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Abstract

In this paper we investigate the convergence of subdivision schemes associated with masks being polynomially decay sequences.
Two-scale vector refinement equations are the form

�(x) =
∑
�∈Z

a(�)�(2x − �), x ∈ R,

where the vector of functions � = (�1, . . . , �r )
T is in (L2(R))r and a =: (a(�))�∈Z is polynomially decay sequence of r × r

matrices called refinement mask. Associated with the mask a is a linear operator on (L2(R))r given by

Qaf (x) :=
∑
�∈Z

a(�)f (2x − �), x ∈ R, f = (f1, . . . , fr )
T ∈ (L2(R))r .

By using same methods in [B. Han, R. Q. Jia, Characterization of Riesz bases of wavelets generated from multiresolution analysis,
manuscript]; [B. Han, Refinable functions and cascade algorithms in weighted spaces with infinitely supported masks, manuscript];
[R.Q. Jia, Q.T. Jiang, Z.W. Shen, Convergence of cascade algorithms associated with nonhomogeneous refinement equations, Proc.
Amer. Math. Soc. 129 (2001) 415–427]; [R.Q. Jia, Convergence of vector subdivision schemes and construction of biorthogonal
multiple wavelets, in:Advances in Wavelet, Hong Kong,1997, Springer, Singapore, 1998, pp. 199–227], a characterization of conver-
gence of the sequences (Qn

af )n=1,2,... in the L2-norm is given, which extends the main results in [R.Q. Jia, S.D. Riemenschneider,
D.X. Zhou, Vector subdivision schemes and multiple wavelets, Math. Comp. 67 (1998) 1533–1563] on convergence of the sub-
division schemes associated with a finitely supported mask to the case in which mask a is polynomially decay sequence. As an
application, we also obtain a characterization of smoothness of solutions of the refinement equation mentioned above for the case
r = 1.
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1. Introduction

Two-scale refinement equation with infinitely supported mask a is defined by

�(x) =
∑
�∈Z

a(�)�(2x − �), x ∈ R, (1.1)

where a is absolute summable sequence on Z. When mask a is finitely supported sequences, the study of solutions
of refinement equation (1.1) called refinable functions have been well understood. However, in some applications of
signal proceeding, one needs to find solutions of refinement equation (1.1) with infinitely supported masks, such as the
band limited wavelets which are generated by refinable functions that satisfy refinement equation (1.1) with infinitely
supported masks [9]. Not much is known about refinement equation with such masks. Cohen and Daubechies [3] gave
the first analysis when mask a decays exponentially fast. For the investigation of Riesz bases of wavelet generated
from multiresolution analysis, Han and Jia [10] and Han [13] considered refinement equations with masks having
exponentially decay sequences, respectively. In this case, the spectral theory of compact operator is involved.

Let (L2(R))r denote the linear space of all square integrable complex-valued functions on R. The norm on (L2(R))r

is given by

‖f ‖2 :=
(∫

R
|f (x)|2 dx

)1/2

.

By (L2(R))r , we denote the linear space of all vector of functions f = (f1, . . . , fr )
T such that f1, . . . , fr ∈ L2(R).

The norm on (L2(R))r is defined by

‖f ‖2 :=
⎛
⎝ r∑

j=1

‖fj‖2
2

⎞
⎠

1/2

.

By L2,c(R) we denote the linear space of all compactly supported functions on L2(R).
The Fourier analysis is an indispensable tool in our study. The Fourier transform of a vector of functions in (L1(R))r

is defined by

f̂ (�) :=
∫

R
f (x)eix� dx, � ∈ R,

where (L1(R))r denotes the space of all Lebesgue integrable vector of functions on R. The Fourier transform can
be naturally extended to functions in L2(R). Similarly, if c is a (complex-valued) summable sequence on Z, then its
Fourier series is defined by

ĉ(�) :=
∑
�∈Z

c(�)e−i�·�, � ∈ R.

Evidently, ĉ is a 2�-periodic continuous function on R. When c is finitely supported, ĉ is a trigonometric polynomial.
We call ĉ, the symbol of c. We also can define the Fourier series for c to be vector sequences or matrix sequences in
similar ways.

Multi-wavelets have been well developed in wavelet analysis since the beginning of 1990’s. The corresponding
refinement equations are defined by

�(x) =
∑
�∈Z

a(�)�(2x − �), x ∈ R, (1.2)

where � = (�1, . . . ,�r )
T is the unknown, a is an infinitely supported refinement mask such that each a(�) is an

r × r complex number matrix. Eq. (1.2) is called a homogeneous vector refinement equation [1,4,11,8,18]. Refinable
function vectors with infinitely supported masks have been studied in [26]. To study Riesz bases of wavelet generated
by refinable function vectors, Jia [15] also investigated vector refinement equations with exponentially decaying masks.
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Suppose � is compactly supported vector of functions in (L2(R))r , satisfies �̂(0) �= 0 and span {�̂(2��) : � ∈
Z} = Cr . If � satisfies refinement equation (1.1) with mask a being finitely supported, then 1 is a simple eigenvalue
of M = ∑

�∈Za(�)/2 and other eigenvalues of M are less than 1 in modulus (see [17]). These conditions are called
Eigenvalue condition. Throughout this paper we assume that this condition is satisfied. In this case, matrix M has the
following form:

M =
(

1 0
0 �

)
, where lim

n→∞ �n = 0.

For j = 1, . . . , r , we use ej to denote the jth column of the r × r identity matrix. Obviously, eT
1 M = eT

1 and Me1 = e1.
Suppose a ∈ (�1(Z))r×r , the linear space of all sequences of r × r matrices such that its each entry absolutely

converges on Z. Let Qa be the bounded linear operator on (L2(R))r given by

Qa�(x) =
∑
�∈Z

a(�)�(2x − �), x ∈ R, � ∈ (Lp(R))r . (1.3)

Let �0 be a vector of compactly supported functions in (L2(R))r . Consider the iteration scheme �n := Qn
a�0, n =

1, 2, . . . . This iteration scheme is called the vector cascade algorithm or vector subdivision schemes associated with
mask a. A vector � = (�1, . . . ,�r )

T ∈ (L2,c(R))r is said to satisfy Strang–Fix conditions of order 1 if

eT
1 �̂(0) = 1 and eT

1 �̂(2��) = 0, ∀� ∈ Z\{0}. (1.4)

By using the Possion summation formula, we see that (1.4) is equivalent to the following condition:

eT
1

∑
�∈Z

�(· − �) = 1, (1.5)

which is also called the moment conditions of order 1.
We say that the (vector) subdivision scheme associated with a converges in the L2-norm, if there exists a vector

� ∈ (L2(R))r such that for any �0 ∈ (L2,c(R))r satisfying the moment conditions of order 1,

lim
n→∞ ‖Qn

a�0 − �‖2 = 0.

If this is the case, then � is a solution of the refinement equation (1.2) in (L2(R))r .
The convergence of subdivision schemes is fundamental to wavelet theory and subdivision. Subdivision schemes have

been studied mainly for the case in which the mask a is finitely supported. The L2-convergence and Lp-convergence
(1�p�∞) of subdivision schemes were investigated in many papers such as [16,14,17,24]. When r = 1, Strang and
Nguyen [25] studied L2-convergence of subdivision schemes, Jia [14] gave a characterization for the Lp-convergence
of a subdivision scheme for 1�p�∞. In the multidimensional case, Lawton et al. [20] studied the convergence
of subdivision schemes in L2-norm. For the vector case (r > 1), Shen [24] gave a complete characterization on L2-
convergence of subdivision scheme, Jia et al. [17] obtained a characterization for the Lp-convergence of subdivision
schemes when 1�p�∞. For general setting, Han [8], Zhou [29], and Chen et al. [1] also investigated the convergence
of subdivision schemes in Sobolev spaces, respectively.

In electrical engineering, infinitely supported masks are called infinite impulse response filters [9]. Due to some
desirable properties, infinitely supported masks, including masks with exponential decay and masks for fractional
splines [27], are of interest in the area of digital signal processing in electrical engineering [2,3,5,12,22].

The purpose of this paper is to investigate vector refinement equation with mask being a polynomially decay sequence.
Infinitely supported sequences decaying polynomially fast were used in [21] to characterize finitely generated shift-
invariant spaces whose generators decay in a polynomial rate. Thus sequences are closely related to certain Banach
algebra. In this paper, we will investigate the solutions of refinement equations (1.2) with mask a being polynomial decay
rate. To study the L2-solution of Eq. (1.2), we will provide a necessary and sufficient conditions for the convergence
of subdivision schemes with this mask in (L2(R))r . Consequently, if this subdivision schemes with r = 1 converges
in L2-norm, then its refinable function � must belong to H 	(R) for some 	 > 0, where H 	(R) denotes Sobolev space
for 	 > 0. Compared with the well-developed smoothness analysis of solutions of (1.2) with mask a being finitely
supported, the situation for mask a being infinitely supported is different and their smoothness analysis of solution of
(1.2) is much less so far. Therefore, these theories will provide some new choices in wavelets theory and applications.
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2. Some elementary notations and lemmas

For some m ∈ Z+, we denote Bm the linear space of all sequence u on Z, for which

‖u‖Bm :=
∑
�∈Z

|u(�)|(1 + |�|)m < ∞.

Equipped with the norm ‖ · ‖Bm , Bm becomes a Banach space. Let Am be the set of sequence of symbols of Bm, with
the norm ‖ · ‖Bm and the usual pointwise operator, Am becomes a Banach algebra (see [21]). In [21], a similar space
was used by Lei et al. to investigate finitely generated shift-invariant spaces whose generators decay in a polynomial
rate. By Br

m we denote the linear space of all vector sequences u(�) = (u1(�), . . . , ur (�))T such that u1, . . . , ur ∈ Bm.
The norm on Br

m is defined by

‖u‖Br
m

:= max
1� j � r

‖uj‖Bm .

By Br×r
m we denote the linear space of all matrix sequences u(�)=(uj,k(�))1� j,k � r such that uj,k ∈ Bm j, k=1, . . . , r .

The norm on Br×r
m is defined by

‖u‖Br×r
m

:= max
1� j,k � r

‖uj,k‖Bm .

In the study of vector refinement equation, the Kronecker product of two matrices is a useful tool (see [18,16,15,28]).
The Kronecker product was used by in [6] in the study of spectral radius of a bi-infinite periodic and slanted matrix.
It was used in [28] in the work on joint spectral radius of a finite collection of matrices. Let us mention some useful
properties of the Kronecker product from [19]. Let A = (ai,j )1� i �m,1� j �n, and B = (bi,j )1� i �k,1� j � l , be two
matrices. The (right) Kronecker product of A and B, written A ⊗ B, is defined to be the block matrix

A ⊗ B :=

⎛
⎜⎜⎝

a11B a12B · · · a1nB

a21B a22B · · · a2nB
...

...
. . .

...

am1B am2B · · · amnB

⎞
⎟⎟⎠ .

For three matrices A, B and C of the same type, we have

(A + B) ⊗ C = (A ⊗ C) + (B ⊗ C),

A ⊗ (B + C) = (A ⊗ B) + (A ⊗ C).

If A, B, C, D are four matrices such that the products AC and BD are well defined, then

(A ⊗ B)(C ⊗ D) = (AC) ⊗ (BD).

If 
1, . . . , 
r are the eigenvalues of an r × r matrix A and �1, . . . , �r are the eigenvalues of an r × r matrix B, it follows
from [19] that the eigenvalues of A ⊗ B are 
j�k, j, k = 1, . . . , r .

For two functions f, g in L2(R), f 
 g is defined as follows:

f 
 g(x) :=
∫

R

f (x + y)g(y) dy, x ∈ R.

It is easily seen that f 
 g lies in C0(R), the space of continuous functions on R which vanish at ∞. Evidently

‖f 
 g‖∞ �‖f ‖2‖g‖2. (2.1)

Moreover (f 
 f )(0) = ‖f ‖2
2.

Let l(Z) denote the linear space of all complex-valued sequences on Z and let l0(Z) denote the linear space of all
finitely supported sequences on Z.
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Let l1(Z) denote the linear space of all sequences u for which ‖u‖1 < ∞, the norm ‖ · ‖1 on l1(Z) is defined by

‖u‖1 :=
∑
�∈Z

|u(�)|

and let l∞(Z) denote the linear space of all sequences u for which ‖u‖∞ to be the supremum of |u| on Z. It is well
known that equipped with the norms ‖ · ‖1 and ‖ · ‖∞, the linear spaces l1(Z) and l∞(Z) become Banach spaces. By
(l1(Z))r and (l∞(Z))r , we denote the linear spaces of all vector sequences such that ‖u‖1 := ∑r

j=1‖uj‖1 < ∞, and

‖u‖∞=max1� j � r‖uj‖∞ < ∞, whereu=(u1, . . . , ur )
T. Similarly, we define (l0(Z))r , (l(Z))r , (l0(Z))r×r , (l(Z))r×r ,

and (l1(Z))r×r .
For a matrix A = (aij )1� i,j � r , the vector

(a11, . . . , ar1, a12, . . . , ar2, . . . , a1r , . . . , arr )
T

is said to be the vec-function of A and written as vec A. Suppose A, X and B are three r × r matrices. Then we have
(see [13])

vec(AXB) = (BT ⊗ A)vecX. (2.2)

Suppose � = (�1, . . . ,�r )
T and � = (�1, . . . ,�r )

T belong to (L2(R))r , let � 
 �T be defined as follows:

� 
 �T :=

⎛
⎜⎜⎝

�1 
 �1 �1 
 �2 · · · �1 
 �r

�2 
 �1 �2 
 �2 · · · �2 
 �r
...

...
. . .

...

�r 
 �1 �r 
 �2 · · · �r 
 �r

⎞
⎟⎟⎠ .

By (2.1) we have

‖vec(� 
 �T)‖∞ �‖�‖2‖�‖2 (2.3)

and

|vec(� 
 �T)(0)| =
r∑

j=1

r∑
k=1

|�j 
 �k(0)|�
r∑

j=1

|�j 
 �j (0)| =
r∑

j=1

‖�j‖2
2.

Consequently

|vec(� 
 �T)(0)|�‖�‖2
2. (2.4)

Suppose a ∈ Br×r
m , for some m ∈ Z+. Let b be defined as follows:

b(�) :=
∑
�∈Z

a(�) ⊗ a(� + �)/2, � ∈ Z. (2.5)

Then b lies in Br2×r2

m . Let Tb be the transition operator on Br2

m defined by

Tbu(�) :=
∑
�∈Z

b(2� − �)u(�), � ∈ Z, u ∈ Br2

m . (2.6)

It is known that the transition operator plays an important role in the study of refinement equation (see [1,7,10,8,18,
16,15]).

Following Lemmas 2.1 and 2.2 show that the transition operator Tb is a bounded and compact operators on Br2

m .

Lemma 2.1. Let a ∈ Br×r
m , for some m ∈ Z+. Then the transition operator Ta is a bounded operator on Br

m. Moreover,

‖Tau‖Br
m

�‖a‖Br×r
m

‖u‖Br
m

. (2.7)
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Proof. First note that for any �, � ∈ Z,

1 + |�|�1 + |� + �| + |�|�(1 + |� + �|)(1 + |�|).
Consequently,

(1 + |�|)m �(1 + |� + �|)m(1 + |�|)m.

It follows that

‖Tau‖Br
m

=
∑
�∈Z

|Tau(�)|(1 + |�|)m =
∑
�∈Z

|
∑
�∈Z

a(2� − �)u(�)|(1 + |�|)m

�‖a‖Br×r
m

‖u‖Br
m
. �

Lemma 2.2. Let a ∈ Br×r
m , for some m ∈ Z+. Then the transition operator Ta is a compact operator on Br

m.

Proof. If a is finitely supported, then Ta is the limit of a sequence of finite-rank operator, hence Ta is a compact
operator. In general, for L=1, 2, . . . , let aL be the sequences in Br

m defined by aL(�)=a(�) for |�|�L, and aL(�)=0
for |�| > L. Each aL is a finitely supported, then each TaL

is a compact operator for L = 1, 2, . . . . If we prove that

lim
L→∞ ‖TaL

− Ta‖ = 0.

Then Ta is a compact operator. By the definition of aL,

(Ta − TaL
)u(�)(1 + |�|)m =

∑
�∈Z,|2�−�|>L

a(2� − �)u(�)(1 + |�|)m.

Hence

‖(Ta − TaL
)u‖Br

m
�
∑
�∈Z

∑
�∈Z,|2�−�|>L

|a(2� − �)u(�)|(1 + |�|)m

�
∑

|�|>L

r∑
j=1

r∑
k=1

|ajk(�)|(1 + |�|)m‖u‖Br
m

,

where a(�) = (ajk(�))1� j,k � r . Therefore

‖Ta − TaL
‖�

∑
|�|>L

r∑
j=1

r∑
k=1

|ajk(�)|(1 + |�|)m.

Which implies that Ta is a compact operator.
Since Tb is a compact linear operator on Br2×r2

m . The Riesz Theory of compact operators (see [23, Chapter 3]) says
that the spectrum of Tb is a countable compact set whose only possible limit point is 0. In particular, there exists an
eigenvalue  of Tb such that �(Tb) = ||, where �(Tb) denotes the spectral radius of Tb. It follows from [10] that if
(Tn)n=1,2,... is a sequence of bounded linear operators on Banach space Br2×r2

m such that ‖Tn − T ‖ → 0 as n → ∞,
then limn→∞ �(Tn) = �(T ).

By (2.5) we have

∑
�∈Z

b(�)/2 =
⎛
⎝∑

�∈Z

a(�)/2

⎞
⎠⊗

(∑
�∈Z

a(� + �)/2

)
= M ⊗ M

and

(eT
1 ⊗ eT

1 )(M ⊗ M) = (eT
1 M) ⊗ (eT

1 M) = eT
1 ⊗ eT

1 .
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By the above discussions, we know that the matrix
∑

�∈Zb(�)/2 has a simple eigenvalue 1, eT
1 ⊗eT

1 is a left eigenvector
of
∑

�∈Zb(�)/2 corresponding to eigenvalue 1, and other eigenvalues of
∑

�∈Zb(�)/2 are less than 1 in modulus. Let

a ∈ Br×r
m , we say that a satisfies the basic sum rule, if

eT
1

∑
�∈Z

a(2�) = eT
1

∑
�∈Z

a(2� − 1) = eT
1 .

If a satisfies the basic sum rule, we claim that b also satisfies the basic sum rule. In fact

(eT
1 ⊗ eT

1 )
∑
�∈Z

b(2�) = (eT
1 ⊗ eT

1 )
∑
�∈Z

∑
�∈Z

a(�) ⊗ a(2� + �)/2

= eT
1

∑
�∈Z

a(�) ⊗ eT
1

∑
�∈Z

a(2� + �)/2

= eT
1

∑
�∈Z

a(�) ⊗ eT
1 /2 = eT

1 ⊗ eT
1 .

Similarly, we can prove that

(eT
1 ⊗ eT

1 )
∑
�∈Z

b(2� − 1) = eT
1 ⊗ eT

1 .

We point out that the converse of this statement is also true. It is easily seen that b satisfies basis sum rule if and only

if (eT
1 ⊗ eT

1 )b̂(�) = 0. By the definition of b, we know that (eT
1 ⊗ eT

1 )b̂(�) = 0 implies eT
1 â(�) = 0. Hence a satisfies

basis sum rule.
Let a ∈ Br×r

m , b and Tb be given by (2.5) and (2.6), respectively. Consider the subspace V of Br2

m defined by

V :=
{

v ∈ Br2

m : (eT
1 ⊗ eT

1 )
∑
�∈Z

v(�) = 0

}
. � (2.8)

When r = 1 and m = 1, linear space V was used in [10] to characterize Riesz bases generated from multiresolution
analysis in L2(R).

Theorem 2.3. Let b ∈ Br2×r2

m , for some m ∈ Z+. Then V is invariant under Tb, if and only if b satisfies the basic sum
rule.

Proof. Let b satisfy basic sum role and v ∈ V . Then

(eT
1 ⊗ eT

1 )
∑
�∈Z

Tbv(�) = (eT
1 ⊗ eT

1 )
∑
�∈Z

∑
�∈Z

b(2� − �)v(�) = (eT
1 ⊗ eT

1 )
∑
�∈Z

v(�) = 0.

Hence v ∈ V implies Tbv ∈ V . This shows that V is invariant under Tb.
Since V is invariant under Tb, we have Tb(ek ⊗ ej∇�) ∈ V , for j, k = 1, 2, . . . , r , where the difference operator ∇

is defined by

∇u := u − u(· − 1), u ∈ l(Z).

Hence∑
�∈Z

(eT
1 ⊗ eT

1 )[b(2�) − b(2� − 1)](ek ⊗ ej ) = (eT
1 ⊗ eT

1 )
∑
�∈Z

Tb(ek ⊗ ej∇�)(�) = 0.

Since the above relation is true for all j, k = 1, 2, . . . , r . It follows that

(eT
1 ⊗ eT

1 )
∑
�∈Z

[b(2�) − b(2� − 1)] = 0.
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Note that eT
1

∑
�∈Z

a(�)/2 = eT
1 , we have

(eT
1 ⊗ eT

1 )
∑
�∈Z

b(�) =
⎛
⎝eT

1

∑
�∈Z

a(�)

⎞
⎠⊗

⎛
⎝eT

1

∑
�∈Z

a(� + �)

⎞
⎠
/

2 = 2(eT
1 ⊗ eT

1 ).

The above equalities yield the necessary of the theorem. �

In Section 3, we will show that the vector subdivision schemes associated with a being polynomial decay sequences
converges in the L2-norm if and only if V is invariant under Tb and �(Tb|V ) < 1.

3. Main theorems and Proof of theorems

Suppose � ∈ (L2(R))r is a solution of the refinement equation (1.1), where the mask a is assumed to be in (l1(Z))r×r

for the times being, then

� 
 �T =
∑
�∈Z

∑
�∈Z

a(�)�(2 · −�) 
 �T(2 · −�)a(�)
T

.

Note that

�(2 · −�) 
 �T(2 · −�) = 1
2� 
 �T(2 · −� + �).

With (2.2), we have

vec(a(�)�(2 · −�) 
 �T(2 · −�)a(�)
T
) = 1

2a(�) ⊗ a(�) vec(� 
 �T)(2 · −� + �).

Then

vec(� 
 �T) =
∑
�∈Z

∑
�∈Z

1

2
a(�) ⊗ a(�) vec(� 
 �T)(2 · −� + �). (3.1)

Let f := vec(� 
 �T), then f ∈ (C0(R))r
2
, the linear space of r2 × 1 vectors of functions in C0(R). We have that f

satisfies the refinement equation as follows:

f =
∑
�∈Z

b(�)f (2 · −�),

where b is given by (2.5).
For n = 1, 2, . . . , let a1 = a and an be defined by the following iterative relations:

an(�) =
∑
�∈Z

an−1(�)a(� − 2�), � ∈ Z. (3.2)

By (1.2), (3.2) and induction on n, it is easily seen that

Qn
a� =

∑
�∈Z

an(�)�(2n · −�). (3.3)

Similarly, for f ∈ (C0(R))r
2
, we have

Qn
bf =

∑
�∈Z

bn(�)f (2n · −�), (3.4)

where bn(n = 1, 2, . . .) are defined as follows:

b1 = b and bn(�) =
∑
�∈Z

bn−1(�)b(� − 2�), � ∈ Z. (3.5)
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From the definitions of an and bn, we can obtain

bn(�) =
∑
�∈Z

an(�) ⊗ an(� + �)/2n, � ∈ Z, n = 1, 2, . . . . (3.6)

In fact, we can prove (3.6) by induction on n. By the definition of b, (3.6) holds true for n = 1. Suppose n > 1 and (3.6)
is valid for n − 1. For � ∈ Z, we have

bn(�) =
∑
	∈Z

bn−1(	)b(� − 2	)

= 2−n
∑
	∈Z

⎛
⎝∑

�∈Z

an−1(�) ⊗ an−1(	 + �)

⎞
⎠
⎛
⎝∑

�∈Z

a(�) ⊗ a(� − 2	 + �)

⎞
⎠

= 2−n
∑
�∈Z

∑
�∈Z

∑
	∈Z

an−1(�)a(� − 2�) ⊗ (an−1(	)a(� + � − 2	))

= 2−n
∑
�∈Z

an(�) ⊗ an(� + �),

which implies that (3.6) is true for all n.
Let �0 and �0 lie in (L2(R))r . It follows from above discussions that:

vec((Qn
a�0) 
 (Qn

a�0)
T) =

∑
�∈Z

∑
�∈Z

2−nan(�) ⊗ an(�) vec(�0 
 �T
0 )(2n · −� + �).

By (3.6), we have, for n = 1, 2, . . . ,

vec((Qn
a�0) 
 (Qn

a�0)
T) = Qn

b(vec(�0 
 �T
0 )). (3.7)

For � ∈ Z, we denote �� the sequence on Z by

��(�) =
{

1 for � = �,

0 for � ∈ Z\{�}.
If � = 0, we write � for �0.

Theorem 3.1. Suppose a ∈ Br×r
m , for some m ∈ Z+, and that M =∑

�∈Za(�)/2 satisfies Eigenvalue condition. Let
b and Tb be given by (2.5) and (2.6), respectively. Then �(Tb)�1.

Proof. Some ideas of proof of Theorem 3.1 are from [15]. First, we assume that a is finitely supported. Let �0 be the
characteristic function of the unit cube [0, 1]. By (2.4), (3.4) and (3.7), we have

‖Qn
a(e

T
1 �0)‖2

2 � |vec((Qn
a(e

T
1 �0)) 
 (Qn

a(e1�0))
T)(0)| = |Qn

b(vec((eT
1 �0) 
 (eT

1 �0)
T))(0)|.

For n = 1, 2, . . . , by an induction on n, we have

T n
b v(�) =

∑
�∈Z

bn(2
n� − �)v(�). (3.8)

Therefore

‖Qn
a(e1�0)‖2

2 � |Qn
b(vec((e1�0) 
 (e1�0)

T))(0)| = |T n
b (vec((e1�0) 
 (e1�0)

T))(0)|.
If �(Tb) < 1, it tells that Qn

a(e1�0) would converge to 0 in the L2-norm. Since M =∑
�∈Za(�)/2 satisfies Eigenvalue

condition, by a simple computation, we have

Q̂n
a(e1�0)(0) = Mne1 = e1.

This contradiction demonstrates that �(Tb)�1.
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In general, suppose a ∈ Br×r
m for some m ∈ Z+. For L = 1, 2, . . . , we can find matrix sequences aL(L = 1, 2, . . .)

such that each aL is supported on [−L, L], eT
1

∑
�∈ZaL(�)/2 = eT

1 and ‖aL − a‖Br×r
m

→ 0 as L → ∞, let bL(�) =∑
�∈ZaL(�) ⊗ aL(� + �)/2, by Lemma 2.1, ‖TbL

− Tb‖ → 0 as L → ∞. It follows that limn→∞ �(TbL
) = �(Tb). If

�(Tb) < 1, then �(TbL
) < 1 for sufficiently large L, which is impossible. Therefore, we have �(Tb)�1.

Following Theorem 3.2 establishes necessary and sufficient conditions for the L2-convergence of subdivision
schemes with mask a being polynomial decaying fast. �

Theorem 3.2. Let a ∈ Br×r
m for some m ∈ Z+, and M = ∑

�∈Za(�)/2 satisfy Eigenvalue condition. Suppose b is
given by (2.5) and Tb is defined by (2.6). Then the subdivision scheme associated with a converges in the L2-norm if
and only if

(1) limn→∞‖T n
b v‖∞ = 0, ∀v ∈ V .

(2) a satisfies the basic sum rule,

where V is denoted by (2.7).

Proof. We following the lines of [10,15,17]. Suppose that the subdivision scheme associated with a converges in the L2-
norm. We choose � to be the characteristic function of the unit interval [0, 1). Then e1� satisfies the moment conditions
of order 1, and vec((e1�)
 (e1�)T)= (e1 ⊗ e1)h, where h is the hat function given by h(x) := max{1 −|x|, 0}, x ∈ R.
We have that Qn

a(e1�) converge to the same limit function � in the L2-norm.
With (2.3), we have

‖vec(Qn
a(e1�) 
 (Qn

a(e1�))T − � 
 �T)‖∞
�‖vec(Qn

a(e1�) 
 (Qn
a(e1�) − �)T)‖∞ + ‖vec((Qn

a(e1�) − �) 
 �T)‖∞
�‖Qn

a(e1�)‖2‖Qn
a(e1�) − �‖2 + ‖Qn

a(e1�) − �‖2‖�‖2.

Which implies that vec(Qn
a(e1�)
 (Qn

a(e1�))T) converges to vec(�
�T) uniformly. By (3.7), we have Qn
b(e1 ⊗ e1h)

converges to vec(� 
 �T) uniformly. Since vec(� 
 �T) is uniformly continuous, and

‖Qn
b(e1 ⊗ e1h) − Qn

b(e1 ⊗ e1h)(· − 2−n)‖∞
�‖Qn

b(e1 ⊗ e1h) − vec(� 
 �T)‖∞ + ‖vec(� 
 �T) − vec(� 
 �T)(· − 2−n)‖∞
+ ‖Qn

b(e1 ⊗ e1h)(· − 2−n) − vec(� 
 �T)(· − 2−n)‖∞.

Consequently,

lim
n→∞ ‖Qn

b(e1 ⊗ e1h) − Qn
b(e1 ⊗ e1h)(· − 2−n)‖∞ = 0.

It follows from (3.4) that

Qn
b(e1 ⊗ e1h) − Qn

b(e1 ⊗ e1h)(· − 2−n) =
∑
�∈Z

∇bn(�)(e1 ⊗ e1h)(2n · −�).

Note that the shifts of h are stable, therefore

lim
n→∞ ‖∇bn(e1 ⊗ e1)‖∞ = 0. (3.9)

For j = 2, . . . , r , we know that e1� and (e1 + ej )� both satisfy the moment conditions of order 1, hence, Qn
a(e1�)

and Qn
a(e1 + ej )� converge to the same limit � in the L2-norm. This shows that, for j = 2, . . . , r , ‖Qn

a(ej�)‖2 → 0
as n → ∞. By (3.7), we have

vec((Qn
a(ej�)) 
 (Qn

a(ek�))T) = Qn
b((ek ⊗ ej )h), j, k = 1, . . . , r, n = 1, 2, . . . .

By (2.3), we obtain

lim
n→∞ ‖Qn

b(ek ⊗ ej )h‖∞ = 0, (j, k) �= (1, 1).
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Since

Qn
b(ek ⊗ ej )h =

∑
�∈Z

bn(�)(ek ⊗ ej )h(2n · −�).

It follows that

lim
n→∞ ‖bn(ek ⊗ ej )‖∞ = 0, (j, k) �= (1, 1). (3.10)

Since {ej , j = 1, . . . , r} is a basis for Cr . Then, {ek ⊗ ej , j, k = 1, . . . , r} is a basis for Cr2
. Then each v ∈ V can

be expressed as

v =
r∑

j=1

r∑
k=1

∑
�∈Z

djk(�)(ek ⊗ ej )��,

where djk ∈ Bm, j, k = 1, . . . , r . Since v ∈ V , we have

0 = (eT
1 ⊗ eT

1 )
∑
�∈Z

v(�) = (eT
1 ⊗ eT

1 )

r∑
j=1

r∑
k=1

∑
�∈Z

djk(�)(eT
1 ⊗ eT

1 ) =
∑
�∈Z

d11(�).

Therefore d11 = ∑
�∈Z

c(�)∇��, where

c(�) =
∞∑
l=0

d11(� − l), for ��1 and c(�) = −
∞∑
l=1

d11(� + l), for ��0.

Let us show c ∈ �1(Z). We have

1∑
�=−∞

|c(�)|�
1∑

�=−∞

∞∑
l=0

|d11(� − l)| =
1∑

�=−∞

�∑
�=−∞

|d11(�)|�
1∑

�=−∞
|�||d11(�)|�‖d11‖Bm .

Similarly,

∞∑
�=0

|c(�)|�
∞∑

�=0

∞∑
l=1

|d11(� + l)| =
∞∑

�=0

∞∑
�=�+1

|d11(�)| =
∞∑

�=1

|�||d11(�)|�‖d11‖Bm .

It follows from above discussions that c belongs to l1(Z). By (2.6),(3.9),(3.10) and a simple computation, we have for
every � ∈ Z and (j, k) �= (1, 1),

lim
n→∞ ‖T n

b (e1 ⊗ e1)∇��)‖∞ = 0 and lim
n→∞ ‖T n

b (ek ⊗ ej��)‖∞ = 0.

By using the expression of v, we prove that (1) of Theorem 3.2 holds.
To prove (2) of Theorem 3.2, we claim that V is invariant under Tb. Indeed, if not, then there exists v ∈ V such that

Tbv is not in V . Note that the codimension of V in Br2

m is 1. Hence, any u ∈ Br2

m can be expressed as u = w + c(Tbv)

for some w ∈ V and c ∈ C. By (1) of Theorem 3.2, we have

lim
n→∞ ‖T n

b u‖∞ = 0, ∀u ∈ Br2

m .

Therefore, �(Tb) < 1. On the other hand, by Theorem 3.1, we have �(Tb)�1. This contradiction shows that V is
invariant under Tb. It follows from Theorem 2.3 that b satisfies the basic sum rule. Hence, a also satisfies the basic sum
rule.

Next, we establish the sufficiency part of the theorem. We pick a vector of compactly supported functions �0 in
(L2(R))r such that �0 satisfies the moment conditions of order 1. Let us consider Qn+1

a �0 − Qn
a�0. We observe that

Qn+1
a �0 − Qn

a�0 = Qn
a(Qa�0 − �0) = Qn

ag0, (3.11)
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where g0 := Qa�0 − �0. Since eT
1

∑
�∈Z�0(· − �) = 1 and a satisfies the basic sum rule, we have

eT
1

∑
�∈Z

(Qa�0)(· − �) = eT
1

∑
�∈Z

∑
�∈Z

a(�)�0(2 · −2� − �)

=
∑
�∈Z

eT
1

[∑
�∈Z

a(� − 2�)

]
�0(· − �) = eT

1

∑
�∈Z

�0(· − �) = 1.

Therefore, Qa�0 also satisfies the moment conditions of order 1. It follows that for almost every x ∈ R,

eT
1

∑
�∈Z

g0(x − �) = 0.

We claim that vec(g0 
 gT
0 ) lies in V . By (2.2), we obtain

(eT
1 ⊗ eT

1 )
∑
�∈Z

vec(g0 
 gT
0 )(�) = (eT

1 ⊗ eT
1 )
∑
�∈Z

∫
R

vec(g0(� + x)g0(x)
T
) dx = 0.

Since ‖a‖Br×r
m

< ∞ and �0 is compactly supported, by a simple computation, we have

‖vec(g0 
 gT
0 )‖

Br2
m

< ∞.

Hence vec(g0 
 gT
0 ) lies in V . By (2.4), we have

‖Qn
ag0‖2

2 � |vec((Qn
ag0) 
 (Qn

ag0)
T)(0)|.

Note that

T n
b (vec(g0 
 gT

0 ))(�) =
∑
�∈Z

bn(2
n� − �) vec(g0 
 gT

0 )(�).

Then

T n
b vec(g0 
 gT

0 )(0) =
∑
�∈Z

bn(−�) vec(g0 
 gT
0 )(�) =

∑
�∈Z

bn(�) vec(g0 
 gT
0 )(−�)

= Qn
b vec(g0 
 gT

0 )(0) = vec((Qn
ag0) 
 (Qn

ag0)
T)(0).

Therefore

‖Qn
ag0‖2

2 � |vec((Qn
ag0) 
 (Qn

ag0)
T)(0)|

= |T n
b vec(g0 
 gT

0 )(0)|�‖T n
b vec(g0 
 gT

0 )‖∞, n = 1, 2, . . . .

Since Tb is a compact operator, it follows from the discussions in Section 2 that �(Tb|V ) = |�| for some eigenvalue � of
Tb|V . Suppose Tbv = �v for some v ∈ V with v �= 0. It follows that T n

b v = �nv, for n = 1, 2, . . . . By (1) of Theorem
3.2, we have limn→∞‖T n

b v‖∞ = 0. Which implies �(Tb|V ) < 1. Hence there exist positive constants C and 0 < 	 < 1,
such that

‖Qn
ag0‖2

2 �C	n, n = 1, 2, . . . , .

This shows that Qn
a�0 is a Cauchy sequence in (L2(R))r . If �0 is another r × 1 vector of (L2,c(R))r that satisfies the

moment conditions of order 1, then eT
1

∑
�∈Z(�0 −�0)= 0. By what have been proved, Qn

a(�0 −�0) converges to 0 in

the L2-norm. It means that Qn
a�0 and Qn

a�0 converge to the same limit. Therefore, the subdivision scheme associated
with a converges in the L2-norm. �
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Following the proof of Theorem 3.2, we have

Theorem 3.3. Let a ∈ Br×r
m for some m ∈ Z+ and M =∑

�∈Za(�)/2 satisfy Eigenvalue condition. Let b be given
by (2.5) and Tb be defined by (2.6). Then the subdivision scheme associated with a converges in the L2-norm if and
only if

(1) a satisfies the basic sum rule, and
(2) �(Tb|V ) < 1,

where V is the linear space denoted by (2.7).

Remark 3.4. We remark that Theorem 3.3 was established in [17] for the case in which mask a is finitely supported. The
convergence of subdivision schemes associated with mask a being an exponential decay were investigated, respectively,
in [10,9,15].

For r = 1, the following Theorem 3.5 establishes a sufficient condition for the convergence of subdivision schemes
in L2(R). This extends well known results on convergence of subdivision schemes associated with a finitely supported
mask (see [14]).

Theorem 3.5. Let a ∈ Bm, for some m ∈ Z+,
∑

�∈Za(�) = 2 and suppose b(�) =∑
�∈Za(�)a(� + �)/2. Let �0 be a

function on R such that the shifts of �0 are stable in L2(R). If sequences (Qn
a�0)n=1,2,... converges to � in L2-norm,

then subdivision schemes with r = 1 converges in L2-norm.

Proof. The proof of Theorem 3.5 is based in [10, Lemma 2.2]. Since (Qn
a�0)n=1,2,... converges to � in L2-norm, there

exists a positive constant C1 such that ‖Qn
a�0‖2 �C1 for all n. By (3.3), we have

Qn
a�0(x) =

∑
�∈Z

an(�)�0(2
nx − �), x ∈ R.

It follows from the stability of �0 that there exists a positive constant C2 such that

‖2−n/2an‖2 �C2‖�n‖2 �C1C2, ∀n ∈ N.

Note that

∇2−n�n(x) =
∑
�∈Z

∇an(�)�0(2
nx − �), x ∈ R.

Hence

‖2−n/2∇an‖2 �C2‖∇2−n�n‖2.

Since

‖∇2−n�n‖2 �‖∇2−n(�n − �0)‖2 + ‖∇2−n�‖2.

Then

lim
n→∞ ‖2−n/2∇an‖2 = 0.

By the definition of b, we obtain

‖∇bn‖∞ �‖2−n/2an‖2‖2−n/2∇an‖2.

Therefore

lim
n→∞ ‖∇bn‖∞ = 0.
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For v ∈ V , define u to be sequence on Z by u(�) =∑�
�=−∞v(�), � ∈ Z. It is easily seen that v = ∇u. We claim that

u ∈ �1(Z). In fact

∞∑
�=0

|u(�)| =
∞∑

�=0

∞∑
�=�+1

|v(�)| =
∞∑

�=1

|�||v(�)|�‖v‖Bm

and

−1∑
�=−∞

|u(�)| =
−1∑

�=−∞

�∑
�=−∞

|v(�)| =
−1∑

�=−∞
|�||v(�)|�‖v‖Bm .

It follows from (3.8) that

T n
b v(�) =

∑
�∈Z

bn(2
n� − �)v(�) =

∑
�∈Z

bn(2
n� − �)∇u(�), � ∈ Z.

Therefore

‖T n
b v‖∞ � sup

�∈Z

∣∣∣∣∣∣
∑
�∈Z

bn(2
n� − �)∇u(�)

∣∣∣∣∣∣ �‖∇bn‖∞‖u‖1.

Which implies that

lim
n→∞ ‖T n

b v‖∞ = 0, ∀v ∈ V .

By Theorem 3.2, we know that the subdivision schemes with r = 1 converges in L2-norm. �

The characterization of smoothness of refinable function is an important issue in wavelet analysis. For 	 > 0, let
H 	(R) denote the Sobolev space that consists of all functions f ∈ L2(R) such that∫

R
|f̂ (�)|2(1 + |�|2)	 d� < ∞. (3.12)

When a is finitely supported, there are many papers devoted to studying smoothness of refinable functions. However,
when a is infinitely supported, the case is different. The smoothness analysis of refinable functions associated with
infinitely supported mask is much less so far. For the case in which mask decays exponentially, Han and Jia [10]
obtained a characterization of smoothness of refinable function. By using some ideas of [10], we have

Theorem 3.6. Let a ∈ Bm, for some m ∈ Z+ and
∑

�∈Za(�)=2. If subdivision scheme associated with r=1 converges
in L2-norm, then there exists some constant 	 > 0 such that the limit function � belongs to H 	(R).

Proof. Let H(�) = ∑
�∈Za(�)e−i��/2, � ∈ R. Since a ∈ Bm for some m ∈ Z+ and

∑
�∈Za(�) = 2. By a simple

computation, we know that there exists a positive constant C3 independent of � such that |H(�)|�1+C3|�|. Therefore,
the product

∏n
k=1H(2−k�) converges to �̂ as n → ∞. Furthermore, it is easily seen that the convergence is uniform

on compact subsets of R. It follows that �̂ is a continuous function on R. Let O be an open subset of R such that
0 ∈ O ⊂ 2O ⊂ [−�, �]. Since �̂(�) is a continuous function, we have

sup
�∈[−�,�]\O

|�̂(�)|2 < ∞.

Choose v = ��, where the difference operator � is given by �v = v(· + 1) + 2v − v(· − 1), v ∈ Z. It is easily seen that
v ∈ V , where V is given by (2.7) with r = 1 and v̂(�) = 2(1 − cos �). Hence, there exists a constant G > 0 such that

|�̂(�)|2 �Gv̂(�), ∀� ∈ [−�, �]\O. (3.13)
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Denote U = 2O\O. For a given � ∈ R, let

E0 := {� ∈ Z : � + 2�� ∈ 2O}
and

En := {� ∈ Z : � + 2�� ∈ 2nU}, n ∈ N.

It follows from the definitions of E0 and En that Z = ∪∞
n=0 and the union is disjoint. Therefore,

∑
�∈Z

(1 + |� + 2��|2)	|�̂(� + 2��)|2 =
∞∑

n=0

∑
�∈En

(1 + |� + 2��|2)	|�̂(� + 2��)|2.

It is easily seen that there exists a constant B > 1 such that 1 + |�|2 �Bn for all � ∈ 2nU . Hence,∑
�∈En

(1 + |� + 2��|2)	|�̂(� + 2��)|2 �B	n
∑
�∈En

|�̂(� + 2��)|2.

Since � satisfies refinement equation (1.1), then � = Qn
a�. By (3.3), we obtain

∑
�∈En

|�̂(� + 2��)|2 =
∑
�∈En

1

22n
|ân(2

−n(� + 2��))|2|�̂(2−n(� + 2��))|2.

Note that 2−n(� + 2��) ∈ U = 2O\O ⊂ [−�, �]\O for � ∈ En. It follows from (3.13) that

|�̂(2−n(� + 2��))|2 �Gv̂(2−n(� + 2��)).

Therefore,∑
�∈En

|�̂(� + 2��)|2 �G
∑
�∈En

1

2n
b̂n(2

−n(� + 2��))v̂(2−n(� + 2��)).

By the proof in [10, Theorem 4.3], we obtain∑
�∈En

1

2n
b̂n(2

−n(� + 2��))v̂(2−n(� + 2��))� ˆ(T n
b v)(�), ∀� ∈ R.

Since the subdivision schemes associated with mask a converges in L2(R)-norm, it follows from Theorem 3.3 that
there exist two constants G1 and 0 < t < 1 such that

ˆ(T n
a v)(�)�‖T n

b v‖Bm �G1t
n, ∀n ∈ N and � ∈ R.

We choose 	 is small enough such that B	t < 1. By above discussions, we have∑
�∈En

(1 + |� + 2��|2)	|�̂(� + 2��)|2 �GB	nG1t
n, ∀n ∈ N.

Note that∑
�∈E0

(1 + |� + 2��|2)	|�̂(� + 2��)|2 �B1

for some constant B1. The above estimates tell us that there exist two constants C4 > 0 and 	 > 0 such that for any
� ∈ R∑

�∈Z

(1 + |� + 2��|2)	|�̂(� + 2��)|2 �C4.

Which implies that � ∈ H 	(R) for some 	 > 0. �
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