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Abstract

For a natural numben and a prime powelq the general, special, projective general and
projective special linear groups are denoted GY.,(¢), SL,(q), PGL,(q) and PSL,(q),
respectively. Using conjugacy classes of element§in, (¢) in terms of irreducible polynomials
over the finite fieldGF(¢) we demonstrate how the set of order elementsGih,(¢) can be
obtained. This will help to find the order of elements in the groSgs,(¢), PGL,(q) and
PSL;,(q). We also show an upper bound for the order of elementSIin(q).
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction and preliminaries

For a finite groupG, let w(G) denote the set of orders of elements@fand call
o(G) the spectrum ofG. Of course the set»(G) is closed and partially ordered by
the divisibility relation. Hencew(G) is uniquely determined by the sei(G) of its
maximal elements. One of the recent research problems in finite group theory is that
of pure characterization of a finite gro@pby the setw(G). We say that a finite group
G is characterizable by (G), in short if every finite grougH with w(H) = w(G) is
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isomorphic toG. One of the first results of this kind is due to §B] who proved that
if G is a finite group which contains elements of orde@,13,5 and does not contain
elements of any other order, th&h>~ As.

There are several papers concerning the characterization of the projective special
linear groups in low dimensions and for all of them the set of orders for the group
in question was already available in the literature, for exampl¢l]n Now in this
paper our intention is to present a method to fimds) for G = GL,(q), SL,(g)
and PSL,(g). We used the method of this paper and foun@: L14(2)) and then
characterized this group if2].

Our method depends on the shape of the conjugacy classes of elemenis, @f)
described in[3] in terms of polynomials over the Galois fieldF(g). Then we find
a formula for the order of an elementin a conjugacy class ofGL,(g) and then
determine the maximum order af Although some results concerning the element
orders inGL, (¢g) may be known using matrix theory and linear algebra, what makes
our investigations interesting is the connection of element orders with polynomials over
the Galois field.

Now let us recall some notations and results frgth Let G F(g) denote the Galois
field with q elements wherey is the power of a prime numbegs. In this paper all
polynomials f(x) € GF(q)[x] have the property that f(0) # O, i.e., f(x) is not
divisible by x. It is proved in[4, p. 84] that for f(x) € GF(g)[x] of degreen>1,
there is a positive integes, 1<e<¢" — 1, such thatf(x) | x¢ — 1. The least positive
integere with the above property is called the order 6fx) and is denoted bprd(f).

In particular, it is proved that iff (x) € GF(q)[x] is irreducible and monic of degree
n, thenord(f) | ¢" — 1; moreover, the order of any root gf(x) in the multiplicative
group GF(¢™)* is equal toord(f).

Order of polynomials is closely related to the order of matrices as follows. Let
f(x) = ag+ aix + -+ + ap_1x""1 + x" be in GF(q)[x] with ag # 0. Then the
companion matrix off (x) is defined to be then x m matrix:

0 1 0 - 0
o o 1. 0
c(f) = : 0
o o o0 .- 1
—ap —ai1 —az - —dp-1

It is easy to verify thatf (x) is the characteristic polynomial @ (f), i.e., detxl —
C(f)) = f(x). Therefore(—1)" det(C(f)) = f(0) = ap; hence, deiC(f)) = (—1)"ao,
so C(f) is an element ofGL,(g). It can be verified that the order af(f) as an
element ofGL,(q) is equal to the order off (x), i.e., ord(f) = O(C(f)). This fact
is useful to find the order of elements 6fL,(g).

According to[4], the general formula for the order of a polynomial oveF(g) is
Theorem 3.11 in p. 87 which will be stated below.
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Lemma 1. Let 0 # f(x) € GF(q)lx], ¢ = p", f(0) # 0. Let f(x) = afi(x)" f2(x)*2
.-+ fs(x)% be the factorization off (x) as the product of distinct irreducible monic
polynomialsf;(x), 1<i <s,anda € GF(q), k1, ..., ks € N. Then ord f) = ep’, where
e is the least common multiple of @), ..., ord(fs), i.e, e = lem(ord(f1), ...,
ord(fy)) and ¢ is the smallest integer such thaf > maxk, ..., k}.

By definition f(x) € GF(q)[x] of degreen>1 is called primitive overG F(q)[x] if
it is the minimal polynomial of a primitive element af F'(¢") over GF(q). Hence,
it is easy to prove that a polynomigl(x) € GF(q)[x] of degreen is primitive if and
only if it is monic andord(f) = ¢" — 1. Since primitive elements exist, the group
GL,(q) contains elements of ordet”” — 1.

Now let us turn to the conjugacy classes Gf.,(¢). In what follows we adopt
the notations used ifi3]. Let A € GL,(q) have characteristic polynomial det —
A) = flkl...fss where f; = fi(x), 1<i<s, are distinct monic irreducible poly-
nomials overGF(g) and k; > 0. The polynomialx is excluded for the reason of
invertability of A. Then A is conjugate to a block diagonal matrix of the form
A ~ diag(Uy,(f1), Uy,(f2), ..., Uy, (fs)), wherevy, vo, ..., v, are certain partitions
of k1, ko, ..., ks, respectively, and/,, (f;) is a certain matrix which will be explained
later. This conjugacy class ok is denoted byc = (f;*f,2... f;*). Since we are
interested in the order oA, we observe thatD(A) is equal to the least common
multiple, lcm, of the orders of the matrice®/,,(f;), 1<i<s. But for each parti-
ton (W) =hh+b+---+1, 1=2l>--- >, > 0, of a positive integek and each
polynomial f = f(x) € GF(g)[x], the matrix U,(f) is defined to beU,(f) =
diag(Uy, (f), U, (f). ..., U, (f)). It is clear that the characteristic polynomial of the
matrix U, (f) is f(x)*. But U, (f) is defined according to the following.

Let f(x) = ap+aix +---+aq_1x4"1+x¢ be a monic polynomial of degres over
GF(q) and let

0O 1 O - 0
O 0 1. 0
U(f)=Ui(f) =
0 0 -+ 1
_ao —al ------ —ad_l

be its companion matrix. Then for any natural numbethe matrixU,, (f) is defined
by

Ulf) Ll o
0 U(f) Ia
Um(f)= .
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with m diagonal blocksU(f) where I; is thed x d identity matrix. It is clear that
the characteristic polynomial d,,(f) is f(x)™.

As we mentioned earlier, the order of an element in the dass(f,* f,%... f*)
is equal to the Icm of the orders of the matridés(f;), 1<i<s. But the order of the
matrix U,, (f;) divides the order of the polynomiaf; (x)%, 1<i<s. This is because
v; IS a partition ofk;, and if we takek; alone as the partition of;, then the minimal
polynomial of Uy, (f;) is f;(x)i.

Now supposeA € GL,(q) has characteristic polynomiah(x) = det(x/ — A) =
flklfzkz... Skf where f; = f;(x), 1<i<s, are distinct monic irreducible polynomials
over GF(g) andk; > 0. Then there is a conjugacy classAfvith minimal polynomial
m(x). This is simply by takingvy = k1, v2 = ko, ...,vy = ky as partitions of the
respectivek;’s. It is obvious that if there is a conjugacy class of typavith minimal
polynomial #(x) = fflfzkz...fgkf, then #(x) | m(x) and thereforeord(s) | ord(m).
Hence, as far as the maximum order of elements in the conjugacy clags i®f
concerned we must calculatd(m) wherem = m(x) is given with the condition
Y1 kidi = n whered; = deq f;), 1<i<s. But as we mentioned earlier, by Lidl and
Niederreiter[4], if f(x) € GF(gq)[x] is a monic irreducible polynomial of degrek
thenord(f) | ¢¢ — 1 and furthermore there is an irreducible polynomial o@¥F (g)
with order ¢¢ — 1. Therefore, using Lemma 1 we obtain the following result for the
maximum order of elements in the grodpL,(g).

Corollary 1. Let m(x) € GF(q)[x], m(0) # 0, g the power of a prime p, and let
m(x) = flklfzk2 ... fy* be the product of distinct monic irreducible polynomigjgx) of
degreed; over GF(q), 1<i <s. Then ordm) dividesp’ xlcm(¢g™—1, ¢%2—1, ..., ¢% —
1) where t is the smallest non-negative integer such fhfat maxk, ..., k;}. More-
over, if Y/ kidi =n, thenGL,(¢q) has an element with the above order

Therefore so far ag(GL,(q)) is concerned, first we find all the irreducible polyno-
mials of degree up to over G F(g) and call themfi, f, ..., fs. Then we consider all
the possible factorizations of the foryfflfzk2 ... fs* wherek; > 0 and)"}_; kid; = n,

d; = deq f;). Finally, numbers of the formp’ x lcm(¢gt —1,q%2 —1,...,q% —1) are
elements ofu(GL,(g)) wheret is explained in Corollary 1.

We will demonstrate some examples at the end of the paper but as the next step we
will explain the order of elements in the groupd.,(¢), PGL,(¢) and PSL,(q).
As usual letA € GL,(q) have characteristic polynomiak(x) = detxl — A) =
flklfzk2 ... fs*. We havem(0) = (—1)" detA, hence,A € SL,(g) if and only if m(0) =
F1(0F f,(0)%2 ... f,(0)%s = (=1)", i.e., the constant term of(x) is 1 if n is even and
it is —1 if nis odd. Therefore, from those(x) corresponding to maximum order of
elements inGL,(¢g) we select those with the constant teml1)” and find their orders
in the same manner.

Now we consider element orders IRGL,(¢). We know thatPGL,(q) = 32,
whereZ = {AI | " =1, . € GF(q)} is the centre ofGL,(¢) which is a cyclic group
of orderg — 1. We know thatA € GL,(g) is a block diagonal matrix of the shape
A =diag(Ay, ..., Ay) where A; € GLyq(q), 1<i<s. Let Z; ={4;1; | i € GF(g)*}
wherel; is thek;d; x k;d; identity matrix, 1<i <s. Let O(AZ) =« and O(A; Z;) = a;,
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1<i<s. Then there exist and/; in GF(q)* such thatA* = A1 andA;’"' = J;1;, where
I; is the identity element oG Ly, 4, (q), 1<i<s. From A* = /I we obtainAY = iI;,
1<i<s, hencey; | «, for all 1<i <s. If we setl =lcm(og, ..., o), then clearlyl | o.
We also haveAﬁ = p; I; for somey; € GF(g)*. SinceGF(q)* is a cyclic group of
orderg — 1, we setGF(g)* = (a) and lety; = a™, 1<i<s, 0O<m; <g—1. 1f yis
the least positive integer for whigh = x5 = --- = p!, thenly = o would be the order
of ZA. But from the last identities we obtad"! = ¢""2 = ... = ¢"s. Henceq — 1|
y(m1—m;), 1<i <s. we may disregard equal;’s and assumg —1 | y(m1—m;), m1 #
m;, for 2<i<s'. Thereforeq — 1| ygcdimy — mo, ..., m1 — my) where gcd denotes

.. . _ g—1
the greatest common divisor. Hence, the lepst y = S NP I Frepmr €
(g—Dlem(oy. ... og)

Therefore, the order afAis o = . The same formula applies
) gedig—1,Imy—mal,....|mai—mgy|)
for the order of elements in the groupSL,(g).

2. Bounds for element orders

First we deal with the order of elements in the groGji,(¢). In the introduction
we mentioned thatGL,(g) contains elements of order® — 1. We will show this is
the largest number for the order of an elementGin,, (q).

Corollary 2. If A€ GL,(g), thenO(A)<qg" — 1.

Proof. Let ¢ = (f;*... f;*) represent a conjugacy class @L,(q). Then we know
f(x) = fL)* .. fi(x)% has the property tha }_; k;di = n and v; is a partition
of k;, 1<i<s, and f;(x) are distinct monic irreducible polynomials ovérF(gq) of

degreed;, 1<i<s. It is obvious that for any matriXA representing class we have
m(x) | f(x), wherem(x) is the minimal polynomial ofA. But thenord(m) <ord(f)

and consequentlprd(A) <ord(f). By Theorem 3.9, irff4, p. 86] we have

ord(f) = lem(ord(£,), ..., ord(f%)).

But being a polynomial of ordek;d; we haveord(fik")éqk"d" —1, 1<i <s. Hence
ord(f) <lem(gkrdr — 1, gkeda — 1 gk — 1)< (ghh — 1y(gheda — 1)... (ghds —
1)<qk1d1+k2d2+~v+ksds — 1= qn -1

This proves thatO(A)<q¢" — 1. O

Next we investigate an upper bound for the order of element$Lix(g), but some
of the results are also true fatL,(¢). We remind that a polynomial of degree
over GF(q) is the characteristic polynomial of a matrix ifiL,(g) if and only if
(=D"f(0) =1.

Lemma 2. Let 0 # f(x) € GF(q)[x] with degree n has orde?q"T’ll, n>1. Then f(x)
is irreducible overGF(g) and (—1)" f(0) = 1.
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Proof. Let ¢ be the power of a prime numbgr. Since ord(f) = lel we have

(ord(f), p) = 1. Therefore, by Lemma 1f (x) = fi1(x)--- fs(x), s =1, where f; (x)
are distinct monic irreducible polynomials overF (¢). If deg f; (x) = m;, thenord(f;)

| g™ — 1, 1<i <s. If we setd = %, then for alli we haveord(f,) | d,

which implies f; (x) | x? — 1, hencef (x) | x? — 1. Thereforeord(f) <d.
qml+~~+m,c -1 qn _

-1 q—
dicts the above inequality. Hence= 1 and f(x) must be irreducible.

Now let « be a root off(x) in GF(q¢"). Then the multiplicative order of is

q" 1 The roots of f(x) are v4’, 0<j < n; hence, the constant term of(x) is
n— n -1

(=1 £(0) = NorgnGrig (@ = oo ...o8" " = &'s =1 implying (~1)" f(0) = 1

and the lemma is proved.[

But if s>2, then we havel <

1
7= = ord(f), which contra-

On the other hand, polynomials of degneend order" , n>1, exist. Because if

f(x) is a primitive polynomial of degrea over G F(q), then the roots, a4, ..., 0d !

of f(x), which all lie in GF(¢g"), each have ordeg” — 1 in GF(¢"™)*; hence,f} =
24~1 has orderqq”—__l1 and the conjugateg, ﬁq,...,ﬂqnfl are distinct andg(x)

x—Bx— - (x — pI" ) € GF(g)lx] is the minimal polynomial off of degree

n, which is therefore irreducible oves F(¢). Now by Theorem 3.3, iff4, p. 84] the
order of g(x) is equal to the order of and our claim is proved. From the above and
Lemma 2 we obtain the following corollary.

Corollary 3. The groupSL,(g), n>1, has an element of orde?;%ll.

Lemma 3. Let 0 # f(x) € GF(q)[x], f(0) # 0, be a monlc |rredUC|bIe polynomial
of degree n with the property—l)”f(O) =1.Then ord f) | £ q—l

Proof. Let « be a root off(x) in GF(¢"). Then the multiplicative order of is equal
1 "1

to ord(f) But 1 = (— 1)nf(0) = NGF(q”)/GF(q)(a) =ood...04" = th‘ij which

-1
implies a = =1, henceo(x) | ! and the lemma is proved.]

As a consequence of the above lemma if the characteristic polynomiakoS§ L, (¢)
is irreducible overG F(q), then O(A) | =

Lemma 4. Let 0 # f(x) € GF(q)[x], f(0) # 0 be a polynomial of degree>1 and
f(x) = fix)f2(x)--- fy(x) be the factorization off (x) in terms of distinct monic

irreducible polynomials ovelG F(q). If s>2, then ord f) < Tll

Proof. Supposeord( f;) = m;, 1<i<s. Then we know thaord(f;) | ¢™ — 1. If we

defined = % then with the same reasoning as in the proof of Lemma 2,
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we will obtain £ (x) | x?—1 which impliesord( f) <d. But for k >2 we haved < %,

henceord(f) < ‘{;—_’11 and the lemma is proved.C]

Lemma 5. The following inequality
X =12zx(x -1 =1

holds for natural numbers:, y, z with the conditions(y, z) # (1, 2), (1, 3), (2,2) or
z # 1. (The inequality holds in the cas€s, y,z) = (2,2,2), (x,y,2) = (2,1, 3) and
(x,2)=(L1).)

Proof. We may assume > 1. If z > 3, then for anyu € N we haves® = (1+a—1)% =
1+z(a—D+ 5P @—1)2+- - >1+z(a—1)3 hencea —1 > z(a—1)%. Now setting
a = x¥ we will obtain xY* —1>z(x¥ —=1)3>zx(x —1)(x¥ — 1) and the inequality holds.

If z = 3, then the above inequality simplifies 167 + x> + 1>3x(x — 1) which
obviously holds fory £ 1. If y = 1, then the inequality holds only ¥ = 2. Therefore,
if (v,2) # (1,3), then the inequality stated in the lemma holds.

If z =2, then the inequality becomes + 1>2x(x — 1). If y = 1, the inequality
does not hold, and if = 2, x # 2, again the inequality holds. For> 3, the inequality
holds for anyx.

If z =1, then the inequality stated in the Lemma holds only & 1. The Lemma
is proved now. [

Lemma 6. Let f(x) = g(x)?, whereg(x) is a monic irreducible polynomial of degree
d>1over GF(q). Then
(@) ord(f)<¢™ -1,
. bd _
(b) if b>2, then ord f) < qqfll holds when(d, b) # (1, 2).

Proof. (a) Sincef(x) is a polynomial of degre®d, by Lemma 3.1, in4, p. 84] the
order of f(x) is at mostg?? — 1.

(b) By Lemma 1 we haveord(f) = p'ord(g) where q is a power ofp andt
is the least positive integer such that>b. By [4, Corollary 3.4, p. 84]we have
ord(g) <¢? — 1, henceord(f) < p'(¢¢ — 1). But by the definition oft we havep’~1 <
b, thus p' < pb andord(f) < pb(g¢ — 1) <gb(g? — 1).

Now by Lemma 5, takinge = ¢, y =d, z = b, we haveg’? —1>bq(q — 1)(¢¢ —

1) except for(d, b) = (1, 2), (1, 3), (2, 2). Note that by assumptioh>2. Therefore

gb(q® — 1)< T7L implying ord(f) < T2,
If (d,b) = (L, 3), thenord(f)< p(q — 1) if p is odd andord(f)<4(g—1) if p = 2.

Since we havep(g — 1) <q(g — 1) < ‘f;—:ll and 49 — 1) < %, the inequality in (b)

holds in this case. Ifd, b) = (2,2), thenord(f)< p(g? — 1) <q(g®—1) < q;—:ll and
again the inequality holds. Therefore the lemma is proved]
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Example 1. In this example we will computei(G) where G = GL2(q) or SL2(q),
g a power of primep. The conjugacy classes & are of the shape = (f1/2), (flz)
or (f3), where f; and f> are distinct monic irreducible polynomials of degree 1
and f3 is an irreducible polynomial of degree 2. According to Corollary 1,
the maximum order ofc is ¢ — 1, p(g — 1) or g2 — 1, respectively. There-
fore (G L2(¢) = {p(q — 1), ¢* = 1}.

For SL>(qg) we must consider thosg;’s for which f1(0) /2(0) = (=1)2 = 1,
f20) = (-D? = 1 or f300) = (-1)? = 1. By Lemma 3 the maximum order

of f3is (22—_711 =qg+1 If c = (flz), then fi(x) = x +a, a®> = 1. If pis
odd, we haveord(f1)) = 2p and if p = 2, ord(f) = p = 2. If ¢ = (f1f2),
then we may takefi(x) = x +a and fo(x) = x + a1 wherea € GF(¢)*. Then
the maximum order ofc is ¢ — 1. Therefore, forq odd we haveu(SL2(q)) =
{2p,q —1,q + 1} and forq evenu(SL2(q)) = {p,q — 1, ¢ + 1}. Hence, we have the
following corollary.

Corollary 4. The largest number for an element of the grafips(g) is ¢ + 1 except
wheng = p is an odd prime and in this cas2p is the largest number for the order
of an element in the grouSL2(p).

Lemma 7. Let q be a power of prime p and # f(x) € GF(g)[x], f(0) # 0, have
the factorization f(x) = fi(x)K fo(x)*2 ... fi(x)*, where f;(x) are distinct monic
irreducible polynomials. Letdegf(x) = n>1 and at least for one of th&;'s we
have k; >2. Further assume that in the case= 2, p odd we haveg # p. Then

ord(f) < qq"—:ll.

Proof. We may assumé; >2. Let degf;(x) = m;, 1<i <s. Therefore, by Lemma 6
we can write

ord(f) = lem(ord(f{), ord(£3?2), ..., ord(f%))

N

ord(fihord(£52) . .. ord(f*)

qmlkl -1
qg—1

N

(@2 = 1) (g™" - 1)

(@™ —1(g"2 — 1) (g™ — 1)
qg—1

/N

qm1k1+m2k2+-~+mxkx -1

N

qg—1
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Theorem 1. The largest order of an element in the groS@., (¢) is % except in
the case of the grougL2(g), p odd where this number i2p.

Proof. Suppose = (f;*f,2... fi*) represents a conjugacy classSifi,(¢). Theny; is

a partition ofk;, f;’s are distinct monic irreducible polynomials of degrée 1<i <s,
and furthermore)_!_, kid; = n and (—1)" £ (0) = 1, where f (x) = fi(x)*t... fi(x)ks.

If s =1, then by Lemma 3 the theorem follows. si=2, then from Lemmas 4 and 7
the result holds. O

3. Computing u(G) where G = GLg(5), SLe(5), PGLg(5) and PSLg(5)

As an illustration for our methods we will find the maximal elementsagiz),
where G is one of the groups;Lg(5), SLg(5) or PSLg(5). Each conjugacy class in
G Lg(5) with maximum order is represented by a polynomyigk) = f1(x) ... fi(x)%,
where f;(x) are distinct monic irreducible polynomials over the fighd (5), so that
each of them has maximum order aid;_; k;d; = 6, d; = deg fi(x), 1<i<s.
For simplicity we write [d] for a polynomial of degreed and when it is raised
to a powerk we will write [d¥]. The symbol[d*] also may represent the prod-
uct of different polynomials of degree as well. Therefore in the following ta-
ble, using our previous results, we will write the maximum orders of elements in
each class ofGLg(5) and SLg(5). In the case ofSLg(5) we write a typical poly-
nomial, the order of which is maximal. We will use this to find the order of el-
ements in PSLg(5). We also use the list of irreducible polynomials overF (5)
given in [4].

Therefore, by Table 1 we obtain(GLg(5)) = {100,620 312Q 3124 15624 and
1(SLe(5)) = {50, 620, 624, 744, 156Q 3124 3908.

To obtain u(PSLg(5)) we use the formula found at the end of Section 1. Note
that here the centre of the groufle(5) is Z = {+I}. We denote the image of
A € PSLg(5) by A. If Ais a 6x 6 matrix over GF(5) with minimal polynomial

(x + 1), then it is easy to see that?®> = —I, henceO(A) = 25. If A corresponds

to the polynomial(x + 2)%(x + 3), then A = [%1 fz], where A1 is a 5x 5 matrix

with minimal polynomial(x + 2)° and A is a 1x 1 matrix with minimal polynomial
x + 3. We haveA® = —2I and A» = —3I, hencel = lcm(5,1) = 5. Therefore
A3 = =21 =yl and A3 = -3 = p,l, wherey; = —2 andy, = —3. If we set
GF(5* = (2), theny, = 23, U = 2, thusmq = 3 andmy = 2. Now for the order of

A, o, we have o = % = 20.

Therefore the matrix corresponding t@ + 2)°(x + 3) has order 20 inPSLg(5).
Continuing in this way we are able to find the maximum order of elements of the
group PSLg(5) as follows:

u(PSLg(5)) = {25,620 624, 744, 156Q 1562 1953.

The set of orders of elements IRG Lg(5) can be obtained similarly. The result of
our computation is

w(PGLg(5)) = {25,620, 744, 312Q 3124 3904.
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Table 1
c Maximum order inGLg(5) A typical element in

SLg(5) with maximum order

1 19 52.(5— 1) = 100 x+D8 x+2°%x+3)

2 Y2 5.(5% — 1) = 120 C+D+230% +x+2)

3 (133 5.(5% — 1) = 620 4+ +DH203+x2+2)

4 [1214] 5.(5% — 1) = 3120 x+ D+ +x2+2x +2),
x+220*+x+ 49

5 [12][23] 5.(52 — 1) =120 (X +22(x24+x 422

6  [1[5] 50— 1=3124 (x+3)°+4x 42

7 [A0213] lem(5—1,5% — 1, G+ +x+2)(x3+3x+2)

58 1) =744

8  [2114] 54 _1=624 2420+ +x2+2x +2)

9 129 5.(52 — 1) = 120 (P +2202 12044

10 [3? 5.(5% — 1) = 620 B +x+D2 x3+3x+2)
(x3 +3x +3)

11 [6] 56 1= 15624 Orxt+xd41

Maximum order inSLg(5)

Maximum order in PSLg(5)

1  5.2=5054=20 2520
2 120 120

3 620 620

4  6245312=1560 6241560
5 120 120

6 3124 1562
7 744 744

8 624 624

9 120 120
10 562=310124 15562
11 3906 1953
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