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Abstract Cruentaren A, a new antifungal benzolactone pro-
duced by the myxobacterium Byssovorax cruenta, proved to be
highly cytotoxic against various human cell lines. It inhibited
the proliferation of different cancer cell lines including a multi-
drug-resistant KB line at low nanomolar levels. It arrested hu-
man histocytic lymphoma cells (U-937) in G0/1 phase, but did
not trigger an apoptotic process. Studies to uncover the molecu-
lar target of cruentaren A showed that the novel compound, de-
spite its structural similarity to the benzolactone enamides
apicularen and salicylihalamide, was no V-ATPase inhibitor.
In contrast, cruentaren specifically inhibited mitochondrial
FOF1-ATPases with IC50 values of 15–30 nM. Although the ex-
act binding site of cruentaren remains undefined, inhibition was
shown to occur by interaction with the catalytic F1 domain. Since
mitochondrial ATPases play a crucial role in the pathophysiol-
ogy of several human disorders including cancer, cruentaren or
synthetic derivatives thereof could form the basis of future ther-
apeutic strategies.
� 2007 Federation of European Biochemical Societies. Pub-
lished by Elsevier B.V. All rights reserved.
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1. Introduction

The Gram-negative, fruiting body forming myxobacteria

have emerged as a particularly rich source of secondary metab-

olites, which are characterised by a multitude of unrelated

structures as well as by different biological activities with inter-

esting mechanisms of action [1,2]. The recently described

cruentarens were discovered in extracts of the new myxobacte-

rium Byssovorax cruenta strain By c1 because of the high anti-

fungal activity of cruentaren A, and later on cytotoxicity

against L929 mouse cells was also observed [3]. Structurally

they are characterized by a 12-membered lactone with an allyl-

amine side chain acylated by a 2-hydroxy-4-methoxy benzoic

acid in cruentaren A (Fig. 1) and a corresponding 6-membered

lactone in cruentaren B [4]. Thus, cruentarens are closely re-

lated to the class of benzolactone enamides, including the sal-

icylihalamides and the lobatamides [5,6]. Close structural

similarity also exists to apicularen A, produced by several
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species of the myxobacterial genus Chondromyces [7–9]. So

far, all members of the benzolactone enamide class have been

described as highly cytotoxic compounds, which specifically in-

hibit V-ATPases [9–11]. Therefore, we speculated that cruenta-

rens might have the same properties. Hitherto, preliminary

studies [3] had indicated that cruentaren A interferes with

mitochondrial ATPases, complex ubiquitous proteins which

are evolutionarily related to V-ATPases, reflected by their sim-

ilar overall structure consisting of a catalytic F1 (V1) domain

and a proton translocating, membrane bound FO (VO) domain

[12–14]. In this article, we report on the growth inhibitory ef-

fect of cruentaren A on various human cell lines and deal with

its inhibitory capacity on ion transporting ATPases. We show

that cruentaren A specifically inhibits mitochondrial FOF1-

ATPases by interaction with the F1 part, while other ion trans-

porting ATPases such as V-ATPase or Na+/K+-ATPase re-

main unaffected.
2. Materials and methods

2.1. Natural compounds
Cruentaren A and apicularen A were kindly supplied by members of

the former Division of Natural Product Research at the Helmholtz
Centre for Infection Research. Oligomycin was purchased from Sigma.
Concanamycin A was kindly provided by the Institute of Organic and
Biomolecular Chemistry, University of Göttingen.

2.2. Cell culture assays
Cell lines were obtained from the American Type Culture Collection

(ATCC) and the German Collection of Microorganisms and Cell Cul-
tures (DSMZ). All cell lines were cultured under conditions recom-
mended by their respective depositors. Growth inhibition was
measured in microtiterplates by using the MTT assay as reported pre-
viously [15]. In growth kinetic studies with KB-3-1 (DSMZ ACC158)
the inoculum was 50000 cells/ml and as parameter of growth, the pro-
tein concentration of harvested and washed cells was determined at dif-
ferent times using Bradford reagent (Bio-Rad). Cell culture reagents
were purchased from Life Technologies Inc. (Gibco BRL) and plastic
ware was obtained from Nunc.

In order to estimate the amount of inhibitor that is bound to cells,
KB-3-1 cells (�500000 in 10 ml) were incubated overnight with
20 ng/ml of cruentaren A and apicularen A, respectively. The cells were
then harvested by scrapping, centrifuged, washed with 10 ml PBS, and
extracted with 0.5 ml methanol. The methanolic extract was evapo-
rated to dryness, suspended in 200 ll of culture medium, and used
for a growth inhibition assay with KB-3-1 cells as mentioned above.

2.3. Caspase measurement
U-937 cells (DSMZ ACC5) were seeded in wells of a 384-well plate

(2500 cells/well) and incubated with cruentaren A (20 ng/ml) for differ-
ent periods of time. Activity of caspase 3 and caspase 7 was measured
blished by Elsevier B.V. All rights reserved.
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Fig. 1. Structure of the cruentaren A.

Table 1
Growth inhibition of different human cancer cell lines by cruentaren A
and apicularen A

Cell line Origin IC50 (ng/ml)

Cruentaren A Apicularen A

KB-3-1 Cervix carcinoma 0.3 1.0
KB-V1 Multi-drug resistant

KB line
0.6 10

K-562 Chronic myelogenous
leukemia

0.6 2.0

U-937 Histiocytic carcinoma 0.1 1.5
A-549 Lung carcinoma 0.4 0.1
SK-V-3 Ovarian carcinoma 1.0 1.5
A-498 Kidney carcinoma 0.4 0.3
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by using the Apo-One Homogeneous Caspase-3/7 Assay Kit from Pro-
mega.

2.4. Nucleosome quantification
The occurrence of mono- and oligonucleosomes due to apoptotic

process was determined in U-937 cells using the Cell Death Detection
ELISA kit from Roche Diagnostic.

2.5. Cell cycle analysis
After the appropriate treatment, 106 U-937 cells were harvested by

centrifugation and then fixed with cold (�20 �C) 80% methanol. After
30 min of incubation on ice, the cells were washed with phosphate buf-
fered saline (PBS) and then treated with 0.1% saponin in PBS (w/v).
Finally 500 ll propidium iodide (20 lg/ml) and RNAse (1 mg/ml) were
added, and the cells were incubated at 37 �C for 30 min. Samples were
analyzed by a FACScan (Becton Dickinson). Results are presented as
the number of cells versus the amount of DNA as indicated by fluores-
cence intensity.

2.6. Enzyme preparations
Yeast mitochondria were obtained as described previously [16]. In

some cases the yeast cells mixed with glass beads were only homoge-
nized in a mini-shaker (Ika). Beef heart mitochondria were isolated
by differential centrifugation, following the protocol of Smith by using
a blender to homogenize the heart mince [17]. The initial homogenisa-
tion buffer consisted of 250 mM sucrose, 10 mM KH2PO4, 10 mM
Tris, 2 mM EGTA, 2 mM MgCl2, pH 7.4, and further isolation proce-
dures were carried out in the same medium without EGTA [18]. Sub-
mitochondrial particles (SMP) were obtained by ultrasonic treatment
of the mitochondria.

To obtain F1-ATPase enriched fractions, submitochondrial particles
were mixed with half of the volume of chloroform for 15 s at room
temperature and immediately centrifuged for 10 min at 6000 rpm to
separate the aqueous and organic phases. The upper aqueous phase
containing the soluble F1 part was carefully removed and assayed
for ATPase activity as described below. F1-ATPase in this fraction is
relatively unstable and sensitive to low temperatures.

The V-ATPase holoenzyme was purified as published elsewhere [19].
Preparation of highly purified membranes containing Na+/K+-ATPase
from pig kidney followed the protocol of Jørgensen [20] with three
main steps of differential centrifugation, incubation with SDS in the
presence of ATP and sucrose density gradient centrifugation in a fixed
angle rotor.

2.7. ATPase assays
Unless otherwise noted, ATPase assays were performed in a total

volume of 160 ll. The preincubation time with or without additional
inhibitor was 5 min and the reactions were stopped at a given time
by placing the tubes into liquid nitrogen.

Assays with submitochondrial particles from beef heart and the
yeast Saccharomyces cerevisiae were carried out at 30 �C and consisted
of 4 lg of bovine and 2 lg of yeast protein, respectively, 50 mM Tris–
MOPS, pH 8.1, 1 mM MgCl2, 20 mM KCl, and 12.5 mM NaCl. The
reaction was started with 1 mM ATP and stopped after 2 min of incu-
bation.

ATPase assays with enriched F1-ATPase preparations of both beef
heart and the yeast S. cerevisiae were performed in a final volume of
1 ml and a pH of 8.0 at room temperature The samples contained 6–
10 lg of bovine and 14 lg of yeast protein, respectively, 50 mM Tris,
50 mM KCl and 2.5 mM MgCl2. After 5 min of preincubation with
or without inhibitors, 5 mM ATP was added, and after an additional
incubation time of 15 min the reaction was stopped by the addition
of 0.4 ml of 20% TCA.

V-ATPase assays were carried out at a pH of 8.1 and consisted of
3 lg of protein, 50 mM Tris–MOPS, 3 mM 2-mercaptoethanol,
1 mM MgCl2, 20 mM KCl, 0.003% C12E10, 20 mM NaCl, and 3 mM
Tris–HCl. After preincubation at 30 �C with or without additional
inhibitors, 1 mM Tris–ATP was added and after an incubation time
of 2 min the reactions were stopped by placing the tubes into liquid
nitrogen. Assays using Na+/K+-ATPase were performed at pH 7.5
and contained 0.5 lg of protein, 50 mM Tris–MOPS, 5 mM imidazole,
0.2 mM EDTA, 4 mM MgCl2, 20 mM KCl, 3.1% DMSO and 100 mM
NaCl. After 5 min of preincubation at 37 �C the reaction was started
with 3 mM Tris–ATP and stopped after 2 min of incubation by placing
the tubes into liquid nitrogen.

Determination of the inorganic phosphate produced in the assays
with enriched F1 part followed the method of Fiske and Subarrow
[21] using ascorbic acid as reducing agent, while the inorganic phos-
phate produced in the assays of F-ATPase, V-ATPase, and Na+/K+-
ATPase was measured according the protocol of Wieczorek et al. [22].

2.8. Other procedures
Fifth instar larvae of Manduca sexta (Lepidoptera, Sphingidae),

weighing 6–8 g, were reared under long day conditions (16 h of light)
at 27 �C using a synthetic diet modified according to Bell et al. [23].
3. Results and discussion

3.1. Growth inhibitory effects of cruentaren A on human cancer

cell lines

The novel antifungal cruentaren A, showing also cytotoxic-

ity against our standard mouse fibroblast cell L929 [3], was

checked for its impact on the growth of a variety of human

cancer cell lines from different tissues (Table 1). The IC50 val-

ues were, comparable with those described for other benzolac-

tones such as apicularen A [7,9], in the nanomolar range, even

for the multi-drug-resistant cell line KB-V1.

Fig. 2 shows growth kinetics of KB-3-1 cells in the presence

and the absence of cruentaren A. At a concentration of 20 ng/

ml cruentaren A, the KB-3-1 cells slowly ceased growing. The

protein amount was slightly increasing for about three days.

When the culture medium was replaced by fresh medium with-

out cruentaren A after one, two or five days, the cells re-started

to propagate transiently, probably due to cellular ATP pro-

duction via glycolysis, but finally stagnated again after about

2–3 days. This effect of cruentaren A differs from that of the

structurally related V-ATPase inhibitor apicularen A, for

which in comparable assays full reversibility after inhibitor

wash-out had been demonstrated [7].
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Fig. 2. Kinetics of growth inhibition by cruentaren A in KB-3-1 cells.
Control without inhibitor (open circles), with 20 ng/ml of cruentaren A
(solid circles), culture medium replaced by fresh medium without
inhibitor after 1 day (solid triangles), after 2 days (solid squares) and 5
days (solid diamonds). Growth was determined as protein increase.
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Fig. 3. Histograms of flow cytometry analysis of U-937 cells. In the
presence of cruentaren A (20 ng/ml) the number of cells in G0/1 phase
increased with time. The percentage rose from 31% (A) to 49% after
1 day (B) and 56% after 2 days (C) of incubation.
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One reason for the irreversible effect of cruentaren A could

be its influence on the cell cycle. Cell cycle analysis by flow

cytometry of U-937 cells showed that the cells treated with cru-

entaren A arrested in the G0/1 phase (Fig. 3). After one day, the

percentage of cells in G0/1 increased from 31% to 49%, and

to 56% after two days of incubation. Since, we did not observe

an increased sub-G0/1 population, apoptosis induced by cruen-

taren treatment appears improbable. We also measured cas-

pase activity in U-937 cells that had been incubated with

cruentaren A for 1–16 h, but found no increase in activity.

Using an ELISA for mono- and oligo-nucleosomes we also

found no hints for an apoptosis going on after three days of

incubation with cruentaren A, neither with 20 ng/ml nor with

an enhanced concentration of 200 ng/ml. From these results

we assume that the irreversible effect of cruentaren A is not

due to an irreversible induction of apoptosis.

Another reason for the irreversible effect of cruentaren A

may be that it just could not be washed out because of its

strong binding to the cells. Therefore, we tested methanolic ex-

tracts of washed KB-3-1 cells that had been incubated with

cruentaren (20 ng/ml) overnight. In a serial dilution assay,

we still observed a considerable amount of growth inhibition.

The same experiment with apicularen revealed, as expected, no

inhibitory activities of the respective extracts. Thus it appears

that the effect of cruentaren A is predominantly irreversible be-

cause it strongly binds to the target cells.

3.2. Effects of cruentaren A on V- and P-ATPases

Initially, we tested the inhibitory efficacy of cruentaren A on

the V-ATPase since we assumed that it would have the compa-

rable inhibitor characteristics as the closely related published

benzolactone enamides such as apicularen and salicylihalamide
which exhibit IC50 values in the nanomloar range [9–11].

Therefore, we prepared pure V-ATPase holoenzyme from the

midgut of the tobacco hornworm and tested if cruentaren A

would also block V-ATPase activity. However, even at a con-

centration of 1 lM which is sufficient for established specific

V-ATPase inhibitors such as the plecomacrolides concanamy-

cin and bafilomycin or the above mentioned benzolactone ena-

mides to completely inhibit the V-ATPase, cruentaren A

unexpectedly had no effect (Table 2).

To further elucidate the molecular target of the highly cyto-

toxic cruentaren, we tested its effect on the Na+/K+�ATPase.

This ion transporting enzyme belongs to the family of P-ATP-

ases and occurs in virtually every animal cell where its main

function is the preservation of sodium gradients across the

plasma membrane [24]. For our experiments we used purified

Na+/K+-ATPase containing plasma membranes from pig kid-

ney. As shown in Table 2, cruentaren A had no effect on the

activity of the Na+/K+-ATPase even at a concentration of

1 lM, which is much higher than the IC50 values determined



Table 2
Inhibition of the Na+/K+-ATPase and of the V-ATPase by cruen-
taren A

Compound Relative activity (%)

Na+/K+-ATPase V-ATPase

Control without inhibitors 100a 100a

Vanadate 1 mM 4 ± 2.6 n.d.
Concanamycin A1 1 lM n.d. 3.2 ± 1.3
Cruentaren 1 lM 108 ± 9.8 103 ± 24.7

aValues represent the means ± S.E.M. of three independent experi-
ments (n.d. = not determined). The specific ATPase activity without
inhibitor was 6.1 ± 0.2 lmol mg�1 min�1 in Na+/K+-ATPase prepa-
rations and 3.2 ± 0.7 in V-ATPase preparations.
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in growth experiments, whereas the ATPase activity was com-

pletely inhibited by the addition of the specific inhibitor vana-

date (Table 2).

Taken together the results with V- and P-ATPases strongly

indicate that cruentaren A is neither a V-ATPase nor a P-ATP-

ase inhibitor.

3.3. Effects of cruentaren A on F-ATPases

Because cruentaren A did not inhibit V- nor P-ATPases, we

consequently investigated as next step the inhibitory efficacy of

cruentaren A on F-ATPases which intrinsically could have

been suspected from our initial studies with mitochondria [3].

To examine the potency of this effect, we analyzed the dose

dependent inhibition of FOF1-ATPase activity by cruentaren

A in mitochondrial preparations of both beef heart and the

yeast Sacharomyces cerevisiae. Preliminary studies had shown

that about 80% of total ATPase activity in these preparations

were sensitive to the specific FOF1-ATPase oligomycin [3]. As

Fig. 4 reveals, cruentaren A inhibited the FOF1-ATPase activ-

ity in submitochondrial particles from beef heart and yeast

half-maximally at concentrations between 15 and 30 nM.

The inhibition curve was rather steep with a Hill coefficient

of clearly more than 1, indicating some positive cooperativity

in the inhibition process.
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Fig. 4. Dose dependent inhibition of F-ATPase activity in submito-
chondrial particles of beef heart and Saccharomyces cerevisiae. In each
case two independent experiments are shown. The specific ATPase
activity without inhibitor was 1.5 lmol mg�1 min�1 in beef heart
preparations (solid and open diamonds) and 1.3, respectively
3.9 lmol mg�1 min�1 in yeast mitochondria (solid and open triangles).
The classification of cruentarens as members of the salicyli-

halamide/apicularen family on the one hand and the evolution-

ary relationship of V- and F-ATPases [12] on the other hand

imply a possible conserved primary inhibition mechanism or

binding site for this group of antibiotics. A comparable com-

mon mechanism had already been suggested for the V-ATPase

inhibitor bafilomycin and the F-ATPase inhibitor oligomycin

[25]. For the benzolactone enamides salicylihalamide and api-

cularen it has been shown recently that inhibition of the V-

ATPase activity is mediated via interaction with the VO-com-

plex as the ATP hydrolysis catalyzed by the isolated V1 com-

plex was not effected (salicylihalamide: [26]; apicularen: Huss

and Wieczorek, unpublished). Although the nature of this

interaction is still unknown, experiments using a radioactively

labelled semisynthetic derivative of concanamycin had shown

that the binding site for apicularen (and thus evidently also

for salicylihalamide) is different from that for the plecomacro-

lides [9,19].

3.4. Inhibition of the catalytic F1 domain by cruentaren A

To investigate whether cruentaren A inhibited the F-ATPase

activity in a similar way by targeting the FO-part, we per-

formed assays using samples enriched in F1-ATPase. Contrary

to our expectations, cruentaren A inhibited the activity of F1-

ATPase solubilized from both yeast and beef heart submito-

chondrial particles (Table 3). The inhibitory effect at the con-

centrations of 0.1 and 1 lM was nearly identical to that

obtained with the FOF1-holoenzyme (compare Fig. 4). As ex-

pected, the FO-targeting inhibitor oligomycin did not affect

the F1-ATPase activity. The inhibitory capacity of cruentaren

A appears to be limited to eukaryotic F-ATPases, since it has

been shown to be completely inactive against a series of Gram-

negative bacteria [3], and since it did not inhibit the purified

F1-ATPase from Escherichia coli (data not shown).

Based on our results, we conclude that cruentaren A inhibits

mitochondrial F-ATPases by targeting the catalytic F1-domain

and not via interaction with the membrane bound FO-domain.

This outcome seems surprising in view of the effect of the re-

lated benzolactone enamides which operate on V-ATPases

via the VO-complex. However, in spite of their planar structural

similarity, conformation and spatial arrangement of functional

groups are quite different, as has been shown by X-ray crystal

structure analyses of apicularen A and cruentaren A [4]. From

this point of view it is conceivable that these compounds inter-

act with different binding sites in related proteins.

Several natural compounds such as aurovertins or the poly-

phenolic phyto-chemicals resveratrol and piceatannol are well

known inhibitors of mitochondrial F1-ATPases, for which
Table 3
Inhibition of F1 ATPase solubilized from submitochondrial particles

Compound Relative activity (%)

Beef heart S. cerevisiae

Control without inhibitors 100a 100a

Oligomycin 1 lM 99.1 ± 0.1 94.0 ± .2.0
Cruentaren 1 lM 3.3 ± 0.8 3.0 ± 0.7
Cruentaren 0.1 lM 10.0 ± 0.5 10.3 ± 0.7

aValues represent the means ± S.E.M. of three independent experi-
ments. The specific ATPase activity without inhibitor was
3.9 ± 0.3 lmol mg�1 min�1 in F1 beef heart preparations and 7.5 ±
0.5 in F1 yeast preparations.
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binding sites have been partially characterized [27]. Since we

have no evidence for a cruentaren binding site in the F1-ATP-

ase, further work is urgently required. However, in the light of

our finding that cruentaren inhibits the mitochondrial F1-

ATPase from two evolutionarily rather distant eukaryotic

organisms such as yeast and mammal but does not inhibit

the F1-ATPase from Escherichia coli, it appears tempting to

speculate that it binds to the F1 subunit e which has no bacte-

rial counterpart [28,29].

Apart from the fact that the inhibitory site needs to be iden-

tified, our results substantiate that cruentaren A is, to our

knowledge, the most potent inhibitor of mitochondrial F1-

ATPases. A future understanding of the interaction of cruen-

taren with its binding site may enable the rational development

of therapeutic agents for cancer treatment. Although the ther-

apeutic efficacy of cruentaren as anticancer drug has still to be

evaluated, its strong binding to cells might be advantageous,

provided that it is efficiently delivered to tumor cells. This

could possibly be done by tumor targeting via antibody or li-

gand conjugation [30,31].
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