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Abstract

Let R be a ring. Based on indecomposable endofirtenodules and characters that were
introduced by Crawley-Boevey [Modules of finite length over their endomorphism ring, in:
S. Brenner, H. Tachikawa (Eds.), Representations of Algebras and Related Topics, in: London Math.
Soc. Lecture Note Ser., vol. 168, 1992, pp. 127-184], we define the endofinite spectrum of the
ring R. We compute this spectrum in some examples and study the behaviour of it under certain
functors, with the objective of understanding the endofinite spectrum of tame algebras. Furthermore,
we show that the endomorphism ring of a minimal point of the endofinite spectrum is a skew field.
Hence the minimal points belong to the Cohn spectrum, as studied by Ringel [The spectrum of a
finite dimensional algebra, in: Proc. Conf. on Ring Theory, Dekker, New York, 1979, pp. 535-598],
which in turn is a subset of the endofinite spectrum. Finally, we introduce the normalised endofinite
spectrum.

0 2004 Elsevier Inc. All rights reserved.

1. Introduction: basic definitions and main results

Let R be an associative ring with 1. Denote by MBdhe category of leftR-mo-
dules and by mo#& the category of finitely presented le®&-modules. For arkR-module
M let £g(M) be its composition length. Thendolengthof an R-module M, denoted
by endo(M), is the length ofM considered as module over its endomorphism ring
in the canonical way. A module of finite endolength is called eardofinitemodule.
A generic module is an indecomposable module of finite endolength but of infinite
length.
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We recall from [4] that @haracterfor the category mo® is a functiony : modR — Ny
which satisfies the following conditions:

(Cl) x(XUY)=x(X)+ x() forall X andY in modR.
(C2) x(X)+x(Z) = x(Y) > x(Z) for every exact sequencé— Y — Z — 0in modR.

The value x (R) is called thedegreeof the charactery. A non-zero charactey is
irreducibleif there do not exist charactegg and 2 both non-zero such that = x1 + x».
Given an endofinite lefR-moduleM, let

xm:MOdR — Ng, X+ xp(X) = LEndz (M) HOMR (X, M)

be thecharacter of M where the Eng(M)-module structure of Hog(X, M) is given in
the canonical way. Note thaur definition of the charactey,, is dual to that of [4].

In [4] Crawley-Boevey has shown that the assignmént> x,, induces a one-to-one
correspondence between the irreducible characters forfhaodl the isomorphism classes
of indecomposable endofinife-modules. This motivatethe following definition.

Definition 1.1.

(1) We define the following partial order on the characters for ®otet x and x’ be
characters,

!

x<x = xX) <x'(X)forallfinitely presentedR-modulesX.

(2) The partial order defined byl) induces a partial order on the isomorphism classes of
indecomposable endofini®®-modules. LetM and M’ be indecomposable endofinite
R-modules,

M<M = xu<xw.

(3) Define the set of all isomorphism classes of indecomposable endatinitedules
with the partial order given b§2) to be theendofinite spectruraf the ringR, denoted
by Speg,«R). The isomorphism classes of indecomposable endofinite modules are
thepointsof the endofinite spectrum.

Having given the main definitions, we now provide a short summary of the paper and its
main results. In Section 2 we give dual definitions and compute the endofinite spectrum of
the polynomial ring in one variable over a field and of the Kronecker algebra. In Section 3
we are concerned with the behaviour of the endofinite spectrum along functors between
module categories and get the following result.

Theorem 1.2. Let F: Mod S — Mod R be a functor having the following properties

(1) The functorF has a left adjoiniG and preserves direct limits.
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(2) The functorF induces an isomorphistnds(M)/rad— Endg (FM)/rad for every
indecomposable endofinifemoduleM .

Then F sends every indecomposable endofisiodule to an indecomposable endofi-
nite R-module. Moreover, given an indecomposable endofifiitaodule M, we have
xrm(Y) = xm(GY) for all finitely presentedR-modulesY. Hence M < N implies
FM < FN.

The next two sections are devoted to applying this result and obtaining information
about the endofinite spectrum of tame algebras. In Section 4 we determine the endofinite
spectrum of a finitely generated localisation of the polynomial rki@] over an
algebraically closed field. We consider the restriction of scalars for a ring epimorphism
and show that ipreservegsee Definition 3.5) the endofinigpectrum. In the special case
of a localisation of a principal ideal domaiR, we find that the endofinite spectrum of
the localisation is identified via restriction withfall subspectrun{see Definition 3.5)
of the endofinite spectrum ak. Finally, we look at a finitely generated localisation of
k[T] and find out which points actually belong to this full subspectrum. In Section 5
we consider tame algebras using functors introduced by Crawley-Boevey [3]. These
functors are defined between the module category of a finitely generated localisation of
the polynomial ringc[7'] and the module category of a tame algebra over the algebraically
closed fieldk. We show

Corollary 1.3. Let A be a finite dimensional algebra of tame representation type over
an algebraically closed field. Then for every generict-moduleG there is a finitely
generated localisatiorRs of the polynomial ringk[7] such thatSpeg,(Rs) can be
identified with a subspectrum 8peg,A) that containsG as a point. Moreover, given

a natural numbew, then for almost all pointg/ of dimensiond there exists a generic
moduleG such thatSpeg,4(Rg) containsM.

In Section 6 we are concerned with the minimal points of the endofinite spectrum, as
well as epimorphisms fronR to simple artinian rings. In [7] Ringel gives a one-to-one
correspondence between the isomorphism classes of indecomposable endofinite modules
with a skew field as endomorphism ring and the equivalence classes of epimorphisms to
simple artinian rings. We show that the minimal points of the endofinite spectrum are of
this form.

Another interesting analogy is found with respect to degeneration. Here one looks at
modules of a fixed dimension and defines an order by degeneration. The degeneration
order implies our order on characters, and the inverse implication holds in several cases
(see [10)).

In Section 7 we study characters normalised with respect to their degree and introduce
the correspondingiormalised endofinite spectrurin this way, we recover Schofield’s
Sylvester module rank functions (see [8]) on which Crawley-Boevey's characters are
based.
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2. Dual definitions and examples

We recall from [4] that fory a character for mof&t, the dual characterDy is a
character for mo@&°P defined as follows. Fok a finitely presented lefR°P-module let
P % Q0 — X — 0 be a projective presentation Bfand define

Dy (X) :=x(0") — x(P*) + x (Cokerx™), where(—)* =Homg(—, R).

ThenD Dy = x and hence the assignment> Dy is a duality between the characters for
modR and those for mo&°P. This duality induces a on@+one correspondence between
the irreducible characters for m@&and modk°P and hence between the isomorphism
classes of indecomposable endofinReand R°P-modules. Furthermore, it holds that
Dyxm(X) = Lenge(n)(X ®r M), where f € Endg(M) operates byf - (x @ m) :=x @
Sf(m).

Using the dual characters, we define another partial order on the isomorphism classes
of indecomposable endofinie-modules.

Definition 2.1.

(1) LetM andM’ be indecomposable endofiniigmodules. Define
M<pM < Dxy<Dxu.

(2) The set of all isomorphism classes of indecomposable endofinit®dules with the
partial order given byl) is thedual endofinite spectruwf the ringR.

Remark 2.2. Because of the dualitip between the characters for mBdind modk°P and

the above one-to-one correspondence between the isomorphism classes of indecomposable
endofiniteR and R°P-modules, we have that the endofinite spectrunkRadnd the dual
endofinite spectrum oR°P are isomorphic as partially ordered sets. In the following, we

will always consider the endofinite spectrum. In Example 2.3(3a) and (3b) we will see
that the endofinite spectrum of a riigyand the dual endofinite spectrum Bf i.e., the
endofinite spectrum oR°P, will in general not be isomorphic to each other, although the
points are in one-to-one correspondence.

In the following, we illustrate the endofie spectrum by drawing the corresponding
Hasse diagram of the poset. This we will call tiagramof the endofinite spectrum.

Example 2.3. Let k be an algebraically closed field.

(1) R = k[T]. The isomorphism classes of iedomposable finitely presentédT ]-
modules are represented by the torsion modMes, := k[T]/(T — A)" for A € k and

n € N, and the torsion free moduldT]. By [4, 4.7 Examples (6)], the isomorphism
classes of indecomposable endofirk{@]-modules are represented by the finite length
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modulesM, ,, with A € k andn € N, and the unique generic modwlé€T’). We have that
Endri(My. ») EL[T]/(T — A" =: E), and Endir(k(T)) Z k(T).
We compute
XMA,)l (k[T]) = EE)Hn (M)L,I‘l) = l’l,

Lg, (0)=0, if A#£M),
: M.,/ = A.n . .
XMA'n( Ayn ) { EE)L,H (Mk,min(n,n’)) = min(n, n/)a if A= A'/a

xi(ry (K[T1) = Ly (k(T)) =1,
Xk(m) (M. n) = Lr(7)(0) =0,

and get the following diagram of the endofinite spectrur|[af]:

M)L,n+l

I |
e o o °
. |
M e o o °
I |
I |
M; 2 e o o °
. |
M; 1 e _o o °

) ™, —

(2)R=k(- =. 2). Theisomorphism classes of the indecomposable finitely presented
R-modules are represented by the:

S
— preprojective modules?, = (k" = k"+Y), n € Nowith f,, = (3), f5 = (9);
I8

— preinjective modules?, = (k"1 % k™), n € No with g = (1, 0), gg = (0, I);
8p

1
— regular modulesR, ,, p € PL(k), n € N. These are of the fornik" = k") for
Jk,n

Jon _ 1
p # (0, 1) and of the forn(k"% k™) for p = (0, 1) with Jx,nz( N %>

The isomorphism classes of the indecomposable endofaiteddules are represented by
the indecomposable preproje, preinjective, and regular modules, and in addition the
id
unigue generic modulé := (k(T) ':; k(T)).
T-
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We have

Endz (G) = k(T), Endg (P,) =k, Endg(Q,) =k, and

Endg (Rp.n) S k[T1/(T").

We get the following values fofeng, 1) Homg (X, M), whereX is specified in the left-
hand column and/ is specified in the top row:

| P Rp.n On G
P, n+m maxO,n—m+1} n 1
Rym | O 8p.q Min{n, m} m 0
Om 0 0 ma{0,m—n+1} O

Hence we get the following diagram of the endofinite spectrube%; - 2):

L b2
Tt
Py ) Ry ) ° ° ° Qo

Py °

(38)R =k(2— 1<« 3). The isomorphism classes of imcbmposable finitely presented
R-modules and the isomorphism classes of indecomposable end&initedules are the
isomorphism classes of indecomposable finite length modules. From the AR-quiver we
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conclude the followingdimensions of the homoonphism vector spaces HomX, M),
whereX andM are specified in the table as in (2):

P P P35 I I I3

P, ———--13 P 1 1 1 1 0 O
SN/ PO 1 0 1 1 0
Ph-—-——--1 P3 0 0 1 1 0 1
\ VRN I1| O 0 0 1 1 1
Ps——--1, ©L|0 0 0 O 1 0

I3 | O 0 0 O 0 1

We get the diagram of the endofinite spectrumt & — 1 < 3):

I

VRN
P> P3

NS
P I I3

(3b) ROP= k(2 «<— 1 — 3). Dually we have the AR-quiver ak°P and again therefore the
dimensions of the homoonphism vector spaces Hom (X, M):

oy
S
~

Pr- I P
NN P>
P3———-13 P3

SN S Iy
PL————-1D I

O o0 oooRr®
oo oor oI
cCoor Rk RrJF

OCORr R OPR
OrORrRRO
PR R RO oW

We get the diagram of the endofinite spectrunt & <— 1 — 3):

I g

P3

VAN
Py P, I3

We see that the endofinite spectrummfand the endofinite spectrum &°P (the dual
endofinite spectrum aR) are not isomorphic.
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3. Changeof rings

We are interested in the question for which functBrdMod S — Mod R the endofinite
spectrum ipreservedsee Definition 3.5). Before we prove Theorem 1.2, we need some
lemmas. In the following we mean by the radical of a ring the Jacobson radicak bhet
a ring and/ < R a two sided ideal. Consider the projectipnR — R/I. The restriction
functorp, : Mod(R/I) — Mod R induces an isomorphism between M&d 7) and the full
subcategory of Mo of all R-modules such that- M = 0. We clearly have

Lemma 3.1. The functorp, induces for eachR/I-moduleM an order isomorphism of
submodule lattices.

In particular, the (semi)simple modules of MBdand Mod R/ rad) correspond to each
other since ra@ - M = 0 for each (semi)simpl&-moduleM . Therefore we have

Lemma 3.2. Let f:S — R be a ring homomorphism mapping the radical 9to the
radical of R and suppose that the induced ring homomorphysn§/rad— R/radis an
isomorphism. If we conside¥ as anS-module by restriction, then

Ls(X)=4Lr(X) foreveryR-moduleX of finite length
We will also use the following statement about indecomposable endofinite modules.

Lemma 3.3 [4, Proposition 4.4]Let M be an indecomposable endofinRemodule. Then
Endg (M) is local.

Since left adjoints preserve colimits and pseudo-cokernels, and module categories are
locally finitely presented, we get directly from [5, Theorem 6.7] the following lemma.

Lemma 3.4. Let F:ModS — ModR be a functor between module categories with a left
adjointG :Mod R — ModS. Then the following are equivalent

(1) The functorF preserves direct limits.
(2) The functorG preserves finitely presented modules.

Now we are ready to prove Theorem 1.2 from the introduction.

Proof of Theorem 1.2. The functor F preserves direct limits by assumption, ahd
also preserves limits since it is a right adjoint. Moreouérjs coherent and therefore
preserves endofiniteness (see [6, Sectifn IBdecompoability of endofinite modules
is also preserved by'. For if we assume that'M is decomposable, then there is an
idempotente in Endg (F M) not equal to 0 or 1. By Lemma 3.3, Ead/) is local and
hence Eng(M)/rad= Endg (FM)/rad is a skew field. Since in a skew field 0 and 1
are the only idempotents, we have tleat Endz (FM)/rad is 0 or 1, i.e., one of or

1 — e lies in radEndgr (FM)). It follows that 1— e or e is invertible; a contradiction
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to e not equal to 0 or 1 since 1 is the only invertible idempotent. Metbe an inde-
composable endofinit§-module andy a finitely presentedk-module. By Lemma 3.4,
GY is a finitely presentedS-module. Using Lemma 3.2 and the canonical isomor-
phism Hong (Y, FM) — Homs(GY, M), we getyry (Y) = Lendg(Fay HOMR(Y, FM) =
Lengg(my HOMs (GY, M) = x4 (GY). If N is an indecomposable endofinfemodule such
thatM < N (i.e., xu(X) < xn(X) for all finitely presented lefS-modulesX), then we
havexry (Y) = xm(GY) < xn(GY) = xpn(Y),i.6., FM < FN. O

Remark. If every finitely presented-moduleX is isomorphic to on&Y for some finitely
presentedk-moduleY, then we also have th&M < FN impliesM < N.

Definition 3.5.

(1) We say that a functoF :ModS — ModR preserves the endofinite spectrufinfor
any indecomposable endofinifemodulesM andN, we have
(a) FM is indecomposable endofinite.
(b) FM = FN impliesM = N.
(c) M < N impliesFM < FN.
In this case the spectrum 6fis identified viaF with a subspectrunof the spectrum
of R.
(2) If in addition we have
(d) FM < FN impliesM < N,
then the spectrum df is identified viaF with afull subspectrunof the spectrum oR.

4. Localisation
In this section we are mainly interested in the endofinite spectrum of a finitely generated
localisation of the polynomial ring over an algebraically closed fieldet us first start with
a more general setup. L¢t: R — S be a ring homomorphism. Consider the restriction of
scalars
f«:ModS — ModR, M+ M|g wherer-m:=f(r) -mforreR, meM,
and the extension of scalars

f*:ModR — ModS, M~ S®r M.

The restriction functorf, is faithful and additive and hag* as a left adjoint. We begin
with some preliminary results.

Lemma 4.1 [9, XI Proposition 1.2].The following properties of a ring homomorphism
f:R— S are equivalent

(1) The ring homomorphisnf is a ring epimorphism.
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(2) The compositiory™* o f is naturally equivalent tadyods.
(3) The restriction functorf; is full.

Lemma4.2. Let f: R — S be aring epimorphism. Then

(1) The restriction functorf, preserves the endolength.
(2) Let M be anS-module. Thenf,. M is indecomposable if and only M is indecom-
posable.

Proof. The assertions follow from the isomorphism k) — Endz( f. M), which
mapsu to fia, and using idempotents.O

Corollary 4.3. Let f: R — S be a ring epimorphism. Then the restriction of scalars
f«:ModS — Mod R preserves the endofinite spectrum.

Proof. Since f, is fully faithful, it induces an embedding of the sets of isomorphism
classes, and we have the canonical isomorphisny @dgd — Endg (f;. M). Furthermore,

f* is a left adjoint of f;, and f, preserves direct limits. Thus by Theorem 1.2, we have
that £, preserves the endofinite spectrunm

Hence for f:R — S a ring epimorphism we have that the endofinite spectrum
of S is identified via restriction with a subspectrum of Spg®. One should ask
whether the subspectrum is full, and if one knows the endofinite spectrufy which
isomorphism classes of indecomposable endofiitaodules are actually in the image of
the embedding functof, : Mod S — Mod R. We will answer this questions in the case of
a finitely generated localisation of the polynomial riki@’] over an algebraically closed
field k.

Let R be a commutative ring and’ € R be a multiplicatively closed subset. The
localisation homomorphismp: R — R[X~1] is an epimorphism. We will see that in
the case of a localisatiop: R — R[X~1] of a principal ideal domairR, the endofinite
spectrum ofR[ X 1] is identified with a full subspectrum of the endofinite spectrunk of

Lemma 4.4. Lety: R — R[X~1] be a localisation of a principal ideal domaiR. Then
@« preserves simple modules which are torsion.

Proof. Let M be a simpIeR[Z—l]-moduIe. Consider the injective envelopé — 1

of M. Sinceg:R — R[>~1] is a flat ring epimorphismg,/ is injective by [9, XI,
Proposition 3.11] and indecomposable bymraa 4.2(2); hence it is a Prifer module,
i.e., artinian and uniserial. The simple socle is the only submodule with a skew field as
endomorphismring. By Schur's lemma, Biigh. M) = Endgz-1,(M) is a skew field, and
SO M issimple. O

Lemma 4.5. Letg: R — R[X~1] be a localisation of a principal ideal domaiR. Then
every finitely presente®[ ¥ ~1]-module is up to isomorphism of the fogri X for some
finitely presented?-moduleX.
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Proof. LetY be anindecomposabii@itely presented?[ X~ ~1]-module. Note thar[ X 1]

is again a p.i.d. IfY is torsion free, therY is free, and we hav& = R[X 1] = ¢*R. If

Y is torsion, thert = R[X~1]. y = R[X~1]/ann(y) is artinian and noetherian, hence of
finite length. By Lemma 4.4, we have that the restrictigyY is again of finite length,
hence finitely presented, sinaR is left noetherian. By Lemma 4.1(2), we have that
oY EY. O

Remark. Itis not clear to us for which rings beside the principal ideal domains the property
that the localisation functas* : modR — modR[X 1] is dense holds.

By the remark after the proof of Theorel.2, we have that for a principal ideal
domain R, the endofinite spectrum of a localisati®j X 1] is identified via restriction
with a full subspectrum of the endofinite spectrum Rf If one knows the points in
the image of the restriction functer, : Mod R[X~1] — Mod R, then one can conclude
SpegngR[Z 1] from Speg,4R.

For a finitely generated localisation of the polynomial ri[@’] with k algebraically
closed, we will now answer the question of which points of the endofinite spectrif bf
(computed in Example 2.3(1)) lie in the image of the embedgingModk[T][X 1] —
Modk[T1]. A finitely generated localisation here means thait finitely generated; hence
the localisation is of the forrh[T', £ ~1] for a non-zerof € k[T]. The isomorphism classes
of indecomposable endofinitg¢ 7]-modules are represented by the finite length modules
M, :=k[T]1/(T — 1)" wherei € k andn € N, and the unique generic modut¢T).

Let f = (T — 1) ---(T — \y). From the universal property of the localisation we have
that ak[T']-module is in the image ap, if and only if f is invertible in EndM). This is
the case if and only iff — A; is invertible in EndM) foralli =1, ..., m. Thusk(T) is
clearly in Img,, and the modules1, , with n € N are in Img, if and only if A # A; for
alli=1,...,m. This is since we can writ&€ — A; = (T — A) + (A — ;) € End(M, ) =
k[T1/(T —A)". Using that EndM,, ,,) is a local ring, tha?” — A is nilpotent and that — A;

is zero or invertible gives the assertion. Hence we get the following proposition.

Proposition 4.6. The endofinite spectrum of a finitely generated localisatifif, 4
of the polynomial ringk[T] over an algebraically closed field is identified via
restriction with a full subspectrum of the endofinite spectrunk[@f]. More precisely,
if f=(T —x)---(T — XAy) With A; € k is a factorisation off in linear factors, then
SpegndklT, £~1 is identified with the full subspectrum 8peg,((k[T]) consisting of
all points excepMy, 4, ..., My, » Withn € N.

Hence the diagram of Spgg(k[T, f~1]) is obtained from Speg(k[T]) by removing
finitely many branches.
5. Tamealgebras

Let A be a finite dimensional algebra over an algebraically closed fieRecall that
A is of tame representation tygéfor all d € N there are a finite number &fA, k[ T'])-
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bimodulesMs, ..., M,, which are free of rankl ask[T]°P-modules, and such that every
indecomposablet-module of dimensior is isomorphic toM; ®xry k[T1/(T — 1) for
some I<i <n andAi €k.

We will use the following theorem from Crawley-Boevey [3] to study the endofinite
spectrum of a tame algebra over an algebraically closedAield

Theorem 5.1 [3, Introduction].If A is a finite dimensional algebra of tame representation
type over an algebraically closed fildthen for every generid-moduleG we can choose
a (A,Rg)-bimoduleM such that

(1) Rg is a finitely generated localisation &fT]. As anRgp-moduleMG is free of rank
equal to the endolength @f. If K is the quotient-field oRg, then

Mg Qr; K6 =G.

(2) The functotM¢ @, —:ModRg — Mod A preserves isomorphism classes, indecom-
posabilityand Auslander—Reiten sequences.

(3) For each natural numbet almost all indecomposabld-modules of dimensiod
arise asM¢g ®r; Rg/(r) for some generic modul@ and some non-zeroe Rg.

We want to show that the functors from this theorem preserve the endofinite spectrum
by applying Theorem 1.2. Ret¢d#hat by the radical of a ring we shall mean the Jacobson
radical.

Lemma5.2. Let f: R — S be a ring homomorphism that reflects units, and let the §ing
be local. Thenf maps the radical ok to the radical ofS and induces a monomorphism
f:R/rad— S/rad

Proof. For a local ring the radical consists of all the non-invertible elements, and from
the condition thatf reflects units we have thagt maps non-invertible elements to non-
invertible elements. Hence we get the induced nfagR/rad— S/ rad. To see that this

is @ monomorphism, lef () be in radS. Then for allx € R we have thatf (1 + xr) =

1+ f(x)f(r)is aunit; hence ¥ xr is a unit, sor e radR. O

Lemma 5.3 [3, 4.2 Lemma].Let f: R — S be a surjective ring homomorphism that
reflects units. Then f maps the radical®to the radical ofS and induces an isomorphism

f:R/rad— S/rad

Since we will deal with endomorphism rings, we have to show that certain functors
reflect isomorphisms.

Lemma 5.4. Let f: R — S be a ring epimorphism. Consider the restriction of scalars
f+«:ModS — Mod R. Thenf, reflects isomorphisms.

Proof. By Lemma 4.1(2),f* o f, is naturally equivalent to idoqs. which of course
reflects isomorphisms. Thys also reflects isomorphisms.c
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Lemmab5.5. Let f: R — S be a ring epimorphism[” a ring andM a (I', R)-bimodule.
Consider the functor8/ @ g —:ModR — ModI" and(M Q% S) ®s —:ModS — Mod I".
If M @ — reflectisomorphisms, theM ®g S) ®s — reflects isomorphisms too.

Proof. The assertion follows from Lemma 5.4, sin€®/ ®r S) ®s — is naturally
equivalenttoM ®g —o fx. O

Remark 5.6. Let R be aring andV arealisationin the sense of [3, 5.1] such th#t®g —
reflects isomorphisms. Léil’ be arefinementf M, that is, a realisatiod ®g R’ over a
finitely generated localisatioR’ of R (see again [3, 5.1]). Then from the previous lemma
we immediately have tha?’ ® g — reflects isomorphisms too.

The following two propositions provide adinal properties of Crawley-Boevey’s
functors, which might be ofnidependent interest. Note that the first proposition is not
used in the sequel. For the definitionsminimal bocsed3; = (B;, W;), the category of
proper (B;, K)-bimodules Mod (B;, K), and the magl, ¢)* with its left inverse(1, w)*,
we refer the reader to [3] and [2].

Proposition 5.7. The functorsM¢g ®g, —:ModRs — ModA from Crawley-Boevey's
theorem reflect isomorphisms.

Proof. From [3, 3.5 Theorem] one gets functdfs®, —:Mod B; — Mod A with the
property that ifK /k is a field extension, then there exist functdi;§ :Mod? (B;, K) —
Mod(A, K) which reflect isomorphisms and whose composition

* K
Mod(B;. K) 22 Mod? (B:, K) 2> Mod(A, K)

with (1, ¢)* is naturally isomorphic td; ®, —. Let K =k, then, sinceB; and A are
k-algebras, we obtain the following commutative diagram:

. (Le)* Fik .
ModB; — > Mod(B;, k) —— > Mod”(B;, k) — = Mod(A, k) ——= Mod A

\ \L (Lw)*
id

Mod(B;, k).

Since (1, ¢)* has a left inversdl, w)*, (1,¢)* reflects isomorphisms. It follows that
T; ®p, — reflects isomorphisms too. One gélif; ®g, — from a common refinement
Mg over Rg of certainT; (see the proof of [3, 5.4 Theorem]). From Remark 5.6 we know
thatM¢ ®g; — also reflects isomorphisms o

Proposition 5.8. The functorsM¢g ®g, —:ModRs — Mod A from Crawley-Boevey's
theorem induce isomorphisnEndg, (N)/rad— Ends (Mg ®r N)/rad for every Rg-
moduleN with Ends (Mg ®r,; N) local.
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Proof. Again we have to look at the construction of the functors and to use the left
inverse (1, w)* of (1, ¢)*. As above,(1, ¢)* reflects isomorphisms, and, w)* reflects
isomorphisms sincev is a reflector by definition (see [2]). We consider again the
commutative diagram in the proof of Proposition 5.7 and get ®r-aoduleX an induced
diagram which is commutative up to natural isomorphisms:

Ti®p; —

/\Fk

(Le)* i
Endg, (X) — > End(5, 1 ((L £)*(X)) — = Enda(T; ®s, X)

l, *

Ends, (X).

Let N be anRg-module such that En{Ms ®r, N) is local. SinceM¢ is a refinement

of 7;, we have thaM¢ ® g — is naturally equivalent td; ® g, — o f.. wheref : B; — Rg is

a finitely generated localisation. Hence, if we et f,. N, then End(7; @3, X) is local.

We know thatFi" and(1, w)* are full and reflect isomorphisms; hence from Lemma 5.3 we
get induced isomorphisms modulo the radical. By LemmaBI’.‘Z; (1, &)* maps radical to
radical and hencél, ¢)* also does. So we get the following diagram, again commutative
up to natural isomorphisms:

T;®p; —

Ends, (X)/rad = Endy s, o (L. £)*(X))/rad — > Enda(T; ®3, X)/rad

\ ~ \L (l,w)*
id

Endg, (X)/rad

This gives the desired isomorphism, since for the localisafio®; — Rs we have the
isomorphism Eng. (N) f—i> Endg, (f:N). O

Lemma5.9. Let A, R be rings andM a (A, R)-bimodule that is free as aR°P module.
Then the functoM ® g —:Mod R — Mod A preserves endofiniteness. Moreover, Xoan
endofiniteR-module we have

endolM ®r X) <rk(Mg) - endolX). (%)
Proof. Since the functorM ®g — induces a ring homomorphism EgpgdX) —

Ends (M ® X) and we have an isomorphisit @ X = X™Mr) as Enck (X)-modules,
we get enddlM ®r X) < Lendy(x)(M ®r X) =TK(MR) - €Endex)(X). O
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Remark 5.10. In the special situation that we have in Crawley-Boevey’s theorem, one can
show that equality holds it«) for X an indecomposable endofinigemodule.

Proposition 5.11. The functorsM¢ ®g; —:ModRsz — Mod A from Crawley-Boevey's
theorem preserve the endofinite spectrum.

Proof. The functorM¢s ®g,; — preserves isomorphism classes and indecomposability
by Theorem 5.1. By Lemma 5.9 ®r, — preserves endofiniteness. So for every
indecomposableRg-module N of finite endolength, Eng(Ms ®g; N) is local, and

we get an induced algebra isomorphism gndv)/rad — Enda (Mg ®g; N)/rad by
Proposition 5.8. The functor HogiMg, R) ® 4 —:Mod A — ModR is a left adjoint of

M¢ ®r; —, and moreoveM; Qg — preserves direct limits. From Theorem 1.2 we get
that the functoM ®r,; — preserves the endofinite spectrunm

Hence we get Corollary 1.3 from the introduction.

Example 5.12. The Kronecker algebra = k(1 - %; - 2). We have the unique generit-

id
moduleG := k(T) I:; k(T) and thus the functor
T.

G ®irr1 — :Modk[T] — Mod A.

We consider whicii-modules are assigned to the endofikité]-modules:
- id
G @ur K(T) = (K(T) Z2k(T)).

~ id ~f(in L 5
G Qi My = (Mx,n = Mx,n) = (k =k )
T.

J)L,n

JO,n i
Thus the genericA-module and all regulart-modules except” = k" with n € N are

/
images of endofinité[7]-modules, and the diagrams in Example 2.3 show that the order
relation is actually being preserved. In this example, we also havétha FN implies
M < N for M andN indecomposable endofinit¢-modules.

6. Minimal pointsand epimorphismsto simple artinian rings

In [7] Ringel studies the Cohn spectrum, a generalisation of the prime spectrum and
introduced by Cohn in [1]. Ringel gives a one-to-one correspondence between the points
of this spectrum—the equivalence classes of epimorphisms to simple artinian rings—
and the isomorphism classes of indecomposable endofinite modules with a skew field as
endomorphism ring. We show that the minimal points of the endofinite spectrum are of this
form (Corollary 6.4). Again, by the radical of a ring we mean the Jacobson radical. The
following lemma is well-known.
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Lemma 6.1. Let R be a ring such thaR/ radis semisimple and/ an R-module. The/
is semisimple if and only iadR - M = 0.

Lemma 6.2. Let M be an indecomposable endofinite module. Theis semisimple over
its endomorphism ring if and only if the endomorphism ring/fs a skew field.

Proof. Let Endk(M) =: D be a skew field. Then as B-module, M = D for some
d € N; henceM is semisimple over its endomorphism ring. Now EBt:= Endg (M)
and M be semisimple oveE. We have that raél - M = 0 and hence ral C anrg(M).
But since anp(M) = 0, radE is also zero. Hencé& is a skew field, since it is local by
Lemma3.3. O

Proposition 6.3. Let M be an indecomposable endofinRemodule. Then there exists an
indecomposable endofinifemoduleN with a skew field as endomorphism ring such that
N<M.

Proof. We get the R-module N inductively by reducing the endolength. SEb :=
Endg (M). We know thatEg/rad is a skew field, so semisimple.M is not semisimple
as anEg-module, then seN; :=radEp - M. We have 0z N1 & M, the first inequality
by Lemma 6.1 and the second inequality by Nakayama’s lemma. We remarkihat
is a submodule of also as ankR-module and that we have a ring homomorphism
Eo = Endg (M) — Endg (rad(Endgr (M)) - M) = Endg(N1) =: E1, since radendg (M))

is an ideal of En@d(M). Therefore we have g, Homg (X, N1) < £g,Homg(X, N1) <

Lo Homg (X, M) for all finitely presented?R-modulesX, and in particular, forX = R,

we have end@lV1) < endolM). Hencexy, < xu. Crawley-Boevey has shown in [4]
that every character is a sum of irreducible characters. Now choose one of the irreducible
summands ofy,, and letM; be the corresponding irreducible endofinRemodule. Of
course, enddM1) < endolM) and xu, < xm. SinceM is of finite endolength, we will
get after fewer than end@¥) steps ani € N such thatN := M; is semisimple as an
Endg (N)-module. Hence by Lemma 6.2, Egp@V) is a skew field. O

Corallary 6.4. The minimal points of the endofinite spectrum of a rlhbave a skew field
as endomorphism ring.

In the special cases of left artiniaimgs and Artin algebras we get more.

Lemma 6.5. Let R be a left artinian ring. Then the endofinite simple modules are pairwise
not comparable.

Proof. Let S and S’ be non-isomorphic endofinite simplB-modules. Since simple
modules over left artinian rings are always finitely presented, we comput® =1 =
xs (8" andxs(S") = 0= x5 (S). HenceS andS’ are not comparable.O

Proposition 6.6. Let R be a left artinian ring. LetM be an indecomposable endofinite
R-module ands an endofinite simple submodule. Ther M.
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Proof. Let X be a finitely presente®-module. If X is simple, then we have

1, ifxxs,
x5 (X) = Lengg(s) HOMgR (X, §) = { 0, if X5,

So we getys(X) < xm(X) since Homx(X, S) € Homg(X, M). Of course, we have
xs(X) < xm(X) also for X semisimple. Now letX be an arbitrary finitely presented
R-module. Consider toff = X/radg X. SinceR is left artinian, we have thak/rad is
semisimple. By Lemma 6.1, we get from rRdtop X = O that topX is semisimple, hence
xs(topX) < xp(topX). Since Hom (topX, M) C Homg (X, M), we havey s (topX) <
xm (X). Every morphism fromX to a simple module factors through the top ¥f
hence Hom (top X, S) = Homg (X, S), so xs(X) = xs(topX). Finally, we haveys(X) <
xm(X). O

Remark. For an Artin R-algebraA we have that the endomorphism ring of a finite
length A-moduleM is again an ArtinR-algebra; hence every-module of finite length is
endofinite.

Corollary 6.7. The minimal points of the endofinite spectrum of an Artin algebrare
precisely the isomorphism classes of simplenodules.

We now turn our attention to the one-to-one correspondence between the points of the
endofinite spectrum having a skew field as endomorphism ring and the equivalence classes
of epimorphisms to simple artinian rings.

Lemma 6.8. Let R, D be rings andM, M’ be (R, D)-bimodules. Then the functors
Homg (—, Homp (M, M’)) and Homp (M, Homg (—, M")) that map frommodR to the
category of(Endp (M), Endp (M))-bimodules are naturally isomorphic.

Proof. We clearly have an isomorphism far= R. Left exactness of both functors gives,
from the exact sequenck™ — R" — X — 0, the natural isomorphism by the Five
lemma. O

Lemma 6.9. Let E be alocal ring andM an (R, E)-bimodule such thad is semisimple
artinian as anE-module. LetS := Endg (M). Then we have

L HOMg(X, M) =¢sHomg (X, S) forall X € modR.
Proof. Let ¢: E — E/rad=: D be the canonical projectio is a skew field sinc&
is local. SinceMg is semisimple, it is also @-module, andp(M) = £g(M) < oo by
Lemma 3.1. Further, we hawg,(Y) = £g(Y) for all D-modulesYy of finite length by

Lemma 3.2. From the previous lemma we get isomorphisms of sighodules

Homg (X, Endp(M)) = Homp (M, Homg (X, M)) forall X € modR.
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Since Mp, is a progenerator anfl = Endg (M) = Endp (M), we have a Morita equiv-
alence Homp (M, —) :Mod D°P — Mod S°P. Hence this functor preserves composition
length. SinceS = Endg (M) = Endp(M) = Mat, (D), we havelsS < oo, hence
£pHomg (X, M) = £sHomp (M, Homp(X, M)) = £sHomp(X, S) < oo for all X €
modR. Finally, we havefs Homg (X, S) = £p HOmg (X, M) = £ Homg (X, M) for all
finitely presentedk-modulesX by Lemma 3.2. O

Definition 6.10. Let f: R — S be a homomorphism to a simple artinian ring. Define the
character of f

xr:modR — Nog, X xr(X) :=£sHomg(X, S).
One verifies that this definition gives a character for mRod

Recall that two ring homomorphismg: R — S1 and f>: R — S» to simple artinian
rings are equivalent, denoted Ify ~ f>, if there exists a ring isomorphisg: §1 — S2
such thatp o f1 = f>.

Remark. We havey s (R) = £sS; furthermore f1 ~ f2 impliesx s, = x ,.

Following Ringel's assignment from [7, 2.1 Proposition], we may reformulate his result
involving the characters of the epimorphisms to simple artinian rings as follows.

Proposition 6.11. Let M be an endofinit&k-module. Then the following are equivalent

(1) The endomorphism ring af is a skew field.
(2) There exists a ring epimorphisryi: R — S to a simple artinian ring such that

Xf=Xxu-

Proof. (1) = (2). Let D := Endg (M) andd := endolM. We have that§ := Endp (M) =
Maty (D) is simple artinian. Now leff : R — S be the ring homomorphism that maps an
r € R to the left-multiplication mapn — r - m. Of course M is free, and so semisimple
as aD-module. From Lemma 6.9 witlE = D we havey(X) = {gHomg(X, S) =
L Homg (X, M) = xp (X) for all finitely presentedk-modulesX .

(2) = (1). Since Ringel's assignment (that is, choosing the unique sisyo®dule
and restricting it by the ring epimorphism to &amodule) gives an endofinitR-module
with a skew field as endomorphism ring, it must be isomorphiefto O

Since the endofinit&-modules with a skew field as endomorphism ring are indecom-
posable, the points of the Cohn spectrum also appear in the endofinite spectrum. One may
ask whether the partial order by specidiiga in the Cohn spectrum and by characters
in the endofinite spectrum imply each othemmt. The answer is that in general there is
no implication. A pair of indecomposable endofinRemodules with skew fields as en-
domorphism rings and ordered by charactwes in general not imply a specialisation.
This can be seen by the endofinite spectrum of the Kronecker algebra that we computed
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in Example 2.3(2), since an implication would contradict the theory of the Cohn spectrum
of finite dimensional hereditary algebras such developed by Ringel in [7]. To see that a
specialisation does not in general imply an order by characters, we first recall that a sim-
ple artinian rings is of the form May (D) for somed € N and some skew field, hence
x7(R)=1£sS=d.Nowin[7, 1.6 Examples] Ringel discusses two examples of specialisa-
tions from an epimorphis: R — Mat; (D) to an epimorphisma: R — Mat,(E), in one

case withd = 1 ande = 2 and in the other case with= 2 ande = 1. This shows that in
general there is no implication to eithgr < xs or x. > xs.

7. Thenormalised endofinite spectrum

In this section we considerormalised characters.e., we normalise our characters
by dividing them by their degree. Here we recover Schofield’s Sylvester module rank
functions (see [8]) on which Crawley-Boevey’s characters are based. One verifies that
the analogous partial order on the normalised characters induces a partial order on the
isomorphism classes of indecomposable endofiRitaodules. In this way we obtain the
normalised endofinite spectrum

In the normalised situation the counterexamples from the end of the previous section
have been repaired. For example, for the Kronecker algebra we get the following diagram
of thenormalised endofinite spectrum

Rp,l

e o o
b
Rpy2 o o o
I
Rp3 o e o

I \

N./ [ [ L]

P, P Py G Qo 01 02

This diagram coincides with Ringel’s theory of the Cohn spectrum. We are hopeful that one
can show that in the normalised case the ordeayacters and the order by specialisation
imply each other. Another interesting aspetthe normalised situation is that we have

symmetry between the ring and its opposite:

Proposition 7.1. The normalised endofinite spectrum and its dual are isomorphic as
partially ordered sets.

Proof. For a charactey let ¥ be the normalised version, i.€;(X) := x(X)/x (R) for
X € modR. Note thaty (R") =n. Now let R % R" — X — 0 be a free presentation of
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X. We have thaD x (X) =n — m + x (Cokera*). So if we have two charactegsand x’
with ¥ < x/,thenwe also hav®y < Dyx’. O

The theory for the endofinite spectrum developed in Sections 3-5 can easily be verified
for the normalised endofinite spectrum: in Theorem 1.2 one has to add the assumption that
the functorF preserves the endolength up to a constant factor. By Lemma 4.2(1), we have
that for a ring epimorphisnf the restriction functorf, has this property, so Corollary 4.3
remains unchanged. For the proof of Corollary 1.3 we have to check in addition that the
functorsMg ®pg; —:ModRs — Mod A from Crawley-Boevey’s theorem also have this
property. This is true, however, as noted in Remark 5.10.
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