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ABSTRACT A model simulating oscillations in glycolysis was formulated in terms of nonequilibrium thermodynamics. In the kinetic
rate equations every metabolite concentration was replaced with an exponential function of its chemical potential. This led to
nonlinear relations between rates and chemical potentials. Each chemical potential was then expanded around its steady-state
value as a Taylor series. The linear (first order) term of the Taylor series sufficed to simulate the dynamic behavior of the system,
including the damped and even sustained oscillations at low substrate input or high free-energy load.
The glycolytic system is autocatalytic in that the number of ATP molecules produced in the second half of the pathway exceeds

the number consumed in the first half. Because oscillations were obtained only in the presence of that autocatalytic feed-back loop
we conclude that this type of kinetic nonlinearity was sufficient to account for the oscillatory behavior.
The matrix of phenomenological coefficients of the system is nonsymmetric. Our results indicate that it is the symmetry property

and not the linearity of the flow-force relations in the near equilibrium domain that precludes oscillations. Given autocatalytic
properties, a system exhibiting linear flow-force relations and being outside the near equilibrium domain may show bifurcations,
leading to self-organized behavior.

INTRODUCTION

Self-organized phenomena, designated as dissipative
structures (1), constitute one of the most challenging
dynamic behaviors exhibited by metabolic networks.
Stationary states may be spatially homogeneous and
temporally monotonous (asymptotic) or spatially and/or
temporally (self-)organized. Living organisms are spatio-
temporally coherent. In part this coherence arises auton-
omously, by means of self-organization, which explains
the interest in dissipative structures. Some general
principles of organization of biological systems have
been unravelled by nonequilibrium thermodynamics (1).
One of these principles asserts the impossibility of
self-organized spatio-temporal structures, such as auton-
omous oscillations and bistability, in the near equilib-
rium domain (1).

In spite of the importance of self-organization, biolog-
ical applications of nonequilibrium thermodynamics
(NET), have been limited to asymptotically stable steady
states (2, 3), probably because NET used to be associ-
ated with near equilibrium systems. Recent extensions
of NET, however, have transcended the near equilib-
rium region. The so-called Mosaic (M)NET has thereby
been focusing on regions away from equilibrium with
linear relations between "flows" (reaction rates and
diffusion rates) and "forces" (free-energy differences)
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(4). More recently, a study of free-energy harvesting by
an enzyme from an external oscillating field, introduced
nonlinear flow-force relations to NET (5).
The question addressed in this work is whether this

extended NET (MNET) is able to describe, at least
qualitatively, self-organization. To answer this question,
a model of glycolytic free-energy metabolism, with an
autocatalytic feed back loop and an ATPase activity (6),
has been formulated in terms of Mosaic Nonequilibrium
Thermodynamics (4, 7, 8). Oscillatory behavior could be
simulated with linear flow-force relations provided a
positive autocatalytic feed back was present. The result-
ing matrix of phenomenological coefficients of the flow-
force relation is highly asymmetric. This leads to the
conclusion that the lack of symmetry of the flow-force
relations rather than the absence of linearity is a
necessary condition for self-organization to occur.

RESULTS

Rather than analyzing an abstract general scheme with
little bearing on actual metabolism, the glycolytic path-
way, which has been shown to exhibit oscillations under
certain conditions (see reference 9 for a review), was
considered. To obtain the simplest model still consistent
with the. oscillatory dynamic behavior, the starting point
was a five-step kinetic model of glycolysis (6) which was
simplified to a four-step model that still exhibited
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realistic oscillations (Fig. 1). The free variables in the
glycolytic model were: [Glc], [FdP], and [ATP]. [ATP]
and [ADP] were held interdependent through a conser-
vation relation for adenine nucleotides: [ATP] +
[ADP] = CA, CA being a constant. Except for a hyper-
bolic dependence of nonglycolytic ATP consumption on
ATP, all rates were taken to be insensitive to product
concentrations and first order in the concentrations of
all their substrates.

In the expressions for the fluxes, each metabolite
concentration in the classical, kinetic, rate equations was
substituted for by the exponential function of its chemi-
cal potential with respect to a reference state (Eq. 8).
These exponential functions were expanded around the
steady state as a Taylor series and from the resulting
nonlinear relations between rates and chemical poten-
tials, only the zeroth and first order (linear) terms were
taken into account.

DYNAMICS

To simulate the dynamic behavior of this linear nonequi-
librium thermodynamic system, the time dependence of
the free variables were written as the sum of the linear
flow-force relations (Eqs. 16-18). The resulting system
of differential equations (see Appendix Eqs. 16-18 after
application of Eqs. 10-12 and 21) was integrated numer-
ically using the SCoP package from the National Biomed-
ical Simulation Resource (Duke University Medical
Center, Durham, NC). The Adams subroutine was used
with an integration step of 0.01 s.
At relatively high values of V,, and low loads (i.e.,

small values of kp) the system exhibited a virtually

monotonous evolution toward the steady state (Fig. 2 a)
from various initial conditions. As Vi. was decreased,
damped oscillations appeared (Fig. 2 b). At high load
(high kp) sustained oscillations were observed in all
metabolite concentrations (Fig. 2 c). This suggested the
presence of a Hopf bifurcation point in the parameter
space of the model (10, 11), as could be confirmed by
stability analysis of the linearized system (see below).
The question arises as to which properties of the

present system were required for it to exhibit self-
organization. Nicolis and Prigogine (1) have pointed out
that kinetic nonlinearity is one of the mechanisms that
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FIGURE 1 Schematic illustration of the glycolytic model. The four
steps included in the model corresponded to (a) an influx of glucose,
Glc, at a constant rate, (b) the conversion of a molecule of glucose to a
molecule of the intermediate FdP under concomitant dephosphoryla-
tion of two molecules of ATP, (c) the disappearance of one molecule
of FdP coupled to the phosphorylation of four molecules of ADP, and
(d) a reaction hydrolysing ATP.

FIGURE 2 Temporal evolution of metabolite concentrations at vari-
ous Vj. Eqs. 16-18, in combination with Eqs. 10-12 were integrated
numerically for the following parameter values; CA = P, = 10 mM;
KM = 2 mM; (a) V,. = 0.1 mM s-'; kp = 0.3905 mM s-5; k, = 0.3 mM-'
s-'; k3 = 0.1 mM2 1s-; (b) VIi = 0.0075 mM s-5; kp = 0.3905 mM s-1;
I, = 0.3 mM'l s-; k3 = 0.1 mM-2 s-'; (c) V = 0.2mM s-'; kp = 2.5 mM
s-'; kI = 0.3 mM1 s-'; k3 = 0.1 MM-2s-2. The reference concentrations
were taken equal to the steady-state values as obtained from Eq. 21 (in
c this steady state was unstable). (a) [Gc], = 0.159 mM, [ATP], =
2.0997 mM, [FdP]r = 0.01266 mM; (b) [Glc] = 0.313 mM, [ATP]r =
0.0799 mM, [FdP], = 0.000756 mM; (c) [Glc]r = 1.75 mM, [ATP], =
0.3809 mM, [FdP]r = 0.0208 mM.
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can be responsible for self-organization. The system
used in the calculations presents an autocatalytic struc-
ture, in that the number of ATP molecules produced in
the second step (k3) exceeds the number consumed in
the first step (kI) (Fig. 1) (6). The question whether this
positive feed back was required for the appearance of
oscillations was addressed as follows. The feed back was
eliminated in either of two ways: (a) by considering the
first reaction (Jl) independent of [ATP], by setting -y = 0

in Eq. 13; (b) by equating the number of molecules of
ATP consumed in the first step to the number produced
in the second step (i.e., setting n, = n2 = 4 in Eq. 17). In
the latter case the load reaction characterized by kp had
to be eliminated. In both cases, oscillatory behavior
could no longer be obtained (see Stability Analysis).
This suggested that the positive feed back loop through
[ATP] was required for the appearance of self-organized
behavior in this system.

STABILITY ANALYSIS

The system given by Eqs. 16-18 was written as linear
relations between the rate of change of a metabolite
concentration and its chemical potential (Eq. 22). This
system of equations was then reformulated as differen-
tial equations with the chemical potentials as variables
(Eq. 28; see Appendix B). The characteristic equation of
the Jacobian of Eq. 28 was solved analytically with a
cubic equation algorithm. The three solutions were
analyzed as functions of each of the kinetic parameters.
The three solutions of the characteristic equation are
the eigenvalues (1, 10) of the linear flow-force system
given by Eqs. 16-18, or the linearized system repre-
sented by Eq. 28 and indicate the stability properties of
these systems as well as the stability of the kinetic system
(Eqs. 4-6) (6) from which the thermodynamic formula-
tion has been derived. Fig. 3 indicates the parameter
values for which (locally; close to the reference state)
monotonous asymptotically stable behavior (grey region),
damped oscillations (diagonally hatched region), or unsta-
ble spiralling (vertically hatched region) are expected.
The thick line separating diagonally and vertically
hatched regions corresponds to the Hopf bifurcation
points, characterized by a pair of conjugate imaginary
eigenvalues (10, 11). In the vertically hatched region
where the eigenvalues of the Jacobian matrix are com-
plex with positive real parts, indicating that the linear-
thermodynamic system was unstable close to the refer-
ence state, the system did evolve toward stable limit
cycles, corresponding to those shown in Fig. 4, c-ffor the
two dots in Fig. 3 A.
The latter evolution to a stable trajectory reflects that
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FIGURE 3 Bifurcation behavior of the glycolytic system for different
sets of parameters. The analysis of the stability of the system as a
function of the parameters was performed after transformation of
variables from concentrations to chemical potentials and linearization
of the corresponding differential equations (Appendix B). The eigen-
values of the corresponding Jacobian (Eq. 33, see Appendix B) were
used as the stability criteria. The different shadings indicate distinct
qualitative behavior as reflected by different kind of eigenvalues. In
the black region, the reference concentrations calculated from Eq. 21
would take negative values; therefore this zone lacks physical meaning.
The vertically hatched region corresponds to sets of parameters for
which the system exhibited complex eigenvalues with positive real
parts (the third eigenvalue was always real and negative); the refer-
ence state was unstable, i.e., states infinitesimally close to it evolve
away from it in a spiralling fashion. In the parameter region depicted
by diagonal hatches the system had two complex eigenvalues with
negative real parts. Points around the reference state here spiralled
back to it. The heavy line in between the two hatched areas indicate
the Hopf bifurcation points; here two eigenvalues were purely imagi-
nary conjugates. In the shaded region, all eigenvalues were real and
negative, giving rise to nonoscillatory relaxation to the reference state.
In the white region, all eigenvalues were real and were positive; states
slightly deviating from the reference state develop monotonously away
from it. In a, k, and k3 were kept at 0.3 mM-1 s-' and 0.1 mM-2 s-',
respectively; in b, Vln = 0.3 mM s-'; kp = 1.0mM s-'. The values of the
constants, CA, P,, and KM, were as in Fig. 2.

stability analysis of the system linearized around the
steady state, is not able to predict the stability properties
of the entire phase space for that parametric domain
(10). Only for linear systems with completely linear
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FIGURE 4 Phase plane analysis for the parameter sets corresponding to the three points indicated dots in Fig. 3. The plots represent the
trajectories of the state variables for (a, b) kp = 0.3905 mM s-'; k, = 0.3 mM' s-'; k3 = 0.1 mM2 s-', and Vin = 0.0075mM s-5; (c, d) kp = 2.033mM
s-1; k1 = 0.3 mM-' s-5; k3 = 0.1 mM2 s-', and V,,, = 0.2mM s-1; and (e, f ) kp = 2.5 mM s-5; k, = 0.3 mM 5s-1; k3 = 0.1 mM-2 s-', and Vrn = 0.2 mM
s-1. In panels c-f the diamonds indicate the reference concentration that corresponds to the unstable steady state solution. The dashed lines
represent the behavior of the kinetic model from which the linear thermodynamic model has been derived. The values of the constants, CA, Pt, and
KM, were as in Fig. 2.

differential equations a single stability analysis is able to
predict the dynamics in any parametric domain in the
whole phase plane. The differential equations for the
NET model presented here are nonlinear because of the
autocatalytic feed back loop and the occurrence of both
concentrations and their logarithms in Eq. 22.

Also the two nonautocatalytic systems described in
the section DYNAMICS, a and b, were subjected to
stability analysis. When the characteristic equations of
the Jacobian of the corresponding linearized systems of
both nonautocatalytic models were solved numerically
for a broad parametric range (V1. = 0.0001-100 mM s-',
k, = 0.0001-20 mM-' s-5, k3 = 0.0001-20 mM-2 s5', and
kp = 0.0001-100 mM s-1, the latter only for the nonauto-
catalytic system where -y in Eq. 13 is zero) not a single
region with complex eigenvalues could be found.

Parameter space diagrams like that of Fig. 5 were

obtained for the system that had no dependence of the
first glycolytic step on [ATP] (model a in Dynamics).
Only a region of unstable steady states was found by
varying either Vi/ or kp but no changes in the diagram
were observed upon changes in the values of either k, or
k3. The system that did not contain a load and whose
stoichiometric coefficients were equal for both glycolytic
steps showed only real negative eigenvalues, i.e., just
asymptotically stable steady states. This confirmed the
earlier suggestion that the autocatalytic feed back
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FIGURE 5 Bifurcation behavior of a nonautocatalytic version of the
glycolytic system. The system analyzed in this diagram was as the one
in Appendix A, and in Fig. 3 except that Jl was taken to be [ATP]
independent (-y = 0 in Eq. 13). The Jacobian of this system was
derived as in the autocatalytic system (Eq. 33, Appendix B). Similar
diagrams were obtained for various combinations of kI and k3 in the
following ranges: k, = 0.0001-20 mM-1 s-', k3 = 0.0001-20 mM-2 s-'.
The dynamics of the system were deduced from the eigenvalues,
obtained by solving the characteristic equation of the Jacobian. The
shadings have the same meaning as in Fig. 3. In the black region the
reference concentrations would take negative values; therefore this
zone lacks physical meaning. In the shaded region, all eigenvalues
were real and negative, giving rise to nonoscillatory relaxation to the
reference state. The nonshaded region corresponds to unstable
monotonous regimes (real positive eigenvalues).
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through ATP was the nonlinearity involved in the
appearance of oscillations. DISCUSSION

COMPARING KINETIC AND
NONEQUILIBRIUM THERMODYNAMIC
DESCRIPTIONS

In this paper, the starting point was a kinetic model
which was translated into a nonlinear NET model and
then linearized. As a consequence of the latter lineariza-
tion, the linear NET model used here is only an
approximation of the original kinetic model, whenever
other states than the reference state are considered.
This has no implications for the local stability properties
around (stable or unstable) steady states (Appendix B,
Eq. 33 and its discussion).

It does have implications, however, for the dynamics
of evolution toward stable steady states. In Figs. 4 a and
b, we demonstrate this: the full line is the evolution for
the NET model, whereas the dashed line indicates the
evolution for the kinetic model from which the NET
model was derived as a first order approximation. Not
unexpectedly the two descriptions become more similar
as the ratios of the concentrations to the corresponding
concentrations in the reference state become much less
than the base of natural logarithms, e. And, as also
shown in Fig. 4, a and b, the kinetic and NET descrip-
tions will end up in the same stable steady state.
Around unstable steady states, the fact that the linear

NET model is only an approximation of the kinetic
model, has more conspicuous implications for the simu-
lated dynamic behavior. When the system evolves to a
limit cycle, the limit cycle described by the linear NET
description may differ from that described by the corre-
sponding kinetic description. However, for bifurcation
parameter values close to the Hopf bifurcation point the
(linear) thermodynamic description was still quantita-
tively similar to the kinetic description (Fig. 4, c and d,
dashed lines). In the parametric region of sustained
oscillations, the amplitude of a limit cycle increased as
the bifurcation parameter was taken further away from
the Hopf bifurcation point, allowing the chemical poten-
tials of metabolites to deviate strongly from the steady-
state values. In those cases the MNET model was not
able to predict quantitatively the time dependence of
metabolite concentrations. The linear thermodynamic
description could, however, predict the type of dynamic
behavior in the entire parametric space of the kinetic
model. Therefore the linear approximation has prima-
rily a qualitative value when applied at unstable steady
states.

The main finding of the present work is the occurrence

of self-organized dynamic behavior, namely autonomous
oscillations, for a realistic metabolic system with linear
flow force relations.
For a further evaluation of the results it is relevant to

discuss the meaning of "force" and "linearity" as used in
the context of this work.

MEANINGS OF "FORCE" AND "LINEARITY"

It may be argued that the chemical potential of a
substrate is not a force in the thermodynamic sense
because the force of a given reaction is the free-energy
difference between substrates and products of that
reaction. However, as the reaction scheme is irrevers-
ible, the flux through a given step will be "blind" with
respect to the activity of the product (12,13) as the
water flow from a high waterfall is independent of'the
potential energy difference but only depends on the
amount of water at the top. This hydrodynamical anal-
ogy suggests that also a chemical potential may act as a
force for irreversible reactions. Indeed, the thermody-
namic description in terms of the chemical potentials of
their substrates alone of Michaelian reaction flows
insensitive to product concentrations is accepted prac-
tice in NET (12, 13).

Likewise, it is important to distinguish the various
meanings of the word linearity as currently used in the
literature. Any dependence of a rate law on the concen-
tration of a compound to a power different from 1
produces nonlinear kinetics. Any positive or negative
feed-back or feed-forward loop transforms the kinetic
structure of a system to a nonlinear one.
With respect to linearity in the sense of NET, the

relations between the flows and the thermodynamic
forces may be expanded into a Taylor series around any
reference point. If only a small range of variation in the
forces is considered, the second and highest order terms
of the Taylor series may be neglected and the first order
term may be considered as a good approximation to
describe the flux. This type of NET linearity, which will
be called approximative linearity, is strictly dependent
on variations in the forces being much smaller than RT.
Translation of kinetic rate equations into NET rate
equations (8, 12, 13) has revealed that there also exist
values of the forces around which there is the so-called
extended linearity. There, the second term of the Taylor
series need not be neglected because it is zero by itself.
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LINEARITIES AND NONLINEARITIES IN THE
GLYCOLYTIC MODEL

Except for the nonglycolytic ATP-consuming reaction
the kinetic equations of the individual steps that served
as the basis for the flow force relations were kinetically
linear with respect to each metabolite. As Jl andJ3 are
bisubstrate reactions, the kinetic laws that described
them were bilinear. Our thermodynamic formulation of
the kinetic model (Eqs. 10-12 and 13-15) was "linear" in
the usual nonequilibrium thermodynamic sense, i.e., the
individual fluxes were linear functions of the logarithms
of the substrate concentrations. However, the corre-
sponding differential equations (Eq. 22) were nonlinear
in the sense that the rate of change of the concentration
of a metabolite depended linearly on the logarithm of its
own concentration as well as on the logarithm of other
metabolite concentrations. In addition, there was an
autocatalytic feed-back loop arising from the fact that
the number of ATP molecules produced in the second
reaction (k3) exceeds the number consumed in the first
step (kI). This autocatalytic feature of glycolysis provides
for an added kinetic nonlinearity. In the present model
the autocatalysis and not the mathematical nonlinearity
arising from the relation between the rate of change of
the concentration of a metabolite and the logarithms of
its own or other metabolite concentrations was indispens-
able for the appearance of self-organized behavior (see
Stability analysis) (14). Of course, other models of
glycolysis lead to self-organized behavior on the basis of
the kinetic nonlinearity of a single enzyme, namely
phosphofructokinase (9, 10).
That in the present calculations, the nonlinearity

arising from the autocatalytic structure of the system was
indispensable for self-organized behavior was confirmed
in two ways: (a) by abolishing the dependence of the first
glycolytic step on ATP concentration and (b) by equat-
ing the stoichiometric coefficients of the ATP-producing
and ATP-consuming reactions. In either case, when the
Jacobian of the transformed variable system was solved,
no region with complex eigenvalues could be found in
the parametric space (Fig. 5).
The autocatalytic type of kinetic nonlinearity dis-

cussed above, has implications for the sign of the
phenomenological coefficients (e.g., such that the depen-
dence of Jl on LAT is positive even though ATP is a
pathway product) and not necessarily for the linearity of
the relationship between the flow and the force. Indeed,
the type of autocatalysis described in this work was
shown to coexist with linear flow-force correlations (6).
However, in reference 6 the oscillations appeared in re-
gions of nonlinear correlations between fluxes and forces.

In the limit cycles appearing farther from the Hopf
bifurcation points the forces became large compared
with RT. Thus, the quantitative aspects of the dynamics
differed from those described with a kinetic model (Fig.
4). However, the qualitative thermodynamic description
of the dynamics of this system is identical to that
obtained with the kinetic model.

LINEARITY AND SYMMETRY PROPERTIES
OUTSIDE THE NEAR EQUILIBRIUM
DOMAIN

Most NET (2,15,16) treatments were limited to the
near-equilibrium region, defined as the region where all
the forces deviated much less than RT from equilibrium.
Because of this limitation imposed on the variations in
the forces, the flow-force relations could be approxi-
mated by linear (proportional) ones. In addition, in the
near equilibrium domain the phenomenological cross-
coefficients are equal, a property known as Onsager
symmetry (15, 16). This symmetry property cannot be
guaranteed outside the near equilibrium domain (1, 3, 4).
Most biological systems operate farther from equilib-

rium than RT. In quite a few such systems, linear
flow-force relations have been observed (3, 8, 12, 13, 17-
20). Although nonlinear free-energy converters can
function quite efficiently (21), the fact that under certain
conditions, linear and symmetrical free-energy convert-
ers may be up to 106 or 109 times more efficient than their
nonlinear counterparts, has led to the conjecture that,
through evolution, biological free-energy transducing
systems may have acquired some kind of sophisticated
feed-back regulation, which maintains this linearity and
symmetry (22). It has also been proposed that some
far-from-equilibrium forces may poise metabolic reac-
tions to the near equilibrium domain (20). That in the
corresponding experimental system (20), the symmetry
property of that domain is also fulfilled, has not been
demonstrated.
The question whether linearity in the sense of NET

would preclude the occurrence of oscillations in a system
with an autocatalytic kinetic structure, was investigated.
By expanding the dependencies of the fluxes on the
forces linearly, the flow-force relations had been forced
to be linear. The linear flow force relations used were
characteristic of thermodynamic linearity away from the
near equilibrium domain. Oscillations were indeed de-
scribed by this "linear" MNET model.
The conclusion that linearity per se is not in conflict

with self-organized behavior does not contradict the
demonstration (1) that self-organization cannot be ob-
served close to equilibrium: it is the symmetry property
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of the near-equilibrium domain (13, 14) and not the
linearity often attached to it, that precludes self-
organized behavior (1). Indeed, the flow-force relations
used in the calculations (Eqs. 10-12) were not symmet-
ric.

It has been proven that self-organization (1, 23, 24)
can only occur further than RT away from equilibrium
(1, 23). Kinetic schemes involving only linear kinetics
and not containing feed back or feed forward do not
exhibit bifurcations (1, 25), precluding self-organized
behavior to arise. On the other hand, kinetic nonlineari-
ties may lead to self-organization.
An important implication of the present work is that

the linear flow-force relations found in an autocatalytic
biological system, away from equilibrium, do not neces-

sarily prevent such systems from exhibiting self-orga-
nized behavior. Indeed, linear relations between reac-

tion rates and thermodynamic forces will generally not
lead to a Jacobian matrix with only real eigenvalues. The
dynamic behavior of the system, i.e., whether the system
will undergo a bifurcation (as a parameter is varied) and
change from, e.g., a monotonous asymptotic behavior to
oscillatory steady states, is not determined by thermody-
namic linearity but by the particular values of the kinetic
parameters. Therefore, it is not the linearity of the
flow-force relations but the kinetic structure, contained
implicitly in the phenomenological coefficients (L's) of
the MNET equations, which has the information about
the dynamics of a given system.

d[FdP]
dt

CA = [ATP] + [ADP].

(6)

(7)
To obtain the nonequilibrium thermodynamic description, first, ki-
netic rate equations (6) were written with linear dependencies on the
substrate concentrations. An exception was made from the ATPase
reaction which was assumed to depend hyperbolically on the concen-

tration of ATP. To make the transition to the nonlinear thermody-
namic model, the concentrations were then expressed into the corre-

sponding chemical potentials (8, 12, 13), using:

[M] IpM AM[M= exp RT . (8)

The linear nonequilibrium thermodynamic description was obtained
by expanding each exponential function of a chemical potential as its
Taylor series around an arbitrary reference state:

exp RT = 1 + RT

(AM _AM) 1 (IAM r )3
2 (RI)2 6 (RT)3 (9)

and neglecting all but the first two terms. As in the MNET formalism
(4, 7), the flux through each of the steps, JI, was expressed as a function
of the, offset (4, 8), chemical potentials of the substrates of that
particular step multiplied by a coefficient L containing implicitly the
kinetic information concerning rate constants and the reference
concentrations. This led to the following expressions for the fluxes:

(10)J1 = kl[ATP],[GiC], (1 + In [ATP] + In [Glc]

J3= k3P(CA- [ATP]r)[FdP]r
APPENDIX A

In the present calculations, glycolysis is depicted as resulting from
individual fluxes corresponding to different steps of the pathway
related through conservation equations (6)

V1 = k,[Glc][ATP] (1)

V3 = k3[FdP](CA- [ATP])Pt

[ATP]

Km+ [ATPJ

JP +[ATI (1 k+ [ATP]rK
PkKm + [ATPIr Km +[ATPIr inP] (12)

The preceding formulation of the fluxes is analogous to the implicit
(2) form ofNET in terms of linear flow-force relations:

(3)

k, and k3 are the kinetic rate constants of the first (upper) and second
(lower) glycolytic steps, respectively; kp is a lumped constant for
nonglycolytic ATP-consuming processes (load) and P, is the phosphate
concentration assumed to be constant. KM is the Michaelis constant of
the ATPase.
The system is described by the following set of differential equa-

tions, including a conservation relationship for adenine nucleotides:

d[Glc]
dt IVin -V

d[ATP]
dt = -2V, + 4V3 - Vp

(4)

(5)

J= L1(piG,c + YIATP + C1)

J3= L3( 1FdP + RADp + C3)

JP = Lp(ATp + CP).

(13)

(14)

(15)

Withy = 1.
Interpreting the chemical potential as driving force (cf. Discussion)

Eqs. 10-12 and 13-15 correspond to the linear flow-force relations for
the present system. According to Fig. 1, the fluxes imply the following
rates of changes of the metabolite concentrations:

d[Glc]
dt (16)

d[ATP] - i +n2J3-Jp; n,=2,n2=4 (17)

dt

80 ipyiclJunl oue6 Otbr19

(CA [A TPI) I
. 1+ln + ln- (11)(C. [A TP],) [FdP]r
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d[FdP]
d[ =J -J3. (18)
dt

Vi. represents the input rate of substrate, namely glucose. The
dependence on [ATP] of the fluxJ3 (Eq. 11) was calculated through the
following conservation relation for the adenine nucleotide pool:

(19)CA = [ATP] + [ADP].

In this stoichiometric model the reference concentration
parameters which affect the quantitative and qualitative behavi
the system. The reference state was chosen as the steady state de
by:

d[Glc] d[ATP] d[FdP]
dt dt dt

Eqs. 10-12 plus 20 reveal the concentrations of ATP, Glc, and F
the reference state:

2KMVin kp - 2In
[ATP]rk 2Vn' [GlcIr 2KMk=

vin
k3PF CAk3VP(Ak)

In our calculations the steady state will be taken as the reference
This choice does not preclude that the system under some cii
stances will exhibit sustained oscillations. Stability analysis
shown) has revealed that, under such conditions, the states defin
expression (21) correspond to unstable steady states.

APPENDIX B

The stability analysis was performed by linearization of the equations
around the steady state and determination of the system's eigenvalues
through solution of the characteristic equation of Jacobian matrix. A
transformation of variable was necessary since the differential equa-
tions (Eqs. 16-18 plus 10-12) expressed changes in concentrations
(e.g., d[GIc]Idt) as functions of the chemical potentials of the
metabolites involved (e.g., 1n[G1c]/[Glc]r). The procedure for the
variable transformation was as follows:

[Glc]

[ATP] =M

[FdP]

[Glc]
in[GiC]r

[ATP]
[ATP]r

[FdP]
[FdP]r

+ C, (22)

where the matrix M stands for the Jacobian of the system depicted in
Eqs. 10-12 and 16-18 and c is a vector of constants. Superscript dot
refers to the time derivative of the variable. In Eq. 11 J3 was dependent
on [ATP] through the conservation relation (Eq. 19). To derive the
corresponding element of the matrixM the expression of the logarithm
containing the [ATP] was subjected to Taylor series expansion in terms
of the In[ATP]. The derivative of the first-order term of this series with
respect to the logarithm of [ATP] related to the reference concentra-
tion was used in evaluating the corresponding elements ofM.

To obtain differential equations in terms of logarithms of concentra-
tions, we transformed the state variables [Glc], [ATP], and [FdP] to a,
a, and defined by:

[Glc] [ATP] [FdP]
[Glc] t

[ATPIr [FdP]r
dln[Glc] dln[ATP] dln[FdP]

dt -V
dt dt

ioroUi In terms of the new variables, the system (22) can be written as:
-fined

e° ([Glcr 0 a

ea 0. 0 [A TP]r 0 .

0 0 el 0 0 [FdPIr
dP of .

=M a + c.

(23)

(24)

(25)

These equations were linearized by expanding the inverse of the
matrix on the left hand side and neglecting second and higher order
terms:

e- 0 0 1 0 0 cr 0 0

0 ea 0 0 1 0 0 a 0

0 0 e- 0 0 1 0 0 a3

Multiplying Eqs. 25 and 26 side by side results in:

[a =Sr'M ;a -Sf1 0 a 0 M ao

0 0 0

or O 0

+ Sr-,c-S - 0 a 0 c.

0 0 ,B

(26)

(27)

Neglecting the second term in the right hand side of Eq. 27 we may

rewrite this equation as:

& a

= N~ x+S-c
.13.~~~~~~~

(28)

where:

I[GlC]r 0 0 -I

S-1= 0 [ATPIr 0

0 0 [FdPIrI
(29)

if C the diagonal matrix having the elements of vector c on its main
diagonal and zeros elsewhere:

o 0 0

O a O

O 0

a=C
(30)
(30)
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Unlike the Jacobian of the kinetic system, the Jacobian of the
nonequilibrium thermodynamics transformed system, N, explicitly
contains information deriving from the constants c:

N=S l M-S- . C. (31)

Yet, for any specific case, the constant c are related to the kinetic
parameters (4; cf. Eqs. 10-12 to Eqs. 13-15). Indeed if Nk is the
Jacobian of the system of kinetic differential equations (Eqs. 4-6),
from which the system of NET differential equations was derived as
first order approximation, then:

N S 1 Nk * S (32)

In terms of the kinetic parameters, N reads:

Vin
[Glc]r

-2ki[GlcIr

k [ATP]r[Glc]r
[FdP]r

-ki[ATP]r

4k -~CA~ [ATPIr
4k3Pt[FdP]r [ATP] +kr (KM + [ATPI )2

k [ dPr[ - k3Pt(CA - [4TP]r) (C -[ATP]F)[FdPI]r (A-PPr
0

Pt[FdP]r(CA - ATP]r)
4k3 ATP]r (33)

-k [ATP]r [GlcJr
[FdPI r

The characteristic cubic equation for this Jacobian matrix,

det N - AO 1 0 =0 (34)

was solved analytically. The characteristics (i.e., complex vs. real,
negative vs. positive real parts) of the three roots, corresponding to the
three eigenvalues of N were used as criterium for the stability
properties of the system at given parameter values.
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