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This is the first of three articles on the Fibered Isomorphism Conjecture of Farrell and
Jones for L-theory. Here we prove the conjecture for several well-known classes of groups.
In fact we consider a general class of groups satisfying certain conditions which includes
the above classes of groups.
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1. Introduction

One of the fundamental conjecture in Geometry and Topology is the Borel Conjecture. The conjecture says that if two
closed aspherical manifolds are homotopically equivalent then they are homeomorphic. In other words the fundamental
group of a closed aspherical manifold determine the topology of the manifold. The classical approach to this problem needs
the study of two sets of obstruction groups, the lower K -groups and the surgery L-groups of the integral group ring of the
fundamental group of the manifold. In [4, §1.6, §1.7] Farrell and Jones formulated the (Fibered) Isomorphism Conjectures
to compute and understand these obstruction groups. The Isomorphism Conjecture was formulated for three functors: the
pseudoisotopy theory, K -theory and L〈−∞〉-theory. The conjectures for the first and the last theories give the computations
of the lower K -groups and the surgery L-groups respectively and together they imply the Borel Conjecture. See [9] for some
more consequences of the Isomorphism Conjectures.

Our objective is to set up some general methods to prove the Isomorphism Conjectures for all the three theories for
groups acting on trees. In our earlier works we developed some machinery and studied the pseudoisotopy case of the
conjecture. In the present article we set up this machinery in the L〈−∞〉-theory case of the conjecture using some known
facts and by proving some basic results. Finally, we see how this tool can be used to deduce the Fibered Isomorphism
Conjecture for L〈−∞〉-theory for several well-known classes of groups.

The Isomorphism Conjecture says that the above three theories can be computed for a group if we can compute them for
all its virtually cyclic subgroups. The Fibered Isomorphism Conjecture is stronger and is appropriate for induction arguments.
This property is crucial for the method we use here.
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We also consider the Fibered Isomorphism Conjecture for L〈−∞〉-theory, where L〈−∞〉 = L〈−∞〉 ⊗ Z[ 1
2 ]. The advantage of

taking L〈−∞〉-theory is that we can consider the ‘finite subgroups’ instead of the ‘virtually cyclic subgroups’. This will also
help to prove the conjecture for L〈−∞〉-theory for a larger class of groups.

Now we mention some conventions and definitions we need. Throughout the article by ‘group’ we mean ‘discrete count-
able group’ unless otherwise mentioned. A group is said to have a property P virtually if it has a finite index subgroup
having the property P and we say that the group is virtually P .

Definition 1.1. Let F I C W F (F I C W F ) be the smallest class of groups satisfying the conditions 1 to 5 (i to iv) below.

1. F I C W F contains the cocompact discrete subgroups of linear Lie groups with finitely many components.
2. (Subgroup) If H < G ∈ F I C W F then H ∈ F I C W F
3. (Free product) If G1, G2 ∈ F I C W F then G1 ∗ G2 ∈ F I C W F .
4. (Direct limit) If {Gi}i∈I is a directed system of groups with Gi ∈ F I C W F then the direct limit limi∈I Gi ∈ F I C W F .
5. (Extension) For an exact sequence of groups 1 → K → G → N → 1, if K , N ∈ F I C W F then G ∈ F I C W F .
i. F I C W F contains the cocompact discrete subgroups of Lie groups with finitely many components.

ii. 2, 3 and 4 as above after replacing F I C W F by F I C W F .
iii. (Direct product) If G1, G2 ∈ F I C W F then G1 × G2 ∈ F I C W F .
iv. (Polycyclic extension) For an exact sequence of groups 1 → K → G → N → 1, if either K is virtually cyclic and N ∈

F I C W F or N is finite and K ∈ F I C W F then G ∈ F I C W F .

The notation F I C W F is the short form of (F)ibered (I)somorphism (C)onjecture (W)reath product with (F)inite groups
and F I C W F denotes the same when we consider the conjecture tensored with Z[ 1

2 ]. See Definition 1.2.
For two groups A and B the wreath product A 	 B is the semidirect product AB

� B with respect to the regular action
of B on AB . Here AB denotes the group of tuples {ab}b∈B of elements of A indexed by B with respect to coordinate-wise
multiplication so that all but finitely many elements of a tuple are the identity element of A. In this article we consider
cases when B is a finite group, therefore in this particular case AB is the direct product of copies of A indexed by the
elements of B .

We now recall a general statement of the (Fibered) Isomorphism Conjecture in equivariant homology theory from [1]
before we state our main results.

Let H?∗ be an equivariant homology theory with values in R-modules for R a commutative associative ring with unit.
We always assume that a class of groups C is closed under isomorphisms, taking subgroups and taking quotients. We

call such a class a family of groups. We denote by C(G) the set of subgroups of a group G which belong to C . Then C(G) is
a family of subgroups of G .

Given a group homomorphism φ : G → H and C a family of subgroups of H define φ∗C by the family of subgroups
{K < G | φ(K ) ∈ C} of G . For a family C of subgroups of a group G there is a G-CW complex E C (G) which is unique up to
G-equivalence satisfying the property that for each H ∈ C the fixpoint set E C (G)H is contractible and E C (G)H = ∅ for H not
in C .

(Fibered) Isomorphism Conjecture: ([1, Definition 1.1]) Let G be a group and C be a family of subgroups of G . Then the
Isomorphism Conjecture for the pair (G, C) states that the projection p : E C (G) → pt to the point pt induces an isomorphism

HG
n (p) : HG

n

(
E C (G)

) � HG
n (pt)

for n ∈ Z.
And the Fibered Isomorphism Conjecture for the pair (G, C) states that for any group homomorphism φ : K → G the

Isomorphism Conjecture is true for the pair (K , φ∗C).
Let V C and F I N denote the family of virtually cyclic groups and the family of finite groups respectively.
The notation for the equivariant homology theory associated to the L〈−∞〉-theory (L〈−∞〉-theory) is H?

n(−,L〈−∞〉)
(H?

n(−,L〈−∞〉)), where L〈−∞〉 (L〈−∞〉) denotes the spectrum whose homotopy groups are the surgery groups L〈−∞〉∗ (L〈−∞〉∗ ).
See [9, Section 6.2] for details. For the equivariant homology theory H?

n(−,L〈−∞〉) and for C = V C and R = Z the (Fibered)
Isomorphism Conjecture is equivalent to the L〈−∞〉-theory case of the conjecture in [4, §1.6, §1.7]. Also it is known that the
(Fibered) Isomorphism Conjectures for the L〈−∞〉-theory for the two family of groups V C and F I N are equivalent.

Notational convention: For the notations defined in Definitions 1.2 and 2.1 we make the following further conventions. In
the particular case when C = F I N or V C the same notations will be used for the conjecture in L〈−∞〉-theory and for the
L〈−∞〉-theory the corresponding notations will have a superscript ‘–’.

Definition 1.2. ([14, Definition 2.1]) Let C be a family of groups. If the (Fibered) Isomorphism Conjecture is true for the
pair (G, C(G)) we say that the (F )ICC is true for G or simply say (F )ICC (G) is satisfied. Also we say that the (F )ICwF C (G) is
satisfied if the (F )ICC is true for the wreath product G 	 H for any finite group H .

We prove the following theorems.
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Theorem 1.1. Let Γ ∈ F I C W F and � ∈ F I C W F . Let G and H be two groups with homomorphisms φ : G → Γ 	 F and ψ : H →
� 	 K where F and K are finite groups. Then the following assembly maps are isomorphisms for all n.

HG
n

(
Eφ∗ F I N (Γ 	F )(G),L〈−∞〉) → HG

n

(
pt,L〈−∞〉) � L〈−∞〉

n (ZG),

H H
n

(
Eψ∗ V C(�	K )(H),L〈−∞〉) → H H

n

(
pt,L〈−∞〉) � L〈−∞〉

n (ZH).

In other words the Fibered Isomorphism Conjecture of Farrell and Jones for the L〈−∞〉-theory (L〈−∞〉-theory) is true for the group
Γ 	 F (� 	 K ). Equivalently, the FICwF−

F I N (Γ ) and the FICwFV C (�) are satisfied.

Theorem 1.2. Let C (D) be the class of groups which satisfy the FICwF−
F I N (FICwFV C ). Then C (D) has the properties 2 to 5 (ii to iv)

after replacing F I C W F (F I C W F ) by C (D) in Definition 1.1.

Our next goal is to show that F I C W F and F I C W F contain some well-known classes of groups.

Theorem 1.3. F I C W F contains the following groups.

1. Virtually cyclic groups.
2. Free groups and abelian groups.
3. Poly-free groups. A poly-free group G admits a filtration by subgroups: 1 < G0 < G1 < · · · < Gn = G so that Gi is normal in Gi+1

and Gi+1/Gi is free. Here n is called the index of G.
4. Strongly poly-free groups. See [2, Definition 1.1].
5. Full braid groups.
6. Cocompact discrete subgroups of Lie groups with finitely many components.
7. Groups whose some derived subgroup belongs to F I C W F .

F I C W F contains the following groups.

i. Virtually cyclic groups.
ii. Free groups and abelian groups.

iii. Groups appearing in 6 (by definition).
iv. Virtually polycyclic groups.

Remark 1.1. Here we should remark that the IC−
V C for a class of groups including poly-free groups and one-relator groups

was proved in [1, Theorem 0.13].

When Γ and � are torsion free, F = K = {1} and φ and ψ are the identity maps, Theorem 1.1 reduces to the iso-
morphism of the classical assembly map in surgery theory. Therefore we have the following corollary. See [4, 1.6.1] for
details.

Corollary 1.1. Let Γ ∈ F I C W F and � ∈ F I C W F and in addition assume that Γ and � are torsion free. Then the following
assembly maps are isomorphism for all n.

Hn
(

BΓ,L〈−∞〉) → L〈−∞〉
n (ZΓ ),

Hn
(

B�,L〈−∞〉) → L〈−∞〉
n (Z�).

In other words the surgery groups L〈−∞〉
n (ZΓ ) of Γ and the surgery groups L〈−∞〉

n (Z�) of � form generalized homology
theories.

Since surgery groups with different decorations differ by 2-torsions, that is, L〈−∞〉
n (ZΓ ) � Lh

n(ZΓ ) ⊗ Z[ 1
2 ] �

Ls
n(ZΓ ) ⊗ Z[ 1

2 ] for any group Γ (see [6, Section 5, para 1]), Theorem 1.1 is true for the functors Lh ⊗ Z[ 1
2 ] and Ls ⊗ Z[ 1

2 ]
also. It is known that Theorem 1.1 is not true for the Lh- and Ls-theory if we do not tensor with Z[ 1

2 ] ([5]).

Remark 1.2. The main ingredient behind the proof of Theorem 1.1 is [4, Theorem 2.1 and Remark 2.1.3]. This was also used
before to prove the FIC−

F I N and the FIC−
V C in [6] for elementary amenable groups, and in [10] for computation of K and

L-groups of cocompact planar groups. In this regard also see [14, Remark 8.1].

Remark 1.3. We also note here that the IC−
V C is known for many classes of groups. See [9, 5.3]. In [8] it was proved that

the ICV C is true for the fundamental groups of closed manifolds with a S̃L × E
n structure for n � 2.
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2. Some basic results on the Isomorphism Conjecture

Given a normal subgroup H of a group G by [7, Algebraic Lemma] G can be embedded as a subgroup in the wreath
product H 	 (G/H). We will always use this fact without explicitly mentioning it.

We begin by noting that if H ∈ C then the (F )IC C (H) is satisfied.
The following observation is known as the hereditary property of the Fibered Isomorphism Conjecture.

Lemma 2.1. If the FICC (FICwFC ) is true for a group G then the FICC (FICwFC ) is true for any subgroup of G.

Throughout the article a ‘graph’ (that is an one-dimensional C W -complex) is assumed to be connected and locally finite.
And a graph of groups consists of a graph G and to each vertex v or edge e of G there is associated a group Gv (called
the vertex group of the vertex v) or Ge (called the edge group of the edge e) respectively with the assumption that for
each edge e and for its two end vertices v and w (v = w is possible) there are injective group homomorphisms Ge → Gv

and Ge → G w . A subgraph of groups H of a graph of groups G consists of a subgraph of the graph and for each vertex v
(or edge e) of H, Hv = Gv (He = Ge) with the same homomorphisms coming from G . The fundamental group π1(G) of the
graph G can be defined so that in the simple cases of graphs of groups where the graph has two vertices and one edge or
one vertex and one edge the fundamental group is the amalgamated free product or the HNN-extension respectively. See [3]
for some more on this subject.

Definition 2.1. ([14, Definition 2.2]) Let C be a family of groups. We say that T C (w T C ) is satisfied if for a graph of groups G
with vertex groups (and hence edge groups) belonging to C , the FICC (FICwFC ) for π1(G) is true.

We say that t T C (wt T C ) is satisfied if for a graph of groups G with trivial edge groups and the vertex groups belonging
to C , the FICC (FICwFC ) for π1(G) is true.

And we say that P C is satisfied if for G1, G2 ∈ C the product G1 × G2 satisfies the FICC .

The following general lemma is a combination of [14, Proposition 5.2] and [15, Lemma 3.4].

Lemma 2.2. Assume that P C is satisfied.

(1) If the FICC (FICwFC ) is true for G1 and G2 then G1 × G2 satisfies the FICC (FICwFC ).
(2) Let G be a finite index subgroup of a group K . If the FICwF C is true for G then it is also true for K .
(3) Let p : G → Q be a group homomorphism. If the FICwFC is true for Q and for p−1(H) for all H ∈ C(Q ) then the FICwFC is true

for G.

The following is a consequence of the definition of the L〈−∞〉-theory.

Lemma 2.3. For the family of groups C = V C or F I N the FICC implies the FIC−
C and the FICwFC implies the FICwF−

C .

If the Isomorphism Conjecture is true for a group with respect to a family C of subgroups then it is true for the group
with respect to a family of subgroups containing C . The following lemma shows that sometimes the converse is also true.

Lemma 2.4. If a group G satisfies the FIC−
V C (FICwF−

V C ) then it also satisfies the FIC−
F I N (FICwF−

F I N ).

Proof. See [6, Lemma 5.1] or [9, Proposition 2.18]. �
Lemma 2.5. Let C = V C . Let {Gi}i∈I be a directed system of groups with direct limit G. If each Gi satisfies J then G also satisfies J
where J = 1,2,3 or 4 are as below.

1. FIC−
C . 2. FICC . 3. FICwF−

C . 4. FICwFC .

The above statement is also true for C = F I N .

Proof. For 1 and 2 the lemma directly follows from [6, Theorem 7.1] and for 3 and 4 note that for a finite group F , G 	 F is
the direct limit of the directed system {Gi 	 F }i∈I and then apply [6, Theorem 7.1]. �

Before we come to some more results on the Isomorphism Conjecture let us deduce some group theoretic results in the
following Lemmas 2.6 to 2.9.
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Lemma 2.6. Let G be a Lie group with finitely many components and let F be a finite group. Then the wreath product G 	 F is again a
Lie group with finitely many components with respect to the product topology on G F × F where F is given the discrete topology and
G F denotes the |F |-times direct product of G.

Proof. Recall that an element of G F is of the form (g f1 , . . . , g f |F |) where f i ∈ F . Now let f ∈ F . Then the regular action of F

on G F is by definition f (g f1 , . . . , g f |F | ) = (g f1 f −1 , . . . , g f |F | f −1 ). It now follows from the definition of semi-direct product
that the product and inverse operations on G 	 F both are smooth. Therefore G 	 F is a Lie group and also it has finitely
many components. �
Lemma 2.7. Let S be a closed orientable surface of genus � 1. Then π1(S) is a discrete cocompact subgroup of a Lie group with finitely
many components.

Proof. If the genus of S is 1 then π1(S) is a discrete cocompact subgroup of the Lie group of isometries of the flat Euclidean
plane. And if the genus of S is � 2 then the corresponding Lie group is the group of isometries of the hyperbolic plane. �
Lemma 2.8. If a graph of groups G has trivial edge groups then π1(G) is isomorphic to the free product of a free group and the vertex
groups of G .

Proof. Apply [14, Lemma 6.2] and note that G is the direct limit of the directed system of its finite subgraphs of groups.
Here the directed system is obtained by inclusion maps of subgraphs. �
Lemma 2.9. Let V 1 and V 2 be two virtually free groups then V 1 ∗ V 2 is virtually free.

Proof. We have a surjective homomorphism p : V 1 ∗ V 2 → V 1 × V 2. Let Hi be a free subgroup of V i of finite index for
i = 1,2. Hence H = H1 × H2 has finite index in V 1 × V 2. Note that V 1 ∗ V 2 acts on a tree with trivial edge stabilizers
and the vertex stabilizers are conjugate to V 1 or V 2. Hence p−1(H) also acts on the same tree. It follows that the edge
stabilizers of this restricted action are again trivial and the vertex stabilizers are conjugates of H1 or H2 and hence free.
Therefore p−1(H) is a free group by Lemma 2.8. This completes the proof. �
Lemma 2.10. Let Γ be a discrete cocompact subgroup of a Lie group with finitely many connected components. Then Γ satisfies the
FICwFV C w, FIC−

V C , FIC−
F I N , FICwF V C , FICwF−

V C and the FICwF−
F I N .

Proof. By Lemma 2.3 FICV C implies FIC−
V C and then apply Lemma 2.4 to get FIC−

F I N . Similarly FICwFV C implies FICwF−
V C

and then applying Lemma 2.4 we get FICwF−
F I N . Therefore we only have to show that Γ satisfies FICV C and FICwFV C . For

FICV C it follows directly from [4, Theorem 2.1 and Remark 2.1.3].
Now if Γ is a discrete cocompact subgroup of G then Γ 	 F is a discrete cocompact subgroup of G 	 F for any finite

group F . Here the Lie group structure on G 	 F is as described in Lemma 2.6.
Hence we can again use [4, Theorem 2.1 and Remark 2.1.3] to see that the FICwFV C is satisfied for Γ .
This completes the proof. �

Lemma 2.11. P V C , P −
V C and P −

F I N are satisfied.

Proof. Recall that P V C states that the FICV C is true for V 1 × V 2 for any two virtually cyclic groups V 1 and V 2. Let V 1
and V 2 be two such groups then V 1 × V 2 contains a free abelian normal subgroup H (on at most 2 generators) of finite
index. Hence V 1 × V 2 is a subgroup of H 	 ((V 1 × V 2)/H). Therefore by Lemma 2.1 it is enough to prove the FICV C for
H 	 ((V 1 × V 2)/H).

If V 1 × V 2 is virtually cyclic then there is nothing to prove. If H has rank 2 then applying Lemmas 2.7 and 2.10 we see
that P V C is satisfied. Next we apply Lemma 2.3 to see that P −

V C is also satisfied. And there is nothing to prove for P −
F I N

as product of two finite groups is finite. �
Lemma 2.12. Assume that J is true for two groups G1 and G2 then J is true for the direct product G1 × G2 . Here J = 1,2,3 or 4 are
as below.

1. FICV C . 2. FIC−
V C . 3. FICwF V C . 4. FICwF−

V C .

Proof. The proof is a combination of Lemma 2.11 and (1) of Lemma 2.2. �
Lemma 2.13. The FICwF V C , FICwF− and FICwF− are true for any virtually free group.
V C F I N
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Proof. We only prove the Lemma for the FICwF V C . The other two conclusions will follow using Lemmas 2.3 and 2.4.
Let Γ be a virtually free group and G be a free normal subgroup of Γ with F the finite quotient group. We can assume

that G is nontrivial since the lemma is true for finite groups. Let F ′ be another finite group and denote by C the wreath
product F 	 F ′ . Then we have the following inclusions.

Γ 	 F ′ < (G 	 F ) 	 F ′ < G F×F ′ 	 C < (G 	 C) × · · · × (G 	 C).

(See [13, Lemma 5.4] for the second inclusion and there are |F × F ′| factors in the last term.) Therefore using Lemmas 2.1
and 2.12 we see that it is enough to prove the FICV C for G 	 C for an arbitrary finite group C . Equivalently, we need to prove
the FICwFV C for G . If G is infinitely generated then let G be the direct limit of a directed system of finitely generated
subgroups of G . Here the directed system is defined by the inclusion homomorphisms of subgroups. Hence by Lemma 2.5
we can assume that G is finitely generated. Therefore G is isomorphic to the fundamental group of an orientable 2-manifold
M with boundary. Consequently, G is isomorphic to a subgroup of π1(M ∪∂ M), where M ∪∂ M = S denotes the double
of M . Again using Lemma 2.1 it is enough to prove the FICwF V C for π1(S), where S is a closed orientable surface. Since G
is nontrivial S has genus � 1. Now applying Lemmas 2.7 and 2.10 we complete the proof of the lemma. �
Lemma 2.14. w T −

F I N , wt T V C and wt T −
V C are satisfied.

Proof. We check w T −
F I N first. So let G be a group and G be a graph of finite groups with π1(G) � G . If G is an infinite

graph then we write G as the direct limit of the directed system of finite subgraphs Gi of G . Then π1(G) � limi→∞ π1(Gi).
Hence using Lemma 2.5 we can assume that G is finite. It is now well known that π1(G) contains a finitely generated free
subgroup of finite index. See [14, Lemma 3.2]. w T −

F I N now follows from Lemmas 2.13 and 2.4.
Next we prove wt T V C and wt T −

V C .
Let G be a graph of groups with virtually cyclic vertex groups and trivial edge groups. As before we can assume that G

is finite. Hence the group π1(G) is virtually free. This follows from Lemmas 2.8 and 2.9.
Therefore we can apply Lemmas 2.5 and 2.13 to complete the proof of Lemma 2.14. �

Proposition 2.1. Assume that the J is true for two groups G1 and G2 then the J is true for the free product G1 ∗ G2 also. Here J = 1
to 6 are as below:

1. FICV C . 2. FIC−
V C . 3. FIC−

F I N . 4. FICwFV C . 5. FICwF−
V C . 6. FICwF−

F I N .

Proof. The proof follows from Lemmas 2.11, 2.14 and [14, Lemma 6.3]. �
Lemma 2.15. Let 1 → K → G → N → 1 be an exact sequence of groups. Then the following hold for any equivariant homology theory
and for C = F I N .

1. If the FICwF C is true for K and the FICC is true for N then the FICC is true for G.
2. If the FICwF C is true for K and N then the FICwFC is true for G.

Proof. Apply (2) and (3) of Lemma 2.2 and note that P C is satisfied. �
3. Braid groups

Let C
N be the N-dimensional complex space. A hyperplane arrangement in C

N is by definition a finite collection
{V 1, V 2, . . . , Vn} of (N − 1)-dimensional linear subspaces of C

N .
Now we recall the definition of a fiber-type hyperplane arrangement from [11, p. 162]. Let us denote by Vn the arrange-

ment {V 1, V 2, . . . , Vn} in C N . Vn is called strictly linearly fibered if after a suitable linear change of coordinates, the restriction
of the projection of C

N − ⋃n
i=1 V i to the first (N − 1) coordinates is a fiber bundle projection whose base space is the com-

plement of an arrangement Wn−1 in C
N−1 and whose fiber is the complex plane minus finitely many points. By definition

the arrangement 0 in C is fiber-type and Vn is defined to be fiber-type if Vn is strictly linearly fibered and Wn−1 is of fiber
type. It follows by a repeated application of the homotopy exact sequence for fibration that the complement C

N − ⋃n
i=1 V i

is aspherical and hence the fundamental group is torsion free.

Lemma 3.1. ([7, Theorem 5.3]) π1(C
N − ⋃n

i=1 V i) is a strongly poly-free group.

Now recall that the pure braid group P Bn on n strings is by definition π1(C
n+1 − ⋃

i, j V i j) where V ij is the hyperplane

xi = x j for i < j and xi ’s being the coordinates in C
n+1. One can show that {V ij} is a fiber-type arrangement and hence P Bn

is a strongly poly-free group. See [2, Theorem 2.1].
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The full braid group Bn is by definition π1((C
n+1 −⋃

i, j V i j)/Sn+1) where the symmetric group Sn+1 on (n + 1)-symbols

acts on C
n+1 − ⋃

i, j V i j by permuting the coordinates. This action is free and therefore P Bn is a normal subgroup of Bn
with quotient Sn+1.

Recall that in [2] we proved the following.

Theorem 3.1. ([2, Theorem 1.3 and Corollary 1.4]) Let Γ be the fundamental group of a fiber-type hyperplane arrangement complement
or more generally a strongly poly-free group. Then W h(Γ ) = K̃0(ZΓ ) = Ki(ZΓ ) = 0 for i < 0.

Theorem 3.1 and an application of the Rothenberg’s exact sequence show the following. See [12, 17.2].

Lemma 3.2. Let Γ be as in Theorem 3.1 then L〈−∞〉
n (ZΓ ) � Lh

n(ZΓ ) � Ls
n(ZΓ ).

In the situation of Γ as in Theorem 3.1, Lemma 3.2 shows that the 2-torsions which appear in the three surgery groups
are isomorphic.

4. Proof of Theorem 1.3

Proof of Theorem 1.3 (1) and (i). (Virtually cyclic groups). Since F I C W F (F I C W F ) contains the discrete cocompact
subgroups of (linear) Lie groups with finitely many components it follows that finite groups and the infinite cyclic
group belong to F I C W F (F I C W F ). Next apply the ‘polycyclic extension’ (‘extension’) condition to complete the proof
of (1) ((i)).

(2) and (ii). (Free groups and abelian groups). At first note that a countable infinitely generated group is the direct limit of
the directed system of its finitely generated subgroups.

Now using (1) ((i)) and the ‘free product’ condition we get that finitely generated free groups belong to F I C W F
(F I C W F ) and since F I C W F (F I C W F ) has the property ‘direct limit’ the proof follows for infinitely generated free
groups.

Using (1) ((i)) and the ‘extension’ (‘polycyclic extension’) condition we see that finitely generated abelian groups belong
to F I C W F (F I C W F ). Therefore countable abelian groups belong to F I C W F (F I C W F ) by the ‘direct limit’ condition.

(3). (Poly-free groups). The proof is by induction on the index of the poly-free group. If n = 1 then G is free and hence
G ∈ F I C W F (apply (2)). So assume that the poly-free groups of index � n − 1 belong to F I C W F and let G has an index
n filtration. Note that Gn−1 is a poly-free group of index n − 1 and G/Gn−1 is a free group. Since F I C W F is closed under
extensions we can now apply (2) and the induction hypothesis to show that G ∈ F I C W F .

(4) and (5). (Strongly poly-free and the full braid groups). Recall from Section 3 that pure braid groups are strongly poly-free
and strongly poly-free groups are poly-free. Also the full braid group Bn contains the pure braid group P Bn as a subgroup
of finite index. Hence using (2) and since F I C W F is closed under extensions the proofs of (4) and (5) are complete.

(6). (Cocompact discrete subgroups of Lie groups with finitely many components). Let Γ be a cocompact discrete subgroup
of a Lie group with finitely many components. Then following the steps in the proof of [15, 2(a) of Theorem 2.2] or of
[4, Theorem 2.1] we have the following three exact sequences.

1 → F → Γ → Γ ′ → 1,

1 → ΓR → Γ ′ → ΓS → 1,

1 → ΓH → ΓS → ΓL → 1.

Where F is finite, ΓR is virtually poly-Z, ΓH is virtually finitely generated abelian and ΓL is a cocompact discrete sub-
group of a Linear Lie group with finitely many components. Now note that finitely generated free abelian groups and poly-Z
groups (since they are also poly-free) belong to F I C W F . Therefore, we can again apply the hypothesis that F I C W F is
closed under extensions and use the above three exact sequences to complete the proof of (6).

(7). (Groups whoes some derived subgroup belongs to F I C W F ). Let Γ be a group so that Γ (n) ∈ F I C W F for some n.
Using the extension condition it is enough to show that Γ/Γ (n) ∈ F I C W F , that is we need to show that F I C W F contains
the solvable groups.

So let Γ be a solvable group. Using the ‘direct limit’ condition in the definition of F I C W F we can assume that Γ

is finitely generated, for any countable infinitely generated group is the direct limit of the directed system of its finitely
generated subgroups.

We say that Γ is n-step solvable if Γ (n+1) = (1) and Γ (n) �= (1). The proof is by induction on n. Since countable abelian
groups belong to F I C W F (by (2)), the induction starts.

So assume that a finitely generated k-step solvable group for k � n − 1 belongs to F I C W F and Γ is n-step solvable.
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We have the following exact sequence.

1 → Γ (n) → Γ → Γ/Γ (n) → 1.

Note that Γ (n) is abelian and Γ/Γ (n) is (n−1)-step solvable. Using the ‘extension’ condition and the induction hypothesis
we complete the proof.

(iii). (Groups appearing in (6)). This follows from the definition of F I C W F .

(iv). (Virtually poly-cyclic groups). Using the ‘polycyclic extension’ condition and the following lemma we complete the
proof.

Lemma 4.1. Let G be a virtually polycyclic group. Then G contains a finite normal subgroup so that the quotient is a discrete cocompact
subgroup of a Lie group with finitely many components.

Proof. See [16, Theorem 3, Remark 4 on p. 200]. �
5. Proofs of Theorems 1.1 and 1.2

Proof of Theorem 1.1. The proof of the theorem follows from the following two observations.

• The FICwF−
F I N (FICwFV C ) for the groups appearing in (1) ((i)) of Definition 1.1 is true. This follows from Lemma 2.10.

• The statement ‘The FICwF−
F I N (FICwFV C ) is satisfied’ is closed under the operations described in (2) to (5) ((ii) to (iv)) of

Definition 1.1. This follows from Theorem 1.2. �
Proof of Theorem 1.2. For C : (2), (3), (4) and (5) follows from Lemma 2.1, Proposition 2.1, Lemma 2.5 and Lemma 2.15
respectively.

For D: (ii) follows from Lemma 2.1, Proposition 2.1 and Lemma 2.5. (iii) follows from Lemma 2.12. (iv) follows using (3)

of Lemma 2.2, Lemma 4.1 and Lemma 2.10. To apply (3) of Lemma 2.2 we will need the fact that if a group contains a finite
normal subgroup with virtually cyclic quotient then the group is virtually cyclic. This follows from [14, Lemma 6.1]. �
Remark 5.1. We finally remark that in our applications we used a weaker version of the ‘direct limit’ condition. That is,
when the maps in the directed system of groups are injective homomorphism. In fact we needed only a ‘filtered system’.
But in the following example we need the general ‘direct limit’ condition. Let M be a noncompact manifold. Assume that the
FICwFV C (FICwF−

F I N ) is true for the fundamental group of any compact submanifold of M , then the ‘direct limit’ condition
imply that the FICwF V C (FICwF−

F I N ) is true for π1(M). To prove the FICwF V C or FICwF−
F I N for 3-manifold groups we will

need the general ‘direct limit’ condition as mentioned in [15, Theorem 2.2]. This fact was very crucial in [13] even to prove
the conjecture for a certain class of compact 3-manifolds.
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