered quivery abelian subcategoriBs ofVe can define
amap

T:Gtr, (P?) — Mar
by sending a quivery subcategory with ordered simpfgsS1, S2) to the positive integers
a=dimHomp, (S1.80).  b=dimHomy, (S2,51), ¢ =dimHom, (So, Sa).

Once again, these integers form a Markov triple because by (3) and Lemma 4.6 the Hom
spaces coincide with Hom spaces between the objects of an exceptional collection.
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Theorem 5.6. The action of the group Bz on the set Gtr,, (P?) of ordered quivery subcate-
goriesof D,, isfree. Themap T isequivariant, which isto say

T(tB)=g(mT(B),

for any ordered quivery subcategory 5 c D,, and any element r € B3z. Two ordered sub-
categories lie in the same fibre of T precisely if they are related by an autoequivalence
of D,,.

Proof. The proof of the equivariance df is almost the same as the one given in the last
subsection and we omit it. However the proof that the actioBpfs free is somewhat
more complicated in this case. Suppose an elemenBs fixes an ordered quivery sub-
category with simple$Sg, S1, S2). Since the action of PSR, Z) on9tar is transitive, we
can assume thadt(So, S1, S2) = (3, 3, 3). The stabilizer subgroup @8, 3, 3) in PSL(2, Z)

is generated by, andg(r) = w, so for some integek the elementr* € B, lies in the
kernel of the mag, which is freely generated by the elemeats a1, a2 of Lemma 2.2.
Thus it will be enough to show that the subgralipc B3 generated by, andr acts freely

on the fibre

F=T7%3,3,3) C 6tr,(P?).

The Grothendieck grou (D,,) is a rank three free abelian group. The Euler form
defines a skew-symmetric bilinear form &(D,). Any autoequivalence dp,, induces
an isometry ofK (D,,). The quotient ofK (D,,) by the kernel of the Euler form is a rank
two abelian groupA with an induced non-degenerate skew-symmetric form. Any ordered
quivery subcategory c D, determines three ordered simples objedg S1, S2) and
hence a basiq So], [S1], [S2]) of K (D,,) and a basis$[So], [S1]) of A.

We claim that if8 c D,, is an ordered quivery subcategory®f, lying in the fibreF,
then so arer;(B) andr(B), and the corresponding bases/bfre related by the matrices

3 (10 1 (-1 1
u_<3 1) and w _(_1 0>,

respectively. By Lemma 4.8, if the ordered simples3odre (So, S1, S2) then the ordered
simples ofw1(B) are given byds, (So, S1, S2). Sincel lies in the fibreF we have equali-
tiesinK (D,,)

[®5,(S0)] = [Sol + 3[S1], [®s,(SD] = [S1]

which gives the first matrix. The fact thBtlies in the fibreF implies that the kernel of the
Euler form is generated bySo] + [S1] + [S2]. This means thatS>] = —[So] — [S1] in A
which gives the second matrix.

According to [24, Theorems 1.7.4, 1.7.5 and Table 4], the elemehtsu3w—1 and
w~1uBw freely generate the normal subgroup

IrQ=7ZxZx7Z= (u3, w_lusw, wusw_1> c PSL(2,7Z),
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and this group does not contain the elemewits, so it follows thatl™ acts freely onF.

Finally we have to prove that any two ordered quivery subcategBties, lying over
(3, 3, 3) differ by an autoequivalence. Using Lemma 4.9 we can assume that the two sub-
categories are in fact exceptional and that the simples have the corresponding canonical
ordering. Thus by Proposition 5.4, we can tadke= B(O, O(1), O(2)) and Bz = t(31)
for somer € B3z. As above, it follows that for some integethe element ! lies in the
kernel ofg. But the kernel of acts by autoequivalences, and by Proposition 4.9, applying
ri(By) differs from B; by an autoequivalence, so the result follows:
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