
Abstract multiple specialization and its
application to program parallelizationq

German Puebla*, Manuel Hermenegildo

Facultad de Inform�atica, Universidad Polit�ecnica de Madrid, 28660 Boadilla del Monte, Madrid, Spain

Received 26 February 1997; received in revised form 13 January 1998; accepted 10 February 1999

Abstract

Program specialization optimizes programs for known values of the input. It is often the

case that the set of possible input values is unknown, or this set is in®nite. However, a form

of specialization can still be performed in such cases by means of abstract interpretation, spe-

cialization then being with respect to abstract values (substitutions), rather than concrete ones.

We study the multiple specialization of logic programs based on abstract interpretation. This

involves in principle, and based on information from global analysis, generating several ver-

sions of a program predicate for di�erent uses of such predicate, optimizing these versions,

and, ®nally, producing a new, ``multiply specialized'' program. While multiple specialization

has received theoretical attention, little previous evidence exists on its practicality. In this pa-

per, we report on the incorporation of multiple specialization in a parallelizing compiler and

quantify its e�ects. A novel approach to the design and implementation of the specialization

system is proposed. The resulting implementation techniques result in identical specializations

to those of the best previously proposed techniques but require little or no modi®cation of

some existing abstract interpreters. Our results show that, using the proposed techniques,

the resulting ``abstract multiple specialization'' is indeed a relevant technique in practice. In

particular, in the parallelizing compiler application, a good number of run-time tests are elim-

inated and invariants extracted automatically from loops, resulting generally in lower over-

heads and in several cases in increased speedups. Ó 1999 Elsevier Science Inc. All rights

reserved.

Keywords: Program specialization; Abstract interpretation; Partial evaluation; Static analysis;

Parallelization; Loop invariant detection

The Journal of Logic Programming 41 (1999) 279±316

q This work is a combined, revised and enhanced version of Refs. [51,53] presented at ACM Partial Eval-

uation and Semantic Based Program Manipulation '95 and Logic Program Synthesis and Transformation '96

respectively.
* Corresponding author. Tel.: +34-91-3367449; fax: +34-91-3524819; e-mail: german@®.upm.es

www.elsevier.com/locate/jlpr

0743-1066/99/$ ± see front matter Ó 1999 Elsevier Science Inc. All rights reserved.

PII: S 0 7 4 3 - 1 0 6 6 (9 9) 0 0 0 3 1 - X

1. Introduction

Compilers often use static knowledge regarding invariants in the execution state
of a program in order to optimize this program for the identi®ed particular cases
[1]. Standard optimizations of this kind include dead-code elimination, constant
propagation, conditional reduction, code hoisting, etc. A good number of source
to source program optimizations can be seen as special cases of partial evaluation
[14,33,16]. The main objective of partial evaluation is to automatically overcome
losses in performance which are due to general purpose algorithms by specializing
the program for known values of the inputs. In the case of logic programs, partial
evaluation takes the form of partial deduction [38,36], which is closely related to
other techniques used in functional languages such as ``driving'' [23]. Much work
has been done in logic program, partial deduction and specialization of logic pro-
grams (see, e.g., Refs. [20,21,29]).

1.1. Abstract specialization

It is often the case that the set of possible input values is unknown, or this set is
in®nite. However, a form of specialization can still be performed in such cases by
means of abstract interpretation [15]. Abstract interpretation of logic programs
and the related implementation techniques are well understood for several general
types of analysis of Prolog [18,3,48,17,41,10]. Specialization can then be performed
with respect to abstract values, rather than concrete ones. Such abstract values are
safe approximations in a ``representation domain'' of a set of concrete values. Stan-
dard safety results imply that the set of concrete values represented by an abstract
value is a superset (dually, a subset) of the concrete values that may appear at a cer-
tain program point in all possible program executions. Thus, any optimization al-
lowed in the superset will also be correct for all the run-time values. The possible
optimizations include again dead-code elimination, (abstract) constant propagation,
conditional reduction, code hoisting, etc., which can again be viewed as a special case
of a form of ``abstract partial evaluation.'' Consider, for example, the following gen-
eral purpose addition predicate which can be used when at least any two of its argu-
ments are bound to integers at call time:

plus(X,Y,Z):-

integer(X),integer(Y),!,Z is X + Y.

plus(X,Y,Z):-

integer(Y),integer(Z),!,X is Z - Y.

plus(X,Y,Z):-

integer(X),integer(Z),!,Y is Z - X.

If, for example, for all calls to this predicate in the program it is known from glob-
al analysis that the ®rst and second arguments are always integers, then the program
can be specialized as follows:

plus(X,Y,Z):-

Z is X + Y.

280 G. Puebla, M. Hermenegildo / J. Logic Programming 41 (1999) 279±316

which would clearly be more e�cient because no tests are executed. The optimization
above is based on ``abstractly executing'' the tests, i.e. reducing predicate calls to
true, fail, or a set of primitives (typically, uni®cations) based on the information
available from abstract interpretation. The notion of abstract executability was ®rst
introduced informally in Ref. [22] and later formalized in Ref. [53], and is instrumen-
tal in the optimization process. For completeness, we summarize the formalization of
abstract executability in Section 6.1.

The class of optimizations which can be performed using abstract executability
can be made to cover also traditional lower-level optimizations, provided the low-
er-level code to be optimized is ``re¯ected'' at the source level. Consider the optimi-
zation of general built-in predicates into simpler versions which are specialized for
particular cases. This can be done by providing a re¯exive version of the built-in
in which the tests that detect the di�erent uses appear explicitly and are then avail-
able for abstract execution. For example, the Prolog built-in predicate arg/3 typical-
ly checks whether the third argument is an (unaliased) variable. If this check is made
explicitly in a source representation of the built-in, it can be simpli®ed using abstract
execution in the same way as the integer checks in the example above. Similarly, at
a lower level, the same technique can be used to improve the actual code being gen-
erated by the compiler [58].

1.2. Multiple specialization

It is also often the case that a procedure has di�erent uses within a program, i.e. it
is called from di�erent places in the program with di�erent (abstract) input values. In
principle, optimizations are then allowable only if the optimization is applicable to
all uses of the predicate. However, it is possible that in several di�erent uses the input
values allow di�erent and incompatible optimizations and then none of them can
take place. This can be overcome by means of ``multiple program specialization''
[29,22,3,61] (the counterpart of polyvariant specialization [9]), where di�erent ver-
sions of the predicate are generated for each use. Each version is then optimized
for the particular subset of input values with which it is to be used. In contrast, a
program specialization in which (at most) one implementation is generated for each
predicate in the original program will be referred to as monovariant.

For example, in order to allow maximal optimization, di�erent versions of the
plus/3 predicate should be generated for the following calls:

..., plus(X1,Y1,Z1), plus(X2,Y2,Z2), ...

if, for example, X1 and Y1 are known to be bound to integers, but no information is
available on X2, Y2 and Z2.

While the technique outlined above is very interesting in principle, many practical
issues arise, some of which have been addressed in di�erent ways in previous work
[29,22,3,61]. One is the method used for selection of the appropriate version for each
call at run-time. This can be done quite simply by renaming calls and predicates. In
the example above, this would result in the following calls and the additional opti-
mized version plus1/3 of the plus/3 predicate:

..., plus1(X1,Y1,Z1), plus(X2,Y2,Z2), ...

G. Puebla, M. Hermenegildo / J. Logic Programming 41 (1999) 279±316 281

plus1(X,Y,Z):-

Z is X + Y.

This approach has the potential problem that, in order to create a ``path'' from
the call to an optimized version of a predicate, multiple versions for some interme-
diate predicates may have also to be generated even if no optimization is performed
for them. Clearly, this results in an additional increase in code size. Jacobs et al. [29]
propose instead the use of simple run-time tests to discern the di�erent possible call
modes and determine the appropriate version dynamically. This is attractive in that
it avoids the ``spurious'' versions of the previous solution (and thus reduces code
size). However, it is also dangerous as such run-time tests themselves imply a cost
which may be in unfavorable cases higher than the gains obtained due to multiple
specialization.

Another problem is that it is not straightforward to decide the optimum number
of versions for each predicate. In general, the more versions generated, the more op-
timizations possible, but this can lead to an unnecessarily large increase in program
size.

1.3. Main contributions

Multiple specialization has received considerable theoretical attention. In Ref. [61]
Winsborough presents the ®rst powerful framework for automatic implementation
of multiple specialization of logic programs. This framework solves the two prob-
lems outlined above while provably producing a program with multiple versions
of predicates in such a way that it allows the maximum optimizations possible while
having the minimal number of versions for each predicate.

The body of work in the area and Winsborough's fundamental results, plus the
fact that abstract interpretation is becoming a practical tool in logic program com-
pilation [27,59,48,55,7], suggests that it may be worthwhile to study whether multiple
specialization could be useful in practice. However, little evidence on the practicality
of abstract interpretation driven multiple specialization in logic programs has been
provided previous to our work [51,53]. Improvements for a few small, hand-coded
examples were reported in Ref. [39,59]. More recently, an implementation of multi-
ple specialization has also been reported in Ref. [34,35], applied to CLP(R). Also re-
cently, further evidence on the potential of multiple specialization for optimization
of logic programs has been reported in Ref. [37]. There, some uni®cations which sat-
isfy certain conditions are specialized, thus obtaining more e�cient programs. How-
ever, the method is not based on abstract interpretation and does not seem directly
applicable to other kinds of optimizations.

We report on the implementation of multiple specialization in a parallelizing com-
piler for Prolog which incorporates an abstract interpretation-based global analyzer.
We present a performance analysis of multiple specialization in this system, in which
a minimization of the number of versions is performed. We argue that our results
show that multiple specialization is indeed practical and useful in the application,
and also that such results shed some light on its possible practicality in other appli-
cations.

We also propose a novel technique for the practical implementation of multiple
specialization. While the analysis framework used by Winsborough is interesting

282 G. Puebla, M. Hermenegildo / J. Logic Programming 41 (1999) 279±316

in itself, several generic analysis engines, such as PLAI [48,45] and GAIA [10], which
greatly facilitate construction of abstract interpretation analyzers, are available, well
understood, and in comparatively wide use. We believe that it is of practical interest
to specify a method for multiple specialization which can be incorporated in a com-
piler using a minimally modi®ed existing generic analyzer. We propose a framework
which achieves the same results as those of Winsborough's but with only a slight
modi®cation of a standard abstract interpreter. Our algorithm can be seen as an im-
plementation technique for Winsborough's method in the context of standard ana-
lyzers.

1.4. Organization

The structure of the paper is as follows. Section 2 brie¯y recalls the main concepts
in abstract interpretation. In Section 3 we propose a na�õve implementation method
for multiple specialization based on abstract interpretation. In Section 4 we present
an algorithm for minimizing the number of versions. Then Section 5 presents the ap-
plication where multiple specialization will be applied: automatic parallelization.
Section 6 shows the design of the abstract specializer and an example of a specialized
program. Section 7 presents the experimental results, which are then discussed in
Section 8. Related work is discussed in Section 9. Finally, Section 10 concludes.

2. Abstract interpretation

We start by introducing some notation. A program is a sequence of clauses.
Clauses are of the form H: ÿ B1; . . . ;Bn, where H is an atom, n P 0, and
8i � 0 . . . n Bi is a literal.1 H is referred to as the head and B1; . . . ;Bn as the body
of the clause.

Abstract interpretation [15] is a useful technique for performing global analysis of
a program in order to compute at compile-time characteristics of the run-time behav-
ior of the program. The interesting aspect of abstract interpretation vs. classical
types of compile-time analyses is that it o�ers a well-founded framework which
can be instantiated to produce a rich variety of types of analysis with guaranteed cor-
rectness with respect to a particular semantics [15,4,31,42,47].

2.1. Abstract domains

In abstract interpretation, execution of the program is simulated on an abstract
domain (Da) which is simpler than the actual, concrete domain (D). Thus, abstract
substitutions (k) are used instead of actual substitutions (h). An abstract substitution

1 Our implementation supports essentially all the built-ins of ISO-Prolog [5]. However, for simplicity, we

avoid their discussion except in cases where it may be especially relevant. This includes for example

programs which have if-then-else's in the body of clauses, such as those generated by automatic

parallelization, as will be seen in Section 5.2. This construct poses no additional theoretical di�culties: the

same e�ect (modulo perhaps some run-time overhead) can be achieved using conjunctions of literals and

the cut.

G. Puebla, M. Hermenegildo / J. Logic Programming 41 (1999) 279±316 283

is a ®nite representation of a, possibly in®nite, set of actual substitutions in the con-
crete domain.

Abstract values and sets of concrete values are related via a pair of monotonic
mappings ha; ci: abstraction a : D 7!Da and concretization c : Da 7!D. The usual def-
inition for partial order (v) over abstract domains, is 8k; k0 2 Da k v k0 i�
c�k� � c�k0�. In addition, each primitive operation u of the language (uni®cation be-
ing a notable example) is abstracted to an operation u0 over the abstract domain.
Soundness of the analysis requires that each concrete operation u be related to its
corresponding abstract operation u0 as follows: for every x in the concrete computa-
tional domain, u�x� � c�u0�a�x���.

2.2. Goal-dependent abstract interpretation

The goal of many of the standard analysis engines used in logic programming is,
for a given abstract domain, to annotate the program with abstract information
about the possible run-time environments (i.e., the values of variables), at each pro-
gram point. Usual relevant program points are entry to the clause, the point between
each two literals in a clause, and return from the clause. In particular, we will be in-
terested in the abstract call substitution k for each literal L which is the abstract sub-
stitution just before calling L.

Correctness of the analysis requires that annotations be valid for any call (pro-
gram execution). If the analysis is goal-dependent (a.k.a. goal-oriented), then the ab-
stract interpreter receives as input, in addition to the program, a set of calling
patterns which are descriptions of the calling modes into the program. Information
inferred by goal-dependent analysis may be more accurate as it ``only'' has to be val-
id when executing calls described by the calling patterns. In its minimal form (least
burden on the programmer), the calling patterns may simply be the names of the
predicates which can appear in user queries. In order to increase the precision of
the analysis, it is often possible to include a description of the set of abstract (or con-
crete) substitutions allowable for each predicate by means of entry declarations [5].

For simplicity, in the presentation, only one calling pattern for analysis is given.
A calling pattern for an abstract domain Da consists of a predicate symbol p to-
gether with a restriction of the run-time bindings of p expressed as an abstract
substitution k 2 Da. Extending the framework to sets of calling patterns is trivial.
Goal-dependent abstract interpretation computes a set of triples Analysis
�P ; p; k;Da� � fhp1; k

c
1; k

s
1i; . . . ; hpn; k

c
n; k

s
nig such that 8i � 1::n 8hc 2 c�kc

i � if pihc

succeeds in P with computed answer hs then hs 2 c�ks
i �. Additionally, 8pihi that oc-

curs in the concrete computation of ph s.t. h 2 c�k� where p is the exported pred-
icate and k the description of the initial calls of p 9hpj; k

c
j ; k

s
ji 2 Analysis�P ; p; k;Da�

s.t. pi � pj and h 2 c�kc
j�. This condition is related to the closedness condition [38]

usually required in partial evaluation.

2.3. Multivariant analyses

In order to increase accuracy, analyzers are usually multivariant. An analysis is
said to be multivariant on calls if more than one triple hp; kc

1; k
s
1i; . . . ; hp; kc

n; k
s
nin

> 1 with kc
i 6� kc

j for some i; j may be computed for the same predicate p. If analysis
is multivariant on successes, the triples in Analysis�P ; p; k;Da� will be of the form

284 G. Puebla, M. Hermenegildo / J. Logic Programming 41 (1999) 279±316

hpi; k
c
i ; S

s
i i where Ss

i � fks
i1
; . . . ; ks

ij
g with j > 0. Actual analyzers di�er in the degree of

multivariance supported [57] and in the way such multivariance is represented, but,
in general, most analyzers generate all possible versions since this allows the most
accurate analysis [3,48,45,10]. In multivariant analysis, a single program point (in
the original program) may be annotated with several abstract substitutions. Normal-
ly, the results of the analysis are simply ``folded back'' into the program: information
which corresponds to the same points is combined using the least upper bound (lub)
operator.

We will limit the discussion to analyses which are multivariant on calls but not on
successes, such as the analysis algorithm in PLAI and in the framework of Ref. [61].
Note that if analysis is not multivariant on successes when several success substitu-
tions fks

i1
; . . . ; ks

ij
g with j > 1 have been computed for the same predicate pi and call

substitution kc
i , the di�erent substitutions have to be summarized in a more general

one (possibly losing accuracy) ks
i before propagating this success information. This is

done by means of the lub operator.

2.4. Analysis and±or graphs

Traditional, goal-dependent abstract interpreters for logic programs based on
Bruynooghe's analysis framework [3], in order to compute Analysis�P ; p; k;Da�, con-
struct an and±or graph which corresponds to (or approximates) the abstract seman-
tics of the program. We will denote by AO�P ; p; k;Da� the and±or graph computed by
the analyzer for a program P with calling pattern p; k using the domain Da. Such
and±or graph can be viewed as a ®nite representation of the (possibly in®nite) set
of and±or trees explored by the (possibly in®nite) concrete execution. Concrete
and±or trees which are in®nite can be represented ®nitely through a widening into
a rational tree. Also, the use of abstract values instead of concrete ones allows rep-
resenting in®nitely many concrete execution trees with a single abstract analysis
graph.

Finiteness of AO�P ; p; k;Da� (and thus termination of analysis) is achieved by con-
sidering an abstract domain Da with certain characteristics (such as being ®nite, or of
®nite height, or without in®nite ascending chains) or by the use of a widening oper-
ator [15].

We do not describe here how to build AO�P ; p; k;Da�. Details can be found in
Refs. [3,45,48,25]. The graph has two sorts of nodes: those which correspond to lit-
erals (called or±nodes) and those which correspond to clauses (called and±nodes).
Or±nodes are triples hpi; k

c
i ; k

s
i i and the set of or±nodes in AO�P ; p; k;Da� �

Analysis�P ; p; k;Da�. And±nodes are also triples hHj; k
c
j ; k

s
ji where Hj is the head of

the clause the node corresponds to. Or±nodes have arcs to and±nodes which corres-
pond to the clauses with which the literal (possibly) uni®es. An and±node for a clause
H: ÿB1; . . . ;Bn has n arcs to or±nodes. Each one of such or±nodes corresponds to a
literal in the body of the clause.

2.5. Example

Consider the example program P presented in Fig. 1, where the predicate plus/3 is
de®ned as in Section 1.1 and go/2 is known to be always called with both arguments
bound to integers.

G. Puebla, M. Hermenegildo / J. Logic Programming 41 (1999) 279±316 285

Consider also the abstract domain Da consisting of the ®ve elements fbottom, int,
¯oat, free, topg. These elements respectively correspond to the empty set of terms, the
set of all integers, the set of ¯oating point numbers, the set of all unbound variables,
and the set of all terms. Fig. 2 shows AO�P ; go=2; go�int; int�;Da�. For simplicity, suc-
cess substitutions are not shown. For and±nodes, a number is added to the predicate
name to distinguish the di�erent clauses which de®ne the predicate. Finally, circles
are used to represent calls to built-in predicates. Clearly, as there are in®nitely many
integer values, such graph represents an in®nite number of concrete graphs.

3. Multiple specialization using abstract interpretation

The traditional approach to analysis-based optimizing compilers is to ®rst analyze
the program and then use the information in Analysis�P ; p; k;Da� to perform mono-
variant program optimization.

Fig. 2. Example analysis graph.

Fig. 1. Example program.

286 G. Puebla, M. Hermenegildo / J. Logic Programming 41 (1999) 279±316

Let fhpj; k
c
1; k

s
1i; . . . ; hpj; k

c
n; k

s
nig n P 0 be the tuples in Analysis�P ; p; k;Da� for

predicate pj.
2 The main idea that we will exploit is to generate a di�erent version

of pj for each tuple hpj; k
c
i ; k

s
i i. Then, each version can be specialized w.r.t. kc

i regard-
less of the rest of the call substitutions kj 8j 6� i. Hopefully, this will lead to further
oportunities for optimization in each particular version. Note that if analysis termi-
nates the number of tuples in Analysis�P ; p; k;Da� for each predicate must be ®nite,
and thus the resulting program will be ®nite.

An important issue in this approach is to decide, given a predicate pj in P for
which n versions are to be generated, which of the n versions is appropriate for
each call to pj. As mentioned before, one possibility is to use run-time tests to
decide which version to use. Another possibility, as in Refs. [61,51] and which is
the one we adopt, is to determine at compile-time the appropriate version to use
at each call.

3.1. Analyses with explicit construction of the and±or graph

As mentioned before, some formulations of goal-dependent abstract interpretat-
ion for logic programs, such as the original one in Bruynooghe's seminal work [3],
are based on explicitly building an abstract version of the and±or tree which contains
a di�erent or±node for each di�erent call substitution kc

i to a predicate pj which has
been detected during analysis [43,30]. This has the advantage that, while not directly
represented in AO�P ; p; k;Da�, it is quite straightforward to derive a fully multiply
specialized program (i.e. with all possible versions) from such graph and the original
program. The arcs in AO�P ; p; k;Da� allow determining at compile-time which ver-
sion to use at each call. Each call in each clause body in the multiply specialized pro-
gram is replaced with a call to the unique predicate name corresponding to the
successor or±node in the graph. We will refer to the program constructed as ex-
plained above as the extended program.

The correctness of this multiply specialized program is given by the correctness of
the abstract interpretation procedure, as the extended program is obtained by simply
materializing the (implicit) program with multiple versions from which the analysis
has obtained its information.

3.2. Tabulation-based analyses

For e�ciency reasons, most practical analyzers [18,27,48,10,40] do not explicitly
build and store AO�P ; p; k;Da�. In most systems, some or all of the graph structures
are lost, and the data available after analysis essentially corresponds to
Analysis�P ; p; k;Da�. However, this su�ces if only monovariant specialization is per-
formed.

For concreteness, we consider here the case of PLAI [48,45]. In the standard im-
plementation of this analyzer, only entries which correspond to or±nodes, i.e.,
Analysis�P ; p; k;Da� are stored. And±nodes are also computed and used, but they

2 If n � 0 then the corresponding predicate is not needed for solving any goal in the considered class

�p; k� and is thus dead code which may be eliminated.

G. Puebla, M. Hermenegildo / J. Logic Programming 41 (1999) 279±316 287

are not stored. This information is not enough to determine at compile time the ver-
sion to use at each call (program point in the extended program). However, it is easy
to compute Analysis ancestors�P ; p; k;Da� which encodes the arcs among the di�erent
nodes either by a simple modi®cation to the PLAI algorithm or as a postprocessing
phase after analysis. In Analysis ancestors�P ; p; k;Da� the tuples hpi; k

c
i ; k

s
i i 2 Analysis

�P ; p; k;Da� are augmented with two more ®elds, resulting in hidi; pi; k
c
i ; k

s
i ;Aii. idi is a

unique identi®er for the tuple (version) and Ai contains the ancestor information for
such tuple, i.e., the (list of) program point(s) in the extended program where this ver-
sion idi is used. A program point in the extended program is uniquely identi®ed by a
pair �literal; idj�. It should be noted that the traditional ®xpoint algorithm in PLAI
had to be modi®ed slightly so that this information is correctly stored, but this mod-
i®cation is straightforward. The newer ®xpoint algorithm [52] recently integrated
into PLAI computes Analysis ancestors�P ; p; k;Da� rather than Analysis�P ; p; k;Da�.
The ancestor information is useful for guiding iterations and for performing incre-
mental analysis and thus, in that case, no modi®cation of the ®xpoint algorithm is
needed at all.

In the case of Ref. [61], the abstract interpretation performed is based on minimal-
function graph semantics rather than and±or graphs. In a postprocessing phase,
using the analysis information, an automation is constructed which contains as many
states as versions in the extended program. For each literal in each version, there is a
transition in the automation to the version which must be executed. Such automa-
tion is used at compile time to rename calls in clause bodies to the appropriate ver-
sion. The solution we adopt is equivalent but the ancestor's information contains
reversed transition information (for implementation reasons).

Example 3.1. Table 1 shows Analysis ancestors�P ; go=2; go�int; int�;Da� for the ex-
ample program P and abstract domain Da in Section 2.5. A literal is identi®ed
using the following format: Predicate/Arity/Clause/Literal. For example, go/2/1/2
stands for the second literal in the ®rst clause of predicate go/2. If programs are
as de®ned in Section 2, this format allows uniquely identifying a literal in a
program.

Fig. 3 represents the ancestor information graphically. For clarity, each tuple (or±
node) is represented by its identi®er. It is clear that the ancestor information can be
interpreted as backward pointers in the analysis graph. The special literal query in-
dicates the calling pattern for goal-dependent analysis. PLAI admits any number of
calling patterns. They are identi®ed by the second number of the pair (query,id). Fi-
nally, the extended program is given in Fig. 4.

Table 1

Analysis_ancestors for the example program

idi pi kc
i ks

i Ai

1 go/2 go�int; int� go�int; int� {(query,1)}

2 p/3 p�int; int; free� p�int; int; int� {(go/2/1/1,1)}

4 p/3 p�int; free; int� p�int; int; int� {(go/2/1/2,1)}

3 plus/3 plus�int; int; free� plus�int; int; int� {(p/3/1/1,2)}

5 plus/3 plus�int; free; int� plus�int; int; int� {(p/3/1/1,4)}

288 G. Puebla, M. Hermenegildo / J. Logic Programming 41 (1999) 279±316

4. Minimizing the number of versions

The number of versions in the extended program does not depend on the possible
optimizations but rather on the number of versions generated during analysis. Even
if no bene®t is obtained, the extended program may have more than one version of
each predicate. In this section, we address the issue of ®nding a minimal program
that allows the same set of optimizations as the extended program and which can
be implemented without introducing run-time tests to select among di�erent versions
of a predicate.

After analysis and prior to the execution of the minimizing algorithm, we compute
the optimizations that would be allowed in each version of the extended program.
We assume the existence of a function opt which given a tuple hidi; pi; k

c
i ; k

s
i ;Aii com-

putes the set of optimizations allowed in such tuple (version). A simple but very in-
e�cient way of implementing opt would be to materialize the extended program, let
the optimizer run on this program, and collect the optimizations performed in each
version. However, in many cases, such as in our specializer presented in Section 6,

Fig. 4. Extended program for the example program.

Fig. 3. Ancestor information for the example program.

G. Puebla, M. Hermenegildo / J. Logic Programming 41 (1999) 279±316 289

opt is computed without having to materialize the extended program. We will denote
by Analysis optimizations�P ; p; k;Da; opt� the set of tuples of the form hidi; pi;Ai; Sii
obtained by adding to each tuple in Analysis ancestors�P ; p; k;Da� the ®eld
Si � opt�hidi; pi; k

c
i ; k

s
i ;Aii� and removing the ®elds kc

i , and ks
i which are not needed

by the minimization algorithm. In an abuse of notation, we will write
Analysis optimizations�P ; p; k;Da; opt� simply as Analysis optimizations. Note that the
minimizing algorithm is independent of the kind of optimizations being performed.
In fact, opt is just a parameter of Analysis optimizations�P ; p; k;Da; opt�. The only re-
quirement is that sets of optimizations Si be comparable for equality. As an example,
in our implementation an optimization is a pair �literal; value�, where value is true or
fail (or a list of uni®cations), generated via abstract executability (see Section 6.1).
The algorithm receives as input Analysis optimizations. The output of the algorithm is
a partition of Analysis optimizations into equivalence classes. As many versions are
generated for each predicate in the original program as equivalence classes exist for
it, the optimizations will be materialized after the minimization phase.

4.1. Basic de®nitions

The minimizing algorithm is not very complex. The main interest in the formal-
ization we provide is that some of the de®nitions presented help in understanding
the desirable properties that multiply specialized programs should have, such as be-
ing minimal, of maximal optimization, feasible, etc. At this point, we will not be con-
cerned with termination (see Section 4.4).

De®nition 4.1 (Or±record). An or±record is a tuple o � hid; p;A; Si 2 Analysis opti-
mizations.

De®nition 4.2 (Version). A set of or±records v � fhid1; p1;A1; S1i; . . . ; hidn; pn;An; Snig
n > 0 is a version if 8i; j � 1; . . . ; n pi � pj. That is, a version is a set of or±records for
the same predicate.

De®nition 4.3 (Program). A set of versions P � fv1; . . . ; vng n P 0 is a program if
8o 2 Analysis optimizations 9! v 2 P : o 2 v. That is, a program is a partition of the
set of or±records for each predicate.

De®nition 4.4 (Feasible version). A version v in a program P is feasible if it does not
use two di�erent versions for the same literal, i.e. if 8oi; oj 2 v:

8 lit��9vk 2 P 9ol � hidl; pl;Al; Sli 2 vkj�lit; idi� 2 Al�^
�9vm 2 P 9on � hidn; pn;An; Sni 2 vmj�lit; idj� 2 An��

�
) k � m

A program is feasible if all the versions in the program are feasible. Programs with
versions that are not feasible cannot be implemented without run-time tests to decide
the version to use. Infeasible programs use for the same literal sometimes a version
and sometimes another. This sometimes must be determined at run-time.

De®nition 4.5 (Equivalent or±records). Two or±records oi � hidi; pi;Ai; Sii; oj �
hidj; pj;Aj; Sji are equivalent, denote by oi �v oj, if

pi � pj; Si � Sj; and foi; ojg is a feasible version:

290 G. Puebla, M. Hermenegildo / J. Logic Programming 41 (1999) 279±316

De®nition 4.6 (Minimal program). A program P is minimal if 8oi; oj 2 Ana-
lysis optimizations

oi �v oj) 9v 2 P such that oi; oj 2 v

De®nition 4.7 (Program of maximal optimization). A program P � fv1; . . . ; vng is of
maximal optimization if

8k � 1; . . . ; n 8oi � hidi; pi;Ai; Sii; oj � hidj; pj;Aj; Sji 2 vk Si � Sj

that is, no two or±records with di�erent optimizations are placed in the same version.

According to these de®nitions, monovariant specialization is feasible, and mini-
mal, but in general, not of maximal optimization.

4.2. Phase 1: Reunion

The aim of this phase is, given Analysis optimizations (the extended program), to
obtain a program which is of maximal optimization while remaining minimal.

De®nition 4.8 (Programi). Programi � fv1; . . . ; vng is the program such that
8oi � hidi; pi;Ai; Sii; oj � hidj; pj;Aj; Sji 2 Analysis optimizations:

9vk 2 Programi s:t: oi; oj 2 vk () pi � pj ^ Si � Sj

Programi corresponds to the program in which the set of or±records for each pred-
icate is partitioned into equivalence classes using the equality of sets of optimizations
as equivalence relation.

Theorem 4.1. Programi is of maximal optimization; and minimal:

Unfortunately, Programi is not feasible in general. This is because two or±records
that allow the same set of optimizations cannot be blindly collapsed since they may
use di�erent versions for the same literal.

4.3. Phase 2: Splitting

The aim of this phase is to obtain a program which is feasible. As the program
obtained in phase 1, it should also be minimal and of maximal optimization.

The concept of restriction is instrumental during phase 2. It is used to split ver-
sions that are not feasible. It allows expressing in a compact way the fact that several
or±records must be in di�erent versions. For example ff1g; f2; 3g; f4gg can be inter-
preted as: or±record 1 must be in a di�erent version than 2, 3, and 4. Also or±records
2 and 3 cannot be in the same version as 4 (2 and 3 can, however, be in the same
version).

De®nition 4.9 (Restriction from a predicate to a literal). Let VPred �
fv1; v2; . . . ; vi; . . . ; vng be the set versions for the predicate Pred in a program P,
and let lit be a literal of the program. The restriction from Pred to lit is

Rlit;Pred � fr1; r2; . . . ; ri; . . . ; rng;

G. Puebla, M. Hermenegildo / J. Logic Programming 41 (1999) 279±316 291

where ri is fidj 9o � hid; p;A; Si 2 vi such that �lit; id� 2 Ag:3

De®nition 4.10 (A restriction holds). A restriction R holds in a version v if

8oi; oj 2 v 8rk; rl 2 R : idi 2 rk ^ idj 2 rl) k � l:

De®nition 4.11 (Splitting of versions by restrictions). Given a version v and a restric-
tion R, the result of splitting v with respect to R is written v
R and is

v
R � fvg if the restriction R holds in v;
fv1; v2g otherwise;

�
where v1 � fo � hid; p;A; Sij o 2 v ^ id 2 rkg and v2 � vÿ v1. The new program P 0 is
P 0 � P ÿ fvg S �v
R�.

Example 4.1. Consider the splitting of version f1; 2; 3; 5g by restriction ff1g;
f2; 3; 4g; f5gg. f1; 2; 3; 5g
 ff1g; f2; 3; 4g; f5gg � ff1g; f2; 3; 5gg, but in f2; 3; 5g
the restriction does not hold yet. f2; 3; 5g
 ff1g; f2; 3; 4g; f5gg � ff2; 3g; f5gg.
Now the restriction holds. Thus, the initial version is split into 3 versions:
ff1g; f2; 3g; f5gg.

Theorem 4.2. Let P 0 be a program obtained by applying splitting of versions to a pro-
gram P. If P is of maximal optimization, and minimal then P 0 is also of maximal
optimization and minimal.

De®nition 4.12 (Programf). Programf is the program obtained from programi by
splitting when all the restrictions hold, i.e., when a ®xpoint is reached.

Theorem 4.3. Multiple Specialization Algorithm. Programf is of maximal optimiza-
tion, minimal, and feasible.

By Theorem 4.2 Programf is of maximal optimization and minimal. We can see
that it is also feasible because, otherwise, there would be a restriction that would
not hold. This is in contradiction with the assumption that phase 2 (splitting) has ter-
minated.

4.4. Structure of the set of programs and termination

As shown above, given Analysis optimizations�P ; p; k;Da; opt�, several programs
may be generated from it. They may di�er in size, optimizations and even feasibility.
In this section, we discuss the structure of the set of such programs and the relations
among its elements.

The set of programs as de®ned in De®nition 4.3 forms a complete lattice under the
v operation de®ned as follows. P v P 0 i� 8v 2 P 9v0 2 P 0 s.t. v � v0, i.e., all the ver-
sions in P are equal or more speci®c than the versions in P. The ? element of such a
lattice will be given by the program with most speci®c versions. This is the program

3 Note that ri may be ;.

292 G. Puebla, M. Hermenegildo / J. Logic Programming 41 (1999) 279±316

with the greatest number of versions, i.e., the extended program. The > element is
the program with most general versions, i.e, the one in which all the or±records that
correspond to the same predicate are in the same version. This program corresponds
to monovariant specialization.

Although not formally stated, the splitting operation used during phase 2 of the
minimizing algorithm is an operator de®ned on this lattice since it receives a program
as input and produces another program as output. Phase 2 starts with Programi and
applies the splitting operator moving down in the lattice. Each splitting step trans-
forms an infeasible program P into (a less) infeasible program P 0 s.t. P 0 v P , until
we reach a feasible program (programf), which is a ®xpoint of the splitting operator.
As the splitting operator is monotonic and the lattice is ®nite, phase 2 terminates.

4.5. Example

We now apply the minimizing algorithm to the example program in Section 2.5.
Fig. 5 shows the starting point for the multiple specialization algorithm. The set of
optimizations is empty in the or±record for go/2 and in the two or±records for p/3. It
has three elements in the or±records for plus/3 that indicate the value that the test
integer will take in execution. Note that the set of optimizations is di�erent in these
two or±records for plus/3. We represent each or±record only by its identi®er. The
two or±records for p/3 have the same optimizations (none) and can be joined. At
the end of phase 1, we are in the following situation:

Programi:

Now we execute phase 2. Only plus/3 can produce restrictions. The other two
predicates only have one version. The only restriction will be
Rp=3=1=1;plus=3 � ff2g; f4gg. The intuition behind this restriction is that or±record 2
must be in a di�erent version than or±record 4. The restriction does not hold and
thus f2; 4g
 ff2g; f4gg � ff2g; f4gg. Now we must check if this splitting has

go/2 p/3 plus/3
{{1}} {{2,4}} {{3},{5}}

Fig. 5. Analysis_optimizations for the example program.

G. Puebla, M. Hermenegildo / J. Logic Programming 41 (1999) 279±316 293

introduced new restrictions. No new restriction appears because there is no literal
that belongs to the ancestor information of both or±record 2 and or±record 4. Thus,
the result of the algorithm will be:

Programf :

The program that the minimization algorithm indicates that should be built coin-
cides in this case with the extended program, which was already depicted in Fig. 4.

Fig. 6 shows the lattice of programs for the example. The node marked with a
cross (B) corresponds to programi and is infeasible. That is why during phase 2,
we move down in the lattice and return to node D Nodes B and D are of maximal
optimization. A and C are not because or±records with di�erent optimizations (3,5)
are in the same version. Nodes A, C, and D are feasible. B is not feasible because for
the literal p/3/1/1 it uses both or±record 3 and 5 (we cannot decide at compile-time
which one to use). All the nodes in the lattice are minimal. A program is not minimal
if two or±records that are equivalent are in di�erent versions. No two or±records are
equivalent and thus all the programs in the lattice are minimal.

5. The application: Compile-time parallelization

The ®nal aim of parallelism is to achieve the maximum speed (e�ectiveness) while
computing the same solution (correctness) as the sequential execution. The two main
types of parallelism which can be exploited in logic programs are well known [13,11]

go/2 p/3 plus/3
{{1}} {{2},{4}} {{3},{5}}

Fig. 6. Lattice for the example program.

294 G. Puebla, M. Hermenegildo / J. Logic Programming 41 (1999) 279±316

or±parallelism and and±parallelism. In this work we concentrate on the case of and±
parallelism. And±parallelism refers to the parallel execution of the literals in the
body of a clause (or, more precisely, of the goals in a resolvent). Several models have
been proposed to take advantage of such opportunities (see, for example, Ref. [11]
and its references).

Guaranteeing correctness and e�ciency in and±parallelism is complicated by the
fact that dependencies may exist among the goals to be executed in parallel, due to
the presence of shared variables at run-time. It turns out that when these dependen-
cies are present, arbitrary exploitation of and±parallelism does not guarantee e�-
ciency. Furthermore, if certain impure predicates that are relatively common in
Prolog programs are used, even correctness cannot be guaranteed.

However, if only independent goals are executed in parallel, both correctness and
e�ciency can be ensured [13,26]. Thus, the dependencies among the di�erent goals
must be determined, and there is a related parallelization overhead involved. It is vi-
tal that such overhead remains reasonable. In order to achieve this, herein, we follow
the approach proposed initially in Refs. [60,27] (see their references for alternative
approaches) which combines local analysis and run-time checking with a data-¯ow
analysis based on abstract interpretation [15].

5.1. The annotation process and run-time tests

The annotation (parallelization) process can be viewed as a source to source trans-
formation from standard Prolog to a parallel dialect. Herein, we will use the &-Prolog
[24,8] language as the target. This language is an extension to Prolog in which literals
in a clause which may be executed in parallel are separated by & instead of the usual
comma (,) symbol. Execution of literals separated by & is performed in parallel if suf-
®cient processors are available. Otherwise, they will be executed sequentially.

The task of deciding which literals may be executed in parallel is not an easy one
because, as said before, if the involved literals are not independent, parallel execution
may introduce ine�ciency and even incorrectness. This is why it is desirable to auto-
mate the process of program parallelization. Herein, we will follow the approach used
in the &-Prolog system [24,8]. The automatic parallelization process is performed as
follows [6]. Firstly, if requested by the user, the Prolog program is analyzed using one
or more global analyzers. These analyzers [28,48,47] are aimed at inferring useful in-
formation for detecting independence. These analyses use the optimized ®xpoint al-
gorithm presented in Ref. [52]. Secondly, since side-e�ects cannot be allowed to
execute freely in parallel, the original program is analyzed using the global analyzer
described in Ref. [44] which propagates the side-e�ect characteristics of built-ins de-
termining the scope of side-e�ects. In the current implementation, side-e�ecting liter-
als are not parallelized. Finally, the annotators perform a source-to-source
transformation of the program in which, each clause is annotated with parallel ex-
pressions and conditions which encode the notion of independence used. In doing
this, they use the information provided by the global analyzers mentioned before.

The annotation process is divided into three subtasks. The ®rst one is concerned
with identifying the dependencies between each two literals in a clause and generat-
ing the conditions which ensure their independence. The second task aims at simpli-
fying such conditions by means of the information inferred by the local or global
analyzers. In other words, transforming the conditions into the minimum number

G. Puebla, M. Hermenegildo / J. Logic Programming 41 (1999) 279±316 295

of tests which, when evaluated at run-time, ensure the independence of the goals in-
volved. Finally, the third task is concerned with the core of the annotation process
[6,46], namely the application of a particular strategy to obtain an optimal (under
such a strategy) parallel expression among all the possibilities detected in the pre-
vious step.

5.2. An example: matrix multiplication

We illustrate the process of automatic program parallelization with an example.
Fig. 7 shows the code of a Prolog program for matrix multiplication. The declaration
:-module(mmatrix,[mmultiply/3]). is used by the (goal-dependent) analyzer to
determine that only calls to mmatrix/3 may appear in top-level queries. In this case,
no information is given about the arguments in calls to the predicate mmatrix/3
(however, this could be done using one or more entry declarations [5]). If, for exam-
ple, we want to specialize the program for the case in which the ®rst two arguments
of mmatrix/3 are ground values and we inform the analyzer about this, the program
would be parallelized without the need for any run-time tests. However, for the pur-
poses of studying multiple specialization, we will consider the case in which no infor-
mation at all is provided by the user regarding calling patterns, beyond the exported
predicate information present in the module declaration. In this case, the analyzer,
must in principle, assume no knowledge regarding the instantiation state of the ar-
guments at the module entry points.

Fig. 8 contains the result of automatic parallelization under these assumptions.
if-then-elses are written (cond -> then ; else), i.e., using standard Prolog syn-
tax. The & signs between goals indicate, as mentioned before, that they can be exe-
cuted in parallel. The predicate vmul/3 is not shown in Fig. 8 because automatic
parallelization has not detected any pro®table parallelism in it (due to granularity
control) and its code remains the same as in the original program.

It is clear from Fig. 8 that a good number of run-time tests have been introduced in
the parallelization process. These tests are necessary to determine independence at
run-time, given that nothing is known about the input arguments. If the tests succeed,
the parallel code is executed. Otherwise, the original sequential code is executed. As

Fig. 7. mmatrix.pl.

296 G. Puebla, M. Hermenegildo / J. Logic Programming 41 (1999) 279±316

usual, ground(X) succeeds if X contains no variables. indep(X,Y) succeeds if X and Y

have no variables in common. For conciseness and e�ciency, a series of tests
indep(X1,X2), . . ., indep(Xn-1,Xn) is written as indep([[X1,X2], . . ., [Xn-1,Xn]]).

Even though groundness and independence tests are executed by e�cient built-in
predicates in the &-Prolog system, these tests may still cause considerable overhead
in run-time performance, to the point of not even knowing at ®rst sight if the paral-
lelized program will o�er speedup, i.e., if it will run faster than the sequential one.
Our purpose is to study whether multiple specialization can be used to reduce the
run-time test overhead and to increase speedups.

6. Multiple specialization in the &-prolog compiler

Fig. 9 (picture on the left) presents the role of abstract multiple specialization in
the &-Prolog system. As stated in the previous section, automatic parallelization
may introduce run-time tests and conditionals if the information available does
not allow determining the dependence/independence of literals statically. As men-
tioned before, it is this checking overhead that the multiple specialization which
has been added to the &-Prolog compiler and is the subject of our performance study
is aimed at reducing. Note that because of the way the parallelization process is per-
formed, if the same abstract domain is used to provide information to both the par-
allelization and specialization phases, none of the run-time tests introduced during
parallelization is super¯uous and thus none of them can be eliminated by the special-
izer unless multiple specialization is performed.

Even though not depicted in Fig. 9, analysis information is not directly available
at all program points after automatic parallelization, because the process modi®es
certain parts of the program originally analyzed. However, the &-Prolog system uses
incremental analysis techniques to e�ciently obtain updated analysis information
from the one generated for the original program [25,52].

Conceptually, the process of abstract multiple specialization is composed of ®ve
steps, which are shown in Fig. 9 (picture on the right). In the ®rst step (simplify),
the program optimizations based on abstract execution are performed whenever

Fig. 8. Parallel mmatrix.

G. Puebla, M. Hermenegildo / J. Logic Programming 41 (1999) 279±316 297

possible. This saves having to optimize the di�erent versions of a predicate when the
optimization is applicable to all versions. Any optimization that is common to all
versions of a predicate is performed at this stage. The output is a monovariant ab-
stractly specialized program. This is also the ®nal program if multiple specialization
is not performed. The remaining four steps are related to multiple specialization.

In the second step (detect optimizations), information from the multivariant ab-
stract interpretation is used to detect (but not to perform) the optimizations allowed
in each version. Note that only one step of analysis is required in our system in order
to both compute the set of or±records for each predicate and the optimizations al-
lowed for each one of them. This is only possible if we can identify the abstract sub-
stitutions for the di�erent or±records at each program point. In our analyzer, this is
done by just storing the or±record identi®ers along with each substitution generated
by multivariant analysis. Even though the addition of this identi®er to abstract sub-
stitutions may seem an overhead, they will be used as detailed dependencies while
computing the analysis graph. This will allow analysis to be more e�cient [52],
i.e., converging faster to a ®xpoint, and incremental [25].

Note that the source for the multiply specialized program has not been generated
yet (this will be done in the fourth step, generate code) but rather the code generated
in the ®rst step is used, considering several abstract substitutions for each program
point instead of their least upper bound, as is done in the ®rst step. The output of this
step is Analysis optimizations. Note that these optimizations are not possible without
multiple specialization, otherwise, the optimization would have already been per-
formed in the ®rst step (simplify).

The third step (minimize) implements the minimizing algorithm presented in Sec-
tion 4.

In the fourth step (generate code), the source code of the minimal multiply special-
ized program is generated. Each version receives a unique name. Also, literals must
also be renamed appropriately for a predicate with several implementations.

In the ®fth step (optimize code), the particular optimizations associated with each
implementation of a predicate are performed. Other simple program optimizations

Fig. 9. Program parallelization and abstract multiple specialization.

298 G. Puebla, M. Hermenegildo / J. Logic Programming 41 (1999) 279±316

like eliminating literals in a clause to the right of a literal abstractly executable to
false, eliminating a literal which is abstractly executable to true from the clause it be-
longs instead of introducing the built-in true/1, dead code elimination, etc. are also
performed in this step.

In the implementation, for the sake of e�ciency, the ®rst and second steps, and
the fourth and ®fth are performed in one pass (this is marked in Fig. 9 by dashed
squares), thus reducing to two the number of passes through the source code. The
third step is not performed on source code but rather on a synthetic representation
of sets of optimizations and versions. The core of the multiple specialization tech-
nique (steps minimize and generate code) is independent of the actual optimizations
being performed.

6.1. Abstract execution

In the &-Prolog compiler, most optimizations that are relevant in our context
are performed by means of abstract executability. This concept was, to our
knowledge, ®rst introduced informally in Ref. [22]. It allows reducing at com-
pile-time, certain literals in a program to the value true or false using information
obtained with abstract interpretation. That work also introduced some simple se-
mantics-preserving program transformations and showed the potential of the
technique, including elimination of invariants in loops. We summarize in the fol-
lowing an improved formalization of abstract executability. A more detailed for-
malization can be found in Ref. [53]. In what follows, the set of variables in a
literal L is represented as var�L�. The restriction of the substitution h to var�L�
is denoted hjL.

Operationally, each literal L in a program P can be viewed as a procedure call.
Each run-time invocation of the procedure call L will have a local environment e,
which stores the particular values of each variable in var�L� for that invocation.
We will write h 2 e�L� if h is a substitution such that the value of each variable in
var�L� is the same in the environment e and the substitution h.

De®nition 6.1 (Run-time substitution set). Given a literal L from a program P we de-
®ne the run-time substitution set of L in P as

RT �L; P � � fhjL : e is a run-time environment for L and h 2 e�L�g:
RT �L; P � is not computable in general. However, we can use information on

RT �L; P � provided by abstract interpretation, i.e., the abstract call substitution
for L.

De®nition 6.2 (Trivial success set). Given a literal L from a program P we de®ne the
trivial success set of L in P as

TS�L; P� �
hjL : Lh succeeds exactly once in P
with empty answer substitution ���

� �
if L is pure;

; otherwise:

8<:
De®nition 6.3 (Finite failure set). Given a literal L from a program P we de®ne the
finite failure set of L in P as

G. Puebla, M. Hermenegildo / J. Logic Programming 41 (1999) 279±316 299

FF �L; P � � fhjL : Lh fails finitely in Pg if L is pure;
; otherwise:

�

De®nition 6.4 (Elementary literal replacement). Elementary Literal Replacement
(ER) of a literal L in a program P is de®ned as:

ER�L; P � �
true if RT �L; P � � TS�L; P �;
false if RT �L; P � � FF �L; P �;
L otherwise:

8><>:
The idea is to optimize a program by replacing whenever possible the execution of

Lh with the execution of either the built-in predicate true or fail, which can be exe-
cuted in zero or constant time. Even though the above optimization may seem not
very widely applicable, for many built-in predicates such as those that check basic
types or meta-logical predicates that inspect the instantiation state of terms and as
we will see in Section 7, this optimization is indeed very relevant. Another example
of this not related to program parallelization is the optimization of delay conditions
in logic programs with dynamic scheduling [50].

Unfortunately, elementary replacement is not directly applicable because
RT �L; P �, TS�L; P� and FF �L; P � are generally not known at specialization time. How-
ever, we will identify su�cient conditions which guarantee its applicability.

6.2. Abstract execution of built-in predicates

Even though abstract executability is applicable to any predicate, in what follows,
we will concentrate on built-in predicates. This is because the semantics of built-in
predicates does not depend on the particular program in which they appear. As a re-
sult, we can compute sets of abstract values ATS�B;Da� and AFF �B;Da� once and for
all for each built-in predicate B, where B stands for the base form of B, i.e., all the
arguments of B contain distinct free variables. Such sets will be applicable to all lit-
erals that call the built-in predicate in any program.

De®nition 6.5 (Operational abstract execution of built-ins). Operational abstract exe-
cution (OAEB) of a literal L with abstract call substitution k that calls a built-in
predicate B is de®ned as:

OAEB�L;Da; k� �

true if 9k0 2 ATS�B;Da� :
call to entry�L;B;Da; k� t k0 � k0;

false if 9k0 2 AFF �B;Da� :
call to entry�L;B;Da; k� t k0 � k0;

L otherwise:

8>>>>>><>>>>>>:
ATS�B;Da� and AFF �B;Da� are approximations of TS�B; P � and FF �B; P� respec-

tively for any P (this is possible because the semantics of the built-in predicates
does not depend on the program in which they appear). For soundness, it is
required that both 8k 2 ATS�B;Da� c�k� � TS�B; P � and 8k 2 AFF �B;Da� c�k�
� FF �B; P �.

300 G. Puebla, M. Hermenegildo / J. Logic Programming 41 (1999) 279±316

There is no automated method that we are aware of to compute ATS�B;Da� and
AFF �B;Da� for each built-in predicate B. However, we believe that a good knowledge
of Da allows ®nding safe approximations, and that in many cases it is easy to ®nd the
best possible approximations ATS�B;Da� and AFF �B;Da�.

Example 6.1. Suppose we are interested in optimizing calls to the built-in predicate
ground/1 by reducing them to the value true. Then, TS�ground�X1�� � ffX1=gg where
g is any term without variablesg. Suppose also that we use the abstract domain Da of
Section 2.5 consisting of the ®ve elements fbottom, int, float, free, topg. Then, we can
take ATS�ground�X1�;Da� � fint; floatg. Consider the following clause containing the
literal ground�X �:

p�X ; Y � : ÿq�Y �; ground�X �; r�X ; Y �:
Assume now that analysis has inferred the abstract substitution just before the lit-

eral ground�X � to be fY =free;X=intg. Then OAEB�ground�X �;Da;X=int� � true
(the literal can be replaced by true) because call to entry�ground�X �; ground
�X1�;Da; fX=intg� � fX1=intg, and X1=int t X1=int � X1=int.

If we were also interested in reducing literals that call ground/1 to false, the most
accurate AFF �ground�X1�;Da� � ffreeg

6.3. Abstract domains for specialization

The abstract specializer is parametric with respect to the abstract domain used.
Currently, the specializer can work with all the abstract domains implemented in
the analyzer in the &-Prolog system. In order to augment the specializer to use
the information provided by a new abstract domain (Da), correct ATS�B;Da� and
AFF �B;Da� sets must be provided to the analyzer for each built-in predicate B whose
optimization is of interest. Alternatively, and for e�ciency issues, the specializer al-
lows replacing the conditions in De®nition 6.5 with specialized ones because in
9k0 2 ATS�B;Da� : call to entry�L;B;Da; k� t k0 � k0 all values are known before spe-
cialization time except for k which will be computed by analysis. I.e., conditions
can be partially evaluated with respect to Da, B and a set of k0, as they are known
in advance.

Table 2 shows the accuracy of a number of abstract domains (sharing [28,48],
sharing+freeness (sh+fr) [47], and asub [56,12]) present in the &-Prolog system with
respect to the run-time tests (i.e., ground/1, indep/1). The three of them are opti-
mal for abstractly executing both types of tests to true, i.e., it is possible to ®nd a
set ATS�B;Da� s.t. c�ATS�B;Da�� � TS�B�. However, only sharing+freeness (sh+fr) al-
lows abstractly executing these tests to false, even though not in an optimal way,
i.e., ; � c�AFF �B;Da�� � FF �B��.

Table 2

Optimality of di�erent domains

Domain TS�gr�X1�� FF �gr�X1�� TS�ind�X1�� FF �ind�X1��
sharing O N O N

sh+fr O S O S

asub O N O N

G. Puebla, M. Hermenegildo / J. Logic Programming 41 (1999) 279±316 301

Example 6.2. The resulting program after abstract multiple specialization is per-
formed is shown in Fig. 10. The program generated in our implementation is equiv-
alent to the one presented except that internal names are used for specialized versions
to avoid clashes with other user de®ned predicates. Two versions have been generat-
ed for the predicate mmultiply/3 and four for the predicate multiply/3. As in Fig. 8,
the predicate vmul/3 is not presented in the ®gure because its code is identical to the
one in the original program in Fig. 7 (and the parallelized program). Only one ver-
sion has been generated for this predicate even though multivariant abstract interpr-
etation generated eight di�erent variants for it. As no further optimization is possible
by implementing several versions of vmul/3, the minimization algorithm has col-
lapsed all the di�erent versions of this predicate into one.

It is important to mention that abstract multiple specialization is able to automat-
ically detect and extract some invariants in recursive loops: once a certain run-time

Fig. 10. Specialized mmatrix.

302 G. Puebla, M. Hermenegildo / J. Logic Programming 41 (1999) 279±316

test has succeeded, it does not need to be checked in the following recursive calls [22].
Fig. 11 shows the call graph of the specialized program of Fig. 10. mm stands for
mmultiply and m for multiply. Edges are labeled with the number of tests which
are avoided in each call to the corresponding version with respect to the non-special-
ized program. For example, g+3i means that each execution of this specialized ver-
sion avoids a groundness and three independence tests. It can be seen in the ®gure
that once the groundness test in any of mm, m1, or m2 succeeds, it is detected as an
invariant, and the more optimized versions mm1, m3 and m4, respectively, will be used
in all remaining iterations.

7. Experimental results

In this section, we present a series of experimental results. The primary aim of
these experiments is to assess whether performing abstract multiple specialization
for improving automatically parallelized programs is pro®table or not. This assess-
ment will be realized by studying some of the cost/bene®t tradeo�s involved in mul-
tiple specialization, in terms of time and space. Even though the results have been
obtained in the context of a particular implementation and type of optimizations,
we believe that it is possible to derive some conclusions from the results regarding
the cost and bene®ts of multiple specialization in general.

The benchmarks considered have been automatically parallelized in the &-Prolog
system using strict independence as a safety and e�ciency condition for parallelizat-
ion [26], the mel [46] heuristic algorithm for the generation of parallel expressions
and the sharing � freeness abstract domain [47] to introduce as few run-time tests
as possible. Such combination of techniques has been experimentally shown [7] to
be capable of e�ectively parallelizing logic programs with quite reasonable run-time
overhead for checking independence, producing useful speedups in parallel execu-
tion.

In Ref. [7], in order to compute Analysis�P ; p; k; sharing � freeness�, reasonable
calling patterns �p; k� for each program P were given: p is the exported predicate
(i.e., the predicate accessible from outside the module being analyzed) and k an ac-
curate description of the instantiation state of the arguments of p. However, in the
current set of experiments, we study what is a very unfavorable situation for

Fig. 11. Call graph of specialized mmatrix.

G. Puebla, M. Hermenegildo / J. Logic Programming 41 (1999) 279±316 303

automatic parallelization: the calling pattern for each program P is �p;>�. As before,
p is the exported predicate in P. > is the most general abstract substitution for p,
which is equivalent to providing no information to the analyzer regarding the possi-
ble input values for p. This situation is interesting in that it appears when modules
written by na�õve users are compiled in isolation. Since, as a result of this the analyzer
will sometimes have incomplete information, a large number of run-time tests will in
some cases be included in the resulting programs, which are then potential targets for
multiple specialization. The relatively wide set of benchmarks considered is the sub-
set of the benchmarks used in Ref. [7] for automatic parallelization (available at
http://clip.dia.fi.upm.es) which cannot be parallelized without the need of
run-time tests when using �p;>� as calling pattern. The other benchmarks (®b, qsor-
tapp, tak and witt) are parallelized without run-time tests even in this case and are
therefore not studied in this work.

7.1. The cost of multiple specialization

In order to assess the cost of specialization in terms of compilation time, Table 3
compares the analysis, parallelization and specialization times for each benchmark.
We argue that it is reasonable to compare these times as the programs that accom-
plish those tasks are implemented using the same technology, are integrated in the
same system, they share many data structures, and work with the same input pro-
gram (or slightly modi®ed versions of it). Times are in seconds on a Sparc 1000.
Ana is the time taken to analyze the original program, Par is the parallelization time,
ReA is the reanalysis time required to update analysis information after parallelizat-
ion in an incremental way, using the algorithms described in Ref. [25], and Spec is the
multiple specialization time which includes computing the possible optimizations in
each version using the notion of abstract executability, minimizing the number of
versions and materializing the new program in which the new versions are optimized

Table 3

Specialization and parallelization times (using no call pattern info)

Bench Ana Par ReA Spec Total SD

aiakl 1.40 1.59 0.36 0.06 3.41 1.14

ann 3.24 2.11 2.01 0.90 8.26 1.54

bid 0.34 0.20 0.24 0.23 1.00 1.88

boyer 0.97 0.27 0.37 0.32 1.94 1.56

browse 0.17 0.11 0.26 0.25 0.78 2.82

deriv 0.18 0.20 0.42 0.13 0.93 2.46

hanoiapp 0.28 0.22 0.14 0.04 0.69 1.37

mmatrix 0.13 0.08 0.17 0.08 0.45 2.20

occur 0.12 0.06 0.18 0.08 0.43 2.38

progeom 0.09 0.06 0.03 0.05 0.22 1.53

qplan 0.74 1.23 0.15 0.46 2.58 1.31

query 0.04 0.04 0.04 0.06 0.19 2.26

read 7.26 2.39 0.02 0.63 10.31 1.07

serialize 0.26 0.18 0.03 0.06 0.52 1.19

warplan 1.21 0.21 0.11 0.26 1.79 1.26

zebra 2.27 17.25 2.02 0.06 21.59 1.11

Overall 1.23

304 G. Puebla, M. Hermenegildo / J. Logic Programming 41 (1999) 279±316

(using source to source transformations). The time required for automatic parall-
elization is the sum of Ana and Par. The cost of multiple specialization should be
viewed as ReA plus Spec as specialization requires analysis information to be up
to date. Total gives the total time required for the whole process. The last column,
SD is the slow-down introduced by multiple specialization in the parallelization pro-
cess and is computed as Total/(Ana+Par). Finally, Overall gives the slow-down ob-
tained by taking for each column, the sum of times for all benchmarks. The results
can be interpreted as indicating that performing multiple specialization after parall-
elization slows down the compilation process over all benchmarks approximately by
a factor of 1.23.

It appears that the time required for multiple specialization, at least in this appli-
cation, is reasonable. However, a potentially greater concern than compilation time
can be the increase in program size. Table 4 shows a series of measurements relevant
to this issue. Pred is the number of predicates in the original program. Max is the
number of additional (versions of) predicates that would be introduced if the mini-
mization algorithm is not applied (when adding it to Pred this is also the number of
versions that the analyzer implicitly uses internally during analysis). Min is the num-
ber of additional versions if the minimization algorithm is applied. As mentioned be-
fore, sometimes, in order to achieve an optimization, some additional versions have
to be created just to create a ``path'' to another optimized version, i.e. to make the
program feasible (using the terminology of Section 6.1). The impact of this is mea-
sured by Ind which represents the number of such ``Indirect'' versions in the mini-
mized program that have been included during phase 2 of the algorithm. That is,
the number of versions which have the same set of optimizations as an already ex-
isting version for that predicate.

We observe that for some benchmarks Min is 0. This means that multiple special-
ization has not been able to optimize the benchmark any further. That is, the ®nal

Table 4

Number of versions

Bench Pred Max min Ind M(%) m(%) I(%) Ratio

aiakl 9 4 0 0 44 0 0 1.44

ann 77 70 29 16 90 37 21 1.39

bid 22 39 9 4 177 40 18 1.97

boyer 27 57 9 7 211 33 26 2.33

browse 9 19 15 7 211 166 78 1.17

deriv 5 5 5 1 100 100 20 1.00

hanoiapp 3 10 2 1 333 66 33 2.60

mmatrix 3 11 4 0 366 133 0 2.00

occur 5 15 7 3 300 140 60 1.67

progeom 10 5 0 0 50 0 0 1.50

qplan 48 17 6 4 35 12 8 1.20

query 6 1 0 0 16 0 0 1.17

read 25 52 0 0 208 0 0 3.08

serialize 6 3 0 0 50 0 0 1.50

warplan 37 130 42 29 351 113 78 2.11

zebra 7 10 0 0 142 0 0 2.43

Overall 147 43 24 1.73

Relative overall 208 80 33 1.72

G. Puebla, M. Hermenegildo / J. Logic Programming 41 (1999) 279±316 305

program equals the original program. However, note that if we did not minimize the
number of versions, the program size would be increased even though no additional
optimization is achieved. M(%) is computed as �Max=Preds� � 100. m(%) and I(%)

are computed similarly but replacing Max by Min and Ind in the formula, respec-
tively. Finally, Ratio is the relation between the sizes (in number of predicates) of
the multiply specialized programs with and without minimization. The last rows
of Table 4 show two di�erent overall ®gures. The ®rst is computed considering all
the benchmark programs and the second considering only the programs in which
the specialization method has obtained some optimization (Min>0).

According to the overall ®gures, the specialized program has 43% additional ver-
sions with respect to the original program. However, this average greatly depends on
the number of possible optimization points in the original program (in our case run-
time tests) and cannot be taken as a general result. Of much more relevance are the
ratios between M(%) and N(%), and between I(%) and m(%). The ®rst ratio mea-
sures the e�ectiveness of the minimization algorithm. This ratio is 3.41 or 2.6 using
global or relative averages respectively. I.e., the minimizing algorithm is able to re-
duce to a third the number of additional versions needed by multiple specialization.
The second ratio represents how many of the additional versions are indirect. It is
56% or 41% (Global or Relative). This means that half of the additional versions
are due to indirect optimizations. Another way to look at this result is as meaning
that on the average there is one intermediate, indirect predicate between an originat-
ing call to an optimized, multiply specialized predicate and the actual predicate. It
seems that this can in many cases be an acceptable cost in return for no run-time
overhead in version selection.

Another pragmatic and very signi®cant way of comparing the cost in program size
incurred by multiple specialization is by comparing the size of the compiled pro-
grams (in bytecode quick-load format) before and after multiple specialization.
For reference, we also compare the size of the byte code for the original program.
Table 5 presents the size in bytes of the original (Orig), parallelized (Par) and special-
ized (Spec) programs in bytes for &-Prolog. P/O gives the increase in size due to par-
allelization, and S/O the increase due to the composition of specialization and
parallelization with respect to the original program. S/P presents the cost in space
incurred by multiple specialization alone. As in Table 4, two cases have been consid-
ered for computing the overall space cost of multiple specialization: Overall, in which
all benchmarks are considered, and Relative Overall in which only those benchmarks
which bene®t from multiple specialization are considered. The results can be inter-
preted as indicating that, in our system, multiple specialization increases program
size by a ratio of 1.14 or 1.18 (relative). This increase is very similar to that intro-
duced by parallelization (1.17±1.18) in the set of benchmarks considered. Finally,
when multiple specialization and parallelization are composed, the overall increase
in program size is around 1/3 even in the unfavorable case studied of not giving
any information to the analyzer regarding the instantiations of the input arguments
of exported predicates.

Note that the cost in program size for multiple specialization presented in Table 5
is better than that presented in Table 4. There are several reasons for this. First, the
specializer performs some degree of dead-code elimination. Second, abstract execut-
ability allows in many cases, performing source-to source-transformations which
shorten the program, e.g., by simplifying a conditional, eliminating one of the

306 G. Puebla, M. Hermenegildo / J. Logic Programming 41 (1999) 279±316

branches in an if-then-else, etc. Third, because the number of additional versions is
not necessarily a good estimate of program size as this will greatly depend on the size
of the predicates which are being replicated.

7.2. Bene®ts of multiple specialization

Having discussed the cost of multiple specialization in automatic parallelization
both in terms of time and space, we now measure experimentally the bene®ts intro-
duced by multiple specialization.

The addition of run-time tests and conditionals in parallelized programs will in-
troduce some overhead which can be seen as extra work to be performed at run-
time. A pragmatic approach to avoid this overhead is to simply annotate sequential
execution when the tests cannot be proved statically to succeed. However, it has
been proved that performing run-time independence tests can produce speedups
[7]. Table 6 shows the slow-downs with respect to the original program of the par-
allelized (Par) and specialized (Spec) programs. The main contribution of multiple
specialization in program parallelization will be in reducing the overhead of run-
time tests and conditionals further, i.e., by getting a high value for Orig/Spec. This
value will be 1 when the overhead of run-time tests has been completely eliminated
and will not be much higher than 1 if the original program was optimally written,
i.e., by an experienced programmer. Note that programs which do not bene®t from
multiple specialization are not considered in Table 6 as they contain no test which
can be eliminated by multiple specialization. The Par/Spec column provides the se-
quential speedup achieved due to multiple specialization. It is always greater than 1,
i.e., no slow-downs are introduced. Speedups range from a small 1.01 for ann to 2.02
for mmatrix.

Table 5

Size of programs

Bench Orig Par Spec P/O S/O S/P

aiakl 3 317 4 667 4 386 1.41 1.32 0.94

ann 43 368 55 402 66 776 1.28 1.54 1.21

bid 10 242 14 159 17 031 1.38 1.66 1.20

boyer 37 340 38 273 43 030 1.02 1.15 1.12

browse 3 460 5 977 11 013 1.73 3.18 1.84

deriv 2 747 5 957 10 299 2.17 3.75 1.73

hanoiapp 1 115 2 120 3 014 1.90 2.70 1.42

mmatrix 1 257 3 048 5 802 2.42 4.62 1.90

occur 2 093 3 270 6 377 1.56 3.05 1.95

progeom 3 510 4 334 4 174 1.23 1.19 0.96

qplan 35 155 36 679 38 501 1.04 1.10 1.05

query 7 313 8 816 8 563 1.21 1.17 0.97

read 23 147 23 718 23 556 1.02 1.02 0.99

serialize 2 994 3 749 3 622 1.25 1.21 0.97

warplan 22 788 23 047 19 922 1.01 0.87 0.86

zebra 3 645 4 912 4 842 1.35 1.33 0.99

Overall 1.17 1.33 1.14

Relative overall 1.18 1.39 1.18

G. Puebla, M. Hermenegildo / J. Logic Programming 41 (1999) 279±316 307

In the case of browse, the original benchmark contains the clause:

p_match([P|Patterns],D) :-

(match(D,P), fail; true),

p_match(Patterns, D).

where match(D,P) produces no side-e�ects. The specializer transforms this clause
into:

p_match([P|Patterns],D) :-

p_match(Patterns, D).

and all the work performed in the calls to match/2 is eliminated from the execution.
In order to isolate the e�ects of multiple specialization from these optimizations
(which can be performed without generating di�erent versions of the predicate),
we have studied instead a modi®ed version of the benchmark, brow_nf, which is ob-
tained by removing the call to fail after match(D,P) in the original benchmark and
eliminating the clause

property���; X; Y� : ÿfail:
which is also eliminated automatically by the specializer.

Finally, column Improv(%) is computed for each benchmark as
��Specÿ Par�=�1ÿ Par�� � 100 and gives an idea of the degree to which multiple
specialization in the &-Prolog system has accomplished its primary task, i.e., elimi-
nating the overhead introduced by the run-time tests and conditionals as much as
possible. Note that this ®gure makes no sense for browse.pl as the improvement is
much beyond the overhead of run-time tests, and is thus not presented. This ®gure
is not given for warplan either since the overhead introduced by the run-time tests is
insigni®cant.

Another interesting question is how the improvement in sequential execution
time, i.e., the reduction of total work to be performed, a�ects performance in par-
allel execution, which is of course the ultimate objective of the parallelizing com-
piler. Due to the simulation approach used (described below), the programs have
to be executed on quite a small data, which results in small speedups. However,

Table 6

Sequential performace

Bench Orig/Par Orig/Spec Par/Spec Improv(%)

ann 0.68 0.69 1.01 4

bid 0.63 0.71 1.11 28

boyer 0.82 0.85 1.03 18

browse 0.64 53.54 84.03 ±

brow_nf 0.86 0.89 1.04 27

deriv 0.19 0.21 1.11 12

hanoiapp 0.60 0.75 1.26 51

mmatrix 0.43 0.86 2.02 88

occur 0.84 1.01 1.21 107

qplan 0.97 0.99 1.02 70

warplan 1.00 1.00 1.00 ±

308 G. Puebla, M. Hermenegildo / J. Logic Programming 41 (1999) 279±316

note that we are not interested really in the absolute speedups, but rather in the rel-
ative improvement in such speedups due to multiple specialization. To this end, we
compare the execution speed of the original program with the parallelized (P) and
specialized (S) programs running on several processors and show the results in Ta-
ble 7. The improvement in parallel execution speed due to specialization, P/S, is
given by column I. This is done for three di�erent cases. In the ®rst one, ®ve pro-
cessors are available and dedicated to the execution of the program. In the second,
ten processors are used, and in the third an unlimited number of processor can be
used, i.e., it gives an estimate of the best possible parallel performance. These three
cases are distinguished by the subindex 5, 10 and 1, respectively. Additionally, in the
columns P#p and S#p, an upper bound on the number of processor required to
achieve such optimal speed for each benchmark is given as a subindex. These speed-
up ®gures have been obtained with the IDRA simulation tool [19]. This tool allows
obtaining speedup results which have been shown to match closely the actual speed-
ups obtained in the &-Prolog system for the number of processors available for
comparison. It is also believed that the results obtained are good approximations
of the best possible parallel execution for larger numbers of processors [19]. This
approach allows concentrating on the available parallelism, without the limitations
imposed by a ®xed number of physical processors, a particular scheduling, bus
bandwidth, etc. IDRA takes as input an execution trace ®le generated from the ex-
ecution of a parallelized program on one or more processors and the time taken by
the sequential program, and computes the achievable speedup for any number of
processors. The trace ®les list the events occurred during the execution of the par-
allel program, such as a parallel goal being started or ®nished, and the times at
which the events occurred. Since &-Prolog normally generates all possible parallel
tasks in a parallel program, regardless of the number of processors in the system,
information is gathered for all possible goals that would be executed in parallel.
Using this data, IDRA builds a task-dependency graph whose edges are annotated
with the exact execution times. The possible actual execution graphs (which could
be obtained if more processors were available) are constructed from this data and
their total execution times compared to the sequential time, thus making quite ac-
curate estimations of (ideal ± in the sense that some low level overheads are not ta-
ken into account) speedups.

Table 7

Parallel performance

Bench P5 S5 I5 P10 S10 I10 P#p S#p I1

ann 2.40 2.39 1.00 3.34 3.59 1.07 4.3053 4.3352 1.01

bid 1.13 1.27 1.12 1.13 1.27 1.12 1.139 1.279 1.13

boyer 0.82 0.85 1.04 0.82 0.85 1.04 0.827 0.857 1.03

brow_nf 1.85 1.89 1.02 2.03 2.07 1.02 2.12124 2.17130 1.02

deriv 0.79 0.86 1.09 1.20 1.24 1.03 1.36175 1.38166 1.02

hanoi 0.89 1.18 1.33 0.89 1.18 1.33 0.8234 1.106 1.33

mmat 1.94 3.94 2.03 3.56 7.33 2.06 5.0347 15.0156 2.98

occur 3.96 4.75 1.20 6.34 8.84 1.39 9.8534 28.29108 2.87

qplan 1.31 1.35 1.03 1.31 1.35 1.03 1.314 1.353 1.03

warplan 1.07 1.07 1.00 1.07 1.07 1.00 1.075 1.075 1.00

G. Puebla, M. Hermenegildo / J. Logic Programming 41 (1999) 279±316 309

8. Discussion

The experimental results presented in Section 7 allow us to conclude that, at least
in the application considered, abstract multiple specialization is a useful technique:
its costs are reasonable and the bene®ts are of su�cient signi®cance. Summarizing
the results in terms of compilation time, the additional time required for specializa-
tion is about 1/4 of the parallelization time. Regarding the size of the specialized pro-
gram, it is about 1/6 larger than the parallelized one and about 1/3 larger than the
original one. Regarding the actual bene®ts of multiple specialization in terms of
speedup, it varies greatly from one benchmark to another. Thus, it is not easy to give
a factor which summarizes the achievable speedup, but many programs do obtain
useful speedups. Note also that if our primary aim when performing multiple spe-
cialization is, as in the experiments, to reduce the overhead introduced by indepen-
dence run-time tests, in the relatively frequent case in which automatic
parallelization does not require the introduction of any run-time test, specialization
can be easily turned o� and only applied to those cases which are problematic to au-
tomatic parallelization.

If the particular optimizations being considered are appropriate, multiple special-
ization always generates programs which are, at least theoretically, more optimized
than the original. This is con®rmed by column Par/Spec of Table 6, which for all
benchmarks presents values greater than 1. Leaving the atypical case of browse.pl
aside, the results show that the sequential improvement is low for some benchmarks
(ann, qplan, warplan), signi®cant in others (bid, hanoi, occur), and very important in
others (mmatrix). This program (Fig. 7), is a reasonable candidate for parallelization
and its execution time decreases nearly linearly with the number of processors. Note,
however, that if the user provides enough information regarding the input, this pro-
gram would be parallelized in the &-Prolog compiler without any run-time tests.
However, if no information is provided by the user (the case studied) many such tests
are generated and performance decreases. The reason for obtaining such improved
speedups for mmatrix when multiple specialization is used is that it is a recursive pro-
gram in which specialization automatically detects and extracts an invariant, as ex-
plained in Example 6.2.

Another important conclusion which the experiments seem to bear is that the
speedup achieved by multiple specialization generally increases with the number of
processors, thus making multiple specialization quite relevant in the context of a par-
allelizing compiler. The reason for this is that, in general, specialization reduces the
overhead of parallelization but does not deeply transform the structure of tasks to be
performed: the length of some tasks will be shortened due to the elimination of run-
time tests. This is the case for most benchmarks studied. The main exception is de-
riv.pl, which is a program for symbolic di�erentiation and also a good candidate
for parallelization. However, the improvement obtained with specialization is 1.11
for one processor and it decreases to a low 1.02 with 130 processors. This shows that
not all programs with signi®cant parallelism are good candidates for specialization.

Another interesting case is occur.pl. It counts the number of occurrences of an
element in a list. Improvement in the sequential execution is 1.21. This improvement
increases with the number of processors. Additionally, the specialized program keeps
on accelerating up to 108 processors while the non-specialized does not speed up
after 34 processors.

310 G. Puebla, M. Hermenegildo / J. Logic Programming 41 (1999) 279±316

9. Related work

The possibility of generating di�erent specialized versions for a given predicate in
the original program has long been used in partial evaluation [14,33,16]. There, pro-
gram predicates are specialized w.r.t. concrete values (bindings).

Unfortunately, in many cases, it is not possible to determine such concrete values
at compile-time. However, program analysis can still be used in order to obtain use-
ful information about the behavior of the program which can then be used to opti-
mize the program. Most analysis-based optimizing compilers only generate
monovariant specializations. Clearly, this may miss important specialization oppor-
tunities and is in contrast with the fact that most practical analyzers are inherently
multivariant. The fact that multivariant analysis can be used in order to generate
multiple specialization is already mentioned in Bruynooghe's analysis framework
[2]. However, no method is provided to perform such multiple specialization. The
relevance of multiple specialization is also foreseen in Refs. [39,59] where some im-
provements for a few small, hand-coded examples are reported.

Winsborough [61] presents a powerful multiple specialization framework based on
the notion of minimal function graphs [32]. A new abstract interpretation framework
is introduced which is tightly coupled with the specialization algorithm. The combi-
nation is proved to produce a program with multiple versions of predicates that al-
low the maximum optimizations possible while having the minimal number of
versions for each predicate. However, such multiple specialization was not imple-
mented and no empirical evaluation was performed.

While the analysis framework used by Winsborough is interesting in itself, several
generic analysis engines, such as PLAI [48,45] and GAIA [10], which greatly facili-
tate construction of abstract interpretation analyzers, are available, well understood,
and in comparatively wide use. We believe that it is of practical interest to specify a
method for multiple specialization which can be incorporated in a compiler using a
minimally modi®ed existing generic analyzer. This was previously attempted in Ref.
[22], where a simple program transformation technique which has no direct commu-
nication with the abstract interpreter is proposed, as well as a simple mechanism for
detecting cases in which multiple specialization is pro®table. However, this technique
is not capable of detecting all the possibilities for specialization or producing a min-
imally specialized program. It also requires running the interpreter several times after
specialization, repeating the analysis±program transformation cycle until a ®xpoint
is reached.

The specialization framework presented in this paper (and ®rst published in [51])
achieves the same results as those of Winsborough's but with only a slight modi®ca-
tion of a standard abstract interpreter and by assuming minimal communication
with such interpreter (namely, access to the memoization tables). Our algorithm
can be seen as an implementation technique for Winsborough's method in the con-
text of standard analyzers. Also, to the best of our knowledge, the ®rst integration of
multiple specialization in a compiler and its experimental evaluation was reported by
us in Ref. [51].

More recently, an implementation of multiple specialization has also been report-
ed in Refs. [34,35], applied to CLP(R). Such multiple specialization framework is
simpler than the one we present or that of [61] in that, the resulting programs
may not be of maximal optimization, i.e., given the existing analysis information

G. Puebla, M. Hermenegildo / J. Logic Programming 41 (1999) 279±316 311

and a class of optimizations to be performed, it is possible to build programs more
optimized than those achievable by Kelly et al. [34,35]. In spite of this, the results are
interesting in that they provide experimental evidence on the relevance of multiple
specialization even using a simple strategy.

Another interesting application of multiple specialization has been reported in
Ref. [37]. There, multiple specialization can be applied in a simple way while obtain-
ing seemingly important improvements over monovariant specialization. The kind of
optimizations considered are based on uninitialized variables. For them, the expen-
sive general implementation of uni®cation can be replaced by a specialized one which
is more e�cient. Detection of uninitialized variables is performed by an ad-hoc anal-
ysis which does not require ®xpoint computation. This allows performing program
analysis and transformation simultaneously without losing e�ciency. The analysis
computes a particular kind of call modes for predicates and the transformation gen-
erates a di�erent implementation for each call mode. As usual, literals in the ®nal
program are renamed to call the correct version. In this application, no minimization
step is performed because di�erent call modes always give rise to di�erent optimiza-
tions. As a result, implementation of the method is simple, e�cient, and important
improvements are once again obtained w.r.t. monovariant specialization. However,
the method is not general and does not seem directly applicable to other kinds of an-
alyses and/or optimizations.

10. Conclusions and future work

The topic of multiple specialization of logic programs has received considerable
theoretical attention and also many of the existing abstract interpreters implement
di�erent degrees of multivariance for improving the accuracy of the analysis. This
is in contrast with the fact that most existing optimization systems which use anal-
ysis information are monovariant. We have proposed a simple framework capable
of exploiting the multivariance of analysis in order to obtain multiple specialization
without the need for run-time tests for selecting among di�erent versions of a pred-
icate. This framework is potentially capable of generating an expanded version of
the program which contains as many versions of a predicate as calling patterns
the analysis has considered for it. However, the program is only expanded if such
expansion allows further optimizations, thanks to the use of a minimizing algorithm.
As in the case of Ref. [61], the framework we propose has the two important features
of being minimal, i.e., eliminating any of the versions implemented (by collapsing
them into other versions) would imply losing some of the optimizations allowed
in the expanded program, and of maximal optimization, i.e., no more optimizations
are possible by implementing more of the versions generated by analysis. The mul-
tiple specialization framework we propose is e�cient, as shown by the experimental
results, because the core of the process, i.e., the minimization algorithm, does not
require the extended program to be materialized. Instead, it works with a synthetic
representation of the program. It is only after minimization that the program is
materialized.

Another important feature of the framework we propose is that there is no restric-
tion on the nature of the optimizations considered and the multiple specialization al-
gorithm is independent from it. However, we have also discussed a relevant class of

312 G. Puebla, M. Hermenegildo / J. Logic Programming 41 (1999) 279±316

optimizations: those based on abstract executability. We refer to this combination of
multiple specialization and abstract executability as abstract multiple specialization.

We argue that our experimental results in the context of a parallelizing compiler
are encouraging and show that multiple specialization has a reasonable cost both in
compilation time and ®nal program size. Also, the results provide some evidence that
the resulting programs can show useful speedups in actual execution time and that
thus multiple specialization is indeed a relevant technique in practice.

It remains as future work to extend the presented multiple specialization system in
several directions. One of them would be to perform other kinds of optimizations
both within program parallelization and beyond this application, including those
based on concrete (as opposed to abstract) values, as in traditional partial evalua-
tion. Obviously, the specialization system should be augmented in order to be able
to detect and materialize the new optimizations. On-going work in this direction
can be found in Refs. [54,49]. Another direction would be to devise and experiment
with di�erent minimization criteria: even though the programs generated by the spe-
cializer are minimal to allow all possible optimizations, it would sometimes be useful
to obtain smaller programs even if some of the optimizations are lost.

Acknowledgements

This work has been funded in part by ESPRIT project ``DiSCiPl'' 22532, by CI-
CYT project ``ELLA'' TIC96-1012-C02-01, and by M.E.C. grant AP96 50831686.
The authors would like to thank Will Winsborough, John Gallagher and Saumya
Debray for useful discussions on multiple specialization, and Francisco Bueno and
Mar�õa Garc�õa de la Banda for their help during the implementation and experimen-
tation with the tools herein presented. Also, thanks are due to the anonymous refer-
ees for useful comments on previous versions of the paper.

References

[1] A. Aho, J.D. Ullman, Principles of Compiler Design, Addison-Wesley, Reading, MA, 1977.

[2] M. Bruynooghe, A framework for the abstract interpretation of logic programs, Technical Report

CW62, Department of Computer Science, Katholieke Universiteit Leuven, October 1987.

[3] M. Bruynooghe, A practical framework for the abstract interpretation of logic programs, Journal of

Logic Programming 10 (1991) 91±124.

[4] M. Bruynooghe, G. Janssens, An instance of abstract interpretation integrating type and mode

inference, in: Proceedings of the Fifth International Conference and Symposium on Logic

Programming, August 1988, MIT Press, Seattle, Washington, pp. 669±683.

[5] F. Bueno, D. Cabeza, M. Hermenegildo, G. Puebla, Global Analysis of Standard Prolog Programs,

in: European Symposium on Programming, number 1058 in LNCS, April, Sweden, Springer, Berlin,

pp. 108±124.

[6] F. Bueno, M. Garc�õa de la Banda, M. Hermenegildo, A Comparative Study of Methods for

Automatic Compile-time Parallelization of Logic Programs, in: Proceedings of the First International

Symposium on Parallel Symbolic Computation, World Scienti®c, Singapore, September 1994, pp. 63±

73.

[7] F. Bueno, M. Garc�õa de la Banda, M. Hermenegildo, E�ectiveness of Global Analysis in Strict

Independence-Based Automatic Program Parallelization, in: International Symposium on Logic

Programming, MIT Press, November 1994, pp. 320±336.

G. Puebla, M. Hermenegildo / J. Logic Programming 41 (1999) 279±316 313

[8] F. Bueno, M. Garc�õa de la Banda, D. Cabeza, M. Hermenegildo, The &-Prolog Compiler System ±

Automatic Parallelization Tools for LP, Technical Report CLIP5/93.0, Computer Science Depart-

ment, Technical U. of Madrid (UPM), 1993.

[9] M.A. Bulyonkov, Polivariant mixed computation for analyzer programs, Acta Informatica 21 (1984)

473±484.

[10] B. LeCharlier, P. Van Hentenryck, Experimental evaluation of a generic abstract interpretation

algorithm for prolog, ACM Transactions on Programming Languages and Systems 16 (1) (1994)

35±101.

[11] J. Chassin, P. Codognet, Parallel logic programming systems, Computing Surveys 26 (3) (1994)

295±336.

[12] M. Codish, D. Dams, E. Yardeni, Derivation and safety of an abstract uni®cation algorithm for

groundness and aliasing analysis, in: Proceedings of the Eighth International Conference on Logic

Programming, Paris, France, June 1991, MIT Press, Cambridge, MA, pp. 79±96.

[13] J.S. Conery. The and/or process model for parallel interpretation of logic programs, Ph.D. thesis, The

University of California At Irvine, 1983, Technical Report 204.

[14] C. Consel, O. Danvy, ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages POPL'93, Tutorial notes on partial evaluation, Charleston, South Carolina, 1993,

pp. 493±501.

[15] P. Cousot, R. Cousot, Abstract interpretation: a uni®ed lattice model for static analysis of programs

by construction or approximation of ®xpoints, in: Proceedings of the Fourth ACM Symposium on

Principles of Programming Languages, 1977, pp. 238±252.

[16] O. Danvy, R. Gl�uck, in: P. Thiemann (Eds.), Partial Evaluation, Number 1110 in LNCS, Springer,

February 1996, Dagstuhl Seminar.

[17] S. Debray (Ed.), Journal of Logic Programming, Special Issue: Abstract Interpretation, vol. 13 (1±2),

North-Holland, Amsterdam, 1992.

[18] S.K. Debray, Static inference of modes and data dependencies in logic programs, ACM Transactions

on Programming Languages and Systems 11 (3) (1989) 418±450.

[19] M. Fern�andez, M. Carro, M. Hermenegildo, IDRA (IDeal Resource Allocation), Computing Ideal

Speedups in Parallel Logic Programming, In Proceedings of EuroPar'96, number 1124 in LNCS,

Springer, Berlin, 1996, pp. 724±734.

[20] J. Gallagher, M. Bruynooghe, The derivation of an algorithm for program specialization, in: 1990

International Conference on Logic Programming, MIT Press, Cambridge, MA, 1990, pp. 732±746.

[21] J. Gallagher, M. Codish, E. Shapiro, Specialisation of prolog and FCP programs using abstract

interpretation, New Generation Computing 6 (2) (1998) 159±186.

[22] F. Giannotti, M. Hermenegildo, A technique for recursive invariance detection and selective program

specialization, in: Proceedings of the Third International Symposium on Programming Language

Implementation and Logic Programming, number 528 in LNCS, Springer, Berlin, 1991, pp. 323±335.

[23] R. Glueck, M.H. Sùrensen, Partial deduction and driving are equivalent, in: International

Symposium on Programming Language Implementation and Logic Programming, PLILP'94, volume

844 of LNCS, Springer, Madrid, Spain, 1994, pp. 165±182.

[24] M. Hermenegildo, K. Greene, The &-Prolog System: exploiting independent and-parallelism, New

Generation Computing 9 (3±4) (1991) 233±257.

[25] M. Hermenegildo, G. Puebla, K. Marriott, P. Stuckey, Incremental analysis of logic programs, in:

International Conference on Logic Programming, MIT Press, Cambridge, MA, 1995, pp. 797±811.

[26] M. Hermenegildo, F. Rossi, Strict and non-strict independent and-parallelism in logic programs

correctness e�ciency and compile-time conditions, Journal of Logic Programming 22 (1) (1995) 1±45.

[27] M. Hermenegildo, R. Warren, S.K. Debray, Global ¯ow analysis as a practical compilation tool,

Journal of Logic Programming 13 (4) (1992) 349±367.

[28] D. Jacobs, A. Langen, Static analysis of logic programs for independent and-parallelism, Journal of

Logic Programming 13 (2±3) (1992) 291±314.

[29] D.Jacobs,A.Langen,W.Winsborough,Multiplespecializationof logicprogramswithrun-timetests, in:

1990 International Conference on Logic Programming, MIT Press, Cambridge, MA, 1990, pp. 718±731.

[30] G. Janssens, M. Bruynooghe, Deriving descriptions of possible values of program variables by means

of abstract interpretation, Journal of Logic Programming 13 (2±3) (1992) 205±258.

[31] N. Jones, H. Sondergaard, A semantics-based framework for the abstract interpretation of prolog, in:

Abstract Interpretation of Declarative Languages, chapter 6, Ellis Horwood, Chichester, UK, 1987,

pp. 124±142.

314 G. Puebla, M. Hermenegildo / J. Logic Programming 41 (1999) 279±316

[32] N.D. Jones, A. Mycroft, Data¯ow analysis of applicative programs using minimal function graphs,

in: Thirteenth Ann. ACM Symposium principles of programming Languages, St. Petersburg, Florida,

ACM, 1986, pp. 296±306.

[33] N.D. Jones, C.K. Gomard, P. Sestoft, Partial Evaluation and Automatic Program Generation,

Prenctice-Hall, New York, 1993.

[34] A. Kelly, A. Macdonald, K. Marriott, H. Sondergaard, P. Stuckey, R. Yap, An optimizing compiler

for CLP (R), in: Proceedings of the Conference on Constraint Programming CP'95, LNCS, Springer,

Berlin, 1995.

[35] A. Kelly, A. Macdonald, K. Marriott, P. Stuckey, R. Yap, E�ectiveness of optimizing compilation for

CLP(R), in: Proceedings of Joint International Conference and Symposium on Logic Programming,

MIT Press, Cambridge, MA, 1996, pp. 37±51.

[36] J. Komorovski, An introduction to partial deduction, in: A. Pettorossi (Ed.), Meta Programming in

Logic, Proceedings of META'92, volume 649 of LNCS, Springer, Berlin, 1992, pp. 49±69.

[37] T. Lindgren, Polyvariant detection of uninitialized arguments of Prolog predicates, Journal of Logic

Programming 28 (3) (1996) 217±229.

[38] J.W. Lloyd, J.C. Shepherdson, Partial evaluation in logic programming, Journal of Logic

Programming 11 (3±4) (1991) 217±242.

[39] A. Marien, G. Janssens, A. Mulkers, M. Bruynooghe, The impact of abstract interpretation: an

experiment in code generation, in: Proceedings of the Sixth International Conference on Logic

Programming, MIT Press, Cambridge, MA, 1989, pp. 33±47.

[40] K. Marriott, H. Sondergaard, Abstract interpretation, 1989, 1989 SLP Tutorial Notes.

[41] K. Marriott, H. Sùndergaard, N.D. Jones, Denotational abstract interpretation of logic programs,

ACM Transactions on Programming Languages and Systems 16 (3) (1994) 607±648.

[42] C.S. Mellish, Abstract interpretation of prolog programs, in: Proceedings of the Third International

Conference on Logic Programming, number 225 in LNCS, Springer, Berlin, 1986, pp. 463±475.

[43] A. Mulkers, W. Winsborough, M. Bruynooghe, Analysis of shared data structures for compile-time

garbage collection in logic programs, in: Proceedings of the Seventh International Conference on

Logic Programming, Jerusalem, Israel, MIT Press, Cambridge, MA, 1990, pp. 747±762.

[44] K. Muthukumar, M. Hermenegildo, Complete and e�cient methods for supporting side e�ects in

independent/restricted and-parallelism, in: 1989 International Conference on Logic Programming,

pages, MIT Press, June 1989, pp. 80±101.

[45] K. Muthukumar, M. Hermenegildo, Deriving a ®xpoint computation algorithm for top-down

abstract interpretation of logic programs, Technical Report ACT-DC-153-90, Microelectronics and

Computer Technology Corporation, MCC, Austin, TX 78759, 1990.

[46] K. Muthukumar, M. Hermenegildo, The CDG, UDG and MEL methods for automatic compile-time

parallelization of logic programs for independent and-parallelism, in: International Conference on

Logic Programming, MIT Press, Cambridge, MA, 1990, pp. 221±237.

[47] K. Muthukumar, M. Hermenegildo, Combined determination of sharing and freeness of program

variables through abstract interpretation, in: 1991 International Conference on Logic Programming,

MIT Press, Cambridge, MA, 1991, pp. 49±63.

[48] K. Muthukumar, M. Hermenegildo, Compile-time derivation of variable dependency using abstract

interpretation, The Journal of Logic Programming 13 (2/3) (1992) 315±347.

[49] G. Puebla, J. Gallagher, M. Hermenegildo, Towards integrating partial evaluation in a specialization

framework based on generic abstract interpretation, in: M. Leuschel (Ed.), Proceedings of the

ILPS'97 Workshop on Specialization of Declarative Programs, 1997, Post ILPS'97 Workshop.

[50] G. Puebla, M. Garc�õa de la Banda, K. Marriott, P. Stuckey, Optimization of logic programs with

dynamic scheduling, in: 1997 International Conference on Logic Programming, MIT Press,

Cambridge, MA, 1997, pp. 93±107.

[51] G. Puebla, M. Hermenegildo, Implementation of multiple specialization in logic programs, in:

Proceedings of the ACM SIGPLAN Symposium on Partial Evaluation and Semantics Based Program

Manipulation, ACM Press, New York, 1995, pp. 77±87.

[52] G. Puebla, M. Hermenegildo, Optimized algorithms for the incremental analysis of logic

programs, in: International Static Analysis Symposium, number 1145 in LNCS, Springer, Berlin,

1996, pp. 270±284.

[53] G. Puebla, M. Hermenegildo, Abstract specialization and its application to program parallelization,

in: J. Gallagher (Ed.), VI International Workshop on Logic Program Synthesis and Transformation,

number 1207 in LNCS, Springer, Berlin, 1997, pp. 169±186.

G. Puebla, M. Hermenegildo / J. Logic Programming 41 (1999) 279±316 315

[54] G. Puebla, M. Hermenegildo, J. Gallagher, An integration of partial evaluation in a generic abstract

interpretation framework, in: O. Danvy (Ed.), ACM SIGPLAN Workshop on Partial Evaluation and

Semantics-Based Program Manipulation (PEPM'99), BRISC, University of Aarhus, Denmark, 1999.

[55] V. Santos-Costa, D.H.D. Warren, R. Yang, The andorra-i preprocessor: supporting full prolog on

the basic andorra model, in: 1991 International Conference on Logic Programming, MIT Press,

Cambridge, MA, 1991, pp. 443±456.

[56] H. Sondergaard, An application of abstract interpretation of logic programs: occur check reduction,

in: European Symposium on Programming, LNCS 123, Springer, Berlin, 1986, pp. 327±338.

[57] P. Van Hentenryck, O. Degimbe, B. Le Charlier, L. Michael, The impact of granularity in abstract

interpretation of prolog, in: Workshop on Static Analysis, number 724 in LNCS, Springer, Berlin,

1993, pp. 1±14.

[58] P. Van Roy, A.M. Despain, The bene®ts of global data¯ow analysis for an optimizing prolog

compiler, in: North American Conference on Logic Programming, MIT Press, Cambridge, 1990,

pp. 501±515.

[59] P. Van Roy, A.M. Despain, High-performace logic programming with the aquarius prolog compiler,

IEEE Computer Magazine (1992) 54±68.

[60] R. Warren, M. Hermenegildo, S.K. Debray, On the practicality of global ¯ow analysis of logic

programs, in: Proceedings of the Fifth International Conference and Symposium on Logic

Programming, MIT Press, Cambridge, MA, 1988, pp. 684±699.

[61] W. Winsborough, Multiple specialization using minimal-function graph semantics, Journal of Logic

Programming 13 (2±3) (1992) 259±290.

316 G. Puebla, M. Hermenegildo / J. Logic Programming 41 (1999) 279±316

