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SUMMARY

The induction of pluripotency or trans-differentiation
of one cell type to another can be accomplished with
cell-lineage-specific transcription factors. Here, we
report that repression of a single RNA binding poly-
pyrimidine-tract-binding (PTB) protein, which occurs
during normal brain development via the action of
miR-124, is sufficient to induce trans-differentiation
of fibroblasts into functional neurons. Besides its
traditional role in regulated splicing, we show that
PTB has a previously undocumented function in
the regulation of microRNA functions, suppressing
or enhancing microRNA targeting by competitive
binding on target mRNA or altering local RNA
secondary structure. A key event during neuronal
induction is the relief of PTB-mediated blockage of
microRNA action on multiple components of the
REST complex, thereby derepressing a large array
of neuronal genes, including miR-124 and multiple
neuronal-specific transcription factors, in nonneuro-
nal cells. This converts a negative feedback loop to
a positive one to elicit cellular reprogramming to
the neuronal lineage.

INTRODUCTION

Feedback and feedforward circuits are key regulatory strategies

for maintaining gene expression programs in specific cell types,

and factors that alter the homeostatic balance of these circuits

can induce enduring program switches in cell differentiation

and development (Zernicka-Goetz et al., 2009). Many regulatory

pathways use such mechanisms to control the output of bio-

logical responses through gene networks in transcription (Amit
82 Cell 152, 82–96, January 17, 2013 ª2013 Elsevier Inc.
et al., 2009), RNA metabolism (Coutinho-Mansfield et al., 2007;

Lareau et al., 2007), signal transduction (Carracedo and Pandolfi,

2008), andmacromolecular synthesis and degradation (Auld and

Silver, 2006).

MicroRNAs have emerged as key mediators in various modes

of feedback and feedforward regulation (Leung and Sharp,

2010). MicroRNA are expressed in all higher eukaryotes, �800

in humans, and a recent estimate suggests that up to 60% of

human genes may be subjected to microRNA control (Bartel,

2009). In many cases, homeostasis is achieved by feedback

controls in which specific transcription factors or RNA-binding

proteins regulate the expression and biogenesis of microRNAs,

which, in turn, suppress the expression of their regulators.

Neuronal differentiation is a well-studied paradigm as a con-

sequence of transcription reprogramming (Li and Jin, 2010).

Recent studies show that a set of neuronal-specific transcription

factors is sufficient to trans-differentiate fibroblasts into func-

tional neurons (Caiazzo et al., 2011; Kim et al., 2011; Pang

et al., 2011; Qiang et al., 2011; Vierbuchen et al., 2010; Yang

et al., 2011). Several neuronal-specific microRNA, such as

miR-9/9* and miR-124, also play key roles in this process (Yoo

et al., 2011). miR-124 is a well-known regulator of the transcrip-

tion silencing complex built on RE1-silencing transcription factor

(REST), which represses a large array of neuronal-specific genes

in nonneuronal cells; this includesmiR-124 itself, thus forming an

autoregulatory loop during neuronal differentiation (Ballas et al.,

2005; Conaco et al., 2006). Forced expression of miR-124 can

drive differentiation of neural progenitor cells to neurons (Cheng

et al., 2009) and C2C12 cells to become neuronal-like cells (Wa-

tanabe et al., 2004).

Regulated RNA processing also plays a critical role in neuronal

differentiation. The polypyrimidine-tract-binding (PTB) protein

and its homolog nPTB undergo a programmed switch during

neuronal differentiation (Boutz et al., 2007; Makeyev et al.,

2007; Zheng et al., 2012). miR-124 is able to modulate such

switch by reducing PTB, thereby reprogramming an array of
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neuronal-specific alternative splicing events, and forced expres-

sion of PTB is able to block miR-124-induced neuronal differen-

tiation (Makeyev et al., 2007). However, it has been unclear

whether the PTB/nPTB switch is sufficient to initiate neuronal

differentiation, and if so, which specific PTB/nPTB-regulated

splicing events contribute to such cell fate switch.

We previously reported global PTB-RNA interactions in the

human genome (Xue et al., 2009). In PTB-depleted cells, we

unexpectedly observed conversion of diverse cell types into

neuronal-like cells. In addition to induced alternative splicing

events, we found an extensive involvement of PTB in the regula-

tion of microRNA targeting through either direct competition or

induced switch of local RNA secondary structure. A key event

is the activation of the miR-124/REST loop in which PTB not

only serves as a target, but also acts as a potent regulator.

Consequently, regulated PTB expression induces massive re-

programming at both the splicing and microRNA levels to drive

the cell fate decision toward the neuronal lineage.

RESULTS

PTB Downregulation Switches Multiple Cell Types to
Neuronal-like Cells
We attempted to use specific small hairpin RNAs (shRNAs)

to stably knock down PTB in order to systematically analyze

PTB-regulated splicing. As expected, shPTB induced nPTB

expression in HeLa cells (Figure S1A available online). We noted

a slow-growth phenotype of shPTB-treated cells, whichwas also

seen by others (He et al., 2007). Strikingly, many PTB-depleted

HeLa cells exhibited neurite outgrowth, and further analysis re-

vealed the expression of several neuronmarkers, including class

III b-tubulin (known as Tuj1) and MAP2 (Figures 1A and S1A),

suggesting that PTB knockdown converted highly transformed

HeLa cells to neuronal-like cells.

We extended this analysis to multiple cell types of diverse

origin, including human embryonic carcinoma stem cells (NT2),

mouse neural progenitor cells (N2A), human retinal epithelial

cells (ARPE19), and primary mouse embryonic fibroblasts

(MEFs). Upon PTB knockdown (Figure S1B), all of these cells

exhibited a neuronal-like morphology and showed strong Tuj1

staining (Figure 1A). Neuronal committed N2A and NT2 cells

were potently induced to show typical neuronal morphology in

�5 days after PTB knockdown and develop more complex

morphology after the cells were switched to N3media containing

a set of neural growth factors for 3–5 days. ARPE19 and MEFs

took �2 weeks to develop typical neuronal morphology in N3

media. Control shRNA treatment had no effect under these

conditions.

We further characterized two of these cell lines (N2A and

MEFs) by examining additional neural markers, including Synap-

sin 1 (SYN1), vGLUT1, and NeuN (Figure 1B). SYN1 and vGLUT1

showed a typical punctate staining pattern on Tuj1-positive cells,

but not on undifferentiated cells in the same field (Figure 1B). We

also detected strong staining of GABA channel receptors on

these derived neurons (data not shown). As previously described

(Vierbuchen et al., 2010), immunostaining and RT-PCR analyses

ruled out potential contamination of our starting MEFs with

neural crest cells (Figures S1C and S1D).
Both N2A cells and MEFs were efficiently converted by two

distinct shRNAs against PTB to neuronal-like cells (Figure S1E).

Importantly, the effect of specific shPTB molecules could each

be rescued with the shRNA-resistant PTB expression unit that

carries synonymousmutations (M1 or M2) in their targeting sites,

thus ruling out potential off-target effects (Figure 1C). Time-

course analysis demonstrated that PTB knockdown progres-

sively converted MEFs to neuronal-like cells with complex

morphology (Figures 1D and 1E). These data strongly suggest

that PTB downregulation potently induced these cells to differ-

entiate (in the case of N2A cells) or trans-differentiate (in the

case of MEFs) into neurons.

MEF-Derived Neurons Are Functional with Synaptic
Activities
To determine the functionality of differentiated cells, we patch-

clamped both shPTB-induced neurons from N2A cells and

MEFs. We observed that 11 out of 12 N2A cell-derived neurons

exhibited fast inward Na+ currents and action potential upon

membranedepolarization (FigureS2A) and that sevenout of eight

shPTB-induced MEFs showed a similar response, which could

be blocked by tetrodotoxin (TTX), a specific inhibitor of sodium

channels (Figure 2A). Both of these induced cell types showed

depolarization-induced Ca2+ influx (Figures S2B and S2C). We

next determined whether MEF-derived neurons are fully func-

tional in the presence of primary astrocytes, which is known to

be essential for trans-differentiatedMEFs to become synaptically

competent (Vierbuchen et al., 2010). After coculture for a week

with freshly isolated astrocytes free of contaminating neurons

from the brain of a green fluorescent protein (GFP)-transgenic

rat, we detected repetitive action potentials of varying frequen-

cies driven by current pulse in five out of six MEFs-derived

neurons (Figure 2B). Importantly, we recorded synaptic activities

on six out of seven such neurons examined (Figures 2C and 2D).

The detected postsynaptic currents likely reflect both glu-

tamatergic and GABAergic responses, because 6-cyano-7-

nitroquinoxaline-2,3-dione (CNQX) plus D(-)-2-amino-5-phos-

phonovaleric acid (APV) (antagonists of glutamatergic channel

receptors) and Picrotoxin (PiTX, antagonist of GABAA channel

receptors) could sequentially block the expected signals (Fig-

ures 2E and 2F). We further recorded GABA-induced, PiTX-

sensitive currents upon focal application of GABA (Figure 2G).

In the presence of PiTX, we detected AMPA-receptor-mediated

excitatory postsynaptic currents (EPSCs) with fast kinetics when

holding the neuron at �70mV with an external solution contain-

ing 2 mM Mg2+ (Figure 2H), which is known to inhibit N-methyl-

D-aspartate (NMDA) EPSC with slow kinetics (Nowak et al.,

1984). By holding the neuron at +60mV to relieve the inhibitory

effect of Mg2+, we detected both NMDA and AMPA EPSCs,

which could be progressively blocked by the NMDA channel

inhibitor APV and the AMPA channel antagonist CNQX (Fig-

ure 2H). These data demonstrated that shPTB had trans-differ-

entiated MEFs into functional neurons.

PTB Regulates the Expression of Many Neuronal Genes
in Nonneuronal Cells
Because of the induced neuronal morphology and the availability

of the genome-wide PTB-RNA interaction map on HeLa cells
Cell 152, 82–96, January 17, 2013 ª2013 Elsevier Inc. 83
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Figure 1. Differentiation of Diverse Cell Types into Neuronal-like Cells in Response to PTB Knockdown

(A) Induction of neuronal morphology and the expression of the neuronal marker Tuj1 in multiple cell types in response to depletion of PTB. Scale bar, 20 mm.

(B) Characterization of two cell types (N2A andMEF) with additional neural markers. Typical punctate staining is evident (yellow) with antibodies against Synapsin

and vGLUT1. Scale bar, 20 mm.

(C) Quantification of induced neuronal-like cells derived from N2A and MEFs. The data were based on positive Tuj1-stained cells divided by initial plating cells in

response to two separate shPTBs (sh1 and sh2). The effect could be efficiently rescued with the corresponding shRNA-resistant PTB expression units that

contain mutations in the corresponding target sites (M1 and M2). Data are shown as mean ± SD.

(D) Time course analysis of neuronal induction on shPTB-treated MEFs after switching to N3media. MAP2 and NeuNwere stained at indicated time points. Scale

bar, 60 mm.

(E) Quantified temporal profile of PTB knockdown-induced neurons. Data shown as mean ± SD are based on four equivalent areas shown in (D).

See also Figure S1.
(Xue et al., 2009), we initially took this cell type as a surrogate

model to understand shPTB-induced cellular reprogramming.

We identified by RNA-seq a large number of up- or downregu-

lated genes induced by shPTB (Figure S3A), and we further

confirmed a panel of these events by quantitative RT-PCR

(qRT-PCR) (Figure S3B). Gene ontology analysis showed that

many such altered genes were linked to neuronal functions

(Figure S3C). These observations indicate that PTB is exten-

sively involved in the regulation of neuronal genes in nonneuronal

cells.
84 Cell 152, 82–96, January 17, 2013 ª2013 Elsevier Inc.
We noted the induction of Brn2 and Myt1l, which correspond

to two out of five key transcription factors previously shown to

be sufficient to induce trans-differentiation of fibroblasts into

neurons (Vierbuchen et al., 2010). Because HeLa cells have

a severely rearranged genome, we performed a focused analysis

on MEFs by qRT-PCR (Figure 3A), detecting the induction of all

five critical transcription factors (Ascl1, Brn2, Myt1l, Zic1, and

Olig2) as well as NeuroD1 known to enhance neurogenesis in

human fibroblasts (Pang et al., 2011). We also observed the

induction of miR-124 and miR-9 (Figure 3A), which have been
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Figure 2. Synaptic Activities on Neurons Derived from shPTB-Induced MEFs

(A) Representative traces of whole-cell currents on control shRNA-treated (top) and shPTB-treated (bottom) MEFs. Only shPTB-treated MEFs exhibited fast

inward sodium currents, which could be blocked by 1 mM sodium channel inhibitor TTX.

(B) Representative trace of action potentials in response to step current injections on shPTB-induced neurons after coculturing with rat glial cells.

(C) Image of an shPTB-induced neuron cocultured with GFP-marked rat glial cells. Recording electrode was patched on the shPTB-induced neuron (middle and

right).

(D–F) Representative traces of spontaneous postsynaptic currents on shPTB-induced neurons (D). The cell was held at �70mV, revealing events of various

amplitudes and frequencies. The inset shows a representative trace of synaptic response. Glutamatergic synaptic currents were blocked with 20 mMCNQX plus

50 mM APV (E). The inset highlights the remaining GABA current. GABA currents were blocked with 50 mM PiTX (F).

(G) Induction of GABA currents by focal application of 1 mM GABA, which could be blocked by PiTX (red).

(H) Representative trace of synaptic currents recorded on shPTB-induced neurons. Vh: holding potential. AMPA-R-mediated EPSC was recorded at �70mV.

Blockage of Mg2+ to NMDA-R was relieved at +60mV, revealing both AMPA and NMDA EPSCs, which could be sequentially blocked with 50 mMAPV (antagonist

of NMDA-type glutamate receptors) and 20 mM CNQX (antagonist of AMPA receptors).

The number of cells that show the representative response against total cells examined is indicated in each panel. See also Figure S2.
shown to synergize with neuronal-specific transcription factors

in promoting neurogenesis (Yoo et al., 2011). These data explain

the compatible functionality of shPTB-induced neurons to that

converted by a set of lineage-specific transcription factors.

REST Activity Contributes a Key Part to the shPTB-
Induced Neuronal Program
The REST complex is known to repress a large set of neuronal

genes in nonneuronal cells (Johnson et al., 2007). Interestingly,

we noted that all induced transcription factors examined in

Figure 3A contain significant REST ChIP-seq signals from the

ENCODE data on C2C12 cells. We confirmed strong REST
binding by ChIP-qPCR on most of these genes in MEFs, and,

as expected, REST knockdown induced the expression of

these genes (Figures S3D and S3E). These data suggest that

the function of the REST complex might be compromised in

shPTB-treated MEFs.

To determine how the REST complex was compromised, we

examined the response of REST and REST cofactors to shPTB

in HeLa cells. While REST expression was little affected from

our RNA-seq analysis, we found that SCP1, a Pol II Ser5 phos-

phatase associated with the REST complex (Yeo et al., 2005),

was significantly downregulated by shPTB in multiple cell types

with induced neuronal morphology (Figure 3B). The effect of
Cell 152, 82–96, January 17, 2013 ª2013 Elsevier Inc. 85
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Figure 3. Derepression of Neuronal-Specific Genes in Response to PTB Knockdown

(A) qRT-PCR analysis of a panel of transcription factors and microRNAs in shPTB-treated MEFs. Data are normalized against Actin; miR-21 served as a negative

control.

(B) Downregulation of SCP1 in multiple cell types determined by western blotting.

(C and D) Rescue of SCP1 expression in PTB knockdown cells by an shRNA-resistant PTB in HeLa (C) and N2A (D) cells.

(E) Time-course analysis of neural induction by retinoic acid (RA) on NT2 cells analyzed by qRT-PCR. Oct4 was analyzed as a control. Data are shown as

mean ± SD.

(F) Induction of neuronal differentiation on MEFs with shRNA against SCP1 or REST. The induction efficiency was calculated based on the number of cells with

positive MAP2 and NeuN staining divided by total plating cells.

Data are shown as mean ± SD. See also Figure S3.
shPTB on SCP1 expression could be rescued on two of these

cell types we examined (Figures 3C and 3D). During the course

of retinoic-acid-induced neural differentiation on NT2 cells, we

observed that SCP1 expression was gradually reduced, which

closely tracked PTB downregulation and nPTB induction (Fig-
86 Cell 152, 82–96, January 17, 2013 ª2013 Elsevier Inc.
ure 3E). These findings suggest that PTB-regulated expression

of the REST cofactor SCP1may play a key role in neuronal differ-

entiation under physiological conditions.

Recent studies suggest that REST is required for maintaining

the population of neural stem cells (Gao et al., 2011) and genetic



inactivation of REST does not efficiently turn fibroblasts into

neurons, despite the induction of some neuronal genes (Aoki

et al., 2012). However, a dominant-negative SCP1 was able to

efficiently drive neuronal differentiation on P19 cells (Yeo et al.,

2005). We thus wished to directly test the contribution of SCP1

to shPTB-induced neurogenesis under our experimental condi-

tions, and we similarly tested REST for comparison. We found

that both shSCP1 and shREST, but not control shRNA, were

able to trigger neuronal differentiation on MEFs (Figure 3F). The

neural induction efficiency by shSCP1 and shREST was similar,

but lower than that induced by shPTB (compared Figure 1C and

Figure 3F), indicating that other PTB-regulated events may

additionally contribute to the induction of neurogenesis. The

reason for efficient induction of neurogenesis with shPTB or

shRNA against REST or a REST cofactor gene may be due to

gradual switch of these cell-lineage-specific regulators, which

may mimic relevant developmental processes (see Discussion).

PTB-Regulated Splicing Likely Facilitates the
Development of the Neural Program
PTB is best known for its role in regulated splicing (Makeyev

et al., 2007), which is consistent with our RNA-seq data from

HeLa cells (Figure S3F). However, it has been unclear which

altered splicing event(s) contributes to the development of the

neuronal lineage in PTB-depleted cells. In light of the recent

finding that the REST gene itself undergoes alternative splicing

to produce a truncated, nonfunctional isoform (REST4) (Raj

et al., 2011), we asked whether this splicing event might be

subjected to PTB regulation. We detected some induction of

the REST4 isoform in N2A cells, but not in other cell types we

examined (Figure S3G).

During the course of this investigation, we detected induced

alternative splicing of two key genes, LSD1 (a histone lysine

demethylase, a component of the REST complex) and PHF21A

(a component of the histone deacetylase HDAC1 complex)

upon PTB knockdown in HeLa and N2A cells (Figures 4A and

4B). This is consistent with multiple PTB binding events around

the regulated exon in both cases from our published crosslinking

immunoprecipitation (CLIP)-seq data (Xue et al., 2009). Impor-

tantly, induced skipping of the alternative exon in LSD1 has

recently been shown to affect neurite morphogenesis/matura-

tion (Zibetti et al., 2010). Although it remains to be determined

whether induced PHF21A splicing has any functional conse-

quence, these findings suggest that some PTB-regulated splic-

ing events may directly contribute to the neuronal phenotype

observed in PTB-downregulated cells.

PTB Is Involved in the RNA Stability Control of Key
Neuronal Genes
Because many PTB-affected genes could not be explained by

induced splicing, we searched for other potential mechanisms.

PTB has been reported to regulate RNA stability inmultiple cases

through C/U-rich sequences in the 30 UTR, but the mechanism

has remained elusive (Knoch et al., 2004; Kosinski et al., 2003;

Pautz et al., 2006; Porter et al., 2008; Tillmar and Welsh, 2002;

Woo et al., 2009). By examining the PTB-RNA map (Xue et al.,

2009), we noted extensive PTB binding events in the 30 UTR of

all of those reported genes (Figure S4A). Globally, PTB binding
on both intronic regions and 30 UTRs are more prevalent than

50 UTRs and exons compared to the RNA-seq signals in these

regions (Figure 4C). However, PTB binding alone does not

seem to be sufficient to regulate RNA stability, as we showed

by using an MS2-based tethering assay (Figures S4B–S4D).

We noted that all of those previously mapped PTB-binding sites

localize closely with predicted microRNA-targeting sites (Fig-

ure S4A), raising an intriguing possibility that PTB may regulate

RNA stability via functional interplay with microRNA.

Multiple PTB binding peaks are evident in the 30 UTR of

CoREST and HDAC1 (Figure 4D), both of which have been

implicated in neurogenesis as key components of the REST

complex (Dovey et al., 2010; Hsieh et al., 2004). These mapped

PTB-binding sites are coincident with three previously validated

targeting sites by miR-124, miR-9, and miR-449 (Baudet et al.,

2012; Packer et al., 2008; Selbach et al., 2008). Indeed, PTB

knockdown in HeLa cells dramatically reduced the expression

of both CoREST and HDAC1 at the protein level and diminished

the luciferase activity of the reporters containing the 30 UTR of

these genes (Figure 4E). These data strongly suggest that

PTB downregulation caused dismantling of multiple compo-

nents of the REST complex, which likely contribute in a collec-

tive fashion to the induction of neuronal-specific genes in non-

neural cells.

PTB Regulates RNA Stability in Conjunction with
MicroRNA
From this point, we used HeLa cells to understand the mecha-

nism underlying PTB-regulated gene expressionmainly because

of the experimental manipulability of the cell type, although it

is important to emphasize that caution must be taken when ex-

trapolating deduced molecular mechanism from one cell type

to another. To determine how extensively PTB is involved in

RNA stability control, we performed RNA-seq onmock-depleted

and PTB-depleted cells before (T0) or after blocking transcription

with Actinomycin D for 4 hr (T4). This allowed us to calculate

mRNA decay [(T0 – T4)/T0 3 100%] and determine how such

decay might be influenced by PTB for each expressed gene

in the human genome. We identified a total of 142 genes

that showed significantly increased (red dots in Figure 4F) or

decreased (blue dots in Figure 4F) decay (p < 0.05) in response

to PTB knockdown. Interestingly, SCP1 is among these genes,

which was further confirmed by qRT-PCR (Figure 4G).

We next selected a panel of PTB-bound genes to determine

whether these PTB-regulated events were dependent on the

microRNA machinery (Figure 4H). We found that many PTB-

downregulated genes (blue underlined in Figure 4H) lost the

response to PTB knockdown when Ago2 was inactivated. We

found no or little effect on several PTB-upregulated genes after

Ago2 RNA interference (RNAi) (red underlined in Figure 4H),

consistent with the possibility that microRNA no longer acted

on these genes in PTB-depleted cells. To determine whether

the 30 UTR of PTB-regulated genes might mediate the response

to PTB knockdown, we constructed a series of luciferase

reporters containing the 30 UTR of these genes, finding that the

reporters recaptured PTB-dependent suppression or enhance-

ment (Figure 4I). These data illustrate that PTB is involved in

the regulation of RNA stability and/or translational control in
Cell 152, 82–96, January 17, 2013 ª2013 Elsevier Inc. 87
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Figure 4. PTB-Regulated Splicing and RNA Stability

(A and B) PTB-regulated alternative splicing of LSD1 and PHF21A. The CLIP-seq mapped PTB binding events (blue) are shown along with deduced PTB binding

peaks (orange lines) on each genemodel. PTB knockdown-induced alternative splicing was determined by qRT-PCR in the case of LSD1 and by semiquantitative

RT-PCR in the case of PHF21A.

(C) Relative enrichment of PTB binding in intronic and 30 UTRs. Significant enrichment of PTB binding events is indicated by the p values in each case.

(D) PTB binding on two REST component genes, showing that multiple PTB binding peaks overlap with validated targeting sites by miR-124 and miR-9.

(E) Reduced CoREST and HDAC1 proteins (left) and diminished reporter activities (right) in PTB-depleted HeLa cells.

(F) Genome-wide analysis of PTB-regulated RNA stability. The calculated decay rate was compared in the presence (shCtrl-treated) or absence (shPTB-treated)

of PTB. Genes with increased and decreased decay are highlighted in red and blue, respectively, based on triplicated RNA-seq data (p < 0.05).

(G) Accelerated SCP1 mRNA decay detected by qRT-PCR in PTB-depleted HeLa cells.

(legend continued on next page)

88 Cell 152, 82–96, January 17, 2013 ª2013 Elsevier Inc.



conjunction with the action of microRNA on the 30 UTR of many

genes.

The 30 UTR of SCP1 Contains Multiple MicroRNA-
Targeting Sites
We used SCP1 as a model to investigate the functional interplay

between PTB andmicroRNA. We compiled PTB and Ago2 CLIP-

seq signals (see below in Figure 7) in the 30 UTR of this gene

before and after PTB knockdown in order to select relevant

regions for functional analysis. We detected one lost and at least

six gained Ago2 binding events in the 30 UTR of SCP1 in

response to PTB knockdown (Figure 5A). In the F1 region, for

example, we noted three PTB-binding sites that weakly overlap

with the mapped Ago2-binding sites before PTB knockdown,

and, in response to PTB knockdown, one of these Ago2 CLIP

peaks was significantly enhanced, which is near the predicted

target site for miR-124. The predicted microRNA-targeting sites

in the F1 region are each flanked by a PTB binding consensus

motif (Figure 5A, lower panel). Multiple mapped PTB and Ago2

binding events also show various degrees of overlap with the

predicted targeting sites for miR-124 and miR-96 in the F2 and

F3 regions.

Previous studies showed that forced miR-124 expression

could switch the gene expression profile toward that of brain in

HeLa cells (Lim et al., 2005). Relevant to the present study,

miR-124 has also been shown to be subject to regulation by

SCP1 during neurogenesis in vivo (Visvanathan et al., 2007).

Collectively, these observations suggest an important pathway

for neuronal differentiation that involves the functional interplay

between miR-124, PTB, and SCP1/REST.

PTBDirectly Competes withMicroRNA-Targeting on the
30 UTR of SCP1
Perturbation experiments confirmed the role of PTB in the regu-

lation of microRNA function. For example, overexpression of

miR-96 suppressed SCP1 expression and PTB knockdown

enhanced the effect, whereas miR-96 antagomir showed the

opposite response (Figure 5B). A nontargeting miR-339 (labeled

as Ctrl miR) served as a negative control. We could recapitulate

these effects with a luciferase reporter containing the entire 30

UTR of the SCP1 gene (Figure S5A). We then analyzed individual

segments (F1–F3) in the 30 UTRofSCP1, finding that overexpres-

sion of either miR-96 or miR-124 could suppress the activity of

the reporter containing the F1 fragment (Figure 5C). PTB overex-

pression antagonized, but PTB knockdown enhanced, the effect

of both microRNAs (Figures 5C and 5D). We made a similar

observation on the luciferase reporter containing the F2 (Fig-

ure S5B) or F3 (Figure S5C) fragment.

To determine the sequence requirement for both microRNA-

and PTB-mediated actions, we carried out mutational analysis

in the seed region of individual microRNA target sites and on
(H) The effect of knocking down PTB (PTB�) or both PTB and Ago2 (PTB�/Ago2�) o
their 30 UTRs. A gene (UBC) without binding evidence for PTB and Ago2 severed

(I) Recapture of PTB-dependent regulation with the 30 UTR of individual genes

because its 30 UTR is too long to clone.

Data in individual panels are shown as mean ± SD. **p < 0.01; ***p < 0.001. See
the nearby PTB-binding sites (Figure 5A). We found that the

mutant (GCC to CGG) in the miR-96 seed region no longer re-

sponded to the overexpression of this microRNA (Figure 5E).

The mutations (double C-to-A) in the nearby PTB-binding site

enhanced the effect of the microRNA, even though these muta-

tions impairedmiR-96 targeting to some degree, thus causing an

increase in the reporter activity in control microRNA-treated cells

(Figure 5E). Similarly, the mutations (GCC to CGG) in each of the

miR-124-targeting sites attenuated and the double mutation

abolished the response to transfected miR-124 (Figure 5F). In

comparison, at least one of the mutations in nearby PTB-binding

sites (the triple Amutant in the first miR-124-targeting site shown

in Figure 5A) enhanced the effect of miR-124 (compare lanes 4

and 12 in Figure 5F). Together, these data demonstrated that

PTB directly competes withmicroRNA onmultiple targeting sites

in the 30 UTR of the SCP1 gene.
PTB Can Also Boost MicroRNA Action on Specific Genes
Our RNA-seq experiments and luciferase-based assays re-

vealed both up- and downregulated genes in response to PTB

knockdown. While many upregulated genes likely resulted

from derepression, we detected multiple examples of upregu-

lated genes in PTB knockdown cells that appear to depend on

their 30 UTRs (Figure 4I). Such effect might be due to PTB-regu-

lated switch of polyadenylation from the distal to proximal site,

thereby shortening the 30 UTR in some genes that reduce

microRNA-targeting potentials. We tested and ruled out this

possibility by measuring RNA-seq tags at the 30 end of each

expressed gene in response to PTB knockdown (Figures S5D

and S5E).

To understand how PTB knockdown could induce gene ex-

pression, we took GNPDA1 as a model, which was upregulated

by PTB via its 30 UTR (Figure 4I). We validated that PTB knock-

down enhanced the stability of the endogenous GNPDA1 tran-

script (Figure 6A). We noted that the CLIP-seq mapped PTB

binding events are coincident with two stretches of C/U-rich

sequences on the 30 UTR of the GNPDA1 gene (Figure 6B). We

confirmed high-affinity PTB binding on this element by gel

mobility shift (Figure S6A). Importantly, the PTB-binding sites

are immediately downstream of the mapped Ago2-binding sites

that contain potential targeting sites for several microRNA,

including Let-7b, miR-181b, and miR-196a (Figure 6B). As ex-

pected, Let-7b overexpression suppressed the expression of

the luciferase reporter containing this region, while anti-Let-7b

showed the opposite effect (Figure 6C). The reporter activity

could be further enhanced by PTB knockdown in HeLa (Fig-

ure 6C) and NT2 cells (Figure S6B). We also showed that both

anti-Let-7b and anti-miR-181b enhanced GNPDA1 protein ex-

pression in a PTB-dependent manner (Figure 6D). These data

demonstrated that microRNAs act more effectively on GNPDA1

in the presence of PTB.
n the expression of a panel of genes that showPTB and Ago2 binding events in

as a negative control.

analyzed in (H). Note that the MBNL1 gene was not included in this analysis

also Figure S4.
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Figure 5. PTB Competition with MicroRNA Targeting in the 30 UTR of SCP1

(A) The mapped PTB binding events in the 30 UTR of the SCP1 gene (top). Above the gene model also show the mapped Ago2 binding density before (green) and

after (cyan) PTB knockdown in HeLa cells. Below the gene model indicate multiple predicted microRNA target sites for miR-124 (brown lines) and miR-96 (cyan

lines). Arrow-highlighted are deduced base-paired regions between the mRNA and individual microRNAs. Also illustrated are the mutations in the 30 UTR of the

SCP1 gene that correspond to the sequence on the microRNA-targeting sites in the seed region (violet) or on the PTB-binding site (red) in each case.

(legend continued on next page)
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PTB Facilitates MicroRNA Action by Changing Local
RNA Secondary Structure
To uncover the mechanism for PTB-dependent enhancement of

microRNA action, we determined the secondary structure in the

30 UTR of GNPDA1 gene using RNase T1 to cut single-stranded

RNA after the nucleotide G, and RNase V1 to cleave double-

stranded RNA (Figure 6E). This analysis suggests a stem loop

between 6U and 33G (Figure 6F), which appears to be un-

dertaking a dynamic switch between the single- and double-

stranded states, as evidenced by T1- and V1-cleaved products

in the same stem region. In the presence of PTB, we reproducibly

detected enhanced single strandness of the stem loop, as indi-

cated by increased T1 cleavage from 10G to 19G (red arrows

in Figure 6E) and concurrent decreased V1 cleavage from 19G

to 32G (blue arrows in Figure 6E), which were quantified on

a modeled RNA structure (boxed in Figure 6F).

We substantiated the increase of single strandness by in-line

probing, an approach widely used to detect riboswitches, which

measures spontaneous RNA cleavage in solution with strong

preference for U-rich residues (Regulski and Breaker, 2008).

With increasing amounts of PTB, we found that the entire region

gradually opened up, as indicated by enhanced cleavage on

nearly all residues from 10G to 33G and the flanking U-rich

PTB-binding sites from 34C to 40U (Figure 6G). Thus, PTB

appears to induce the exposure of the microRNA target site

through binding to multiple pyrimidine-rich regions, including

that directly involved in base pairing with microRNA (Figure 6H).

In principle, such modulation of RNA secondary structure by

PTB or other RNA-binding proteins may enhance or shield

microRNA target sites in adjacent regions, thus affecting RNA

stability in both directions.

PTBGlobally RegulatesMicroRNA-mRNA Interactions in
the Human Genome
To assess the global impact of PTB on both positive and nega-

tive modulation of microRNA targeting, we conducted CLIP-

seq mapping of Ago2 before and after PTB knockdown in

HeLa cells. As previously described (Chi et al., 2009), we de-

tected Ago2-RNA crosslinking adducts IPed with anti-Ago2

above the position of the Ago2 protein on SDS-PAGE (Fig-

ure 7A). We obtained �23 million uniquely mapped CLIP-seq

tags and identified 4,314 and 4,087 genes that contain at least

one Ago2 peak in their 30 UTRs before and after PTB knock-

down, respectively. Comparison of these data sets suggests

that PTB knockdown generally enhances Ago2 binding in
(B) The effects on the endogenous SCP1 mRNA by overexpressed miR-96 and i

(C) Blockage of the effect of overexpressed miR-96 and miR-124 by PTB ove

SCP1 30 UTR.
(D) Enhanced effect of overexpressed miR-96 and miR-124 in response to PTB

SCP1 30 UTR.
(E) The requirement for the seed region in the miR-96 target site to respond to ove

96 targeting (compared lanes 3 and 7), the mutants enhanced the overall effect

(F) Contribution of individual miR-124 target sites in the SCP1 F1 region to micro

seed region of miR-124-targeting sites progressively reduced the response to ov

site near the first miR-124-targeting sites enhanced miR-124-mediated downreg

The statistical significance in comparing different groups was determined by p

***p < 0.001. See also Figure S5.
the human genome (Figure 7B). Ago2 binding events were

significantly enriched in the 30 UTR of protein-coding genes in

both mock-treated and shPTB-treated cells (Figure 7C), espe-

cially near the stop codon and the poly(A) site (Figures 7D

and 7E).

We next compared the relationship between PTB and Ago2

occupancies in the 30 UTR of protein-coding genes in response

to PTB knockdown. The Ago2 binding profiles were similar in

the protein-coding side (upstream of the stop codon) on both

wild-type (wt) and shPTB-treated cells, which provide important

internal controls for our comparison. By separately analyzing

PTB-bound and -unbound genes, we found that PTB depletion

caused a dramatic increase in Ago2 binding in the 30 UTR of

PTB-bound targets, but had only aminor effect on PTB-unbound

targets (Figures 7D and 7E). These differences are highly statis-

tically significant at the right side of the stop codon and the left

side of the Poly(A) sites, as determined by two-tailed Kolmo-

gorov-Smirnov test. This likely represents an underestimate of

increased microRNA-targeting events because the transcripts

of many PTB-bound genes were downregulated to various

degrees in PTB knockdown cells. Global analysis further showed

that PTB knockdown generally and significantly enhanced Ago2

binding onandaround themappedPTB-binding sites (Figure 7F).

In this analysis, we noted many altered Ago2 binding events

around and away from the mapped PTB-binding sites, suggest-

ing that PTB binding may have both local and long-range effects

on microRNA targeting.

PTB-Regulated Ago2 Binding Functionally Correlates to
Induced Gene Expression
To determine how such changes in Ago2 binding might be

related to altered gene expression, we took a strategy recently

used to analyze the interplay between HuR and microRNA (Mu-

kherjee et al., 2011) to segregate expressed genes into five

groups based on mapped PTB and Ago2 binding events in their

30 UTRs: (1) �Ago2, �PTB, (2) +Ago2, �PTB, (3) �Ago2, +PTB,

(4) +Ago2, +PTB, but no overlap, and (5) +Ago2, +PTB with at

least one overlapping binding event within 10 nt. This allowed

us to compare gene expression changes in different groups in

response to PTB knockdown by plotting genes in each group

against induced transcript changes in a cumulative fashion

(Figure 7G).

We found no significant differences among groups 1–3,

consistent with the lack of PTB and Ago2 actions on these

genes. In comparison, relative to genes in group 1 (black line),
ts antagomir before and after PTB knockdown.

rexpression on the luciferase reporter containing the F1 fragment from the

knockdown on the luciferase reporter containing the F1 fragment from the

rexpressed miR-96. While the mutations in the PTB-binding site impaired miR-

of miR-96 on the luciferase reporter (compare lanes 3/4 and lanes 7/8).

RNA-mediated downregulation of the luciferase activity. The mutations in the

erexpressed miR-124 (compare lanes 3–10). The mutations in the PTB-binding

ulation (compare lanes 4 and 12).

aired t test. Data in individual panels are shown as mean ± SD. **p < 0.01;
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Figure 6. Enhanced MicroRNA Targeting by Modulating RNA Secondary Structure

(A) Stabilization of the GNPDA1 transcript in response to PTB and/or Ago2 knockdown in the presence of the transcription inhibitor Act.D.

(B) Potential microRNA-targeting sites near the mapped PTB-binding site in the 30 UTR of GNPDA1.

(legend continued on next page)
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genes bound by both PTB and Ago2 but with little overlap (group

4, green line) were linked to both repressed (right shift at top) and

enhanced gene expression (left shift at bottom), consistent with

changes in RNA secondary structure that caused increased or

decreased microRNA targeting on different genes (Figure 7G).

In contrast, genes bound by both PTB and Ago2 with extensive

overlap (group 5, purple line) mainly showed repressed expres-

sion (right shift) as a result of enhanced microRNA targeting in

the absence of PTB competition (Figure 7G). We obtained similar

results in comparing genes in group 2 (Figure S7A) and group 3

(Figure S7B) with those in group 4 and group 5. These results

demonstrate a large-scale involvement of PTB in regulated

gene expression through its functional interplay with the micro-

RNA machinery, which likely acts in synergy with regulated

splicing to propel neurogenesis in mammalian cells.

DISCUSSION

While the induction of pluripotency with a specific set of stem-

cell-specific transcription factors has been well accepted, the

field has increasingly recognized the ability of lineage-specific

transcription factors to induce differentiated cells to trans-differ-

entiate into a different lineage without going back to the fully

undifferentiated state. The classic example is MyoD-induced

differentiation of fibroblasts to myotubes (Davis et al., 1987),

and more recent examples include induced trans-differentiation

of both embryonic and postnatal fibroblasts into neurons by

Ascl1/Mash1 in combination with other enhancing factors

(Caiazzo et al., 2011; Pang et al., 2011; Qiang et al., 2011; Vier-

buchen et al., 2010). Interestingly, this pathway also involves

specific microRNAs (Yoo et al., 2011), which are known to act

on many critical target genes to induce neuronal differentiation

(Li and Jin, 2010). We now report that the reduced expression

of a single RNA binding PTB, which occurs during brain develop-

ment, is able to potently induce differentiation or trans-differen-

tiation of diverse cell types into neuronal-like cells or even func-

tional neurons.

Our data highlight the contribution of specific regulated

splicing during the induction of neuronal differentiation. More

importantly, we discovered a PTB-regulated microRNA program

responsible for dismantling of multiple components of REST. We

provide further evidence that knockdown of SCP1 or the REST

itself is sufficient to trigger trans-differentiation of MEFs into

neuronal-like cells. The REST complex is well known for its role

in suppressing many neuronal genes, including miR-124, in non-

neuronal cells, while miR-124 and other neuronal-specific micro-
(C) Overexpressed Let-7b suppressed and antagomir Let-7b enhanced the expr

PTB knockdown enhanced the luciferase activity (compared between lanes 1 an

Let-7b no longer showed the effect in PTB knockdown cells.

(D) Antagomir Let-7b, miR-196a, andmiR-181b increased GNPDA1 protein in the

were quantified with the SD shown in the bottom.

(E and F) Mapping the secondary structure in the 30 UTR ofGNPDA1. Individual G

deduced secondary structure (E), as modeled (F). Red and blue arrows, respecti

loop region. Quantified fold changes at key positions are indicated in the box ins

(G and H) Increased single strandness of RNA in the presence of increasing a

PTB-mediated opening of the stem loop that facilitates microRNA targeting (H).

Data in (A), (C), and (D) are shown as mean ± SD. *p < 0.05; **p < 0.01; ***p < 0.0
RNAs target various REST components, including SCP1 and

CoREST. This creates a potent regulatory loop (Figure 7H).

However, this loop is inefficient, at least in the initial phase of

neuronal induction, unless PTB is first downregulated by miR-

124. Thus, PTB not only serves as a key target of miR-124, but

also functions as a negative regulator for this and other micro-

RNAs to act on their target genes. This represents an interesting

regulatory paradigm where the large autoregulatory loop con-

sisting of miR-124 and components of the REST complex is

controlled by another feedforward loop that involves PTB.

Strikingly, PTB downregulation induced the expression of all

critical transcription factors previously shown to be sufficient

to induce trans-differentiation of MEFs into functional neurons.

Our data provide a mechanism for the induction of these tran-

scription factors because all of these transcription factors

appear to be direct REST targets. The puzzle is why genetic

ablation of REST or HADC1 impaired self-renewal of neural

stem cells, thus preventing unintended neurogenesis in various

cellular and animal models (Dovey et al., 2010; Gao et al.,

2011; Lee et al., 2002). While the cellular context undoubtedly

contributes to such restriction of neurogenesis in vivo, it is

possible that PTB knockdownmaymimic a gradual and sequen-

tial switch of a series of events during normal developmental

processes by preventing abrupt induction of gene expression

that may cause cell death before differentiation. We note that

the PTB-regulated RNA program takes place in cells containing

induced nPTB and our preliminary results indicate that simulta-

neous knockdown of PTB and nPTB greatly compromised the

development of neuronal morphology. This may indeed repre-

sent critical sequential events during normal brain development

(Zheng et al., 2012).

Mechanistically, our study joined PTB to a growing list of RNA-

binding proteins, including HuR, Dnd1, CRD-BP, and PUM1, that

have been implicated in modulating microRNA targeting in

mammalian cells (van Kouwenhove et al., 2011). In comparison

with previous studies where specific RNA-binding proteins

appear to either positively or negatively regulate microRNA tar-

geting, we found that PTB can function in both ways, competing

with microRNA targeting on some genes, but promoting micro-

RNA targeting on the others. These two modes of regulation

may simultaneously occur on different locations in the same

genes, and thus, the net effect of positive and negative regulation

may dictate the final functional outcome. These working princi-

ples may be generally applicable to many other RNA-binding

proteins involved in the regulation of microRNA-mRNA interac-

tions. Our global analysis of Ago2 binding in response to PTB
ession of the luciferase reporter containing the 30 UTR of GNPDA1 (lanes 1–3).

d 4). Overexpression of Let-7b still suppressed the luciferase activity, but anti-

presence, but not absence, of PTB in transfected HeLa cells. The protein levels

residues were labeled on the left with red indicating several key positions in the

vely, indicate PTB enhanced and suppressed cleavages in the deduced stem-

erted in (F).

mounts of PTB detected by in-line probing (G). A proposed model indicates

01. See also Figure S6.
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Figure 7. Global Analysis of Ago2 Binding in Response to PTB Knockdown

(A) CLIP signals detected with anti-Ago2 before and after PTB knockdown. No signal was detected with IgG control.

(B) Comparison between the two Ago2 CLIP-seq data sets in 1 kb windows across the human genome before and after PTB depletion.

(C) Genomic distribution of Ago2 binding events before (left) and after (right) PTB knockdown, showing prevalent Ago2 binding in the 30 UTR.

(legend continued on next page)
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knockdown also suggests that PTB binding may have some

long-range effects on microRNA targeting in addition to local

events. This may result from potential PTB-mediated RNA loop-

ing, as proposed earlier (Oberstrass et al., 2005), the action of

other induced microRNAs, or synergy with other RNA-binding

proteins, all of which represent interesting regulatory paradigms

to be investigated in future studies.

EXPERIMENTAL PROCEDURES

Cell Culture, RNAi, Immunocytochemistry, and Electrophysiological

Analysis

Cell culture conditions, treatments with siRNA and shRNA, and immunocyto-

chemistry are detailed in Extended Experimental Procedures. Glial cells were

isolated from GFP-transgenic rat brain (Hakamata et al., 2001), and single-cell

patch-clamp recordings were performed using an Axopatch 200B amplifier

and pClamp 10.0 software (HEKA Elektronik, Lambrecht/Pfalz, Germany), as

described in the Supplemental Information.

qRT-PCR, Western Blotting, and Luciferase Assays

qRT-PCR was performed with Fast Start universal SYBR green master mix

using gene-specific primers listed in Table S1. Luciferase activity was mea-

sured 24 hr posttransfection. Western blotting analysis was conducted with

various specific antibodies as detailed in Extended Experimental Procedures.

RNA-seq, CLIP-seq, and Probing of RNA Secondary Structure

RNA-seq and CLIP-seq was performed as previously described (Xue et al.,

2009). Normalized Ago2 tags are plotted relative to the stop codon at the 30

end of genes as described (Chi et al., 2009). Two-sided Kolmogorov-Smirnov

statistics (in the R package, http://cran.r-project.org/) was used to determine

the significance of the shift in pairwise comparison. RNA footprinting by RNase

T1 and V1 was according to the manual from Ambion. The in-line probing

assay was as previously described (Regulski and Breaker, 2008), which is

also detailed in the Supplemental Information.

ACCESSION NUMBERS

The RNA-seq and CLIP-seq data are available at the Gene Expression

Omnibus under the accession number GSE42701.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Extended Experimental Procedures, seven

figures, and one table and can be found with this article online at http://dx.doi.

org/10.1016/j.cell.2012.11.045.
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