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Abstract

Let R be a ring. Based on indecomposable endofiniteR-modules and characters that we
introduced by Crawley-Boevey [Modules of finite length over their endomorphism ring
S. Brenner, H. Tachikawa (Eds.), Representations of Algebras and Related Topics, in: Londo
Soc. Lecture Note Ser., vol. 168, 1992, pp. 127–184], we define the endofinite spectrum
ring R. We compute this spectrum in some examples and study the behaviour of it under
functors, with the objective of understanding the endofinite spectrum of tame algebras. Furthe
we show that the endomorphism ring of a minimal point of the endofinite spectrum is a skew
Hence the minimal points belong to the Cohn spectrum, as studied by Ringel [The spectru
finite dimensional algebra, in: Proc. Conf. on Ring Theory, Dekker, New York, 1979, pp. 535–
which in turn is a subset of the endofinite spectrum. Finally, we introduce the normalised end
spectrum.
 2004 Elsevier Inc. All rights reserved.

1. Introduction: basic definitions and main results

Let R be an associative ring with 1. Denote by ModR the category of leftR-mo-
dules and by modR the category of finitely presented leftR-modules. For anR-module
M let �R(M) be its composition length. Theendolengthof an R-moduleM, denoted
by endol(M), is the length ofM considered as module over its endomorphism r
in the canonical way. A module of finite endolength is called anendofinitemodule.
A generic module is an indecomposable module of finite endolength but of infi
length.
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We recall from [4] that acharacterfor the category modR is a functionχ : modR → N0
which satisfies the following conditions:

(C1) χ(X � Y ) = χ(X) + χ(Y ) for all X andY in modR.
(C2) χ(X)+χ(Z) � χ(Y ) � χ(Z) for every exact sequenceX → Y → Z → 0 in modR.

The valueχ(R) is called thedegreeof the characterχ . A non-zero characterχ is
irreducibleif there do not exist charactersχ1 andχ2 both non-zero such thatχ = χ1 + χ2.
Given an endofinite leftR-moduleM, let

χM : modR → N0, X �→ χM(X) := �EndR(M) HomR(X,M)

be thecharacter of M, where the EndR(M)-module structure of HomR(X,M) is given in
the canonical way. Note thatour definition of the characterχM is dual to that of [4].

In [4] Crawley-Boevey has shown that the assignmentM �→ χM induces a one-to-on
correspondence between the irreducible characters for modR and the isomorphism class
of indecomposable endofiniteR-modules. This motivatesthe following definition.

Definition 1.1.

(1) We define the following partial order on the characters for modR. Let χ andχ ′ be
characters,

χ � χ ′ :⇐⇒ χ(X) � χ ′(X) for all finitely presentedR-modulesX.

(2) The partial order defined by(1) induces a partial order on the isomorphism classe
indecomposable endofiniteR-modules. LetM andM ′ be indecomposable endofini
R-modules,

M � M ′ :⇐⇒ χM � χM ′ .

(3) Define the set of all isomorphism classes of indecomposable endofiniteR-modules
with the partial order given by(2) to be theendofinite spectrumof the ringR, denoted
by Specend(R). The isomorphism classes of indecomposable endofinite module
thepointsof the endofinite spectrum.

Having given the main definitions, we now provide a short summary of the paper a
main results. In Section 2 we give dual definitions and compute the endofinite spect
the polynomial ring in one variable over a field and of the Kronecker algebra. In Sec
we are concerned with the behaviour of the endofinite spectrum along functors be
module categories and get the following result.

Theorem 1.2. LetF : ModS → ModR be a functor having the following properties:

(1) The functorF has a left adjointG and preserves direct limits.
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(2) The functorF induces an isomorphismEndS(M)/ rad→ EndR(FM)/ rad for every
indecomposable endofiniteS-moduleM.

ThenF sends every indecomposable endofiniteS-module to an indecomposable endo
nite R-module. Moreover, given an indecomposable endofiniteS-moduleM, we have
χFM(Y ) = χM(GY) for all finitely presentedR-modulesY . HenceM � N implies
FM � FN .

The next two sections are devoted to applying this result and obtaining inform
about the endofinite spectrum of tame algebras. In Section 4 we determine the end
spectrum of a finitely generated localisation of the polynomial ringk[T ] over an
algebraically closed fieldk. We consider the restriction of scalars for a ring epimorph
and show that itpreserves(see Definition 3.5) the endofinitespectrum. In the special ca
of a localisation of a principal ideal domainR, we find that the endofinite spectrum
the localisation is identified via restriction with afull subspectrum(see Definition 3.5)
of the endofinite spectrum ofR. Finally, we look at a finitely generated localisation
k[T ] and find out which points actually belong to this full subspectrum. In Sectio
we consider tame algebras using functors introduced by Crawley-Boevey [3].
functors are defined between the module category of a finitely generated localisa
the polynomial ringk[T ] and the module category of a tame algebra over the algebra
closed fieldk. We show

Corollary 1.3. Let Λ be a finite dimensional algebra of tame representation type
an algebraically closed fieldk. Then for every genericΛ-moduleG there is a finitely
generated localisationRG of the polynomial ringk[T ] such thatSpecend(RG) can be
identified with a subspectrum ofSpecend(Λ) that containsG as a point. Moreover, give
a natural numberd , then for almost all pointsM of dimensiond there exists a generi
moduleG such thatSpecend(RG) containsM.

In Section 6 we are concerned with the minimal points of the endofinite spectru
well as epimorphisms fromR to simple artinian rings. In [7] Ringel gives a one-to-o
correspondence between the isomorphism classes of indecomposable endofinite m
with a skew field as endomorphism ring and the equivalence classes of epimorphi
simple artinian rings. We show that the minimal points of the endofinite spectrum a
this form.

Another interesting analogy is found with respect to degeneration. Here one lo
modules of a fixed dimension and defines an order by degeneration. The degen
order implies our order on characters, and the inverse implication holds in severa
(see [10]).

In Section 7 we study characters normalised with respect to their degree and int
the correspondingnormalised endofinite spectrum. In this way, we recover Schofield
Sylvester module rank functions (see [8]) on which Crawley-Boevey’s character
based.
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2. Dual definitions and examples

We recall from [4] that forχ a character for modR, the dual characterDχ is a
character for modRop defined as follows. ForX a finitely presented leftRop-module let
P α−→ Q → X → 0 be a projective presentation ofX and define

Dχ(X) := χ(Q∗) − χ(P ∗) + χ(Cokerα∗), where(−)∗ = HomR(−,R).

ThenDDχ = χ and hence the assignmentχ �→ Dχ is a duality between the characters
modR and those for modRop. This duality induces a one-to-one correspondence betwe
the irreducible characters for modR and modRop and hence between the isomorphi
classes of indecomposable endofiniteR and Rop-modules. Furthermore, it holds th
DχM(X) = �EndR(M)(X ⊗R M), wheref ∈ EndR(M) operates byf · (x ⊗ m) := x ⊗
f (m).

Using the dual characters, we define another partial order on the isomorphism c
of indecomposable endofiniteR-modules.

Definition 2.1.

(1) LetM andM ′ be indecomposable endofiniteR-modules. Define

M �D M ′ :⇐⇒ DχM � DχM ′ .

(2) The set of all isomorphism classes of indecomposable endofiniteR-modules with the
partial order given by(1) is thedual endofinite spectrumof the ringR.

Remark 2.2. Because of the dualityD between the characters for modR and modRop and
the above one-to-one correspondence between the isomorphism classes of indecom
endofiniteR andRop-modules, we have that the endofinite spectrum ofR and the dua
endofinite spectrum ofRop are isomorphic as partially ordered sets. In the following,
will always consider the endofinite spectrum. In Example 2.3(3a) and (3b) we wi
that the endofinite spectrum of a ringR and the dual endofinite spectrum ofR, i.e., the
endofinite spectrum ofRop, will in general not be isomorphic to each other, although
points are in one-to-one correspondence.

In the following, we illustrate the endofinite spectrum by drawing the correspondi
Hasse diagram of the poset. This we will call thediagramof the endofinite spectrum.

Example 2.3. Let k be an algebraically closed field.

(1) R = k[T ]. The isomorphism classes of indecomposable finitely presentedk[T ]-
modules are represented by the torsion modulesMλ,n := k[T ]/(T − λ)n for λ ∈ k and
n ∈ N, and the torsion free modulek[T ]. By [4, 4.7 Examples (6)], the isomorphis
classes of indecomposable endofinitek[T ]-modules are represented by the finite len
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modulesMλ,n with λ ∈ k andn ∈ N, and the unique generic modulek(T ). We have tha
Endk[T ](Mλ,n) ∼= k[T ]/(T − λ)n =: Eλ,n and Endk[T ](k(T )) ∼= k(T ).

We compute

χMλ,n

(
k[T ]) = �Eλ,n (Mλ,n) = n,

χMλ,n (Mλ′,n′) =
{

�Eλ,n (0) = 0, if λ �= λ′,
�Eλ,n (Mλ,min(n,n′)) = min(n,n′), if λ = λ′,

χk(T )

(
k[T ]) = �k(T )

(
k(T )

) = 1,

χk(T )(Mλ,n) = �k(T )(0) = 0,

and get the following diagram of the endofinite spectrum ofk[T ]:

...
...

...
...

...

Mλ,n+1 • • • •
Mλ,n • • • •

...
...

...
...

. . . ...

Mλ,2 • • • •
Mλ,1 • • • •
k(T ) •

(2) R = k(1 · α⇒
β

· 2). The isomorphism classes of the indecomposable finitely prese

R-modules are represented by the:

– preprojective modules:Pn = (kn
fα

⇒
fβ

kn+1), n ∈ N0 with fα = (
I
0

)
, fβ = (0

I

)
;

– preinjective modules:Qn = (kn+1
gα

⇒
gβ

kn), n ∈ N0 with gα = (I,0), gβ = (0, I );

– regular modules:Rp,n,p ∈ P1(k), n ∈ N. These are of the form(kn
I⇒

Jλ,n

kn) for

p �= (0,1) and of the form(kn
J0,n

⇒
I

kn) for p = (0,1) with Jλ,n =
(

λ 1. . .
.. .

1
λ

)
.

The isomorphism classes of the indecomposable endofiniteR-modules are represented
the indecomposable preprojective, preinjective, and regular modules, and in addition

unique generic moduleG := (k(T )
id⇒ k(T )).

T ·
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EndR(G) ∼= k(T ), EndR(Pn) ∼= k, EndR(Qn) ∼= k, and

EndR(Rp,n) ∼= k[T ]/(T n
)
.

We get the following values for�EndR(M) HomR(X,M), whereX is specified in the left-
hand column andM is specified in the top row:

Pn Rp,n Qn G

Pm n + m max{0, n − m + 1} n 1
Rq,m 0 δp,q min{n,m} m 0
Qm 0 0 max{0,m − n + 1} 0

Hence we get the following diagram of the endofinite spectrum ofk(1 · α⇒
β

· 2):

...
...

...
...

...
...

• Qn+1

...
...

Rp,n+1 • • • • Qn

Pn • Rp,n • • • ...
...

Pn−1 • ...
...

...
. . . ...

• Q2

...
...

Rp,2 • • • • Q1

P1 • Rp,1 • • • • Q0

G •

P0 •

(3a)R = k(2 → 1 ← 3). The isomorphism classes of indecomposable finitely presente
R-modules and the isomorphism classes of indecomposable endofiniteR-modules are the
isomorphism classes of indecomposable finite length modules. From the AR-quiv
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whereX andM are specified in the table as in (2):

P2 I3

P1 I1

P3 I2

P1 P2 P3 I1 I2 I3

P1 1 1 1 1 0 0
P2 0 1 0 1 1 0
P3 0 0 1 1 0 1
I1 0 0 0 1 1 1
I2 0 0 0 0 1 0
I3 0 0 0 0 0 1

We get the diagram of the endofinite spectrum ofk(2 → 1 ← 3):

I1

P2 P3

P1 I2 I3

(3b)Rop ∼= k(2 ← 1 → 3). Dually we have the AR-quiver ofRop and again therefore th
dimensions of the homomorphism vector spaces HomRop(X,M):

P2 I1

P3 I3

P1 I2

P1 P2 P3 I1 I2 I3

P1 1 0 1 1 0 0
P2 0 1 1 0 1 0
P3 0 0 1 1 1 1
I1 0 0 0 1 0 1
I2 0 0 0 0 1 1
I3 0 0 0 0 0 1

We get the diagram of the endofinite spectrum ofk(2 ← 1 → 3):

I1 I2

P3

P1 P2 I3

We see that the endofinite spectrum ofR and the endofinite spectrum ofRop (the dual
endofinite spectrum ofR) are not isomorphic.
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3. Change of rings

We are interested in the question for which functorsF : ModS → ModR the endofinite
spectrum ispreserved(see Definition 3.5). Before we prove Theorem 1.2, we need s
lemmas. In the following we mean by the radical of a ring the Jacobson radical. LetR be
a ring andI � R a two sided ideal. Consider the projectionp :R → R/I . The restriction
functorp∗ : Mod(R/I) → ModR induces an isomorphism between Mod(R/I) and the full
subcategory of ModR of all R-modules such thatI · M = 0. We clearly have

Lemma 3.1. The functorp∗ induces for eachR/I -moduleM an order isomorphism o
submodule lattices.

In particular, the (semi)simple modules of ModR and Mod(R/ rad) correspond to eac
other since radR · M = 0 for each (semi)simpleR-moduleM. Therefore we have

Lemma 3.2. Let f :S → R be a ring homomorphism mapping the radical ofS to the
radical of R and suppose that the induced ring homomorphismf̄ :S/ rad→ R/ rad is an
isomorphism. If we considerX as anS-module by restriction, then

�S(X) = �R(X) for everyR-moduleX of finite length.

We will also use the following statement about indecomposable endofinite modul

Lemma 3.3 [4, Proposition 4.4].LetM be an indecomposable endofiniteR-module. Then
EndR(M) is local.

Since left adjoints preserve colimits and pseudo-cokernels, and module categor
locally finitely presented, we get directly from [5, Theorem 6.7] the following lemma.

Lemma 3.4. Let F : ModS → ModR be a functor between module categories with a
adjointG : ModR → ModS. Then the following are equivalent:

(1) The functorF preserves direct limits.
(2) The functorG preserves finitely presented modules.

Now we are ready to prove Theorem 1.2 from the introduction.

Proof of Theorem 1.2. The functorF preserves direct limits by assumption, andF

also preserves limits since it is a right adjoint. Moreover,F is coherent and therefor
preserves endofiniteness (see [6, Section 3]). Indecomposability of endofinite modules
is also preserved byF . For if we assume thatFM is decomposable, then there is
idempotente in EndR(FM) not equal to 0 or 1. By Lemma 3.3, EndS(M) is local and
hence EndS(M)/ rad∼= EndR(FM)/ rad is a skew field. Since in a skew field 0 and
are the only idempotents, we have thatē ∈ EndR(FM)/ rad is 0 or 1, i.e., one ofe or
1 − e lies in rad(EndR(FM)). It follows that 1− e or e is invertible; a contradiction
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to e not equal to 0 or 1 since 1 is the only invertible idempotent. LetM be an inde-
composable endofiniteS-module andY a finitely presentedR-module. By Lemma 3.4
GY is a finitely presentedS-module. Using Lemma 3.2 and the canonical isom
phism HomR(Y,FM) → HomS(GY,M), we getχFM(Y ) = �EndR(FM) HomR(Y,FM) =
�EndS(M) HomS(GY,M) = χM(GY). If N is an indecomposable endofiniteS-module such
thatM � N (i.e., χM(X) � χN(X) for all finitely presented leftS-modulesX), then we
haveχFM(Y ) = χM(GY) � χN(GY) = χFN(Y ), i.e.,FM � FN . �
Remark. If every finitely presentedS-moduleX is isomorphic to oneGY for some finitely
presentedR-moduleY , then we also have thatFM � FN impliesM � N .

Definition 3.5.

(1) We say that a functorF : ModS → ModR preserves the endofinite spectrumif, for
any indecomposable endofiniteS-modulesM andN , we have
(a) FM is indecomposable endofinite.
(b) FM ∼= FN impliesM ∼= N .
(c) M � N impliesFM � FN .
In this case the spectrum ofS is identified viaF with a subspectrumof the spectrum
of R.

(2) If in addition we have
(d) FM � FN impliesM � N ,
then the spectrum ofS is identified viaF with a full subspectrumof the spectrum ofR.

4. Localisation

In this section we are mainly interested in the endofinite spectrum of a finitely gene
localisation of the polynomial ring over an algebraically closed fieldk. Let us first start with
a more general setup. Letf :R → S be a ring homomorphism. Consider the restriction
scalars

f∗ : ModS → ModR, M �→ M|R wherer · m := f (r) · m for r ∈ R, m ∈ M,

and the extension of scalars

f ∗ : ModR → ModS, M �→ S ⊗R M.

The restriction functorf∗ is faithful and additive and hasf ∗ as a left adjoint. We begi
with some preliminary results.

Lemma 4.1 [9, XI Proposition 1.2].The following properties of a ring homomorphis
f :R → S are equivalent:

(1) The ring homomorphismf is a ring epimorphism.
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(2) The compositionf ∗ ◦ f∗ is naturally equivalent toidModS .
(3) The restriction functorf∗ is full.

Lemma 4.2. Letf :R → S be a ring epimorphism. Then

(1) The restriction functorf∗ preserves the endolength.
(2) Let M be anS-module. Thenf∗M is indecomposable if and only ifM is indecom-

posable.

Proof. The assertions follow from the isomorphism EndS(M) → EndR(f∗M), which
mapsα to f∗α, and using idempotents.�
Corollary 4.3. Let f :R → S be a ring epimorphism. Then the restriction of scal
f∗ : ModS → ModR preserves the endofinite spectrum.

Proof. Sincef∗ is fully faithful, it induces an embedding of the sets of isomorph
classes, and we have the canonical isomorphism EndS(M) → EndR(f∗M). Furthermore
f ∗ is a left adjoint off∗, andf∗ preserves direct limits. Thus by Theorem 1.2, we h
thatf∗ preserves the endofinite spectrum.�

Hence for f :R → S a ring epimorphism we have that the endofinite spect
of S is identified via restriction with a subspectrum of SpecendR. One should ask
whether the subspectrum is full, and if one knows the endofinite spectrum ofR, which
isomorphism classes of indecomposable endofiniteR-modules are actually in the image
the embedding functorf∗ : ModS → ModR. We will answer this questions in the case
a finitely generated localisation of the polynomial ringk[T ] over an algebraically close
field k.

Let R be a commutative ring andΣ ⊆ R be a multiplicatively closed subset. Th
localisation homomorphismϕ :R → R[Σ−1] is an epimorphism. We will see that
the case of a localisationϕ :R → R[Σ−1] of a principal ideal domainR, the endofinite
spectrum ofR[Σ−1] is identified with a full subspectrum of the endofinite spectrum oR.

Lemma 4.4. Let ϕ :R → R[Σ−1] be a localisation of a principal ideal domainR. Then
ϕ∗ preserves simple modules which are torsion.

Proof. Let M be a simpleR[Σ−1]-module. Consider the injective envelopeM ↪→ I

of M. Sinceϕ :R → R[Σ−1] is a flat ring epimorphism,ϕ∗I is injective by [9, XI,
Proposition 3.11] and indecomposable by Lemma 4.2(2); hence it is a Prüfer modu
i.e., artinian and uniserial. The simple socle is the only submodule with a skew fie
endomorphism ring. By Schur’s lemma, EndR(ϕ∗M) ∼= EndR[Σ−1](M) is a skew field, and
soϕ∗M is simple. �
Lemma 4.5. Let ϕ :R → R[Σ−1] be a localisation of a principal ideal domainR. Then
every finitely presentedR[Σ−1]-module is up to isomorphism of the formϕ∗X for some
finitely presentedR-moduleX.
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Proof. Let Y be an indecomposablefinitely presentedR[Σ−1]-module. Note thatR[Σ−1]
is again a p.i.d. IfY is torsion free, thenY is free, and we haveY ∼= R[Σ−1] ∼= ϕ∗R. If
Y is torsion, thenY ∼= R[Σ−1] · y ∼= R[Σ−1]/ann(y) is artinian and noetherian, hence
finite length. By Lemma 4.4, we have that the restrictionϕ∗Y is again of finite length
hence finitely presented, sinceR is left noetherian. By Lemma 4.1(2), we have th
ϕ∗ϕ∗Y ∼= Y . �
Remark. It is not clear to us for which rings beside the principal ideal domains the pro
that the localisation functorϕ∗ : modR → modR[Σ−1] is dense holds.

By the remark after the proof of Theorem 1.2, we have that for a principal ide
domainR, the endofinite spectrum of a localisationR[Σ−1] is identified via restriction
with a full subspectrum of the endofinite spectrum ofR. If one knows the points in
the image of the restriction functorϕ∗ : ModR[Σ−1] → ModR, then one can conclud
SpecendR[Σ−1] from SpecendR.

For a finitely generated localisation of the polynomial ringk[T ] with k algebraically
closed, we will now answer the question of which points of the endofinite spectrum ofk[T ]
(computed in Example 2.3(1)) lie in the image of the embeddingϕ∗ : Modk[T ][Σ−1] →
Modk[T ]. A finitely generated localisation here means thatΣ is finitely generated; henc
the localisation is of the formk[T ,f −1] for a non-zerof ∈ k[T ]. The isomorphism classe
of indecomposable endofinitek[T ]-modules are represented by the finite length mod
Mλ,n := k[T ]/(T − λ)n whereλ ∈ k and n ∈ N, and the unique generic modulek(T ).
Let f = (T − λ1) · · · (T − λm). From the universal property of the localisation we h
that ak[T ]-module is in the image ofϕ∗ if and only if f is invertible in End(M). This is
the case if and only ifT − λi is invertible in End(M) for all i = 1, . . . ,m. Thusk(T ) is
clearly in Imϕ∗, and the modulesMλ,n with n ∈ N are in Imϕ∗ if and only if λ �= λi for
all i = 1, . . . ,m. This is since we can writeT − λi = (T − λ) + (λ − λi) ∈ End(Mλ,n) ∼=
k[T ]/(T −λ)n. Using that End(Mλ,n) is a local ring, thatT −λ is nilpotent and thatλ−λi

is zero or invertible gives the assertion. Hence we get the following proposition.

Proposition 4.6. The endofinite spectrum of a finitely generated localisationk[T ,f −1]
of the polynomial ringk[T ] over an algebraically closed fieldk is identified via
restriction with a full subspectrum of the endofinite spectrum ofk[T ]. More precisely,
if f = (T − λ1) · · · (T − λm) with λi ∈ k is a factorisation off in linear factors, then
Specend(k[T ,f −1]) is identified with the full subspectrum ofSpecend(k[T ]) consisting of
all points exceptMλ1,n, . . . ,Mλm,n with n ∈ N.

Hence the diagram of Specend(k[T ,f −1]) is obtained from Specend(k[T ]) by removing
finitely many branches.

5. Tame algebras

Let Λ be a finite dimensional algebra over an algebraically closed fieldk. Recall that
Λ is of tame representation typeif for all d ∈ N there are a finite number of(Λ, k[T ])-
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bimodulesM1, . . . ,Mn which are free of rankd ask[T ]op-modules, and such that eve
indecomposableΛ-module of dimensiond is isomorphic toMi ⊗k[T ] k[T ]/(T − λ) for
some 1� i � n andλ ∈ k.

We will use the following theorem from Crawley-Boevey [3] to study the endofi
spectrum of a tame algebra over an algebraically closed fieldk.

Theorem 5.1 [3, Introduction].If Λ is a finite dimensional algebra of tame representat
type over an algebraically closed fieldk, then for every genericΛ-moduleG we can choose
a (Λ,RG)-bimoduleMG such that

(1) RG is a finitely generated localisation ofk[T ]. As anR
op
G -moduleMG is free of rank

equal to the endolength ofG. If KG is the quotient-field ofRG, then

MG ⊗RG KG
∼= G.

(2) The functorMG ⊗RG − : ModRG → ModΛ preserves isomorphism classes, indeco
posabilityand Auslander–Reiten sequences.

(3) For each natural numberd almost all indecomposableΛ-modules of dimensiond
arise asMG ⊗RG RG/(r) for some generic moduleG and some non-zeror ∈ RG.

We want to show that the functors from this theorem preserve the endofinite spe
by applying Theorem 1.2. Recall that by the radical of a ring we shall mean the Jacob
radical.

Lemma 5.2. Let f :R → S be a ring homomorphism that reflects units, and let the rinS

be local. Thenf maps the radical ofR to the radical ofS and induces a monomorphis
f̄ :R/ rad→ S/ rad.

Proof. For a local ring the radical consists of all the non-invertible elements, and
the condition thatf reflects units we have thatf maps non-invertible elements to no
invertible elements. Hence we get the induced mapf̄ :R/ rad→ S/ rad. To see that thi
is a monomorphism, letf (r) be in radS. Then for allx ∈ R we have thatf (1 + xr) =
1+ f (x)f (r) is a unit; hence 1+ xr is a unit, sor ∈ radR. �
Lemma 5.3 [3, 4.2 Lemma].Let f :R → S be a surjective ring homomorphism th
reflects units. Then f maps the radical ofR to the radical ofS and induces an isomorphis
f̄ :R/ rad→ S/ rad.

Since we will deal with endomorphism rings, we have to show that certain fun
reflect isomorphisms.

Lemma 5.4. Let f :R → S be a ring epimorphism. Consider the restriction of scal
f∗ : ModS → ModR. Thenf∗ reflects isomorphisms.

Proof. By Lemma 4.1(2),f ∗ ◦ f∗ is naturally equivalent to idModS , which of course
reflects isomorphisms. Thusf∗ also reflects isomorphisms.�
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Lemma 5.5. Let f :R → S be a ring epimorphism,Γ a ring andM a (Γ,R)-bimodule.
Consider the functorsM ⊗R − : ModR → ModΓ and(M ⊗R S)⊗S − : ModS → ModΓ .
If M ⊗R − reflect isomorphisms, then(M ⊗R S) ⊗S − reflects isomorphisms too.

Proof. The assertion follows from Lemma 5.4, since(M ⊗R S) ⊗S − is naturally
equivalent toM ⊗R − ◦ f∗. �
Remark 5.6. Let R be a ring andM a realisationin the sense of [3, 5.1] such thatM ⊗R −
reflects isomorphisms. LetM ′ be arefinementof M, that is, a realisationM ⊗R R′ over a
finitely generated localisationR′ of R (see again [3, 5.1]). Then from the previous lem
we immediately have thatM ′ ⊗R′ − reflects isomorphisms too.

The following two propositions provide additional properties of Crawley-Boevey
functors, which might be of independent interest. Note that the first proposition is
used in the sequel. For the definitions ofminimal bocsesBi = (Bi,Wi), the category o
proper(Bi,K)-bimodules Modp(Bi ,K), and the map(1, ε) with its left inverse(1,ω),
we refer the reader to [3] and [2].

Proposition 5.7. The functorsMG ⊗RG − : ModRG → ModΛ from Crawley-Boevey’
theorem reflect isomorphisms.

Proof. From [3, 3.5 Theorem] one gets functorsTi ⊗Bi − : ModBi → ModΛ with the
property that ifK/k is a field extension, then there exist functorsFK

i : Modp(Bi ,K) →
Mod(Λ,K) which reflect isomorphisms and whose composition

Mod(Bi,K)
(1,ε)−−−→ Modp(Bi ,K)

FK
i−−→ Mod(Λ,K)

with (1, ε) is naturally isomorphic toTi ⊗Bi −. Let K = k, then, sinceBi and Λ are
k-algebras, we obtain the following commutative diagram:

ModBi
id

∼= Mod(Bi, k)

id

(1,ε)

Modp(Bi , k)

(1,ω)

F k
i

Mod(Λ, k) ∼=
id

ModΛ

Mod(Bi, k).

Since (1, ε) has a left inverse(1,ω), (1, ε) reflects isomorphisms. It follows tha
Ti ⊗Bi − reflects isomorphisms too. One getsMG ⊗RG − from a common refinemen
MG overRG of certainTi (see the proof of [3, 5.4 Theorem]). From Remark 5.6 we kn
thatMG ⊗RG − also reflects isomorphisms.�
Proposition 5.8. The functorsMG ⊗RG − : ModRG → ModΛ from Crawley-Boevey’
theorem induce isomorphismsEndRG(N)/ rad→ EndΛ(MG ⊗R N)/ rad for everyRG-
moduleN with EndΛ(MG ⊗RG N) local.
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Proof. Again we have to look at the construction of the functors and to use the
inverse(1,ω) of (1, ε). As above,(1, ε) reflects isomorphisms, and(1,ω) reflects
isomorphisms sinceω is a reflector by definition (see [2]). We consider again t
commutative diagram in the proof of Proposition 5.7 and get for aBi -moduleX an induced
diagram which is commutative up to natural isomorphisms:

EndBi
(X)

id

(1,ε)

Ti⊗Bi
−

Endp(Bi ,k)

(
(1, ε)(X)

)
(1,ω)

F k
i

EndΛ(Ti ⊗Bi X)

EndBi
(X).

Let N be anRG-module such that EndΛ(MG ⊗RG N) is local. SinceMG is a refinemen
of Ti , we have thatMG⊗RG − is naturally equivalent toTi ⊗Bi −◦f∗ wheref :Bi → RG is
a finitely generated localisation. Hence, if we setX = f∗N , then EndΛ(Ti ⊗Bi X) is local.
We know thatFk

i and(1,ω) are full and reflect isomorphisms; hence from Lemma 5.3
get induced isomorphisms modulo the radical. By Lemma 5.2,Fk

i ◦ (1, ε) maps radical to
radical and hence(1, ε) also does. So we get the following diagram, again commuta
up to natural isomorphisms:

EndBi
(X)/ rad

id

(1,ε)

Ti⊗Bi
−

Endp(Bi ,k)

(
(1, ε)(X)

)
/ rad

(1,ω)∼=

Fk
i

∼=
EndΛ(Ti ⊗Bi X)/ rad

EndBi
(X)/ rad.

This gives the desired isomorphism, since for the localisationf :Bi → RG we have the
isomorphism EndRG(N)

f∗−→∼= EndBi (f∗N). �
Lemma 5.9. Let Λ,R be rings andM a (Λ,R)-bimodule that is free as anRop module.
Then the functorM ⊗R − : ModR → ModΛ preserves endofiniteness. Moreover, forX an
endofiniteR-module we have

endol(M ⊗R X) � rk(MR) · endol(X). (∗)

Proof. Since the functorM ⊗R − induces a ring homomorphism EndR(X) →
EndΛ(M ⊗R X) and we have an isomorphismM ⊗R X ∼= Xrk(MR) as EndR(X)-modules,
we get endol(M ⊗R X) � �EndR(X)(M ⊗R X) = rk(MR) · �EndR(X)(X). �
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Remark 5.10. In the special situation that we have in Crawley-Boevey’s theorem, on
show that equality holds in(∗) for X an indecomposable endofiniteR-module.

Proposition 5.11. The functorsMG ⊗RG − : ModRG → ModΛ from Crawley-Boevey’
theorem preserve the endofinite spectrum.

Proof. The functorMG ⊗RG − preserves isomorphism classes and indecomposa
by Theorem 5.1. By Lemma 5.9,MG ⊗RG − preserves endofiniteness. So for ev
indecomposableRG-module N of finite endolength, EndΛ(MG ⊗RG N) is local, and
we get an induced algebra isomorphism EndRG(N)/ rad→ EndΛ(MG ⊗RG N)/ rad by
Proposition 5.8. The functor HomR(MG,R) ⊗Λ − : ModΛ → ModR is a left adjoint of
MG ⊗RG −, and moreoverMG ⊗RG − preserves direct limits. From Theorem 1.2 we
that the functorMG ⊗RG − preserves the endofinite spectrum.�

Hence we get Corollary 1.3 from the introduction.

Example 5.12. The Kronecker algebraΛ = k(1 · α⇒
β

· 2). We have the unique genericΛ-

moduleG := k(T )
id⇒
T ·

k(T ) and thus the functor

G ⊗k[T ] − : Modk[T ] → ModΛ.

We consider whichΛ-modules are assigned to the endofinitek[T ]-modules:

G ⊗k[T ] k(T ) ∼=
(
k(T )

id⇒
T ·

k(T )
)
,

G ⊗k[T ] Mλ,n
∼=

(
Mλ,n

id
⇒
T ·

Mλ,n

) ∼=
(
kn I⇒

Jλ,n

kn
)
.

Thus the genericΛ-module and all regularΛ-modules exceptkn
J0,n

⇒
I

kn with n ∈ N are

images of endofinitek[T ]-modules, and the diagrams in Example 2.3 show that the o
relation is actually being preserved. In this example, we also have thatFM � FN implies
M � N for M andN indecomposable endofiniteΛ-modules.

6. Minimal points and epimorphisms to simple artinian rings

In [7] Ringel studies the Cohn spectrum, a generalisation of the prime spectrum
introduced by Cohn in [1]. Ringel gives a one-to-one correspondence between the
of this spectrum—the equivalence classes of epimorphisms to simple artinian ri
and the isomorphism classes of indecomposable endofinite modules with a skew
endomorphism ring. We show that the minimal points of the endofinite spectrum are
form (Corollary 6.4). Again, by the radical of a ring we mean the Jacobson radical
following lemma is well-known.
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Lemma 6.1. LetR be a ring such thatR/ rad is semisimple andM anR-module. ThenM
is semisimple if and only ifradR · M = 0.

Lemma 6.2. Let M be an indecomposable endofinite module. ThenM is semisimple ove
its endomorphism ring if and only if the endomorphism ring ofM is a skew field.

Proof. Let EndR(M) =: D be a skew field. Then as aD-module,M ∼= Dd for some
d ∈ N; henceM is semisimple over its endomorphism ring. Now letE := EndR(M)

andM be semisimple overE. We have that radE · M = 0 and hence radE ⊆ annE(M).
But since annE(M) = 0, radE is also zero. HenceE is a skew field, since it is local b
Lemma 3.3. �
Proposition 6.3. Let M be an indecomposable endofiniteR-module. Then there exists a
indecomposable endofiniteR-moduleN with a skew field as endomorphism ring such t
N � M.

Proof. We get theR-module N inductively by reducing the endolength. SetE0 :=
EndR(M). We know thatE0/ rad is a skew field, so semisimple. IfM is not semisimple
as anE0-module, then setN1 := radE0 · M. We have 0� N1 � M, the first inequality
by Lemma 6.1 and the second inequality by Nakayama’s lemma. We remark thN1
is a submodule ofM also as anR-module and that we have a ring homomorphi
E0 = EndR(M) → EndR(rad(EndR(M)) · M) = EndR(N1) =: E1, since rad(EndR(M))

is an ideal of EndR(M). Therefore we have�E1 HomR(X,N1) � �E0 HomR(X,N1) �
�E0 HomR(X,M) for all finitely presentedR-modulesX, and in particular, forX = R,
we have endol(N1) < endol(M). HenceχN1 < χM . Crawley-Boevey has shown in [4
that every character is a sum of irreducible characters. Now choose one of the irred
summands ofχN1, and letM1 be the corresponding irreducible endofiniteR-module. Of
course, endol(M1) < endol(M) andχM1 < χM . SinceM is of finite endolength, we wil
get after fewer than endol(M) steps ani ∈ N such thatN := Mi is semisimple as a
EndR(N)-module. Hence by Lemma 6.2, EndR(N) is a skew field. �
Corollary 6.4. The minimal points of the endofinite spectrum of a ringR have a skew field
as endomorphism ring.

In the special cases of left artinian rings and Artin algebras we get more.

Lemma 6.5. LetR be a left artinian ring. Then the endofinite simple modules are pairw
not comparable.

Proof. Let S and S′ be non-isomorphic endofinite simpleR-modules. Since simpl
modules over left artinian rings are always finitely presented, we computeχS(S) = 1 =
χS ′(S′) andχS(S′) = 0 = χS ′(S). HenceS andS′ are not comparable.�
Proposition 6.6. Let R be a left artinian ring. LetM be an indecomposable endofin
R-module andS an endofinite simple submodule. ThenS � M.
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Proof. Let X be a finitely presentedR-module. IfX is simple, then we have

χS(X) = �EndR(S) HomR(X,S) =
{

1, if X ∼= S,

0, if X � S.

So we getχS(X) � χM(X) since HomR(X,S) ⊆ HomR(X,M). Of course, we have
χS(X) � χM(X) also for X semisimple. Now letX be an arbitrary finitely presente
R-module. Consider topX = X/ radR X. SinceR is left artinian, we have thatR/ rad is
semisimple. By Lemma 6.1, we get from radR · topX = 0 that topX is semisimple, henc
χS(topX) � χM(topX). Since HomR(topX,M) ⊆ HomR(X,M), we haveχM(topX) �
χM(X). Every morphism fromX to a simple module factors through the top ofX,
hence HomR(topX,S) ∼= HomR(X,S), soχS(X) = χS(topX). Finally, we haveχS(X) �
χM(X). �
Remark. For an Artin R-algebraΛ we have that the endomorphism ring of a fin
lengthΛ-moduleM is again an ArtinR-algebra; hence everyΛ-module of finite length is
endofinite.

Corollary 6.7. The minimal points of the endofinite spectrum of an Artin algebraΛ are
precisely the isomorphism classes of simpleΛ-modules.

We now turn our attention to the one-to-one correspondence between the points
endofinite spectrum having a skew field as endomorphism ring and the equivalence
of epimorphisms to simple artinian rings.

Lemma 6.8. Let R,D be rings andM,M ′ be (R,D)-bimodules. Then the functo
HomR(−,HomD(M,M ′)) and HomD(M,HomR(−,M ′)) that map frommodR to the
category of(EndD(M ′),EndD(M))-bimodules are naturally isomorphic.

Proof. We clearly have an isomorphism forX = R. Left exactness of both functors give
from the exact sequenceRm → Rn → X → 0, the natural isomorphism by the Fiv
lemma. �
Lemma 6.9. Let E be a local ring andM an (R,E)-bimodule such thatM is semisimple
artinian as anE-module. LetS := EndE(M). Then we have

�E HomR(X,M) = �S HomR(X,S) for all X ∈ modR.

Proof. Let ϕ :E → E/ rad=: D be the canonical projection.D is a skew field sinceE
is local. SinceME is semisimple, it is also aD-module, and�D(M) = �E(M) < ∞ by
Lemma 3.1. Further, we have�D(Y ) = �E(Y ) for all D-modulesY of finite length by
Lemma 3.2. From the previous lemma we get isomorphisms of rightS-modules

HomR

(
X,EndD(M)

) ∼= HomD

(
M,HomR(X,M)

)
for all X ∈ modR.
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SinceMD is a progenerator andS = EndE(M) ∼= EndD(M), we have a Morita equiv
alence HomD(M,−) : ModDop → ModSop. Hence this functor preserves composit
length. SinceS = EndE(M) ∼= EndD(M) ∼= Mat�D(M)(D), we have�SS < ∞, hence
�D HomR(X,M) = �S HomD(M,HomR(X,M)) = �S HomR(X,S) < ∞ for all X ∈
modR. Finally, we have�S HomR(X,S) = �D HomR(X,M) = �E HomR(X,M) for all
finitely presentedR-modulesX by Lemma 3.2. �
Definition 6.10. Let f :R → S be a homomorphism to a simple artinian ring. Define
character off

χf : modR → N0, X �→ χf (X) := �S HomR(X,S).

One verifies that this definition gives a character for modR.

Recall that two ring homomorphismsf1 :R → S1 andf2 :R → S2 to simple artinian
rings are equivalent, denoted byf1 ∼ f2, if there exists a ring isomorphismϕ :S1 → S2
such thatϕ ◦ f1 = f2.

Remark. We haveχf (R) = �SS; furthermore,f1 ∼ f2 impliesχf1 = χf2.

Following Ringel’s assignment from [7, 2.1 Proposition], we may reformulate his r
involving the characters of the epimorphisms to simple artinian rings as follows.

Proposition 6.11. LetM be an endofiniteR-module. Then the following are equivalent:

(1) The endomorphism ring ofM is a skew field.
(2) There exists a ring epimorphismf :R → S to a simple artinian ring such tha

χf = χM .

Proof. (1) ⇒ (2). LetD := EndR(M) andd := endolM. We have thatS := EndD(M) ∼=
Matd(D) is simple artinian. Now letf :R → S be the ring homomorphism that maps
r ∈ R to the left-multiplication mapm �→ r · m. Of course,M is free, and so semisimpl
as aD-module. From Lemma 6.9 withE = D we haveχf (X) = �S HomR(X,S) =
�E HomR(X,M) = χM(X) for all finitely presentedR-modulesX.

(2) ⇒ (1). Since Ringel’s assignment (that is, choosing the unique simpleS-module
and restricting it by the ring epimorphism to anR-module) gives an endofiniteR-module
with a skew field as endomorphism ring, it must be isomorphic toM. �

Since the endofiniteR-modules with a skew field as endomorphism ring are indec
posable, the points of the Cohn spectrum also appear in the endofinite spectrum. O
ask whether the partial order by specialisation in the Cohn spectrum and by charact
in the endofinite spectrum imply each other ornot. The answer is that in general there
no implication. A pair of indecomposable endofiniteR-modules with skew fields as en
domorphism rings and ordered by charactersdoes in general not imply a specialisatio
This can be seen by the endofinite spectrum of the Kronecker algebra that we com
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in Example 2.3(2), since an implication would contradict the theory of the Cohn spe
of finite dimensional hereditary algebras such developed by Ringel in [7]. To see
specialisation does not in general imply an order by characters, we first recall that
ple artinian ringS is of the form Matd (D) for somed ∈ N and some skew fieldD, hence
χf (R) = �SS = d . Now in [7, 1.6 Examples] Ringel discusses two examples of specia
tions from an epimorphismδ :R → Matd (D) to an epimorphismε :R → Mate(E), in one
case withd = 1 ande = 2 and in the other case withd = 2 ande = 1. This shows that in
general there is no implication to eitherχε � χδ or χε � χδ.

7. The normalised endofinite spectrum

In this section we considernormalised characters, i.e., we normalise our characte
by dividing them by their degree. Here we recover Schofield’s Sylvester module
functions (see [8]) on which Crawley-Boevey’s characters are based. One verifie
the analogous partial order on the normalised characters induces a partial order
isomorphism classes of indecomposable endofiniteR-modules. In this way we obtain th
normalised endofinite spectrum.

In the normalised situation the counterexamples from the end of the previous s
have been repaired. For example, for the Kronecker algebra we get the following di
of thenormalised endofinite spectrum:

Rp,1 • • • •
Rp,2 • • • •
Rp,3 • • • . . . •

...
...

...
...

...

· · · • • • • • • • · · ·
· · · P2 P1 P0 G Q0 Q1 Q2 · · ·

This diagram coincides with Ringel’s theory of the Cohn spectrum. We are hopeful th
can show that in the normalised case the order by characters and the order by specialisat
imply each other. Another interesting aspectin the normalised situation is that we ha
symmetry between the ring and its opposite:

Proposition 7.1. The normalised endofinite spectrum and its dual are isomorphi
partially ordered sets.

Proof. For a characterχ let χ be the normalised version, i.e.,χ(X) := χ(X)/χ(R) for
X ∈ modR. Note thatχ(Rn) = n. Now letRm α−→ Rn → X → 0 be a free presentation o
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X. We have thatDχ(X) = n − m + χ(Cokerα∗). So if we have two charactersχ andχ ′
with χ � χ ′, then we also haveDχ � Dχ ′. �

The theory for the endofinite spectrum developed in Sections 3–5 can easily be v
for the normalised endofinite spectrum: in Theorem 1.2 one has to add the assumpt
the functorF preserves the endolength up to a constant factor. By Lemma 4.2(1), we
that for a ring epimorphismf the restriction functorf∗ has this property, so Corollary 4
remains unchanged. For the proof of Corollary 1.3 we have to check in addition th
functorsMG ⊗RG − : ModRG → ModΛ from Crawley-Boevey’s theorem also have th
property. This is true, however, as noted in Remark 5.10.
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