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Abstract

For a natural numbern and a prime powerq the general, special, projective general and
projective special linear groups are denoted byGLn(q), SLn(q), PGLn(q) and PSLn(q),
respectively. Using conjugacy classes of elements inGLn(q) in terms of irreducible polynomials
over the finite fieldGF(q) we demonstrate how the set of order elements inGLn(q) can be
obtained. This will help to find the order of elements in the groupsSLn(q), PGLn(q) and
PSLn(q). We also show an upper bound for the order of elements inSLn(q).
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction and preliminaries

For a finite groupG, let �(G) denote the set of orders of elements ofG and call
�(G) the spectrum ofG. Of course the set�(G) is closed and partially ordered by
the divisibility relation. Hence�(G) is uniquely determined by the set�(G) of its
maximal elements. One of the recent research problems in finite group theory is that
of pure characterization of a finite groupG by the set�(G). We say that a finite group
G is characterizable by�(G), in short if every finite groupH with �(H) = �(G) is
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isomorphic toG. One of the first results of this kind is due to Shi[5] who proved that
if G is a finite group which contains elements of order 1,2,3,5 and does not contain
elements of any other order, thenG�A5.

There are several papers concerning the characterization of the projective special
linear groups in low dimensions and for all of them the set of orders for the group
in question was already available in the literature, for example in[1]. Now in this
paper our intention is to present a method to find�(G) for G = GLn(q), SLn(q)

and PSLn(q). We used the method of this paper and found�(GL14(2)) and then
characterized this group in[2].
Our method depends on the shape of the conjugacy classes of elements ofGLn(q)

described in[3] in terms of polynomials over the Galois fieldGF(q). Then we find
a formula for the order of an elementc in a conjugacy class ofGLn(q) and then
determine the maximum order ofc. Although some results concerning the element
orders inGLn(q) may be known using matrix theory and linear algebra, what makes
our investigations interesting is the connection of element orders with polynomials over
the Galois field.
Now let us recall some notations and results from[4]. Let GF(q) denote the Galois

field with q elements whereq is the power of a prime numberp. In this paper all
polynomials f (x) ∈ GF(q)[x] have the property thatf (0) �= 0, i.e., f (x) is not
divisible by x. It is proved in [4, p. 84] that for f (x) ∈ GF(q)[x] of degreen�1,
there is a positive integere, 1�e�qn − 1, such thatf (x) | xe − 1. The least positive
integere with the above property is called the order off (x) and is denoted byord(f ).
In particular, it is proved that iff (x) ∈ GF(q)[x] is irreducible and monic of degree
n, thenord(f ) | qn − 1; moreover, the order of any root off (x) in the multiplicative
groupGF(qn)∗ is equal toord(f ).
Order of polynomials is closely related to the order of matrices as follows. Let

f (x) = a0 + a1x + · · · + an−1x
n−1 + xn be in GF(q)[x] with a0 �= 0. Then the

companion matrix off (x) is defined to be them × m matrix:

C(f ) =




0 1 0 · · · 0
0 0 1 · · · 0
... 0
0 0 0 · · · 1

−a0 −a1 −a2 · · · −an−1




.

It is easy to verify thatf (x) is the characteristic polynomial ofC(f ), i.e., det(xI −
C(f )) = f (x). Therefore(−1)n det(C(f )) = f (0) = a0; hence, det(C(f )) = (−1)na0,
so C(f ) is an element ofGLn(q). It can be verified that the order ofC(f ) as an
element ofGLn(q) is equal to the order off (x), i.e., ord(f ) = O(C(f )). This fact
is useful to find the order of elements ofGLn(q).

According to [4], the general formula for the order of a polynomial overGF(q) is
Theorem 3.11 in p. 87 which will be stated below.
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Lemma 1. Let 0 �= f (x) ∈ GF(q)[x], q = pr , f (0) �= 0. Let f (x) = af1(x)
k1f2(x)

k2

· · · fs(x)
ks be the factorization off (x) as the product of distinct irreducible monic

polynomialsfi(x), 1� i�s, anda ∈ GF(q), k1, . . . , ks ∈ N. Then ord(f ) = ept , where
e is the least common multiple of ord(f1), . . . ,ord(fs), i.e., e = lcm(ord(f1), . . . ,
ord(fs)) and t is the smallest integer such thatpt � max{k1, . . . , ks}.

By definition f (x) ∈ GF(q)[x] of degreen�1 is called primitive overGF(q)[x] if
it is the minimal polynomial of a primitive element ofGF(qn) over GF(q). Hence,
it is easy to prove that a polynomialf (x) ∈ GF(q)[x] of degreen is primitive if and
only if it is monic andord(f ) = qn − 1. Since primitive elements exist, the group
GLn(q) contains elements of orderqn − 1.
Now let us turn to the conjugacy classes ofGLn(q). In what follows we adopt

the notations used in[3]. Let A ∈ GLn(q) have characteristic polynomial det(xI −
A) = f

k1
1 . . . f

ks
s where fi = fi(x), 1� i�s, are distinct monic irreducible poly-

nomials overGF(q) and ki > 0. The polynomialx is excluded for the reason of
invertability of A. Then A is conjugate to a block diagonal matrix of the form
A ∼ diag(U�1(f1), U�2(f2), . . . , U�s (fs)), where �1, �2, . . . , �s are certain partitions
of k1, k2, . . . , ks , respectively, andU�i (fi) is a certain matrix which will be explained
later. This conjugacy class ofA is denoted byc = (f

�1
1 f

�2
2 . . . f

�s
s ). Since we are

interested in the order ofA, we observe thatO(A) is equal to the least common
multiple, lcm, of the orders of the matricesU�i (fi), 1� i�s. But for each parti-
tion (�) ≡ l1 + l2 + · · · + lr , l1� l2� · · · � lr > 0, of a positive integerk and each
polynomial f = f (x) ∈ GF(q)[x], the matrix U�(f ) is defined to beU�(f ) =
diag(Ul1(f ), Ul2(f ), . . . , Ulr (f )). It is clear that the characteristic polynomial of the
matrix U�(f ) is f (x)k. But Uli (f ) is defined according to the following.
Let f (x) = a0+a1x +· · ·+ad−1x

d−1+xd be a monic polynomial of degreed over
GF(q) and let

U(f ) = U1(f ) =




0 1 0 · · · 0
0 0 1 · · · 0
...

0 0 · · · · · · 1
−a0 −a1 · · · · · · −ad−1




be its companion matrix. Then for any natural numberm the matrixUm(f ) is defined
by

Um(f ) =




U(f ) Id O

O U(f ) Id
...

· · · · · · · · · U(f )



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with m diagonal blocksU(f ) where Id is the d × d identity matrix. It is clear that
the characteristic polynomial ofUm(f ) is f (x)m.

As we mentioned earlier, the order of an element in the classc = (f
�1
1 f

�2
2 . . . f

�s
s )

is equal to the lcm of the orders of the matricesU�i (fi), 1� i�s. But the order of the
matrix U�i (fi) divides the order of the polynomialfi(x)

ki , 1� i�s. This is because
�i is a partition ofki , and if we takeki alone as the partition ofki , then the minimal
polynomial ofUki (fi) is fi(x)

ki .
Now supposeA ∈ GLn(q) has characteristic polynomialm(x) = det(xI − A) =

f
k1
1 f

k2
2 . . . f

ks
s wherefi = fi(x), 1� i�s, are distinct monic irreducible polynomials

overGF(q) andki > 0. Then there is a conjugacy class ofA with minimal polynomial
m(x). This is simply by taking�1 = k1, �2 = k2, . . . , �s = ks as partitions of the
respectiveki ’s. It is obvious that if there is a conjugacy class of typeA with minimal
polynomial t (x) = f

k1
1 f

k2
2 . . . f

ks
s , then t (x) | m(x) and thereforeord(t) | ord(m).

Hence, as far as the maximum order of elements in the conjugacy class ofA is
concerned we must calculateord(m) wherem = m(x) is given with the condition∑m

i=1 kidi = n wheredi = deg(fi), 1� i�s. But as we mentioned earlier, by Lidl and
Niederreiter[4], if f (x) ∈ GF(q)[x] is a monic irreducible polynomial of degreed,
then ord(f ) | qd − 1 and furthermore there is an irreducible polynomial overGF(q)

with order qd − 1. Therefore, using Lemma 1 we obtain the following result for the
maximum order of elements in the groupGLn(q).

Corollary 1. Let m(x) ∈ GF(q)[x], m(0) �= 0, q the power of a prime p, and let
m(x) = f

k1
1 f

k2
2 . . . f

ks
s be the product of distinct monic irreducible polynomialsfi(x) of

degreedi overGF(q), 1� i�s. Then ord(m) dividespt×lcm(qd1−1, qd2−1, . . . , qds −
1) where t is the smallest non-negative integer such thatpt � max{k1, . . . , ks}. More-
over, if

∑s
i=1 kidi = n, thenGLn(q) has an element with the above order.

Therefore so far as�(GLn(q)) is concerned, first we find all the irreducible polyno-
mials of degree up ton overGF(q) and call themf1, f2, . . . , fs . Then we consider all
the possible factorizations of the formf k1

1 f
k2
2 . . . f

ks
s whereki > 0 and

∑s
i=1 kidi = n,

di = deg(fi). Finally, numbers of the formpt × lcm(qd1 − 1, qd2 − 1, . . . , qds − 1) are
elements of�(GLn(q)) where t is explained in Corollary 1.
We will demonstrate some examples at the end of the paper but as the next step we

will explain the order of elements in the groupsSLn(q), PGLn(q) and PSLn(q).
As usual letA ∈ GLn(q) have characteristic polynomialm(x) = det(xI − A) =
f

k1
1 f

k2
2 . . . f

ks
s . We havem(0) = (−1)n detA, hence,A ∈ SLn(q) if and only if m(0) =

f1(0)k1f2(0)k2 . . . fs(0)ks = (−1)n, i.e., the constant term ofm(x) is 1 if n is even and
it is −1 if n is odd. Therefore, from thosem(x) corresponding to maximum order of
elements inGLn(q) we select those with the constant term(−1)n and find their orders
in the same manner.
Now we consider element orders inPGLn(q). We know thatPGLn(q) = SLn(q)

Z
,

whereZ = {�I | �n = 1, � ∈ GF(q)} is the centre ofGLn(q) which is a cyclic group
of order q − 1. We know thatA ∈ GLn(q) is a block diagonal matrix of the shape
A = diag(A1, . . . , As) whereAi ∈ GLkidi (q), 1� i�s. Let Zi = {�iIi | �i ∈ GF(q)∗}
whereIi is thekidi ×kidi identity matrix, 1� i�s. LetO(AZ) = � andO(AiZi) = �i ,
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1� i�s. Then there exist� and�i in GF(q)∗ such thatA� = �I andA�i

i = �iIi , where
Ii is the identity element ofGLkidi (q), 1� i�s. FromA� = �I we obtainA�

i = �Ii ,
1� i�s, hence�i | �, for all 1� i�s. If we set l = lcm(�1, . . . , �s), then clearlyl | �.
We also haveAl

i = �iIi for some�i ∈ GF(q)∗. SinceGF(q)∗ is a cyclic group of
order q − 1, we setGF(q)∗ = 〈a〉 and let�i = ami , 1� i�s, 0�mi < q − 1. If � is
the least positive integer for which��

1 = ��
2 = · · · = ��

s , thenl� = � would be the order
of ZA. But from the last identities we obtaina�m1 = a�m2 = · · · = a�ms . Henceq −1 |
�(m1−mi), 1� i�s. we may disregard equalmi ’s and assumeq−1 | �(m1−mi), m1 �=
mi , for 2� i�s′. Thereforeq − 1 | �gcd(m1 − m2, . . . , m1 − ms′) where gcd denotes
the greatest common divisor. Hence, the least� is � = q−1

gcd(q−1,|m1−m2|,...,|m1−ms′ |) .
Therefore, the order ofZA is � = (q−1)lcm(�1,···,�s )

gcd(q−1,|m1−m2|,...,|m1−ms′ |) . The same formula applies

for the order of elements in the groupPSLn(q).

2. Bounds for element orders

First we deal with the order of elements in the groupGLn(q). In the introduction
we mentioned thatGLn(q) contains elements of orderqn − 1. We will show this is
the largest number for the order of an element inGLn(q).

Corollary 2. If A ∈ GLn(q), thenO(A)�qn − 1.

Proof. Let c = (f
�1
1 . . . f

�s
s ) represent a conjugacy class inGLn(q). Then we know

f (x) = f1(x)
k1 . . . fs(x)

ks has the property that
∑s

i=1 kidi = n and �i is a partition
of ki , 1� i�s, and fi(x) are distinct monic irreducible polynomials overGF(q) of
degreedi , 1� i�s. It is obvious that for any matrixA representing classc we have
m(x) | f (x), wherem(x) is the minimal polynomial ofA. But thenord(m)�ord(f )

and consequentlyord(A)�ord(f ). By Theorem 3.9, in[4, p. 86] we have

ord(f ) = lcm(ord(f k1
1 ), . . . ,ord(f ks

s )).

But being a polynomial of orderkidi we haveord(f ki
i )�qkidi − 1, 1� i�s. Hence

ord(f )� lcm(qk1d1 − 1, qk2d2 − 1, . . . , qksds − 1)�(qk1d1 − 1)(qk2d2 − 1) · · · (qksds −
1)�qk1d1+k2d2+···+ksds − 1 = qn − 1.
This proves thatO(A)�qn − 1. �

Next we investigate an upper bound for the order of elements inSLn(q), but some
of the results are also true forGLn(q). We remind that a polynomial of degreen
over GF(q) is the characteristic polynomial of a matrix inSLn(q) if and only if
(−1)nf (0) = 1.

Lemma 2. Let 0 �= f (x) ∈ GF(q)[x] with degree n has orderqn−1
q−1 , n�1. Thenf (x)

is irreducible overGF(q) and (−1)nf (0) = 1.
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Proof. Let q be the power of a prime numberp. Since ord(f ) = qn−1
q−1 we have

(ord(f ), p) = 1. Therefore, by Lemma 1,f (x) = f1(x) · · · fs(x), s�1, wherefi(x)

are distinct monic irreducible polynomials overGF(q). If degfi(x) = mi , thenord(fi)

| qmi − 1, 1� i�s. If we set d = (qm1−1)···(qms −1)
(q−1)s−1 , then for all i we haveord(fi) | d,

which impliesfi(x) | xd − 1, hencef (x) | xd − 1. Thereforeord(f )�d.

But if s�2, then we haved <
qm1+···+ms − 1

q − 1
= qn − 1

q − 1
= ord(f ), which contra-

dicts the above inequality. Hences = 1 andf (x) must be irreducible.
Now let � be a root off (x) in GF(qn). Then the multiplicative order of� is

qn−1
q−1 . The roots off (x) are �q

j
, 0�j < n; hence, the constant term off (x) is

(−1)nf (0) = NGF(qn)/GF(q)(�) = ��q . . . �q
n−1 = �

qn−1
q−1 = 1 implying (−1)nf (0) = 1

and the lemma is proved.�

On the other hand, polynomials of degreen and orderq
n−1
q−1 , n�1, exist. Because if

f (x) is a primitive polynomial of degreen overGF(q), then the roots�, �q, . . . , �q
n−1

of f (x), which all lie in GF(qn), each have orderqn − 1 in GF(qn)∗; hence,� =
�q−1 has order q

n−1
q−1 and the conjugates�, �q, . . . , �qn−1

are distinct andg(x) =
(x − �)(x − �q) · · · (x − �qn−1

) ∈ GF(q)[x] is the minimal polynomial of� of degree
n, which is therefore irreducible overGF(q). Now by Theorem 3.3, in[4, p. 84] the
order of g(x) is equal to the order of� and our claim is proved. From the above and
Lemma 2 we obtain the following corollary.

Corollary 3. The groupSLn(q), n�1, has an element of orderq
n−1
q−1 .

Lemma 3. Let 0 �= f (x) ∈ GF(q)[x], f (0) �= 0, be a monic irreducible polynomial
of degree n with the property(−1)nf (0) = 1. Then ord(f ) | qn−1

q−1 .

Proof. Let � be a root off (x) in GF(qn). Then the multiplicative order of� is equal

to ord(f ). But 1 = (−1)nf (0) = NGF(qn)/GF(q)(�) = ��q . . . �q
n−1 = �

qn−1
q−1 which

implies �
qn−1
q−1 = 1, henceo(�) | qn−1

q−1 and the lemma is proved.�

As a consequence of the above lemma if the characteristic polynomial ofA ∈ SLn(q)

is irreducible overGF(q), thenO(A) | qn−1
q−1 .

Lemma 4. Let 0 �= f (x) ∈ GF(q)[x], f (0) �= 0 be a polynomial of degreen�1 and
f (x) = f1(x)f2(x) · · · fs(x) be the factorization off (x) in terms of distinct monic
irreducible polynomials overGF(q). If s�2, then ord(f ) <

qn−1
q−1 .

Proof. Supposeord(fi) = mi , 1� i�s. Then we know thatord(fi) | qmi − 1. If we
defined = (qm1−1)···(qms −1)

(q−1)s−1 , then with the same reasoning as in the proof of Lemma 2,
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we will obtainf (x) | xd−1 which impliesord(f )�d. But for k�2 we haved <
qn−1
q−1 ,

henceord(f ) <
qn−1
q−1 and the lemma is proved.�

Lemma 5. The following inequality

xyz − 1�zx(x − 1)(xy − 1)

holds for natural numbersx, y, z with the conditions(y, z) �= (1,2), (1,3), (2,2) or
z �= 1. (The inequality holds in the cases(x, y, z) = (2,2,2), (x, y, z) = (2,1,3) and
(x, z) = (1,1).)

Proof. We may assumex > 1. If z > 3, then for anya ∈ N we haveaz = (1+a−1)z =
1+z(a−1)+ z(z−1)

2 (a−1)2+· · · �1+z(a−1)3, henceaz−1> z(a−1)3. Now setting
a = xy we will obtain xyz−1�z(xy −1)3�zx(x−1)(xy −1) and the inequality holds.

If z = 3, then the above inequality simplifies toxzy + xy + 1�3x(x − 1) which
obviously holds fory �= 1. If y = 1, then the inequality holds only ifx = 2. Therefore,
if (y, z) �= (1,3), then the inequality stated in the lemma holds.

If z = 2, then the inequality becomesxy + 1�2x(x − 1). If y = 1, the inequality
does not hold, and ify = 2, x �= 2, again the inequality holds. Fory�3, the inequality
holds for anyx.
If z = 1, then the inequality stated in the Lemma holds only ifx = 1. The Lemma

is proved now. �

Lemma 6. Let f (x) = g(x)b, whereg(x) is a monic irreducible polynomial of degree
d�1 overGF(q). Then
(a) ord(f )�qbd − 1,

(b) if b�2, then ord(f )� qbd−1
q−1 holds when(d, b) �= (1,2).

Proof. (a) Sincef (x) is a polynomial of degreebd, by Lemma 3.1, in[4, p. 84] the
order of f (x) is at mostqbd − 1.
(b) By Lemma 1 we haveord(f ) = pt ord(g) where q is a power ofp and t

is the least positive integer such thatpt �b. By [4, Corollary 3.4, p. 84]we have
ord(g)�qd −1, henceord(f )�pt (qd −1). But by the definition oft we havept−1 <

b, thuspt < pb and ord(f ) < pb(qd − 1)�qb(qd − 1).
Now by Lemma 5, takingx = q, y = d, z = b, we haveqbd − 1�bq(q − 1)(qd −

1) except for (d, b) = (1,2), (1,3), (2,2). Note that by assumptionb�2. Therefore

qb(qd − 1)� qbd−1
q−1 implying ord(f ) <

qbd−1
q−1 .

If (d, b) = (1,3), thenord(f )�p(q −1) if p is odd andord(f )�4(q −1) if p = 2.

Since we havep(q − 1)�q(q − 1) < q3−1
q−1 and 4(q − 1) < q3−1

q−1 , the inequality in (b)

holds in this case. If(d, b) = (2,2), thenord(f )�p(q2 − 1)�q(q2 − 1) < q4−1
q−1 and

again the inequality holds. Therefore the lemma is proved.�
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Example 1. In this example we will compute�(G) whereG = GL2(q) or SL2(q),
q a power of primep. The conjugacy classes ofG are of the shapec = (f1f2), (f

2
1 )

or (f3), where f1 and f2 are distinct monic irreducible polynomials of degree 1
and f3 is an irreducible polynomial of degree 2. According to Corollary 1,
the maximum order ofc is q − 1, p(q − 1) or q2 − 1, respectively. There-
fore �(GL2(q)) = {p(q − 1), q2 − 1}.
For SL2(q) we must consider thosefi ’s for which f1(0)f2(0) = (−1)2 = 1,

f 2
1 (0) = (−1)2 = 1 or f3(0) = (−1)2 = 1. By Lemma 3 the maximum order

of f3 is q2−1
q−1 = q + 1. If c = (f 2

1 ), then f1(x) = x + a, a2 = 1. If p is
odd, we haveord(f1) = 2p and if p = 2, ord(f ) = p = 2. If c = (f1f2),
then we may takef1(x) = x + a and f2(x) = x + a−1 where a ∈ GF(q)∗. Then
the maximum order ofc is q − 1. Therefore, forq odd we have�(SL2(q)) =
{2p, q − 1, q + 1} and for q even�(SL2(q)) = {p, q − 1, q + 1}. Hence, we have the
following corollary.

Corollary 4. The largest number for an element of the groupSL2(q) is q + 1 except
whenq = p is an odd prime and in this case2p is the largest number for the order
of an element in the groupSL2(p).

Lemma 7. Let q be a power of prime p and0 �= f (x) ∈ GF(q)[x], f (0) �= 0, have
the factorizationf (x) = f1(x)

k1f2(x)
k2 . . . fs(x)

ks , where fi(x) are distinct monic
irreducible polynomials. Letdegf (x) = n�1 and at least for one of theki ’s we
have ki �2. Further assume that in the casen = 2, p odd, we haveq �= p. Then
ord(f ) <

qn−1
q−1 .

Proof. We may assumek1�2. Let degfi(x) = mi , 1� i�s. Therefore, by Lemma 6
we can write

ord(f ) = lcm(ord(f k1
1 ),ord(f k2

2 ), . . . ,ord(f ks
s ))

� ord(f k1
1 )ord(f k2

2 ) . . .ord(f ks
s )

� qm1k1 − 1

q − 1
(qm2k2 − 1) · · · (qmsks − 1)

� (qm1k1 − 1)(qm2k2 − 1) · · · (qmsks − 1)

q − 1

� qm1k1+m2k2+···+msks − 1

q − 1

= qn − 1

q − 1
. �
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Theorem 1. The largest order of an element in the groupSLn(q) is
qn−1
q−1 except in

the case of the groupSL2(q), p odd, where this number is2p.

Proof. Supposec = (f
�1
1 f

�2
2 . . . f

�s
s ) represents a conjugacy class inSLn(q). Then�i is

a partition ofki , fi ’s are distinct monic irreducible polynomials of degreedi , 1� i�s,
and furthermore

∑s
i=1 kidi = n and (−1)nf (0) = 1, wheref (x) = f1(x)

k1 . . . fs(x)
ks .

If s = 1, then by Lemma 3 the theorem follows. Ifs�2, then from Lemmas 4 and 7
the result holds. �

3. Computing �(G) where G = GL6(5), SL6(5), PGL6(5) and PSL6(5)

As an illustration for our methods we will find the maximal elements of�(G),
whereG is one of the groupsGL6(5), SL6(5) or PSL6(5). Each conjugacy class in
GL6(5) with maximum order is represented by a polynomialf (x) = f1(x)

k1 . . . fs(x)
ks ,

wherefi(x) are distinct monic irreducible polynomials over the fieldGF(5), so that
each of them has maximum order and

∑s
i=1 kidi = 6, di = degfi(x), 1� i�s.

For simplicity we write [d] for a polynomial of degreed and when it is raised
to a power k we will write [dk]. The symbol [dk] also may represent the prod-
uct of different polynomials of degreed as well. Therefore in the following ta-
ble, using our previous results, we will write the maximum orders of elements in
each class ofGL6(5) and SL6(5). In the case ofSL6(5) we write a typical poly-
nomial, the order of which is maximal. We will use this to find the order of el-
ements inPSL6(5). We also use the list of irreducible polynomials overGF(5)
given in [4].
Therefore, by Table 1 we obtain�(GL6(5)) = {100,620,3120,3124,15624} and

�(SL6(5)) = {50,620,624,744,1560,3124,3906}.
To obtain �(PSL6(5)) we use the formula found at the end of Section 1. Note

that here the centre of the groupSL6(5) is Z = {±I }. We denote the image of
A ∈ PSL6(5) by A. If A is a 6× 6 matrix overGF(5) with minimal polynomial
(x + 1)6, then it is easy to see thatA25 = −I , henceO(A) = 25. If A corresponds

to the polynomial(x + 2)5(x + 3), thenA =
[
A1
0

0
A2

]
, whereA1 is a 5× 5 matrix

with minimal polynomial(x + 2)5 andA2 is a 1× 1 matrix with minimal polynomial
x + 3. We haveA5

1 = −2I and A2 = −3I , hence l = lcm(5,1) = 5. Therefore
A5
1 = −2I = �1I and A5

2 = −3I = �2I , where�1 = −2 and �2 = −3. If we set
GF(5)∗ = 〈2〉, then�1 = 23, �2 = 2, thusm1 = 3 andm2 = 2. Now for the order of
A, �, we have :� = (5−1)×5

gcd(5−1,1) = 20.

Therefore the matrix corresponding to(x + 2)5(x + 3) has order 20 inPSL6(5).
Continuing in this way we are able to find the maximum order of elements of the
groupPSL6(5) as follows:

�(PSL6(5)) = {25,620,624,744,1560,1562,1953}.
The set of orders of elements inPGL6(5) can be obtained similarly. The result of

our computation is
�(PGL6(5)) = {25,620,744,3120,3124,3906}.
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Table 1

c Maximum order inGL6(5) A typical element in
SL6(5) with maximum order

1 [16] 52.(5− 1) = 100 (x + 1)6, (x + 2)5(x + 3)
2 [14][2] 5.(52 − 1) = 120 (x + 1)(x + 2)3(x2 + x + 2)
3 [13][3] 5.(53 − 1) = 620 (x + 3)(x + 4)2(x3 + x2 + 2)
4 [12][4] 5.(54 − 1) = 3120 (x + 1)(x + 3)(x4 + x2 + 2x + 2),

(x + 2)2(x4 + x + 4)
5 [12][22] 5.(52 − 1) = 120 (x + 2)2(x2 + x + 2)2

6 [1][5] 55 − 1 = 3124 (x + 3)(x5 + 4x + 2)
7 [1][2][3] lcm(5− 1,52 − 1, (x + 4)(x2 + x + 2)(x3 + 3x + 2)

53 − 1) = 744
8 [2][4] 54 − 1 = 624 (x2 + 2x + 3)(x4 + x2 + 2x + 2)
9 [23] 5.(52 − 1) = 120 (x2 + x + 2)2(x2 + 2x + 4)
10 [32] 5.(53 − 1) = 620 (x3 + x + 1)2, (x3 + 3x + 2)

(x3 + 3x + 3)
11 [6] 56 − 1 = 15624 x6 + x4 + x3 + 1

Maximum order inSL6(5) Maximum order inPSL6(5)

1 52.2 = 50,5.4 = 20 25,20
2 120 120
3 620 620
4 624,5.312= 1560 624,1560
5 120 120
6 3124 1562
7 744 744
8 624 624
9 120 120
10 5.62= 310,124 155,62
11 3906 1953
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