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Abstract

This paper gives a direct proof for the coincidence of the following two central elements in the universal
enveloping algebra of the orthogonal Lie algebra: an element recently given by A. Wachi in terms of the
column-determinant in a way similar to the Capelli determinant, and an element given by T. Umeda and
the author in terms of the symmetrized determinant. The fact that these two elements actually coincide
was shown by A. Wachi, but his observation was based on the following two non-trivial results: (i) the
centrality of the first element, and (ii) the calculation of the eigenvalue of the second element. The purpose
of this paper is to prove this coincidence of two central elements directly without using these (i) and (ii).
Conversely this approach provides us new proofs of (i) and (ii). A similar discussion can be applied to the
symplectic Lie algebras.
© 2006 Elsevier Inc. All rights reserved.
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Introduction

In this paper, we give a new and direct proof for the coincidence of two central elements
in U(oN), the universal enveloping algebra of the orthogonal Lie algebra. One is an element
recently given by A. Wachi [W] in terms of the column-determinant: Cdet(u) = det(F o(S0) +
u1N + diag �̃N ) (the notation will be given soon). This element is quite similar to the Capelli de-
terminant, a famous central element of U(glN) which appears in the Capelli identity [Ca1,Ca2].
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The other one is an element given in [IU], and expressed in terms of the symmetrized determi-
nant: CDet(u) = Det(F o(S0) + u1N ; �̃N ). We can also regard this as an analogue of the Capelli
determinant. Wachi found that these two elements Cdet(u) and CDet(u) actually coincide [W]:

Theorem A. We have

det
(
F o(S0) + u1N + diag �̃N

) = Det
(
F o(S0) + u1N ; �̃N

)
.

However this observation due to Wachi was obtained by comparing the eigenvalues of these
two elements on the irreducible representations. Namely this depends on the following two non-
trivial results: (i) the centrality of Cdet(u) given in [W], and (ii) the calculation of the eigenvalue
of CDet(u) given in [I1]. The purpose of this paper is to prove Theorem A directly without using
these (i) and (ii). Conversely this approach provides us new proofs of (i) and (ii).

Moreover, applying this discussion to the symplectic Lie algebras, we obtain similar central
elements in U(spN). This is discussed elsewhere [I3] (see also Section 7).

Let us explain the main result precisely. Let S ∈ MatN(C) be a non-degenerate symmetric
matrix of size N . We can realize the orthogonal Lie group as the isometry group with respect to
the bilinear form determined by S:

O(S) = {
g ∈ GLN

∣∣ tgSg = S
}
.

The corresponding Lie algebra is expressed as follows:

o(S) = {
Z ∈ glN

∣∣ tZS + SZ = 0
}
.

As generators of this o(S), we can take F
o(S)
ij = Eij − S−1EjiS, where Eij is the standard basis

of glN . We introduce the N × N matrix F o(S) whose (i, j)th entry is this generator: F o(S) =
(F

o(S)
ij )1�i,j�N . This matrix is an element of MatN(o(S)) ⊂ MatN(U(o(S))).
In the representation theory, the case S = S0 = (δi,N+1−j )1�i,j�N is important. Indeed, we

can take a triangular decomposition of o(S0) simply as follows:

o(S0) = n− ⊕ h ⊕ n+. (0.1)

Here n−, h, and n+ are the subalgebras of o(S0) spanned by the elements F
o(S0)
ij such that i > j ,

i = j , and i < j , respectively. Namely, the entries in the lower triangular part, in the diagonal
part, and in the upper triangular part of the matrix F o(S0) belong to n−, h, and n+, respectively.
We call this o(S0) the “split realization” of the orthogonal Lie algebra.

The main object of this paper is the following determinant in the universal enveloping algebra
U(o(S0)) recently defined in [W]:

Cdet(u) = det
(
F o(S0) + u1N + diag �̃N

)
.

The notation is as follows. First, the symbol “det” means the “column-determinant.” Namely we
define detZ for an N × N matrix Z = (Zij ) by

detZ =
∑

sgn(σ )Zσ(1)1Zσ(2)2 · · ·Zσ(N)N ,
σ∈SN
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even if the entries Zij are non-commutative. Second, 1N means the unit matrix of order N . Third,
�̃ is the sequence defined by

�̃N =
{

(N
2 − 1, N

2 − 2, . . . ,0,0, . . . ,−N
2 + 1), N : even,

(N
2 − 1, N

2 − 2, . . . , 1
2 ,0,− 1

2 , . . . ,−N
2 + 1), N : odd.

Here the dots mean arithmetic progressions with difference −1. Finally diag(a1, . . . , aN) means
the diagonal matrix of size N whose diagonal entries are a1, . . . , aN .

This definition of Cdet(u) is quite similar to that of the Capelli determinant, a famous central
element in U(glN) (see Section 1). Wachi’s element Cdet(u) is also central in U(o(S0)) for any
u ∈ C. Moreover, we can easily calculate its eigenvalue on irreducible representations of o(S0)

(see Theorem 4.2). This element is remarkable in this sense.
In addition to Cdet(u), we also consider the following determinant given in [IU]:

CDet(u) = Det
(
F o(S0) + u1N ; �̃N

)
.

Here, the symbol “Det” means the “symmetrized determinant.” Namely, for an N × N matrix
Z = (Zij ), we put

DetZ = 1

N !
∑

σ,σ ′∈SN

sgn(σ ) sgn(σ ′)Zσ(1)σ ′(1)Zσ(2)σ ′(2) · · ·Zσ(N)σ ′(N).

Moreover, for N parameters a1, . . . , aN ∈ C, we put

Det(Z;a1, . . . , aN)

= 1

N !
∑

σ,σ ′∈SN

sgn(σ ) sgn(σ ′)Zσ(1)σ ′(1)(a1)Zσ(2)σ ′(2)(a2) · · ·Zσ(N)σ ′(N)(aN),

where Zij (a) = Zij + δij a. This CDet(u) is also central in U(o(S0)) for any u ∈ C. This central
element played an important role in some Capelli type identities as an analogue of the Capelli
determinant (see [I2]).

As mentioned in Theorem A above, these Cdet(u) and CDet(u) actually coincide. This was
first shown by A. Wachi [W] by comparing the eigenvalues of both sides (recall that any central
element in the universal enveloping algebras of semisimple Lie algebras is determined by its
eigenvalue). Namely his proof depends on the following four results:

(a) the centrality of Cdet(u),
(b) the calculation of the eigenvalue of Cdet(u),
(c) the centrality of CDet(u),
(d) the calculation of the eigenvalue of CDet(u).

Here (b) and (c) are easy. Indeed (b) is immediate from (a) by noting the triangular decom-
position (0.1) and the definition of the column-determinant (Theorem 4.2). The property (c) is
also immediate from a more general result (Proposition 2.2) depending on the invariance of the
symmetrized determinant (Lemma 1.4).
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However (a) and (d) are not trivial. The property (a) was first given by Wachi, and the proof
is not so easy as that of (c). The calculation (d) due to [I1] is much more complicated than (b).

The aim of this paper is to prove Theorem A by a direct calculation without using these
(a)–(d). Conversely this approach provides us new and simple proofs of (a) and (d). Indeed, these
are immediate from Theorem A, because (b) and (c) are obvious.

This paper is organized as follows. In Section 1, we recall the Capelli determinant as the
prototype of our main object. The Capelli determinant also has two different expressions cor-
responding to Cdet(u) and CDet(u), respectively. In Section 2, we construct central elements of
U(o(S)) for general S using the symmetrized determinant. In Section 3, we recall an analogue
of the Capelli determinant due to R. Howe and T. Umeda [HU] in the case S = 1N . In Section 4,
we state the main result in the case S = S0, and prepare for the proof. We actually give the proof
in Sections 5 and 6. The case that N is odd (Section 6) is a bit more complicated than the case
that N is even (Section 5). Finally, in Section 7, a development to the symplectic Lie algebra is
announced (the details are discussed elsewhere [I3]).

Remarks. (1) The coefficients of Cdet(u) as a polynomial in u generate all the invariants in
U(o(S0)) with respect to the adjoint action of O(S0) [W].

(2) The element Cdet(u) is also equal to the central element given in [M] in terms of the
Sklyanin determinant. See [M,MN,MNO,IU,I1,W] for the details.

1. The case of glN

First of all, as the prototype of the main result, we recall the Capelli determinant in U(glN)

and its two different expressions.

1.1. Let Eij be the standard basis of glN , and consider the matrix E = (Eij )1�i,j�N in
MatN(glN) ⊂ MatN(U(glN)). The following “Capelli determinant” in U(glN) is well known as
the key of the Capelli identity [Ca1,H,U1]:

C
glN
det (u) = det(E + u1N + diag �N).

Here 1N means the unit matrix of degree N , and �N means the arithmetic progression �N =
(N − 1,N − 2, . . . ,0). Moreover, the symbol “det” means the “column-determinant.” Namely,
in general, we define detZ for N × N matrix Z = (Zij ) by

detZ =
∑

σ∈SN

sgn(σ )Zσ(1)1Zσ(2)2 · · ·Zσ(N)N .

Here each Zij is an element of a (non-commutative) associative C-algebra A. This C
glN
det (u) is

known to be central:

Theorem 1.1. The element C
glN
det (u) is central in U(glN) for any u ∈ C.

We will prove this using the “symmetrized determinant” soon.
This Capelli determinant has some good properties. For example, we can easily calculate its

eigenvalue on irreducible representations:
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Theorem 1.2. For the irreducible representation π
glN
λ of glN determined by the partition λ =

(λ1, . . . , λN), the following relation holds:

π
glN
λ

(
C

glN
det (u)

) = (u + l1) · · · (u + lN ).

Here we put li = λi + N − i.

This is immediate from the definition of the column-determinant and the following triangular
decomposition of glN :

glN = n− ⊕ h ⊕ n+. (1.1)

Here n−, h, and n+ are the subalgebras of glN spanned by the elements Eij such that i > j ,
i = j , and i < j , respectively. Namely the entries in the lower triangular part, in the diagonal
part, and in the upper triangular part of E belong to n−, h, and n+, respectively. Considering
the action of C

glN
det (u) to the highest weight vector, we can easily check Theorem 1.2. However,

Theorem 1.1 is not so trivial.
To show Theorem 1.1, we rewrite the Capelli determinant in terms of the “symmetrized de-

terminant.” For an N × N matrix Z = (Zij ), we define DetZ by

DetZ = 1

N !
∑

σ,σ ′∈SN

sgn(σ ) sgn(σ ′)Zσ(1)σ ′(1)Zσ(2)σ ′(2) · · ·Zσ(N)σ ′(N).

Moreover, for N parameters a1, . . . , aN ∈ C, we put

Det(Z;a1, . . . , aN)

= 1

N !
∑

σ,σ ′∈SN

sgn(σ ) sgn(σ ′)Zσ(1)σ ′(1)(a1)Zσ(2)σ ′(2)(a2) · · ·Zσ(N)σ ′(N)(aN)

with Zij (a) = Zij + δij a. We call this “Det” the “symmetrized determinant.” This non-
commutative determinant is useful to construct central elements in U(glN). Indeed, we have
the following proposition:

Proposition 1.3. For any a1, . . . , aN ∈ C, the following is invariant under the adjoint action of
GLN , and hence this is central in U(glN):

Det(E;a1, . . . , aN).

This is immediate from the following two lemmas:

Lemma 1.4. The symmetrized determinant is invariant under the conjugation by g ∈ GLN(C):

Det
(
gZg−1;a1, . . . , aN

) = Det(Z;a1, . . . , aN).

Here Z is an arbitrary N ×N matrix whose entries are elements of an associative C-algebra A.
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Lemma 1.5. The matrix E satisfies the following relation for any g ∈ GLN :

Ad(g)E = t g · E · tg−1.

Here Ad(g)E means the matrix (Ad(g)Eij )1�i,j�N .

Lemma 1.5 can be checked by a direct calculation. Lemma 1.4 is an easy consequence of (1.3)
below (see [IU] for the proof).

Using the symmetrized determinant, we put

C
glN
Det (u) = Det(E + u1N ; �N) = Det(E;u1N + �N).

Here u1N + �N means the linear combination of the two vectors 1N = (1, . . . ,1) and �N in C
N .

Namely we put u1N + �N = (u + N − 1, u + N − 2, . . . , u). This C
glN
Det (u) is obviously central

in U(glN) for any u ∈ C by Proposition 1.3. However it is not so easy to calculate its eigenvalue
directly.

Actually this C
glN
Det (u) coincides with the Capelli determinant C

glN
det (u):

Theorem 1.6. We have

det(E + u1N + diag �N) = Det(E + u1N ; �N).

We will prove this soon. Using this proposition, we can easily settle the following two prob-
lems at the same time: (i) the centrality of C

glN
det (u), and (ii) the calculation of the eigenvalue

of C
glN
Det (u). Indeed, as seen above, the eigenvalue of C

glN
det (u) and the centrality of C

glN
Det (u) are

almost obvious.

1.2. Let us recall the proof of Theorem 1.6 given in [IU]. We can regard this proof using the
exterior calculus as the prototype of the main calculation of this paper.

Let Z = (Zij ) be an N × N matrix whose entries are elements of a (non-commutative) asso-
ciative C-algebra A. We can express the column-determinant in the framework of the exterior
calculus as follows. Let e1, . . . , eN be N anti-commuting formal variables, which generate the
exterior algebra ΛN = Λ(CN). Put ηj (u) = ∑N

i=1 eiZij (u) as an element in the extended alge-
bra ΛN ⊗A in which the two subalgebras ΛN and A commute with each other. Then, by a direct
calculation, we have the following equality [U2]:

η1(a1)η2(a2) · · ·ηN(aN) = e1e2 · · · eN det
(
Z + diag(a1, a2, . . . , aN)

)
. (1.2)

The symmetrized determinant can be also expressed similarly by doubling the anti-commuting
variables. Let e1, . . . , eN , e∗

1, . . . , e∗
N be 2N anti-commuting formal variables, which generate the

exterior algebra Λ2N = Λ(CN ⊕C
N). We put Ξ(u) = ∑N

i,j=1 eie
∗
jZij (u) in Λ2N ⊗A. Then, by

a direct calculation, we have

Ξ(a1)Ξ(a2) · · ·Ξ(aN) = e1e
∗
1e2e

∗
2 · · · eNe∗

NN !Det(Z;a1, a2, . . . , aN). (1.3)
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Consider the case Z = E to prove Theorem 1.6. Using the relation [Eij ,Ekl] = δkjEil −
δilEkj , we can easily show that ηi(u) satisfies the following commutation relation. This is the
key of the proof:

Lemma 1.7. We have

ηi(u + 1)ηj (u) + ηj (u + 1)ηi(u) = 0.

In particular we have the following commutation relation for η̃i (u) = ηi(u)e∗
i :

Lemma 1.8. We have

η̃i (u + 1)η̃j (u) = η̃j (u + 1)η̃i(u).

Proof of Theorem 1.6. By definition we have Ξ(u) = ∑N
i=1 η̃i (u). Hence we have

Ξ(u + N − 1)Ξ(u + N − 2) · · ·Ξ(u)

=
∑

1�i1,...,iN�N

η̃i1(u + N − 1)η̃i2(u + N − 2) · · · η̃iN (u).

Since η̃i (u) = ηi(u)e∗
i contains an anti-commuting element e∗

i , each term in the right-hand side
actually vanishes, unless (i1, . . . , iN ) is disjoint. Namely we can assume that (i1, . . . , iN ) is a
permutation of (1,2, . . . ,N). Moreover, using Lemma 1.8, we can reorder the factors η̃i (a) as
follows:

Ξ(u + N − 1)Ξ(u + N − 2) · · ·Ξ(u)

=
∑

σ∈SN

η̃σ (1)(u + N − 1)η̃σ (2)(u + N − 2) · · · η̃σ (N)(u)

= N !η̃1(u + N − 1)η̃2(u + N − 2) · · · η̃N (u)

= (−)
N(N−1)

2 N !η1(u + N − 1)η2(u + N − 2) · · ·ηN(u)e∗
1e∗

2 · · · e∗
N.

Compare this equality with (1.2) and (1.3), and we reach to the assertion. �
Remarks. (1) From the expression (1.3), we see that Det(Z;a1, . . . , aN) does not depend on the
order of the parameters a1, . . . , aN . Indeed ΞZ(ai)’s commute with each other. Lemma 1.4 is
also immediate from this expression (see [IU,I1] for the details).

(2) As seen above, the key point of this proof is the following equality:

η̃σ (1)(u + N − 1) · · · η̃σ (N)(u) = η̃1(u + N − 1) · · · η̃N (u).

This is equivalent to the following relation between column-determinants:

det(E + u1N + diag �N) = sgn(σ )det(EIσ + uIσ + Iσ diag �N).
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Here Iσ means the matrix Iσ = (δiσ (j))1�i,j�N determined by σ ∈ SN . Theorem 1.3 is imme-
diate from this, because we can express the symmetrized determinant as follows:

Det(Z;a1, . . . , aN) = 1

N !
∑

σ∈SN

sgn(σ )det
(
ZIσ + Iσ diag(a1, . . . , aN)

)
.

2. General realizations of oN

Next let us consider the case of the orthogonal Lie algebra oN . Let S ∈ MatN(C) be a non-
degenerate symmetric matrix of size N . We can realize the orthogonal Lie group as the isometry
group with respect to the bilinear form determined by S:

O(S) = {
g ∈ GLN

∣∣ tgSg = S
}
.

The corresponding Lie algebra is expressed as follows:

o(S) = {
Z ∈ glN

∣∣ tZS + SZ = 0
}
.

As generators of this o(S), we take

F
o(S)
ij = Eij − S−1EjiS = Eij −

∑
1�a,b�N

SjaEabSbi .

Here Sij and Sij mean the entries of the matrices S and S−1, respectively. A direct calculation
shows the following commutation relation:

[
F

o(S)
ij ,F

o(S)
kl

] = F
o(S)
il δkj − F

o(S)
kj δil +

N∑
a=1

F
o(S)
ka SaiS

lj +
N∑

a=1

SlaF
o(S)
aj Ski . (2.1)

We arrange the matrix F o(S) whose (i, j)th entry is F
o(S)
ij . Namely we put F o(S) =

(F
o(S)
ij )1�i,j�N . By a direct calculation, this F o(S) satisfies the following relation:

Lemma 2.1. For any g ∈ O(S), we have

Ad(g)F o(S) = tg · F o(S) · tg−1.

Here Ad(g)F o(S) means the matrix (Ad(g)F
o(S)
ij )1�i,j�N .

Combining this and Lemma 1.4, we have the following proposition:

Proposition 2.2. The following determinant is invariant under the adjoint action of O(S), and
in particular this is central in U(o(S)):

Det
(
F o(S);a1, . . . , aN

)
.
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Thus the symmetrized determinant is useful to obtain central elements of U(o(S)) as in
the case of glN . However, unfortunately, it seems not so easy to construct central elements of
U(o(S)) using the column-determinant at least for general S. Indeed, we do not have any good
relation between the column-determinants and the symmetrized determinants of F o(S) like The-
orem 1.6. To see this, let us try to imitate the proof of Theorem 1.6. Let e1, . . . , eN , e∗

1, . . . , e∗
N

be the standard generators of the exterior algebra Λ2N = Λ(CN ⊕ C
N), and put ηj (u) =∑N

i=1 eiF
o(S)
ij (u) as an element of the extended algebra Λ2N ⊗ U(o(S)). Then, using the re-

lation (2.1), we see the following commutation relation:

Lemma 2.3. We have

ηi(u + 1)ηj (u) + ηj (u + 1)ηi(u) = −ΘSij .

Here we put Θ = ∑N
i,j,a=1 eiejF

o(S)
ia Saj .

This is similar to Lemma 1.7, but there is an obstacle in the right-hand side. Thus, it is difficult
to imitate the proof of Theorem 1.6 any more.

However, for some special S, we have analogues of the Capelli determinant expressed in
terms of the column-determinant. We will actually see the case S = 1N in Section 3, and the case
S = S0 = (δi,N+1−j )1�i,j�N in Section 4.

Remarks. (1) We can express Θ using ηi(u). Indeed, the following relation holds for any w ∈ C:

Θ =
N∑

j=1

ηa(w)Saj ej . (2.2)

(2) It is also known that Det(F o(S);a1, . . . , aN) does not depend on S. Namely, for arbitrary
non-degenerate symmetric matrices S1 and S2, the two determinants Det(F o(S1);a1, . . . , aN) and
Det(F o(S2);a1, . . . , aN) coincide via the natural isomorphism o(S1) � o(S2) (see [IU]).

(3) When N is even, the following relation holds for any a ∈ C [IU]:

Det
(
F o(S); N

2 − 1, N
2 − 2, . . . ,−N

2 + 1, a
) = det

(
S−1)Pf

(
F o(S)S

)2
.

Here we define the Pfaffian of 2n × 2n alternating matrix Z = (Zij ) by

PfZ = 1

2nn!
∑

σ∈S2n

sgn(σ )Zσ(1)σ (2)Zσ(3)σ (4) · · ·Zσ(2n−1)σ (2n).

It is known that Pf(F o(S)S) is also central. Moreover, this Pf(F o(S)S) and the coefficients of
Det(F o(S);a1, . . . , aN) as a polynomial in a1, . . . , aN generate the center of U(o(S)) (see [IU]
and [I1] for the details).
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3. The case of o(1N)

In this section, we consider the case that S is equal to the unit matrix 1N . Namely we consider
the Lie algebra consisting of all alternating matrices:

o(1N) = {
Z ∈ glN

∣∣ Z + tZ = 0
}
.

In the universal enveloping algebra U(o(1N)), Howe and Umeda gave an analogue of the Capelli
determinant [HU]:

Theorem 3.1. (Howe and Umeda) The following element is central in U(o(1N)) for any u ∈ C:

C
o(1N)
det (u) = det

(
F o(1N ) + u1N + diag �N

)
.

This C
o(1N )
det (u) is quite similar to the Capelli determinant C

glN
det (u). However, it is not easy

to calculate the eigenvalue of C
o(1N )
det (u). Indeed, for this realization o(1N), we cannot take its

triangular decomposition so simply as (1.1).
As in the case of glN , we can rewrite this in terms of the symmetrized determinant:

Theorem 3.2. We have

det
(
F o(1N ) + u1N + diag �N

) = Det
(
F o(1N ) + u1N ; �N

)
.

Theorem 3.1 is immediate from this Theorem 3.2. Indeed, by Proposition 2.2, the following
element is central in U(o(1N)) for any u ∈ C:

C
o(1N)
Det (u) = Det

(
F o(1N ) + u1N ; �N

) = Det
(
F o(1N );u1N + �N

)
.

To show Theorem 3.2 in a way similar to the proof of Theorem 1.6, we put ηj (u) =∑N
i=1 eiF

o(1N )
ij (u) in Λ2N ⊗ U(o(1N)). Then, as a special case of Lemma 2.3, we have the

following commutation relation:

Lemma 3.3. We have

ηi(u + 1)ηj (u) + ηj (u + 1)ηi(u) = −Θδij .

This is a bit more complicated than Lemma 1.7. However we can remove the obstacle Θ

by multiplying the anti-commuting factor e∗
i . Namely η̃i (u) = ηi(u)e∗

i satisfies the following
commutation relation:

Lemma 3.4. We have

η̃i (u + 1)η̃j (u) = η̃j (u + 1)η̃i(u).

This is equal to Lemma 1.8 in the case of glN . Therefore we can prove Theorem 3.2 in the
same way as the proof of Theorem 1.6 (see [IU] for the details).
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4. The case of o(S0)

Now, we turn to the main subject of this paper. Namely, in this section, we consider the split
realization of the orthogonal Lie algebra, the case S = S0 = (δi,N+1−j ). For convenience we
introduce the symbol i′ = N + 1 − i. Then o(S0) is expressed as follows:

o(S0) = {
Z = (Zij ) ∈ glN

∣∣ Zij + Zj ′i′ = 0
}
.

4.1. A central element of U(o(S0)) expressed in terms of the column-determinant was re-
cently given in [W]:

Theorem 4.1. (Wachi) The following element is central in U(o(S0)) for any u ∈ C:

C
o(S0)
det (u) = det

(
F o(S0) + u1N + diag �̃N

)
.

Here we put

�̃N =
{

(N
2 − 1, N

2 − 2, . . . ,0,0, . . . ,−N
2 + 1), N : even,

(N
2 − 1, N

2 − 2, . . . , 1
2 ,0,− 1

2 , . . . ,−N
2 + 1), N : odd.

The dots mean arithmetic progressions with difference −1.

This element is remarkable. Indeed, the eigenvalue of this C
o(S0)
det (u) can be calculated as

easily as that of the Capelli determinant C
glN
det (u):

Theorem 4.2. (Wachi) Let π
o(S0)
λ be the irreducible representation of o(S0) determined by the

partition λ = (λ1, . . . , λ[n]), where [n] means the greatest integer not exceeding n = N/2. Then
the following relation holds:

π
o(S0)
λ

(
C

o(S0)
det (u)

) =
{

(u2 − l2
1) · · · (u2 − l2

n), N : even,

u(u2 − l2
1) · · · (u2 − l2[n]), N : odd.

Here we put li = λi + n − i.

The proof is almost the same as that of Theorem 1.2. Namely this is easy from the definition
of the column-determinant and the following triangular decomposition of o(S0):

o(S0) = n− ⊕ h ⊕ n+.

Here n−, h, and n+ are the subalgebras of o(S0) spanned by the elements F
o(S0)
ij such that i > j ,

i = j , and i < j , respectively. Namely, the entries in the lower triangular part, in the diagonal
part, and in the upper triangular part of the matrix F o(S0) belong to n−, h, and n+, respectively.

This central element can be rewritten in terms of the symmetrized determinant:

Theorem 4.3. (Wachi) We have

det
(
F o(S0) + u1N + diag �̃N

) = Det
(
F o(S0) + u1N ; �̃N

)
.
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This theorem was first shown by comparing the eigenvalues of both sides by A. Wachi in [W].
Namely, Theorem 4.3 is immediate from Theorem 4.1 and the following Theorem 4.4 for the
eigenvalue of C

o(S0)
Det (u) = Det(F o(S0) + u1N ; �̃N ). Indeed, the eigenvalue of C

o(S0)
det (u) and the

centrality of C
o(S0)
Det (u) are obvious.

Theorem 4.4. For the representation π
o(S0)
λ , the following relation holds:

π
o(S0)
λ

(
C

o(S0)
Det (u)

) =
{

(u2 − l2
1) · · · (u2 − l2

N/2), N : even,

u(u2 − l2
1) · · · (u2 − l2[N/2]), N : odd.

This Theorem 4.4 was given in [I1] through a hard and complicated calculation.
The aim of this paper is to give a new and straight proof for Theorem 4.3. Namely, we will

prove this theorem directly not using Theorems 4.1 and 4.4. Conversely these Theorems 4.1
and 4.4 follow from Theorem 4.3.

4.2. To prove Theorem 4.3, we put ηj (u) = ∑N
i=1 eiF

o(S0)
ij (u) in Λ2N ⊗ U(o(S0)) as in

the previous sections. This satisfies the following commutation relation as a special case of
Lemma 2.3:

Lemma 4.5. We have

ηi(u + 1)ηj (u) + ηj (u + 1)ηi(u) = −Θδi,j ′

with Θ = ∑N
i,j=1 eiej ′F o(S0)

ij .

In particular, η̃j (u) = ηj (u)e∗
j satisfies the following relation:

Corollary 4.6. We have

η̃i (u + 1)η̃j (u) − η̃j (u + 1)η̃i(u) = Θe∗
i e

∗
j δi,j ′ .

By (1.2) and (1.3), the main theorem Theorem 4.3 can be rewritten as the following relation
for η̃j (u) and Ξ(u) = ∑N

i,j=1 eie
∗
jF

o(S0)
ij (u):

Theorem 4.7. We have

ΞN
(
u1N + �̃N

) = N !η̃N
1,2,...,N

(
u1N + �̃N

)
.

Here the symbols Ξk(a1, . . . , ak) and η̃k
i1,...,ik

(a1, . . . , ak) mean

Ξk(a1, . . . , ak) = Ξ(a1) · · ·Ξ(ak), η̃k
i1,...,ik

(a1, . . . , ak) = η̃i1(a1) · · · η̃ik (ak).

By the relation Ξ(u) = ∑N
j=1 η̃j (u), the left-hand side of Theorem 4.7 is equal to

ΞN
(
u1N + �̃N

) =
∑

η̃N
σ(1),...,σ (N)

(
u1N + �̃N

)
.

σ∈SN
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Indeed η̃j (u) = ηj (u)e∗
j contains the anti-commuting factor e∗

j . Thus we can prove Theorem 4.7

by studying the relations among η̃N
σ(1),...,σ (N)(u1N + �̃N ). Some of them are obviously equal to

each other. For example we have

η̃N
σ(1),...,σ (N)

(
u1N + �̃N

) = η̃N
1,...,N

(
u1N + �̃N

)
, (4.1)

if σ(i) � N/2 for i � N/2, and σ(i) � N/2+1 for i � N/2+1. This is easy from Corollary 4.6.
This (4.1) can be generalized a bit more (see Lemmas 5.3 and 6.3 below), but does not hold for
general σ ∈ SN . Indeed, we have the following counterexample, when N = 4:

η̃1(u + 1)η̃4(u)η̃2(u)η̃3(u − 1) 	= η̃1(u + 1)η̃2(u)η̃3(u)η̃4(u − 1).

Thus, our situation is not so simple.

4.3. As seen in Lemma 4.5 and Corollary 4.6, the commutation relations for ηj (u) and η̃j (u)

are a bit more complicated than the cases of glN and o(1N). To prove Theorem 4.7, it is conve-
nient to prepare some revised versions of these relations:

Corollary 4.8. When k 	= k′, we have

ηk(u + 1)ηk(u) = 0.

Corollary 4.9. For arbitrary u,w ∈ C, we have

ηk(u)ηk′(u) + ηk′(u)ηk(u) = −
∑

a 	=k,k′
ηa(w)ea′ .

Corollary 4.10. Assume that il 	= i′l for l = 1, . . . , k. Then, unless i1, . . . , ik are disjoint, we have

ηi1(u)ηi2(u − 1) · · ·ηik (u − k + 1) = 0.

Corollary 4.11. For arbitrary u,w ∈ C, we have

η̃k(u)η̃k′(u) = η̃k′(u)η̃k(u) +
∑

a 	=k,k′
ηa(w)ea′e∗

ke
∗
k′ .

Here, Corollary 4.8 is immediate from Lemma 4.5. Corollary 4.9 is also clear from
Lemma 4.5, because we have the relation Θ = ∑N

j=1 ηj (w)ej ′ as a special case of (2.2). Corol-
laries 4.10 and 4.11 are easy consequences of Corollaries 4.8 and 4.9, respectively.

Moreover, we consider an element Ωj(u) playing as a mediator between Ξ(u) and η̃j (u):

Ωj(u) = η̃j (u) + η̃j ′(u). (4.2)

Since Ωj(u) = Ωj ′(u), we can express Ξ(u) = ∑N
j=1 η̃j (u) as

Ξ(u) =
{

Ω1(u) + · · · + Ωn(u), N : even,

Ω (u) + · · · + Ω (u) + 1Ω (u), N : odd.
1 [n] 2 [n]+1
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Here we put n = N/2. By Corollary 4.6, this Ωj(u) satisfies the following commutation relation:

Corollary 4.12. We have

Ωk(u + 1)Ωl(u) = Ωl(u + 1)Ωk(u).

This is as simple as the commutation relations of η̃i ’s in the cases of glN and o(1N). The-
orem 4.7 (and hence the main theorem Theorem 4.3) is proved by combining these simple
commutation relations as seen in the following two sections.

5. Proof in the case that N is even

In this section, we prove the main theorem when N is even, namely when n = N/2 is an
integer. In this case, our goal Theorem 4.7 is immediate from the following two relations:

Proposition 5.1. We have

ΞN
(
u1N + �̃N

) = 2−nN !ΩN
1,...,N

(
u1N + �̃N

)
.

Here Ωk
i1,...,ik

(a1, . . . , ak) denotes Ωi1(a1) · · ·Ωik (ak).

Proposition 5.2. We have

ΩN
1,...,N

(
u1N + �̃N

) = 2nη̃N
1,...,N

(
u1N + �̃N

)
.

Since Ωj(u) = Ωj ′(u), we can rewrite Proposition 5.2 as follows:

ΩN
1,2,...,n,n,...,2,1

(
u1N + �̃N

) = 2nη̃N
1,...,n,n′,...,1′

(
u1N + �̃N

)
.

In the remainder of this section, we will prove these two propositions.

5.1. First, let us prove Proposition 5.2 using Corollaries 4.8–4.11. Since the element η̃j (u) =
ηj (u)e∗

j contains the anti-commuting factor e∗
j , the following expansion follows from (4.2):

ΩN
1,2,...,n,n,...,2,1

(
u1N + �̃N

) =
∑

ε1,...,εn

η̃N
ε1,...,εn,ε′

n,...,ε′
1

(
u1N + �̃N

)
. (5.1)

Here the right-hand side is the sum of η̃N
ε1,...,εn,ε′

n,...,ε′
1
(u1N + �̃N ) over ε1 ∈ {1,1′}, ε2 ∈ {2,2′},

. . . , εn ∈ {n,n′} (recall that ε′
i means ε′

i = N + 1 − εi ). For example, when N = 4, this means

Ω4
1,2,3,4

(
u14 + �̃4

)
= η̃4

1,2,3,4

(
u14 + �̃4

) + η̃4
1,3,2,4

(
u14 + �̃4

) + η̃4
4,2,3,1

(
u14 + �̃4

) + η̃4
4,3,2,1

(
u14 + �̃4

)
.

Thus, to prove Proposition 5.2, it is suffices to show the following relation:



M. Itoh / Journal of Algebra 314 (2007) 479–506 493
Lemma 5.3. For any ε1 ∈ {1,1′}, . . . , εn ∈ {n,n′}, we have

η̃N
ε1,...,εn,ε′

n,...,ε′
1

(
u1N + �̃N

) = η̃N
1,...,n,n′,...,1′

(
u1N + �̃N

)
.

Namely η̃N
ε1,...,εn,ε′

n,...,ε′
1
(u1N + �̃N ) does not depend on ε1, . . . , εn.

Proof. The left-hand side of the assertion is expressed as

η̃N
ε1,...,εn,ε′

n,...,ε′
1

(
u1N + �̃N

) = Pε1,...,εn(u)Qε′
n,...,ε′

1
(u),

where Pi1,...,in (u) and Qi1,...,in (u) mean

Pi1,...,in (u) = η̃n
i1,...,in

(u + n − 1, . . . , u), Qi1,...,in (u) = η̃n
i1,...,in

(u, . . . , u − n + 1).

Here the dots in the parentheses mean arithmetic progressions with difference −1. Our aim is to
prove that Pε1,...,εn(u)Qε′

n,...,ε′
1
(u) does not depend on ε1, . . . , εn. Namely it is sufficient to show

that we can exchange εk and ε′
k for any k:

Pε1,...,εn(u)Qε′
n,...,ε′

1
(u) = Pε1,...,εk−1,ε

′
k,εk+1,...,εn

(u)Qε′
n,...,ε′

k+1,εk,ε
′
k−1,...,ε

′
1
(u). (5.2)

To show this, we put

P
†
i1,...,in−1

(u) = η̃n−1
i1,...,in−1

(u + n − 1, . . . , u + 1),

Q
†
i1,...,in−1

(u) = η̃n−1
i1,...,in−1

(u − 1, . . . , u − n + 1).

Then, by Corollary 4.6, we have

Pε1,...,εn(u) = P †
ε1,...,εk−1,εk+1,...,εn

(u)η̃εk
(u),

Pε1,...,εk−1,ε
′
k,εk+1,...,εn

(u) = P †
ε1,...,εk−1,εk+1,...,εn

(u)η̃ε′
k
(u),

Qε′
n,...,ε′

1
(u) = η̃ε′

k
(u)Q

†
ε′
n,...,ε′

k+1,ε
′
k−1,...,ε

′
1
(u),

Qε′
n,...,ε′

k+1,εk,ε
′
k−1,...,ε

′
1
(u) = η̃εk

(u)Q
†
ε′
n,...,ε′

k+1,ε
′
k−1,...,ε

′
1
(u).

Noting this, we consider the difference between both sides of (5.2):

Pε1,...,εn(u)Qε′
n,...,ε′

1
(u) − Pε1,...,εk−1,ε

′
k,εk+1,...,εn

(u)Qε′
n,...,ε′

k+1,εk,ε
′
k−1,...,ε

′
1
(u)

= P †
ε1,...,εk−1,εk+1,...,εn

(u)
{
η̃εk

(u)η̃ε′
k
(u) − η̃ε′

k
(u)η̃εk

(u)
}
Q

†
ε′
n,...,ε′

k+1,ε
′
k−1,...,ε

′
1
(u).

By Corollary 4.11, this is equal to

∑
′
P †

ε1,...,εk−1,εk+1,...,εn
(u)ηa(u)ea′e∗

εk
e∗
ε′
k
Q

†
ε′
n,...,ε′

k+1,ε
′
k−1,...,ε

′
1
(u).
a 	=k,k
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This is equal to zero, because each term vanishes by Corollary 4.10. Indeed a 	= k, k′ must be
equal to some element of the following sequence:

ε1, . . . , εk−1, εk+1, . . . , εn, ε
′
n, . . . , ε

′
k+1, ε

′
k−1, . . . , ε

′
1.

This means (5.2), and hence Lemma 5.3. �
Remark. We have a similar relation in the case that N is odd (Lemma 6.3). From these Lem-
mas 5.3 and 6.3, we see that the equality (4.1) also holds, when σ is generated by the transposi-
tions of the form (i i′).

5.2. Next let us prove Proposition 5.1. This is deduced from Corollary 4.12 by a flat calcula-
tion as follows. We put

Ξk(u) = Ξ(u) − {
Ω1(u) + · · · + Ωk(u)

} = Ωk+1(u) + · · · + Ωn(u),

so that Ξ0(u) = Ξ(u). The following commutation relation is immediate from Corollary 4.12:

Lemma 5.4. We have

Ξk(u + 1)Ωl(u) = Ωl(u + 1)Ξk(u).

Moreover, we have the following lemma:

Lemma 5.5. We have

Ξk(u + 1)Ξk(u)Ωl(u)Ωl(u − 1) + Ωl(u + 1)Ωl(u)Ξk(u)Ξk(u − 1)

= 2Ωl(u + 1)Ξk(u)Ξk(u)Ωl(u − 1).

Proof. We consider the following central elements in Λ2N ⊗ U(o(S0)):

ξk = ek+1e
∗
k+1 + · · · + e(k+1)′e

∗
(k+1)′ , ωl = ele

∗
l + el′e

∗
l′ .

For these, the following relations hold:

Ξk(u + v) = Ξk(u) + vξk, Ωl(u + v) = Ωl(u) + vωl.

In particular, we have Ωl(u) = Ωl(u ± 1) ∓ ωl , so that

Ξk(u + 1)Ξk(u)Ωl(u)Ωl(u − 1)

= Ξk(u + 1)Ξk(u)Ωl(u − 1)Ωl(u − 1) + Ξk(u + 1)Ξk(u)ωlΩl(u − 1),

Ωl(u + 1)Ωl(u)Ξk(u)Ξk(u − 1)

= Ωl(u + 1)Ωl(u + 1)Ξk(u)Ξk(u − 1) − Ωl(u + 1)ωlΞk(u)Ξk(u − 1).
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Here, by Lemma 5.4, the second terms of the right-hand sides are equal:

Ξk(u + 1)Ξk(u)ωlΩl(u − 1) = Ωl(u + 1)ωlΞk(u)Ξk(u − 1).

Thus we have

Ξk(u + 1)Ξk(u)Ωl(u)Ωl(u − 1) + Ωl(u + 1)Ωl(u)Ξk(u)Ξk(u − 1)

= Ξk(u + 1)Ξk(u)Ωl(u − 1)Ωl(u − 1) + Ωl(u + 1)Ωl(u + 1)Ξk(u)Ξk(u − 1).

By using Lemma 5.4 again, this is equal to

Ωl(u + 1)Ξk(u + 1)Ξk(u)Ωl(u − 1) + Ωl(u + 1)Ξk(u)Ξk(u − 1)Ωl(u − 1).

Moreover, since Ξk(u ± 1) = Ξk(u) ± ξk , this is equal to

2Ωl(u + 1)Ξk(u)Ξk(u)Ωl(u − 1)

+ Ωl(u + 1)ξkΞk(u)Ωl(u − 1) − Ωl(u + 1)Ξk(u)ξkΩl(u − 1)

= 2Ωl(u + 1)Ξk(u)Ξk(u)Ωl(u − 1).

This means the assertion. �
As a consequence of Lemmas 5.4 and 5.5, we have the following lemma:

Lemma 5.6. We have

ΞN−2k
k

(
u1N−2k + �̃N−2k

) =
(

N − 2k

2

)
Ωk+1(u + n − k − 1)

· ΞN−2k−2
k+1

(
u1N−2k−2 + �̃N−2k−2

) · Ωk+1(u − n + k + 1).

Here Ξl
k(a1, . . . , al) denotes Ξk(a1) · · ·Ξk(al).

Before proving this lemma, we note two easy facts. First we have

Ωk(u1)ϕ1Ωk(u2)ϕ2Ωk(u3) = 0 (5.3)

for any ϕ1, ϕ2 ∈ Λ2N ⊗ U(o(S0)). This is easy, because Ωk(u) is an element of the ideal gener-
ated by two anti-commuting variables e∗

k and e∗
k′ . Similarly, when l > N − 2k, we have

Ξk(u1)ϕ1Ξk(u2)ϕ2 · · ·Ξk(ul−1)ϕl−1Ξk(ul) = 0 (5.4)

for any ϕ1, . . . , ϕl−1 ∈ Λ2N ⊗ U(o(S0)). Indeed Ξk(u) is an element of the ideal generated by
N − 2k anti-commuting variables e∗

k+1, . . . , e
∗
(k+1)′ .

Proof of Lemma 5.6. By definition, we have Ξk(u) = Ξk+1(u) + Ωk+1(u). Noting this and
using Lemma 5.4, we have the following binomial expansion:
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Ξn−k
k (u + n − k − 1, . . . , u) = Ξk(u + n − k − 1) · · ·Ξk(u)

= (
Ξk+1(u + n − k − 1) + Ωk+1(u + n − k − 1)

) · · · (Ξk+1(u) + Ωk+1(u)
)

=
n−k∑
l=0

(
n − k

l

)
Ξn−k−l

k+1 (u + n − k − 1, . . . , u + l)Ωl
k+1(u + l − 1, . . . , u).

Here, Ωl
k(a1, . . . , al) means Ωk(a1) · · ·Ωk(al), and the parameters form arithmetic progressions

with difference −1. By (5.3), this is equal to

(
n − k

0

)
Ξn−k

k+1 (u + n − k − 1, . . . , u)

+
(

n − k

1

)
Ξn−k−1

k+1 (u + n − k − 1, . . . , u + 1)Ωk+1(u)

+
(

n − k

2

)
Ξn−k−2

k+1 (u + n − k − 1, . . . , u + 2)Ωk+1(u + 1)Ωk+1(u)

= Ξn−k−2
k+1 (u + n − k − 1, . . . , u + 2) ·

{(
n − k

0

)
Ξk+1(u + 1)Ξk+1(u)

+
(

n − k

1

)
Ξk+1(u + 1)Ωk+1(u) +

(
n − k

2

)
Ωk+1(u + 1)Ωk+1(u)

}
.

Similarly, we have

Ξn−k
k (u, . . . , u − n + k + 1)

=
{(

n − k

0

)
Ξk+1(u)Ξk+1(u − 1) +

(
n − k

1

)
Ωk+1(u)Ξk+1(u − 1)

+
(

n − k

2

)
Ωk+1(u)Ωk+1(u − 1)

}
· Ξn−k−2

k+1 (u − 2, . . . , u − n + k + 1).

Multiplying both sides of these two equalities, we have

ΞN−2k
k

(
u1N−2k + �̃N−2k

)
= Ξn−k

k (u + n − k − 1, . . . , u) · Ξn−k
k (u, . . . , u − n + k + 1)

= Ξn−k−2
k+1 (u + n − k − 1, . . . , u + 2)

·
{(

n − k

1

)2

Ξk+1(u + 1)Ωk+1(u)Ωk+1(u)Ξk+1(u − 1)

+
(

n − k

2

)
Ωk+1(u + 1)Ωk+1(u)Ξk+1(u)Ξk+1(u − 1)

+
(

n − k

2

)
Ξk+1(u + 1)Ξk+1(u)Ωk+1(u)Ωk+1(u − 1)

}

· Ξn−k−2(u − 2, . . . , u − n + k + 1).
k+1
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Indeed, by (5.3) and (5.4), the sum of the exponents of Ξk+1 must be equal to N − 2k − 2, and
the degree of Ωk+1 must be equal to 2. By Lemma 5.4, the first term in the braces is equal to

(
n − k

1

)2

Ωk+1(u + 1)Ξk+1(u)Ξk+1(u)Ωk+1(u − 1).

Moreover, using Lemma 5.5, we can rewrite the second term and the third term as

2

(
n − k

2

)
Ωk+1(u + 1)Ξk+1(u)Ξk+1(u)Ωk+1(u − 1).

Since
(
N−2k

2

) = (
n−k

1

)2 + 2
(
n−k

2

)
, we have

ΞN−2k
k

(
u1N−2k + �̃N−2k

)
=

(
N − 2k

2

)
Ξn−k−2

k+1 (u + n − k − 1, . . . , u + 2)

· Ωk+1(u + 1)Ξk+1(u)Ξk+1(u)Ωk+1(u − 1)

· Ξn−k−2
k+1 (u − 2, . . . , u − n + k + 1)

=
(

N − 2k

2

)
Ωk+1(u + n − k − 1)Ξn−k−1

k+1 (u + n − k − 2, . . . , u)

· Ξn−k−1
k+1 (u, . . . , u − n + k + 2)Ωk+1(u − n + k + 1).

Here we used Lemma 5.4 for the second equality. This means the assertion. �
Using Lemma 5.6 repeatedly, we have

ΞN
0

(
u1N + �̃N

) =
(

N

2

)
Ω1(u + n − 1) · ΞN−2

1

(
u1N−2 + �̃N−2

) · Ω1(u − n + 1)

=
(

N

2

)(
N − 2

2

)
Ω1(u + n − 1)Ω2(u + n − 2) · ΞN−4

2

(
u1N−4 + �̃N−4

)
· Ω2(u − n + 2)Ω1(u − n + 1)

= · · ·
=

(
N

2

)(
N − 2

2

)
· · ·

(
2

2

)
Ω1(u + n − 1)Ω2(u + n − 2) · · ·Ωn(u)

· Ωn(u) · · ·Ω2(u − n + 2)Ω1(u − n + 1).

This means Proposition 5.1.
Thus we have proved Theorem 4.7, and hence Theorem 4.3 in the case that N is even.
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6. Proof in the case that N is odd

Next we consider the case that N is odd, namely the case that n = N/2 is a half integer
(hence N = 2[n] + 1). The proof in this case is almost the same as the previous section, but we
need some more discussion to deal with the special index [n] + 1, which satisfies the relation
([n] + 1)′ = [n] + 1. Also in this case, we aim to prove the following two relations. Our goal
Theorem 4.7 is immediate from them.

Proposition 6.1. We have

ΞN
(
u1N + �̃N

) = 2−[n]−1N !ΩN
1,...,N

(
u1N + �̃N

)
.

Proposition 6.2. We have

ΩN
1,...,N

(
u1N + �̃N

) = 2[n]+1η̃N
1,...,N

(
u1N + �̃N

)
.

6.1. First we prove Proposition 6.2 using Corollaries 4.8–4.11. We put

Pi1,...,i[n](u) = η̃
[n]
i1,...,i[n]

(
u + n − 1, . . . , u + 1

2

)
,

Qi1,...,i[n](u) = η̃
[n]
i1,...,i[n]

(
u − 1

2 , . . . , u − n + 1
)
.

Here the dots in the parentheses mean arithmetic progressions with difference −1. Then, we have
the following relation as the counterpart of (5.1):

ΩN
1,...,N

(
u1N + �̃N

)
= Ω

[n]
1,...,[n]

(
u + n − 1, . . . , u + 1

2

) · 2η̃[n]+1(u) · Ω [n]
[n]′,...,1′

(
u − 1

2 , . . . , u − n + 1
)

= 2
∑

ε1,...,ε[n]
Pε1,...,ε[n](u) · η̃[n]+1(u) · Qε′[n],...,ε′

1
(u). (6.1)

Here the summation is taken over ε1 ∈ {1,1′}, ε2 ∈ {2,2′}, . . . , ε[n] ∈ {[n], [n]′}. Hence, to prove
Proposition 6.2, it suffices to show the following lemma:

Lemma 6.3. When ε1 ∈ {1,1′}, . . . , ε[n] ∈ {[n], [n]′}, we have

Pε1,...,ε[n](u) · η̃[n]+1(u) · Qε′[n],...,ε′
1
(u) = P1,...,[n](u) · η̃[n]+1(u) · Q[n]′,...,1′(u)

= η̃N
1,...,N

(
u1N + �̃N

)
.

Namely Pε1,...,ε[n](u) · η̃[n]+1(u) · Qε′[n],...,ε′
1
(u) does not depend on ε1, . . . , ε[n].
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Proof. It is enough to show the following relation:

Pε1,...,ε[n](u) · η̃[n]+1(u) · Qε′[n],...,ε′
1
(u)

= Pε1,...,εk−1,ε
′
k,εk+1,...,ε[n](u) · η̃[n]+1(u) · Qε′[n],...,ε′

k+1,εk,ε
′
k−1,...,ε

′
1
(u). (6.2)

Since we have

η̃[n]+1(u) = 1

2

{
η̃[n]+1

(
u + 1

2

) + η̃[n]+1
(
u − 1

2

)}
,

this (6.2) can be deduced from the following two relations:

Pε1,...,ε[n](u) · η̃[n]+1
(
u + 1

2

) · Qε′[n],...,ε′
1
(u)

= Pε1,...,εk−1,ε
′
k,εk+1,...,ε[n](u) · η̃[n]+1

(
u + 1

2

) · Qε′[n],...,ε′
k+1,εk,ε

′
k−1,...,ε

′
1
(u), (6.3)

Pε1,...,ε[n](u) · η̃[n]+1
(
u − 1

2

) · Qε′[n],...,ε′
1
(u)

= Pε1,...,εk−1,ε
′
k,εk+1,...,ε[n](u) · η̃[n]+1

(
u − 1

2

) · Qε′[n],...,ε′
k+1,εk,ε

′
k−1,...,ε

′
1
(u). (6.4)

To show these, we put

P
†
i1,...,i[n]−1

(u) = η̃
[n]−1
i1,...,i[n]−1

(
u + n − 1, . . . , u + 3

2

)
,

Q
†
i1,...,i[n]−1

(u) = η̃
[n]−1
i1,...,i[n]−1

(
u − 3

2 , . . . , u − n + 1
)
.

Then, we have the following by Corollary 4.6:

Pε1,...,ε[n](u) = P †
ε1,...,εk−1,εk+1,...,ε[n](u)η̃εk

(
u + 1

2

)
,

Pε1,...,εk−1,ε
′
k,εk+1,...,ε[n](u) = P †

ε1,...,εk−1,εk+1,...,ε[n](u)η̃ε′
k

(
u + 1

2

)
,

Qε′[n],...,ε′
1
(u) = η̃ε′

k

(
u − 1

2

)
Q

†
ε′[n],...,ε′

k+1,ε
′
k−1,...,ε

′
1
(u),

Qε′[n],...,ε′
k+1,εk,ε

′
k−1,...,ε

′
1
(u) = η̃εk

(
u − 1

2

)
Q

†
ε′[n],...,ε′

k+1,ε
′
k−1,...,ε

′
1
(u).

Hence the difference between both sides of (6.3) is equal to

Pε1,...,ε[n](u) · η̃[n]+1
(
u + 1

2

) · Qε′[n],...,ε′
1
(u)

− Pε1,...,εk−1,ε
′
k,εk+1,...,ε[n](u) · η̃[n]+1

(
u + 1

2

) · Qε′[n],...,ε′
k+1,εk,ε

′
k−1,...,ε

′
1
(u)

= P †
ε1,...,εk−1,εk+1,...,ε[n](u)

· {η̃εk

(
u + 1

2

) · η̃[n]+1
(
u + 1

2

) · η̃ε′
k

(
u − 1

2

)
− η̃ε′

k

(
u + 1

2

) · η̃[n]+1
(
u + 1

2

) · η̃εk

(
u − 1

2

)}
· Q†

ε′ ,...,ε′ ,ε′ ,...,ε′ (u). (6.5)

[n] k+1 k−1 1
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By Corollary 4.6, the quantity in the braces is equal to

η̃εk

(
u + 1

2

)
η̃ε′

k

(
u + 1

2

)
η̃[n]+1

(
u − 1

2

) − η̃ε′
k

(
u + 1

2

)
η̃εk

(
u + 1

2

)
η̃[n]+1

(
u − 1

2

)
= {

η̃εk

(
u + 1

2

)
η̃ε′

k

(
u + 1

2

) − η̃ε′
k

(
u + 1

2

)
η̃εk

(
u + 1

2

)}
η̃[n]+1

(
u − 1

2

)
=

∑
a 	=k,k′

ηa

(
u + 1

2

)
ea′e∗

εk
e∗
ε′
k
η̃[n]+1

(
u − 1

2

)
.

Here the last equality is a consequence of Corollary 4.11. Thus (6.5) is equal to

P †
ε1,...,εk−1,εk+1,...,ε[n](u)

∑
a 	=k,k′

ηa

(
u + 1

2

)
ea′e∗

εk
e∗
ε′
k
η̃[n]+1

(
u − 1

2

)
Q

†
ε′[n],...,ε′

k+1,ε
′
k−1,...,ε

′
1
(u).

This is equal to zero by Corollary 4.10, because a 	= k, k′ is equal to some element of the follow-
ing sequence:

ε1, . . . , εk−1, εk+1, . . . , ε[n], ε[n]+1, ε
′[n], . . . , ε′

k+1, ε
′
k−1, . . . , ε

′
1.

Thus we proved (6.3). We can prove (6.4) similarly. Hence the assertion holds. �
6.2. Next, let us prove Proposition 6.1. We put

Ξk(u) = Ξ(u) − {
Ω1(u) + · · · + Ωk(u)

} = Ωk+1(u) + · · · + Ω[n](u) + 1

2
Ω[n]+1(u).

This satisfies the following commutation relation by Corollary 4.12:

Lemma 6.4. We have

Ξk(u + 1)Ωl(u) = Ωl(u + 1)Ξk(u).

Moreover, we have the following relations:

Lemma 6.5. We have

Ξk(u + 1)Ξk(u)Ωl(u)Ωl(u − 1) + Ωl(u + 1)Ωl(u)Ξk(u)Ξk(u − 1)

= 2Ωl(u + 1)Ξk(u)Ξk(u)Ωl(u − 1).

Lemma 6.6. We have

Ξk

(
u + 3

2

)
Ξk

(
u + 1

2

)
Ξk(u)Ωl

(
u − 1

2

)
Ωl

(
u − 3

2

)
+ Ωl

(
u + 3

2

)
Ωl

(
u + 1

2

)
Ξk(u)Ξk

(
u − 1

2

)
Ξk

(
u − 3

2

)
= 2Ωl

(
u + 3

2

)
Ξk

(
u + 1

2

)
Ξk(u)Ξk

(
u − 1

2

)
Ωl

(
u − 3

2

)
.
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Lemma 6.7. We have

Ξl

(
u + 1

2

)
Ωk(u)Ωk

(
u − 1

2

) + Ωk

(
u + 1

2

)
Ωk(u)Ξl

(
u − 1

2

)
= 2Ωk

(
u + 1

2

)
Ξl(u)Ωk

(
u − 1

2

)
.

Proof of Lemmas 6.5, 6.6, and 6.7. These lemmas are all consequences of Lemma 6.4 and the
centrality of ξk and ωl in Λ2N ⊗ U(o(S0)). Here we put

ξk = ek+1e
∗
k+1 + · · · + e(k+1)′e

∗
(k+1)′ , ωl = ele

∗
l + el′e

∗
l′ ,

so that

Ξk(u + v) = Ξk(u) + vξk, Ωl(u + v) = Ωl(u) + vωl.

First, the proof of Lemma 6.5 is exactly the same as that of Lemma 5.5.
Next, Lemma 6.6 is proved as follows. Using Lemmas 6.4 and 6.5, we have

Ξk

(
u + 3

2

)
Ξk

(
u + 1

2

)
Ξk

(
u + 1

2

)
Ωl

(
u − 1

2

)
Ωl

(
u − 3

2

)
+ Ωl

(
u + 3

2

)
Ωl

(
u + 1

2

)
Ξk

(
u + 1

2

)
Ξk

(
u − 1

2

)
Ξk

(
u − 3

2

)
= Ξk

(
u + 3

2

)
Ξk

(
u + 1

2

)
Ωl

(
u + 1

2

)
Ωl

(
u − 1

2

)
Ξk

(
u − 3

2

)
+ Ωl

(
u + 3

2

)
Ωl

(
u + 1

2

)
Ξk

(
u + 1

2

)
Ξk

(
u − 1

2

)
Ξk

(
u − 3

2

)
= 2Ωl

(
u + 3

2

)
Ξk

(
u + 1

2

)
Ξk

(
u + 1

2

)
Ωl

(
u − 1

2

)
Ξk

(
u − 3

2

)
= 2Ωl

(
u + 3

2

)
Ξk

(
u + 1

2

)
Ξk

(
u + 1

2

)
Ξk

(
u − 1

2

)
Ωl

(
u − 3

2

)
.

Similarly we have

Ξk

(
u + 3

2

)
Ξk

(
u + 1

2

)
Ξk

(
u − 1

2

)
Ωl

(
u − 1

2

)
Ωl

(
u − 3

2

)
+ Ωl

(
u + 3

2

)
Ωl

(
u + 1

2

)
Ξk

(
u − 1

2

)
Ξk

(
u − 1

2

)
Ξk

(
u − 3

2

)
= 2Ωl

(
u + 3

2

)
Ξk

(
u + 1

2

)
Ξk

(
u − 1

2

)
Ξk

(
u − 1

2

)
Ωl

(
u − 3

2

)
.

Adding both sides of these two relations and dividing by 2, we obtain Lemma 6.6, because
Ξk(u) = 1

2 {Ξk(u + 1
2 ) + Ξk(u − 1

2 )}.
Finally Lemma 6.7 is shown as follows. Since Ωl(u) = Ωl(u ± 1

2 ) ∓ 1
2ωl , we have

Ξk

(
u + 1

2

)
Ωl(u)Ωl

(
u − 1

2

)
= Ξk

(
u + 1

2

)
Ωl

(
u − 1

2

)
Ωl

(
u − 1

2

) + 1

2
Ξk

(
u + 1

2

)
ωlΩl

(
u − 1

2

)
,

Ωl

(
u + 1

2

)
Ωl(u)Ξk

(
u − 1

2

)
= Ωl

(
u + 1

2

)
Ωl

(
u + 1

2

)
Ξk

(
u − 1

2

) − 1
Ωl

(
u + 1

2

)
ωlΞk

(
u − 1

2

)
.

2
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By Lemma 6.4, we have Ξk(u + 1
2 )ωlΩl(u − 1

2 ) = Ωl(u + 1
2 )ωlΞk(u − 1

2 ). Thus, we have

Ξk

(
u + 1

2

)
Ωl(u)Ωl

(
u − 1

2

) + Ωl

(
u + 1

2

)
Ωl(u)Ξk

(
u − 1

2

)
= Ξk

(
u + 1

2

)
Ωl

(
u − 1

2

)
Ωl

(
u − 1

2

) + Ωl

(
u + 1

2

)
Ωl

(
u + 1

2

)
Ξk

(
u − 1

2

)
.

By using Lemma 6.4 again, this is equal to

Ωl

(
u + 1

2

)
Ξk

(
u − 1

2

)
Ωl

(
u − 1

2

) + Ωl

(
u + 1

2

)
Ξk

(
u + 1

2

)
Ωl

(
u − 1

2

)
.

Moreover, since Ξk(u − 1
2 ) + Ξk(u + 1

2 ) = 2Ξk(u), this is equal to

2Ωl

(
u + 1

2

)
Ξk(u)Ωl

(
u − 1

2

)
. �

As a consequence of these lemmas, we have the following relation:

Lemma 6.8. We have

ΞN−2k
k

(
u1N−2k + �̃N−2k

) =
(

N − 2k

2

)
Ωk+1(u + n − k − 1)

· ΞN−2k−2
k+1

(
u1N−2k−2 + �̃N−2k−2

) · Ωk+1(u − n + k + 1).

Here Ξl
k(a1, . . . , al) denotes Ξk(a1) · · ·Ξk(al).

Before proving this lemma, we note that (5.3) and (5.4) also hold in this case. Namely we
have

Ωk(u1)ϕ1Ωk(u2)ϕ2Ωk(u3) = 0 (6.6)

for any ϕ1, ϕ2 ∈ Λ2N ⊗ U(o(S0)). Similarly, when l > N − 2k, we have

Ξk(u1)ϕ1Ξk(u2)ϕ2 · · ·Ξk(ul−1)ϕl−1Ξk(ul) = 0 (6.7)

for any ϕ1, . . . , ϕl−1 ∈ Λ2N ⊗ U(o(S0)).

Proof of Lemma 6.8. The proof is almost the same as that of Lemma 5.6. By definition we
have Ξk(u) = Ξk+1(u) + Ωk+1(u). Hence, we have the following binomial expansion using
Lemma 6.4 and (6.6):

Ξ
[n]−k
k

(
u + n − k − 1, . . . , u + 1

2

)
= Ξ

[n]−k−2
k+1

(
u + n − k − 1, . . . , u + 5

2

) ·
{([n] − k

0

)
Ξk+1

(
u + 3

2

)
Ξk+1

(
u + 1

2

)

+
([n] − k

1

)
Ξk+1

(
u + 3

2

)
Ωk+1

(
u + 1

2

) +
([n] − k

2

)
Ωk+1

(
u + 3

2

)
Ωk+1

(
u + 1

2

)}
.

Similarly we have
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Ξ
[n]−k
k

(
u − 1

2 , . . . , u − n + k + 1
)

=
{([n] − k

0

)
Ξk+1

(
u − 1

2

)
Ξk+1

(
u − 3

2

) +
([n] − k

1

)
Ξk+1

(
u − 1

2

)
Ωk+1

(
u − 3

2

)

+
([n] − k

2

)
Ωk+1

(
u − 1

2

)
Ωk+1

(
u − 3

2

)} · Ξ [n]−k−2
k+1

(
u − 5

2 , . . . , u − n + k + 1
)
.

Thus, we have

ΞN−2k
k

(
u1N−2k + �̃N−2k

)
= Ξ

[n]−k
k

(
u + n − k − 1, . . . , u + 1

2

) · Ξk(u) · Ξ [n]−k
k

(
u − 1

2 , . . . , u − n + k + 1
)

= Ξ
[n]−k−2
k+1

(
u + n − k − 1, . . . , u + 5

2

)
·
{([n] − k

0

)
Ξk+1

(
u + 3

2

)
Ξk+1

(
u + 1

2

)

+
([n] − k

1

)
Ξk+1

(
u + 3

2

)
Ωk+1

(
u + 1

2

)

+
([n] − k

2

)
Ωk+1

(
u + 3

2

)
Ωk+1

(
u + 1

2

)}

· {Ξk+1(u) + Ωk+1(u)
}

·
{([n] − k

0

)
Ξk+1

(
u − 1

2

)
Ξk+1

(
u − 3

2

)

+
([n] − k

1

)
Ξk+1

(
u − 1

2

)
Ωk+1

(
u − 3

2

)

+
([n] − k

2

)
Ωk+1

(
u − 1

2

)
Ωk+1

(
u − 3

2

)}

· Ξ [n]−k−2
k+1

(
u − 5

2 , . . . , u − n + k + 1
)

= Ξ
[n]−k−2
k+1

(
u + n − k − 1, . . . , u + 5

2

)
·
{([n] − k

1

)2

Ξk+1
(
u + 3

2

)
Ωk+1

(
u + 1

2

)
Ξk+1(u)Ωk+1

(
u − 1

2

)
Ξk+1

(
u − 3

2

)

+
([n] − k

2

)
Ωk+1

(
u + 3

2

)
Ωk+1

(
u + 1

2

)
Ξk+1(u)Ξk+1

(
u − 1

2

)
Ξk+1

(
u − 3

2

)

+
([n] − k

2

)
Ξk+1

(
u + 3

2

)
Ξk+1

(
u + 1

2

)
Ξk+1(u)Ωk+1

(
u − 1

2

)
Ωk+1

(
u − 3

2

)

+
([n] − k

)
Ξk+1

(
u + 3

2

)
Ωk+1

(
u + 1

2

)
Ωk+1(u)Ξk+1

(
u − 1

2

)
Ξk+1

(
u − 3

2

)

1
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+
([n] − k

1

)
Ξk+1

(
u + 3

2

)
Ξk+1

(
u + 1

2

)
Ωk+1(u)Ωk+1

(
u − 1

2

)
Ξk+1

(
u − 3

2

)}

· Ξ [n]−k−2
k+1

(
u − 5

2 , . . . , u − n + k + 1
)
.

Indeed, the sum of the exponents of Ξk+1 must be equal to N − 2k − 2, and the degree of Ωk+1
must be equal to 2. By Lemma 6.4, the first term in the braces is equal to

([n] − k

1

)2

Ωk+1
(
u + 3

2

)
Ξk+1

(
u + 1

2

)
Ξk+1(u)Ξk+1

(
u − 1

2

)
Ωk+1

(
u − 3

2

)
.

Moreover, by Lemma 6.6, the second and third terms are equal to

2

([n] − k

2

)
Ωk+1

(
u + 3

2

)
Ξk+1

(
u + 1

2

)
Ξk+1(u)Ξk+1

(
u − 1

2

)
Ωk+1

(
u − 3

2

)
.

Similarly, by Lemmas 6.7 and 6.4, the forth and fifth terms are equal to

2

([n] − k

1

)
Ξk+1

(
u + 3

2

)
Ωk+1

(
u + 1

2

)
Ξk+1(u)Ωk+1

(
u − 1

2

)
Ξk+1

(
u − 3

2

)

= 2

([n] − k

1

)
Ωk+1

(
u + 3

2

)
Ξk+1

(
u + 1

2

)
Ξk+1(u)Ξk+1

(
u − 1

2

)
Ωk+1

(
u − 3

2

)
.

Since
(
N−2k

2

) = ([n]−k
1

)2 + 2
([n]−k

2

) + 2
([n]−k

1

)
, we have

ΞN−2k
k

(
u1N−2k + �̃N−2k

)
=

(
N − 2k

2

)
Ξ

[n]−k−2
k+1

(
u + n − k − 1, . . . , u + 5

2

)
· Ωk+1

(
u + 3

2

)
Ξk+1

(
u + 1

2

)
Ξk+1(u)Ξk+1

(
u − 1

2

)
Ωk+1

(
u − 3

2

)
· Ξ [n]−k−2

k+1

(
u − 5

2 , . . . , u − n + k + 1
)

=
(

N − 2k

2

)
Ωk+1(u + n − k − 1)Ξ

[n]−k−1
k+1

(
u + n − k − 2, . . . , u + 1

2

)
· Ξk+1(u) · Ξ [n]−k−1

k+1

(
u − 1

2 , . . . , u − n + k + 1
)
Ωk+1(u − n + k + 1).

Here we used Lemma 6.4 for the second equality. This means the assertion. �
Applying Lemma 6.8 repeatedly, we have

ΞN
0

(
u1N + �̃N

)
=

(
N

)
Ω1(u + n − 1) · ΞN−2

1

(
u1N−2 + �̃N−2

) · Ω1(u − n + 1)

2
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=
(

N

2

)(
N − 2

2

)
Ω1(u + n − 1)Ω2(u + n − 2) · ΞN−4

2

(
u1N−4 + �̃N−4

)
· Ω2(u − n + 2)Ω1(u − n + 1)

= · · ·
=

(
N

2

)(
N − 2

2

)
· · ·

(
3

2

)
Ω1(u + n − 1)Ω2(u + n − 2) · · ·Ωn(u) · Ξ[n](u)

· Ωn(u) · · ·Ω2(u − n + 2)Ω1(u − n + 1).

Since Ξ[n](u) = 1
2Ω[n]+1, this means Proposition 6.1.

Thus we have proved Theorem 4.7, and hence Theorem 4.3 in the case that N is odd.

7. The case of the symplectic Lie algebras

Finally, we announce an analogue in the universal enveloping algebras of the symplectic
Lie algebras. Throughout this paper, we have studied a relation between two kind of non-
commutative determinants in U(oN). Applying a similar discussion to the symplectic case, we
obtain generators for the center of U(spN). These generators are expressed in terms of the
“column-permanent,” and we can easily calculate their eigenvalues on irreducible representa-
tions. We can also express these generators in terms of the “symmetrized permanent.”

The proof of this symplectic case is similar to that of the orthogonal case in this paper, but a
bit more difficult. Indeed, to prove Theorem 4.3, we only used commutation relations in Λ2N ⊗
U(o(S0)). However, to prove this symplectic case, we also need a “variable transformation” in
addition to similar commutation relations.

The details are discussed elsewhere [I3].
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