On minimally b-imperfect graphs

Chính T. Hoàng ${ }^{\mathrm{a}, *}$, Cláudia Linhares Sales ${ }^{\mathrm{b}}$, Frédéric Maffray ${ }^{\mathrm{c}}$
${ }^{\text {a }}$ Department of Physics and Computer Science, Wilfrid Laurier University, 75 University Avenue West, Waterloo, Ontario, Canada N2L 3C5
${ }^{\text {b }}$ Departamento de Computação, Universidade Federal do Ceará, Campus do Pici, Fortaleza, CE, Brazil
${ }^{\text {c }}$ C.N.R.S, Laboratoire G-SCOP, 46 Avenue Félix Viallet, 38031 Grenoble Cedex, France

ARTICLE INFO

Article history:

Received 2 December 2007
Received in revised form 30 January 2009
Accepted 24 February 2009
Available online 9 April 2009

Keywords:

Coloration
b-coloring
a-chromatic number
b-chromatic number

Abstract

A b-coloring is a coloring of the vertices of a graph such that each color class contains a vertex that has a neighbour in all other color classes. The b-chromatic number of a graph G is the largest integer k such that G admits a b-coloring with k colors. A graph is b-perfect if the b-chromatic number is equal to the chromatic number for every induced subgraph H of G. A graph is minimally b-imperfect if it is not b-perfect and every proper induced subgraph is b-perfect. We give a list \mathcal{F} of minimally b-imperfect graphs, conjecture that a graph is b-perfect if and only if it does not contain a graph from this list as an induced subgraph, and prove this conjecture for diamond-free graphs, and graphs with chromatic number at most three.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

A proper coloring of a graph G is a mapping c from the vertex-set $V(G)$ of G to the set of positive integers (colors) such that any two adjacent vertices are mapped to different colors. Each set of vertices colored with one color is a stable set of vertices of G, so a coloring is a partition of V into stable sets. The smallest number k for which G admits a coloring with k colors is the chromatic number $\chi(G)$ of G.

Many graph invariants related to colorings have been defined. Most of them try to minimize the number of colors used to color the vertices under some constraints. For some other invariants, it is meaningful to try to maximize this number. The b-chromatic number is such an example. When we try to color the vertices of a graph, we can start from a given coloring and try to decrease the number of colors by eliminating color classes. One possible such procedure consists in trying to reduce the number of colors by transferring every vertex from a fixed color class to a color class in which it has no neighbour, if any such class exists. A b-coloring is a proper coloring in which this is not possible, that is, every color class i contains at least one vertex that has a neighbour in all the other color classes. Any such vertex will be called a b-vertex of color i. The b-chromatic number $b(G)$ is the largest integer k such that G admits a b-coloring with k colors.

The behavior of the b-chromatic number can be surprising. For example, the values of k for which a graph admits abcoloring with k colors do not necessarily form an interval of the set of integers; in fact any finite subset of $\{2, \ldots\}$ can be the set of these values for some graph [5]. Irving and Manlove [7,12] proved that deciding whether a graph G admits a b-coloring with a given number of colors is an NP-complete problem, even when it is restricted to the class of bipartite graphs [11]. On the other hand, they gave a polynomial-time algorithm that solves this problem for trees. The NP-completeness results have incited researchers to establish bounds on the b-chromatic number in general or to find its exact values for subclasses of graphs (see [3,9,10,2,4,8]).

[^0]| | | | F_{4} |
 F_{5} |
| :---: | :---: | :---: | :---: | :---: |
| F_{6} | | F_{8} | F_{9} | F_{10} |
| F_{11} | F_{12} |
 F_{13} | F_{14} | F_{15} |
| F_{16} | F_{17} | F_{18} | F_{19} | F_{20} |
| F_{21} | F_{22} | | | |

Fig. 1. Class $\mathcal{F}=\left\{F_{1}, \ldots, F_{22}\right\}$.
Clearly every $\chi(G)$-coloring of a graph G is a b-coloring, and so every graph G satisfies $\chi(G) \leq b(G)$. As usual with such an inequality, it may be interesting to look at the graphs that satisfy it with equality. However, graphs such that $\chi(G)=b(G)$ do not have a specific structure; to see this, we can take any arbitrary graph G and add a component that consists of a clique of size $b(G)$; we obtain a graph G^{\prime} that satisfies $\chi\left(G^{\prime}\right)=b\left(G^{\prime}\right)=b(G)$. This led Hoàng and Kouider [6] to introduce the class of b-perfect graphs: a graph G is called b-perfect if every induced subgraph H of G satisfies $\chi(H)=b(H)$. Hoàng and Kouider [6] proved the b-perfectness of some classes of graphs, and asked whether b-perfectness can be characterized in some way. Here we propose a precise conjecture in this direction and some evidence for its validity. For a fixed graph F, we say that a graph G is F-free if it does not contain an induced subgraph that is isomorphic to F. For a set \mathcal{F} of graphs, we say that a graph G is \mathcal{F}-free if it does not have an induced subgraph that is isomorphic to a member of \mathcal{F}. Let us say that a graph is minimally b-imperfect if it is not b-perfect and each of its proper induced subgraphs is b-perfect. Let $\omega(G)$ denote the number of vertices in a largest clique of G.

Let $\mathcal{F}=\left\{F_{1}, \ldots, F_{22}\right\}$ be the set of graphs depicted in Fig. 1.

Conjecture 1. A graph is b-perfect if and only if it is \mathcal{F}-free.

One direction of this conjecture is easy to establish, namely that the graphs in class \mathcal{F} are b-imperfect. More precisely, for $i \in\{1,2,3\}$, we have $\chi\left(F_{i}\right)=2$ and $b\left(F_{i}\right)=3$; a b-coloring of F_{i} with three colors is obtained by giving colors $1,2,3$ to the three vertices of degree two and coloring the remaining vertices in such a way that the first three are b-vertices. For $i \in\{4, \ldots, 22\}$, we have $\chi\left(F_{i}\right)=3$ and $b\left(F_{i}\right)=4$; a b-coloring of F_{i} with four colors is obtained by giving colors $1,2,3,4$ to four carefully chosen vertices of degree at least three and coloring the remaining vertices in such a way that the chosen vertices are b-vertices: for $i \in\{4,5,6,7,8,9,12,16\}$ there is only one choice of four such vertices; for $i \in\{13,14,15\}$, choose the two leftmost and the two rightmost vertices; for other values of i we omit the details. Moreover, it is a routine matter to check (and we omit the details) that every proper induced subgraph of every member of \mathcal{F} is b-perfect; so every graph in class \mathcal{F} is minimally b-imperfect.

Conjecture 2. A minimally b-imperfect graph G that is not triangle-free has $b(G)=4$ and $\omega(G)=3$.
The diamond is the graph with four vertices and five edges. The purpose of this paper is to prove the following two theorems.

Theorem 1.1. A diamond-free graph is b-perfect if and only if it is $\left\{F_{1}, F_{2}, F_{3}, F_{18}, F_{20}\right\}$-free.
Theorem 1.2. Let G be a graph with chromatic number at most 3 . Then G is b-perfect if and only if it does not contain F_{i} as induced subgraph for $i=1,2, \ldots, 22$.

The following results were proved by Hoàng and Kouider [6].

Theorem 1.3 (Hoàng and Kouider [6]).

- A bipartite graph is b-perfect if and only if it is $\left\{F_{1}, F_{2}, F_{3}\right\}$-free.
- A P_{4}-free graph is b-perfect if and only if it is $\left\{F_{3}, F_{6}\right\}$-free.

Thus we can view Theorems 1.1-1.3 as evidence for Conjecture 1.
The rest of this paper is organized as follows. We give preliminary results in Section 2, the proof of Theorem 1.1 in Section 3, and the proof of Theorem 1.2 in Section 4. In the remainder of this section, we introduce the definitions needed in the proofs.

Let G be a graph, and x be a vertex of G. The neighbourhood of v is the set $N(v)=\{u \in V(G) \mid u v \in E\}$ and the degree of v is $\operatorname{deg}(v)=|N(v)|$. If a vertex v is adjacent to a vertex x, then we say that v sees x, otherwise we say v misses x. Vertices v and x are comparable if $N(v)-\{x\} \subseteq N(x)$, or $N(x)-\{v\} \subseteq N(v)$. v and x are twins if $N(v)=N(x)$, in particular, twins miss each other. A set X of vertices is homogeneous if $2 \leq|X|<|V(G)|$ and every vertex in $G-X$ either sees all, or misses all vertices of X. A homogeneous clique is a clique that is a homogeneous set. For integer $k \geq 1$, we denote by P_{k} the chordless path with k vertices. For integer $k \geq 3$, we denote by C_{k} the chordless cycle with k vertices.

2. Preliminary results

Lemma 2.1 (Hoàng and Kouider [6]). Let G be a minimal b-imperfect graph. Then no component of G is a clique.
Lemma 2.2. Let G be a minimal b-imperfect graph and x be any simplicial vertex of G. Then x is not $a b$-vertex for any b-coloring of G with $b(G)$ colors.

Proof. Suppose that x is a b-vertex for some b-coloring c of G with $b(G)$ colors. Then all $b(G)$ colors of c appear in the clique formed by x and its neighbours. Thus $b(G) \leq \omega(G) \leq \chi(G)<b(G)$, a contradiction.

Lemma 2.3. Let G be a minimal b-imperfect graph, let u, v be two non-adjacent vertices of G such that $N(u) \subseteq N(v)$, and let c be any b-coloring with $b(G)$ colors. Then $c(u) \neq c(v)$, and u is not a b-vertex. In particular, if $N(u)=N(v)$, then none of u, v is $a b$-vertex.

Proof. Suppose that $c(u)=c(v)=1$. Consider the restriction of c to $G \backslash u$. Every b-vertex z of color $i \geq 2$ in G is still a b-vertex in $G \backslash u$, because it cannot be that u is the only neighbour of z of color 1 . Moreover, it cannot be that u is the only bvertex of G of color 1, because if it is a b-vertex then v is also a b-vertex. But then $b(G \backslash u) \geq b(G)>\chi(G) \geq \chi(G \backslash u)$, so $G \backslash u$ is b-imperfect, a contradiction. Thus $c(u) \neq c(v)$. This implies that u cannot be a b-vertex, for it has no neighbour of color $c(v)$. In particular, if $N(u)=N(v)$, then the preceding argument works both ways, which leads to the desired conclusion.

Lemma 2.4. Let G be a minimal b-imperfect \mathcal{F}-free graph. Then G is connected.
Proof. Suppose that G has several components $G_{1}, \ldots, G_{p}, p \geq 2$. By Lemma 2.1, each G_{i} has a subset S_{i} of three vertices that induce a chordless path. Then G is P_{4}-free, for otherwise, since a P_{4} is in one component of G, G contains an F_{2}. But then Theorem 1.3 is contradicted. Thus the lemma holds.

In the remainder this section, we assume that G is an \mathcal{F}-free graph that contains an induced C_{5}, and we try in the following claims to describe the structure of G as precisely as possible.

Claim 2.1. Let $C=\left\{c_{1}, \ldots, c_{5}\right\}$ be the vertex-set of an induced C_{5} in G, with edges $c_{i} c_{i+1}, i=1, \ldots, 5$ and with the subscripts taken modulo 5. Let v be any vertex of $V(G) \backslash C$ that has a neighbour in C. Then either:

- $N(v) \cap C=C$, or
$-N(v) \cap C=\left\{c_{i}, c_{i+2}, c_{i+3}\right\}$ for some $i \in\{1, \ldots, 5\}$, or
$-N(v) \cap C=\left\{c_{i}, c_{i+2}\right\}$ for some $i \in\{1, \ldots, 5\}$.
Proof. Suppose that the claim does not hold. Then $N(v) \cap C$ is equal to either $\left\{c_{i}\right\}$ or $\left\{c_{i}, c_{i+1}\right\}$ or $\left\{c_{i}, c_{i+1}, c_{i+2}\right\}$ or $\left\{c_{i}, c_{i+1}, c_{i+2}, c_{i+3}\right\}$ for some $i \in\{1, \ldots, 5\}$. In the first two cases, $\left\{v, c_{i}, c_{i-1}, c_{i-2}, c_{i-3}\right\}$ induces an F_{1}. In the third case, $C \cup\{v\}$ induces an F_{16}. In the last case, $C \cup\{v\}$ induces an F_{17}. In either case we have a contradiction to G being \mathcal{F}-free. So the claim holds.

Since G has an induced $C_{5}, V(G)$ contains five disjoint and non-empty subsets A_{1}, \ldots, A_{5} such that (with subscripts modulo 5) every vertex of A_{i} sees every vertex of $A_{i-1} \cup A_{i+1}$ and misses every vertex of $A_{i-2} \cup A_{i+2}$. We choose these five sets such that their union $A_{1} \cup \cdots \cup A_{5}$ is as large as possible. Now we define additional subsets of vertices as follows, for $i=1, \ldots, 5$:

- Let T be the set of vertices of $V(G) \backslash\left(A_{1} \cup \cdots \cup A_{5}\right)$ that see all of $A_{1} \cup \cdots \cup A_{5}$;
- Let Z be the set of vertices of $V(G) \backslash\left(A_{1} \cup \cdots \cup A_{5}\right)$ that see none of $A_{1} \cup \cdots \cup A_{5}$;
- Let D_{i} be the set of vertices of $V(G) \backslash\left(A_{1} \cup \cdots \cup A_{5}\right)$ that see all of $A_{i} \cup A_{i-2} \cup A_{i+2}$ and miss all of $A_{i-1} \cup A_{i+1}$;
- Let B_{i}^{-}be the set of vertices of $V(G) \backslash\left(A_{1} \cup \cdots \cup A_{5}\right)$ that see all of $A_{i-1} \cup A_{i+1}$, miss all of $A_{i} \cup A_{i+2}$ and see at least one but not all vertices of A_{i-2};
- Let B_{i}^{+}be the set of vertices of $V(G) \backslash\left(A_{1} \cup \cdots \cup A_{5}\right)$ that see all of $A_{i-1} \cup A_{i+1}$, miss all of $A_{i} \cup A_{i-2}$ and see at least one but not all vertices of A_{i+2}.

Claim 2.2. The sets $A_{i}, B_{i}^{-}, B_{i}^{+}, D_{i}(i=1, \ldots, 5)$ and T, Z form a partition of $V(G)$.
Proof. It is easy to check that the sets are pairwise disjoint, from their definition. So we need only prove that every vertex v of $V(G) \backslash\left(A_{1} \cup \cdots \cup A_{5}\right)$ lies in one of the remaining sets. For this purpose, pick a vertex a_{i} in A_{i} for each $i=1, \ldots, 5$. Put $C=\left\{a_{1}, \ldots, a_{5}\right\}$ and $s=|N(v) \cap C|$. We choose C so that s is as large as possible. By Claim 2.1, we have $s \in\{0,2,3,5\}$. First suppose that $s=5$. Then, for each $i=1, \ldots, 5$, vertex v sees all of A_{i}, for otherwise $\left(C \backslash a_{i}\right) \cup\left\{v, x_{i}\right\}$ induces an F_{17} for any $x_{i} \in A_{i} \backslash N(v)$. So v lies in T. Now suppose that $s=3$. By Claim 2.1 and up to symmetry, we may assume that $N(v) \cap C=\left\{a_{1}, a_{3}, a_{4}\right\}$. Then v has no neighbour in $A_{2} \cup A_{5}$, for otherwise the choice of C that maximizes s is contradicted. Then v sees all of A_{1}, for otherwise $\left\{v, a_{4}, a_{5}, x_{1}, a_{2}\right\}$ induces an F_{1} for any $x_{1} \in A_{1} \backslash N(v)$. Then v either sees all of A_{3} or all of A_{4}, for otherwise $\left\{v, a_{1}, a_{2}, x_{3}, x_{4}\right\}$ induces an F_{1} for any $x_{3} \in A_{3} \backslash N(v)$ and $x_{4} \in A_{4} \backslash N(v)$. So v lies in D_{1} or in B_{2}^{+}or B_{5}^{-}. Now suppose that $s=2$. By Claim 2.1 and up to symmetry, we may assume that $N(v) \cap C=\left\{a_{1}, a_{3}\right\}$. Then v has no neighbour in $A_{2} \cup A_{4} \cup A_{5}$, for otherwise the choice of C that maximizes s is contradicted. Then v sees all of A_{1}, for otherwise $\left\{a_{5}, x_{1}, a_{2}, a_{3}, v\right\}$ induces an F_{1} for any $x_{1} \in A_{1} \backslash N(v)$; and similarly, v sees all of A_{3}. But then we could add v to A_{2} and contradict the maximality of $A_{1} \cup \cdots \cup A_{5}$. Finally, if $s=0$ then v lies in Z. Thus the claim holds.

In the following claims, for each $i=1, \ldots, 5$, we let a_{i} denote a fixed (arbitrary) vertex of A_{i}.
Claim 2.3. For $i=1, \ldots, 5$, the set A_{i} is a stable set.
Proof. For if u, v are two adjacent vertices in, say, A_{1}, then $\left\{u, v, a_{2}, a_{3}, a_{4}, a_{5}\right\}$ induces an F_{16}, a contradiction.
Claim 2.4. For $i=1, \ldots, 5$, every vertex of $B_{i}^{-} \cup D_{i+1}$ sees all of $B_{i+3}^{+} \cup D_{i+2}$ and misses all of D_{i-1}. Every vertex of B_{i}^{-}misses every vertex of D_{i+1}.
Proof. Put $i=1$. Pick any $x \in B_{1}^{-} \cup D_{2}$. So x sees a_{2}, a_{5}, misses a_{1}, a_{3}, and has a neighbour $u_{4} \in A_{4}$. If x misses a vertex $y \in B_{4}^{+} \cup D_{3}$, then there is a vertex $u_{1} \in A_{1}$ that sees y, and $\left\{x, y, u_{1}, a_{3}, u_{4}\right\}$ induces an F_{1}, a contradiction. If x sees a vertex $d_{5} \in D_{5}$, then $\left\{x, d_{5}, a_{2}, a_{3}, u_{4}, a_{5}\right\}$ induces an F_{10}. This proves the first part of the claim. For the second part, let x be in B_{1}^{-}; so x misses a vertex $v_{4} \in A_{4}$. If x sees a vertex $d_{2} \in D_{2}$, then $\left\{x, d_{2}, a_{2}, a_{3}, v_{4}, a_{5}\right\}$ induces an F_{17}, a contradiction. Thus the claim holds.

Claim 2.5. At least three of the D_{i} 's are empty.
Proof. For suppose the contrary, that is, at least three of the D_{i} 's are not empty. For $i=1, \ldots, 5$, pick any d_{i} in any nonempty D_{i}. Up to symmetry there are two cases. In the first case, D_{1}, D_{2}, D_{3} are not empty. By the preceding claim we have edges $d_{1} d_{2}, d_{2} d_{3}$ and no edge $d_{1} d_{3}$, and then $\left\{a_{3}, a_{4}, a_{5}, d_{1}, d_{2}, d_{3}\right\}$ induces an F_{10}. In the second case, D_{1}, D_{2}, D_{4} are not empty. By the preceding claim we have an edge $d_{1} d_{2}$ and no edge $d_{1} d_{4}$ nor $d_{2} d_{4}$, and then $\left\{a_{1}, \ldots, a_{5}, d_{1}, d_{2}, d_{4}\right\}$ induces an F_{22}. In either case we have a contradiction. Thus the claim holds.

Claim 2.6. Suppose that B_{i}^{-}is not empty. Then, all the $B_{j}^{ \pm}$'s are empty, except possibly B_{i+3}^{+}, and $D_{i}=\emptyset$ and $D_{i+3}=\emptyset$.
Proof. Suppose the contrary, that is, there exists a vertex x in one of the sets we claim are empty. Put $i=1$. Pick any $b \in B_{1}^{-}$. So b sees all of $A_{2} \cup A_{5}$, misses all of $A_{1} \cup A_{3}$, and there are vertices $u_{4}, v_{4} \in A_{4}$ such that b sees u_{4} and misses v_{4}. By Claim 2.3, u_{4} and v_{4} are not adjacent.

First suppose that x lies in D_{1} or B_{5}^{-}. So x sees a_{1}, u_{4}, v_{4}, misses a_{2}, a_{5}, and has a neighbour $u_{3} \in A_{3}$. If x misses b, then $\left\{a_{5}, b, a_{2}, u_{3}, x\right\}$ induces an F_{1}, while if x sees b, then $\left\{b, x, u_{3}, u_{4}, v_{4}, a_{5}\right\}$ induces an F_{10}, a contradiction. Thus, we have $D_{1}=\emptyset, B_{5}^{-}=\emptyset$. This argument shows that if $B_{i}^{-} \neq \emptyset$ then $B_{i-1}^{-}=\emptyset$ for all i. Thus, if $B_{2}^{-} \neq \emptyset$ then $B_{1}^{-}=\emptyset$, a contradiction to our choice of b. Therefore, we also have $B_{2}^{-}=\emptyset$.

Now suppose that x lies in B_{3}^{-}or D_{4}. So x sees a_{2}, u_{4}, v_{4}, misses a_{3}, a_{5}, and has a neighbour $u_{1} \in A_{1}$. Note that b misses u_{1}. If x misses b, then $\left\{b, x, u_{1}, a_{2}, a_{3}, u_{4}, v_{4}, a_{5}\right\}$ induces an F_{20}, while if x sees b, then $\left\{u_{1}, a_{2}, b, x, u_{4}, a_{5}\right\}$ induces an F_{10}, a contradiction. Thus, we have $B_{3}^{-}=\emptyset$ and $D_{4}=\emptyset$. This argument shows that if $B_{i}^{-} \neq \emptyset$ then $B_{i+2}^{-}=\emptyset$ for all i. Thus, if $B_{4}^{-} \neq \emptyset$ then $B_{1}^{-}=\emptyset$, a contradiction to our choice of b. Therefore, we also have $B_{4}^{-}=\emptyset$.

Now suppose that $x \in B_{1}^{+}$. So x sees a_{2}, a_{5}, misses a_{1}, u_{4}, v_{4}, and there are vertices $u_{3}, v_{3} \in A_{3}$ such that x sees u_{3} and misses v_{3}. By Claim 2.3, u_{3} and v_{3} are not adjacent. Note that b misses u_{3}, v_{3}. If x misses b, then $\left\{b, x, a_{2}, u_{3}, v_{3}, u_{4}, v_{4}, a_{5}\right\}$ induces an F_{20}, while if x sees b, then $\left\{b, x, a_{2}, u_{3}, u_{4}, a_{5}\right\}$ induces an F_{10}, a contradiction. Thus $B_{1}^{+}=\emptyset$.

Now suppose that $x \in B_{2}^{+}$. So x sees a_{1}, a_{3} and misses a_{2}, a_{5}. If x misses b, then $\left\{b, a_{5}, a_{1}, x, a_{3}\right\}$ induces an F_{1}. So x sees b. Suppose that x sees u_{4}. If x misses v_{4}, then $\left\{b, x, a_{3}, u_{4}, v_{4}, a_{5}\right\}$ induces an F_{17}, while if x sees v_{4}, then the same set induces an F_{10}. So x misses u_{4}. If x sees v_{4}, then $\left\{b, x, a_{1}, a_{2}, a_{3}, u_{4}, v_{4}, a_{5}\right\}$ induces an F_{20}. So x misses v_{4}. This argument actually implies that x cannot have any neighbour in A_{4}, and this contradicts the definition of B_{2}^{+}. Thus $B_{2}^{+}=\emptyset$.

Now suppose that $x \in B_{3}^{+}$. So x sees a_{2}, u_{4}, v_{4}, misses a_{1}, a_{3}, and there are vertices $u_{5}, v_{5} \in A_{5}$ such that x sees u_{5} and misses v_{5}. By Claim 2.3, u_{5} and v_{5} are not adjacent. Note that b sees u_{5}, v_{5}. If x misses b, then $\left\{b, x, u_{4}, v_{4}, u_{5}, v_{5}\right\}$ induces an F_{10}, while if x sees b then $\left\{b, x, a_{1}, a_{2}, u_{4}, v_{5}\right\}$ induces an F_{17}, a contradiction. Thus $B_{3}^{+}=\emptyset$.

Finally suppose that x lies in B_{5}^{+}. So x sees a_{1}, u_{4}, v_{4}, misses a_{3}, a_{5}, and has a neighbour $u_{2} \in A_{2}$. If x misses b, then $\left\{b, x, a_{1}, u_{2}, a_{3}, u_{4}, v_{4}, a_{5}\right\}$ induces an F_{20}, while if x sees b then $\left\{b, x, a_{1}, u_{2}, u_{4}, a_{5}\right\}$ induces an F_{10}, a contradiction. Thus $B_{5}^{+}=\emptyset$. This completes the proof of the claim.

Claim 2.7. For $i=1, \ldots, 5$, the set $A_{i} \cup B_{i}^{-} \cup B_{i}^{+}$is a stable set.
Proof. Suppose on the contrary, and up to symmetry, that there exist two adjacent vertices $b, c \in A_{1} \cup B_{1}^{-} \cup B_{1}^{+}$. By Claim 2.3 and by the definition of $B_{1}^{ \pm}$, vertices b, c are not in A_{1}. By Claim 2.6, and up to symmetry, we may assume that they are both in B_{1}^{-}. So b, c both see a_{2}, a_{5} and miss a_{1}, a_{3}. By the definition of B_{1}^{-}, vertex b has a non-neighbour $v_{4} \in A_{4}$. If v_{4} also misses c, then $\left\{b, c, a_{2}, a_{3}, v_{4}, a_{5}\right\}$ induces an F_{16}. So v_{4} sees c. Vertex c has a non-neighbour $w_{4} \in A_{4}$, and by the same argument, w_{4} sees b. By Claim 2.3, v_{4} and w_{4} are not adjacent. But then $\left\{b, c, a_{3}, v_{4}, w_{4}, a_{5}\right\}$ induces an F_{17}, a contradiction. Thus the claim holds.

Claim 2.8. There is no edge between Z and $B_{i}^{ \pm}$.
Proof. Suppose on the contrary, and up to symmetry, that there is an edge $z b$ with $b \in B_{1}^{-}$. By the definition of B_{1}^{-}, vertex b has a non-neighbour $v_{4} \in A_{4}$. Then $\left\{z, b, a_{2}, a_{3}, v_{4}\right\}$ induces an F_{1}, a contradiction. Thus the claim holds.

Claim 2.9. Every vertex of T is adjacent to every vertex of D_{i} and $B_{i}^{ \pm}(i=1, \ldots, 5)$.
Proof. Suppose on the contrary, and up to symmetry, that some $t \in T$ is not adjacent to a vertex x in $B_{1}^{-} \cup D_{2}$. Vertex x sees a_{2}, a_{5}, misses a_{1}, a_{3}, and has a neighbour $u_{4} \in A_{4}$. Then $\left\{d, t, a_{1}, a_{2}, u_{4}, a_{5}\right\}$ induces an F_{10}, a contradiction.

By Claim 2.6, and up to symmetry, we may assume that all the $B_{j}^{ \pm}$'s are empty, except possibly B_{1}^{-}and B_{4}^{+}, and also D_{1} and D_{4} are empty.

Claim 2.10. Any two non-adjacent vertices of $X_{1}=A_{1} \cup B_{1}^{-} \cup D_{2}$ have inclusionwise comparable neighbourhoods in $V(G) \backslash X_{1}$.
Proof. Suppose the contrary, that is, there are non-adjacent vertices $x, y \in X_{1}$ and $x^{\prime}, y^{\prime} \in V(G) \backslash X_{1}$ with edges $x x^{\prime}$, $y y^{\prime}$ and none of the edges $x y^{\prime}, x^{\prime} y$. By the definition of these sets and by previous claims, x^{\prime} and y^{\prime} are in $A_{4} \cup B_{4}^{+} \cup D_{3} \cup Z$. So they both miss a_{2}. Then $x^{\prime} y^{\prime}$ is an edge, for otherwise $\left\{a_{2}, x, y, x^{\prime}, y^{\prime}\right\}$ induces an F_{1}. If x^{\prime}, y^{\prime} both miss a_{3}, then $\left\{a_{3}, a_{2}, x, x^{\prime}, y^{\prime}\right\}$ induces an F_{1}. Now we may assume that x^{\prime} sees a_{3}, and so it is in $A_{4} \cup B_{4}^{+} \cup D_{3}$. If y^{\prime} also sees a_{3}, then $\left\{x, a_{2}, a_{3}, y, a_{5}, x^{\prime}\right\}$ induces an F_{17}. So y^{\prime} misses a_{3} and therefore is in Z. Then x^{\prime} is in D_{3}, so $x^{\prime} \neq a_{4}$ and x^{\prime} misses a_{4}. Also y is in D_{2}, so y sees a_{4}. Then x sees a_{4}, else $\left\{a_{2}, x, y, x^{\prime}, a_{4}\right\}$ induces an F_{1}. But now $\left\{x, y, x^{\prime}, y^{\prime}, a_{4}, a_{5}\right\}$ induces an F_{17}. Thus the claim holds.

Claim 2.11. Any two non-adjacent vertices in D_{5} have inclusionwise comparable neighbourhoods in $V(G) \backslash D_{5}$.
For suppose on the contrary that there are non-adjacent vertices $x, y \in D_{5}$ and vertices x^{\prime}, y^{\prime} with edges $x x^{\prime}, y y^{\prime}$ and nonedges $x y^{\prime}, x^{\prime} y$. By the definition of the sets and previous claims, x^{\prime} and y^{\prime} are in Z. If x^{\prime}, y^{\prime} are not adjacent, then $\left\{x^{\prime}, x, a_{5}, y, y^{\prime}\right\}$ induces an F_{1}. If x^{\prime}, y^{\prime} are adjacent, then $\left\{y^{\prime}, x^{\prime}, x, a_{2}, a_{1}\right\}$ induces an F_{1}. Thus the claim holds.

Claim 2.12. Every component of Z is a clique.
Proof. For in the opposite case, Z has three vertices that induce a chordless path $x-y-z$, and then $\left\{a_{1}, a_{2}, a_{3}, a_{4}, x, y, z\right\}$ induces an F_{2}.

Claim 2.13. If $D_{5} \neq \emptyset$, then there is no edge between Z and $D_{2} \cup D_{3}$.
Proof. For suppose that there is a vertex $d_{5} \in D_{5}$ and an edge $z x$ with $z \in Z$ and (up to symmetry) $x \in D_{2}$. No vertex in D_{5} sees a vertex of $D_{2} \cup D_{3}$ by Claim 2.4. If z misses d_{5}, then $\left\{z, x, a_{5}, d_{5}, a_{3}\right\}$ induces an F_{1}. If z sees d_{5}, then $\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, x, d_{5}, z\right\}$ induces an F_{18}.

Claim 2.14. If a vertex of D_{i} has a neighbour in a component of Z, then it sees all of that component.

Proof. Suppose on the contrary that some vertex $d \in D_{1}$ has a neighbour u and a non-neighbour v in a component of Z. We may assume that u, v are adjacent. Then $\left\{u, v, d, a_{1}, a_{2}\right\}$ induces an F_{1}, a contradiction. Thus the claim holds.

Let us say that a set A of vertices is complete (respectively, anti-complete) to a set B if every vertex of A sees (respectively, misses) every vertex of B.

We can summarize the preceding claims as follows.
Lemma 2.5. Let G be an \mathcal{F}-free graph that contains a C_{5}. Then $V(G)$ can be partitioned into sets $X_{1}, \ldots, X_{6}, T, Z$ such that:

1. Each X_{1}, \ldots, X_{5} is non-empty.
2. For every j modulo $5, X_{j}$ is complete to X_{j+1}.
3. For every j modulo 5 and $j \neq 4, X_{j}$ is anti-complete to X_{j+2}, and some vertex of X_{1} misses a vertex X_{4}.
4. X_{6} is complete to $X_{2} \cup X_{3} \cup X_{5}$ and anti-complete to $X_{1} \cup X_{4}$.
5. X_{2}, X_{3}, X_{5} are stable sets.
6. The sets $X_{1}^{\prime}=\left\{x \in X_{1} \mid x\right.$ has a non-neighbour in $\left.X_{4}\right\}$ and $X_{4}^{\prime}=\left\{x \in X_{4} \mid x\right.$ has a non-neighbour in $\left.X_{1}\right\}$ are stable sets, and there is no edge between X_{1}^{\prime} and $X_{1} \backslash X_{1}^{\prime}$ and no edge between X_{4}^{\prime} and $X_{4} \backslash X_{4}^{\prime}$.
7. One of $X_{1} \backslash X_{1}^{\prime}, X_{4} \backslash X_{4}^{\prime}, X_{6}$ is empty.
8. Any two non-adjacent vertices of X_{1} have inclusionwise comparable neighbourhoods in $V(G) \backslash X_{1}$, and the same holds for X_{4} and X_{6}.
9. T is complete to $X_{1} \cup \cdots \cup X_{6}$.
10. Z is anti-complete to $X_{1}^{\prime} \cup X_{2} \cup X_{3} \cup X_{4}^{\prime} \cup X_{5}$; and if $X_{6} \neq \emptyset$, then Z is anti-complete to $X_{1} \cup X_{2} \cup X_{3} \cup X_{4} \cup X_{5}$.
11. Every component of Z is a clique and is a homogeneous set in $G \backslash T$.

Proof. Consider the sets defined before this lemma, and set $X_{1}=A_{1} \cup B_{1}^{-} \cup D_{2}, X_{2}=A_{2}, X_{3}=A_{3}, X_{4}=A_{4} \cup B_{4}^{+} \cup D_{3}$, $X_{5}=A_{5}, X_{6}=D_{5}$. Then the lemma is a reformulation of Claims 2.2-2.14.

Theorem 2.6. Let G be an \mathcal{F}-free graph. Suppose that G contains a C_{5} and that, with the notation of Lemma $2.5, X_{1}, X_{4}, X_{6}$ are stable sets and $T=\emptyset$. If there exists $a b$-coloring c with $b(G)$ colors such that there is ab-vertex of color i in $X_{1} \cup \cdots \cup X_{6}$ for every color $i=1, \ldots, b(G)$, then G is not minimally b-imperfect.

Proof. As usual, for $j=2,3,5$ let a_{j} be an arbitrary vertex in X_{j}, and for $j=1,4$ let a_{1}, a_{4} be non-adjacent vertices of X_{1} and X_{4} respectively. We start with some observations:

For $j=2,3,5$, any two vertices in X_{j} are twins.
This follows directly from Lemma 2.5 (properties $2,3,4,5,10$).
For $j=1,4,6$, any two vertices in X_{j} have inclusionwise comparable neighbourhoods.
This follows from Lemma 2.5 (properties $2,3,4,8,10$) and the hypothesis that X_{1}, X_{4} and X_{6} are stable sets.
Let u_{i} be a b-vertex of color i for each $i=1, \ldots, b(G)$. It follows from (1), (2) and Lemma 2.3 that each of X_{1}, \ldots, X_{6} contains at most one u_{i}.

Suppose that G is minimally b-imperfect, so $b(G)>\chi(G)$, and let c be a b-coloring with $b(G)$ colors. For $i=1, \ldots, b(G)$, by the hypothesis, there is a b-vertex u_{i} of color i in $X_{1} \cup \cdots \cup X_{6}$. By (1), (2) and Lemma 2.3, in each of the sets X_{1}, \ldots, X_{6}, all vertices have different colors, and each of these sets contains at most one b-vertex of c. Thus $b(G) \leq 6$. Moreover, for $j=2,3,5$, if X_{j} contains a b-vertex, then $\left|X_{j}\right|=1$. Also, if X_{1} contains a b-vertex, then either $\left|X_{1}\right|=1$ or this vertex has a neighbour in $X_{4} \cup Z$, and therefore in X_{4}; and similarly for X_{4}; and if X_{6} contains a b-vertex, then either $\left|X_{6}\right|=1$ or this vertex has a neighbour in Z (by condition 8 of Lemma 2.5).

Note that $\chi(G) \geq 3$ since G contains a C_{5}, and so $b(G) \geq 4$. Thus $b(G) \in\{4,5,6\}$.
At least one of X_{1}, X_{4} and X_{6} does not contain any of $u_{1}, \ldots, u_{b(G)}$.
For suppose on the contrary that there are vertices $u_{i} \in X_{1}, u_{j} \in X_{4}, u_{k} \in X_{6}$ for three different integers $i, j, k \in\{1, \ldots, b(G)\}$. Since $X_{6} \neq \emptyset$, by property 10 of Lemma 2.5, u_{i} and u_{j} have no neighbour in Z. Vertex u_{i} must have a neighbour v_{k} of color k, and since $N\left(u_{i}\right) \backslash X_{4} \subseteq N\left(u_{k}\right)$, we must have $v_{k} \in X_{4}$. Likewise, u_{j} has a neighbour w_{k} or color k, and we must have $w_{k} \in X_{1}$. Now if u_{i}, u_{j} are not adjacent, then $\left\{v_{k}, u_{i}, a_{2}, w_{k}, u_{j}\right\}$ induces an F_{1}; and if u_{i}, u_{j} are adjacent, then $\left\{u_{i}, a_{2}, a_{3}, u_{j}, a_{5}, u_{k}, v_{k}, w_{k}\right\}$ induces an F_{22}, a contradiction. Thus (3) holds.

At least one of X_{2}, X_{3} and X_{5} does not contain any of $u_{1}, \ldots, u_{b(G)}$.
For suppose on the contrary that there are vertices $u_{i} \in X_{2}, u_{j} \in X_{3}, u_{k} \in X_{5}$ for three different integers $i, j, k \in\{1, \ldots, b(G)\}$. As observed above, we have $\left|X_{j}\right|=1$ for $j=2,3,5$. Vertex u_{i} must have a neighbour w_{k} of color k, and since $N\left(u_{i}\right) \backslash X_{3} \subset$ $N\left(u_{k}\right)$, it must be that w_{k} is in X_{3}; but this is impossible since the unique vertex of X_{3} has color j. Thus (4) holds.

Now it follows from (3) and (4) that $b(G)=4$.
At least one of X_{1} and X_{4} does not contain any of u_{1}, \ldots, u_{4}.

For suppose on the contrary that $u_{1} \in X_{1}$ and $u_{4} \in X_{4}$. Then X_{6} contains no b-vertex by (3). Also $\left|X_{5}\right| \leq 2$, because all vertices of X_{5} have different colors and they cannot have color 1 or 4 . So either X_{5} has two vertices, of color 2 and 3 , and no b-vertex by (1) and Lemma 2.3, or X_{5} has only one vertex, which (up to symmetry) has color 2 ; and in either case we may assume that $u_{3} \in X_{3}$.

We are going to prove that $\left|X_{5}\right|=2$. Vertex u_{1} must have a neighbour v_{3} of color 3 . Vertex u_{3} must have a neighbour w_{1} of color 1 , and necessarily we have $w_{1} \in X_{4} \cup X_{6}$. If w_{1} is in X_{6}, then by property 10 of Lemma $2.5 u_{1}$, u_{4} have no neighbour in Z. If $w_{1} \in X_{4}$, then u_{1} has a non-neighbour w_{1} in X_{4}, so $u_{1} \in X_{1}^{\prime}$, so u_{1} again has no neighbour in Z. In either case, it follows that $N\left(u_{1}\right) \backslash X_{5} \subset N\left(u_{3}\right)$, and so $v_{3} \in X_{5}$; so $\left|X_{5}\right|=2$, as announced, which restores the symmetry between colors 2 and 3 , and we may assume that $u_{2} \in X_{2}$, and u_{4} has no neighbour in Z.

Vertex u_{1} must have a neighbour v_{4} of color 4 , and necessarily v_{4} is in X_{4}. Since vertices in X_{4} must have different colors, we have $v_{4}=u_{4}$. So u_{1}, u_{4} are adjacent. Vertex u_{2} must have a neighbour w_{4} of color 4 , and necessarily we have $w_{4} \in X_{1} \cup X_{6}$. If both w_{1}, w_{4} are in X_{6}, then $u_{1}, u_{2}, u_{3}, u_{4}, w_{1}, w_{4}$ and the two vertices of X_{5} induce an F_{15}. If only one of w_{1}, w_{4} is in X_{6}, then the same eight vertices induce an F_{21}. Thus we must have $w_{1} \in X_{4}$ and $w_{4} \in X_{1}$. Note that $\left|X_{1}\right|=2$ since the vertices of X_{1} have colors different from 2,3 ; and similarly $\left|X_{4}\right|=2$. Then w_{4} misses w_{1}, for otherwise $\left\{u_{1}, u_{2}, u_{4}, w_{1}, w_{4}\right\}$ induces an F_{1}. But then the six vertices $u_{1}, \ldots, u_{4}, w_{1}, w_{4}$ plus the two vertices of X_{5} induce an F_{19}. Thus (5) holds.

By (3)-(5) and up to symmetry, we may assume that $u_{1} \in X_{6}, u_{4} \in X_{4}$ and X_{1} does not contain u_{2}, u_{3}. Since $X_{6} \neq \emptyset$, vertices in $X_{1} \cup X_{4}$ have no neighbour in Z. Vertex u_{4} must have a neighbour v_{1} of color 1 , and necessarily $v_{1} \in X_{1}$. Vertex u_{1} must have a neighbour v_{4} or color 4 , and necessarily $v_{4} \in X_{2} \cup Z$. If v_{4} is in Z, then $\left\{v_{4}, u_{1}, a_{3}, u_{4}, v_{1}\right\}$ induces an F_{1}. So we have $v_{4} \in X_{2}$. By Lemma 2.3, if $\left|X_{2}\right| \geq 2$, then it contains no b-vertex. Since X_{2} already contains v_{4}, it cannot contain a b-vertex of color 2 or 3 , so we may assume that $u_{3} \in X_{3}$ and $u_{2} \in X_{5}$. Vertex u_{2} must have a neighbour v_{3} of color 3 , and necessarily $v_{3} \in X_{1}$. Vertex u_{3} must have a neighbour v_{2} of color 2 , and necessarily $v_{2} \in X_{2}$. Now $\left\{u_{1}, \ldots, u_{4}, v_{1}, \ldots, v_{4}\right\}$ induces an F_{21} (if u_{4}, v_{3} are not adjacent) or an F_{15} (if u_{4}, v_{3} are adjacent), a contradiction. This completes the proof of Theorem 2.6.

3. Proof of Theorem 1.1

In this section we assume that G is a diamond-free \mathcal{F}-free graph, and we prove that G is b-perfect. For this purpose, we may assume on the contrary that G is minimally b-imperfect. We have $b(G)>\chi(G)$. Let c be a b-coloring of G with $b(G)$ colors. By Theorem 1.3, we may assume that G is not bipartite, so $\chi(G) \geq 3$ and $b(G) \geq 4$.
(I) First assume that G contains an induced C_{5}. We use the notation of Lemma 2.5. For $j=2,3,5$, let a_{j} be a vertex of X_{j}, and let $a_{1} \in X_{1}$ and $a_{4} \in X_{4}$ be non-adjacent vertices.

$$
\begin{equation*}
T=\emptyset \tag{6}
\end{equation*}
$$

For if t is any vertex in T, then $\left\{t, a_{1}, a_{2}, a_{3}\right\}$ induces a diamond.

$$
\begin{equation*}
X_{1}, X_{4} \text { are stable sets. } \tag{7}
\end{equation*}
$$

For suppose, without loss of generality, that there are adjacent vertices $x, y \in X_{1}$. Then $\left\{x, y, a_{2}, a_{5}\right\}$ induces a diamond. Thus (7) holds.

$$
\begin{equation*}
\left|X_{6}\right| \leq 1 \tag{8}
\end{equation*}
$$

For suppose that there are two vertices $x, y \in X_{6}$. If x, y are adjacent, then $\left\{x, y, a_{2}, a_{5}\right\}$ induces a diamond. If they are not adjacent, then $\left\{x, y, a_{2}, a_{3}\right\}$ induces a diamond. Thus (8) holds.
Z contains no b-vertex for c.
For suppose that some vertex $z \in Z$ is a b-vertex. By Lemma $2.2, z$ has two neighbours u, v that are not adjacent. Let Y be the component of Z that contains z. By property 11 of Lemma 2.5 and since $T=\emptyset, Y$ is a homogeneous clique, so u, v are in $\left(X_{1} \backslash X_{1}^{\prime}\right) \cup\left(X_{4} \backslash X_{4}^{\prime}\right) \cup X_{6}$. Then $Y=\{z\}$, for otherwise two vertices of Y and u, v would induce a diamond. But now we have $N(z) \subset N\left(a_{5}\right)$, and so z cannot be a b-vertex, a contradiction. Thus (9) holds.

It follows from the preceding facts that G satisfies the hypotheses of Theorem 2.6 , so it is not minimally b-imperfect, a contradiction.
(II) Now we may assume that G contains no induced C_{5}. By Lemma $2.4, G$ is connected. A theorem due to Bacsó and Tuza [1] states that every connected, P_{5}-free and C_{5}-free graph has a dominating clique, that is, a clique Q such that every vertex of $G \backslash Q$ has a neighbour in Q. We choose a dominating clique Q of size as large as possible. Clearly, $|Q| \geq 2$.

Suppose that $|Q|=2$, and let $Q=\left\{x_{1}, x_{2}\right\}$. For $i=1,2$, let $A_{i}=N\left(x_{i}\right) \backslash\left\{x_{3-i}\right\}$. Note that no vertex z of G sees both x_{1}, x_{2}, for otherwise $\left\{x_{1}, x_{2}, z\right\}$ would be a dominating clique of size 3 , contradicting the choice of Q. So $A_{1} \cup\left\{x_{1}\right\}$ and $A_{2} \cup\left\{x_{2}\right\}$ form a partition of $V(G)$, and there is no edge between A_{i} and x_{3-i} for $i=1,2$. Note that, for $i=1,2$, the subgraph of G induced by A_{i} contains no P_{3} (for otherwise, adding x_{i}, we would obtain a diamond), and so each component of $G\left[A_{i}\right]$ is a clique. We may assume that x_{i} has color $c\left(x_{i}\right)=i$ for $i=1$, 2. Let y_{3} be a b-vertex with color $c\left(y_{3}\right)=3$. Without loss of generality, we have $y_{3} \in A_{2}$. Let Y be the (clique) component of $G\left[A_{2}\right]$ that contains y_{3}. Since y_{3} is a b-vertex, it has a neighbour y_{1} with color $c\left(y_{1}\right)=1$, and since $y_{1} \notin A_{1}$, we have $y_{1} \in Y$. Since $Y \cup\left\{x_{2}\right\}$ is a clique, we have $\left|Y \cup\left\{x_{2}\right\}\right| \leq \chi(G)<b(G)$, and so there is a color used by c, say color 4, that does not appear in $Y \cup\left\{x_{2}\right\}$. Vertex y_{3} must have a neighbour z_{4} with color $c\left(z_{4}\right)=4$, and so $z_{4} \in A_{1}$. Let Z be the (clique) component of A_{1} that contains z_{4}. Note that z_{4} misses every vertex $y \in Y \backslash y_{3}$,
for otherwise $\left\{z_{4}, y, y_{3}, x_{2}\right\}$ induces a diamond. Then y_{3} sees every vertex $u \in A_{1} \backslash Z$, for otherwise $\left\{u, x_{1}, z_{4}, y_{3}, y_{1}\right\}$ induces an F_{1} or C_{5}. Since $Y \cup\left\{x_{2}\right\}$ is a clique of size at least 3 , it is not dominating, so there exists a vertex z^{\prime} that has no neighbour in that clique, and we must have $z^{\prime} \in Z \backslash z_{4}$. Then z_{4} sees every vertex $v \in A_{2} \backslash Y$, for otherwise $\left\{v, x_{2}, y_{3}, z_{4}, z^{\prime}\right\}$ induces an F_{1} or C_{5}. In fact we have $A_{2} \backslash Y=\emptyset$, for if u was any vertex in that set, then $\left\{z^{\prime}, z_{4}, u, x_{2}, y_{1}\right\}$ would induce an $F_{1}\left(z^{\prime}\right.$ misses u, for otherwise we have a diamond with vertices $u, z^{\prime}, z_{4}, x_{1}$. Likewise, we have $A_{1} \backslash Z=\emptyset$, for if v was any vertex in that set, then $\left\{z^{\prime}, x_{1}, v, y_{3}, y_{1}\right\}$ would induce an F_{1}. Now we have $V(G)=\left\{x_{1}, x_{2}\right\} \cup Y \cup Z$, and z_{4} is the only vertex of G with color 4 . So all the b-vertices of any color different from 4 must be neighbours of z_{4}. Since $N\left(z_{4}\right)=\left(Z \backslash z_{4}\right) \cup\left\{x_{1}, y_{3}\right\}$, it follows that x_{1} is the only b-vertex of color 1 . Since $N\left(x_{1}\right)=Z \cup\left\{x_{2}\right\}$ and $c\left(x_{2}\right)=2$, it follows that each of the colors $3, \ldots, b(G)$ must appear in Z, and so $b(G)-2 \leq|Z| \leq \omega(G)-1$ (because $Z \cup\left\{x_{1}\right\}$ is a clique) $\leq \chi(G)-1 \leq b(G)-2$. Thus we must have equality throughout, which implies that Z contains no vertex of color 2 , and then z_{4} cannot be a b-vertex, a contradiction.

Now suppose that $|Q| \geq 3$. Put $q=|Q|$ and $Q=\left\{x_{1}, \ldots, x_{q}\right\}$. Every vertex z of $G \backslash Q$ sees at least one vertex of Q, because Q is dominating, and it sees at most one, for otherwise either $Q \cup\{z\}$ would be a larger dominating clique or $\left\{z, x_{i}, x_{j}, x_{k}\right\}$ would induce a diamond for any $x_{i}, x_{j} \in N(z), x_{k} \notin N(z)$. For $i=1, \ldots, q$, let $A_{i}=N\left(x_{i}\right) \backslash Q$. So Q, A_{1}, \ldots, A_{q} form a partition of $V(G)$, and for $i=1, \ldots, q$, any vertex of A_{i} misses every vertex of $Q \backslash x_{i}$. We may assume that $c\left(x_{i}\right)=i$ for each $i=1, \ldots, q$. We have $3 \leq q \leq \omega(G) \leq \chi(G)<b(G)$, so c uses at least $q+1 \geq 4$ colors. Let z be a b-vertex with the largest color $b(G) \geq q+1$. We may assume that $z \in A_{1}$. Since z is a b-vertex, it has neighbours $y_{2}, \ldots, y_{b(G)-1}$ with colors $2, \ldots, b(G)-1$ respectively, and they are not in Q. Put $Y=\left\{y_{2}, \ldots, y_{b(G)-1}\right\}$. We claim that
Y is either a stable set or a clique.
For in the opposite case, Y contains three vertices $y, y^{\prime}, y^{\prime \prime}$ that induce a subgraph with either one edge or two edges. If it induces two edges, then $\left\{z, y, y^{\prime}, y^{\prime \prime}\right\}$ induces a diamond. So suppose it induces one edge $y^{\prime} y^{\prime \prime}$. If $y^{\prime} \in A_{1}$, then $y^{\prime \prime} \in A_{1}$, for otherwise $\left\{x_{1}, z, y^{\prime}, y^{\prime \prime}\right\}$ induces a diamond; then $y \notin A_{1}$, for otherwise $\left\{x_{1}, y, z, y^{\prime}\right\}$ induces a diamond; then, up to symmetry, $y \in A_{2}$, and $\left\{y^{\prime}, z, y, x_{2}, x_{3}\right\}$ induces an F_{1}, a contradiction. Thus $y^{\prime} \notin A_{1}$, and similarly $y^{\prime \prime} \notin A_{1}$. So, up to symmetry, $y^{\prime} \in A_{2}$. Then $y^{\prime \prime} \notin A_{2}$, for otherwise $\left\{x_{2}, y^{\prime}, y^{\prime \prime}, z\right\}$ induces a diamond. So, up to symmetry, $y^{\prime \prime} \in A_{3}$. Then, up to symmetry we have $y \notin A_{3}$, and then $\left\{x_{2}, x_{3}, y^{\prime \prime}, z, y\right\}$ induces an F_{1} or C_{5}, a contradiction. Thus (10) is established.

Suppose that Y is a stable set. Since $b(G) \geq 4$, we have $|Y| \geq 2$. Consider vertices $y, y^{\prime} \in Y$. We cannot have both $y, y^{\prime} \in A_{1}$ for otherwise G contains a diamond with vertices x_{1}, z, y, y^{\prime}. Thus, we may assume $y \in A_{2}$. We cannot have $y^{\prime} \in A_{j}$ with $j \notin\{1,2\}$, for otherwise $\left\{z, y, y^{\prime}, x_{2}, x_{j}\right\}$ induces a C_{5}. It follows that $Y \cap A_{j}=\emptyset$ for $j>3$. If $y^{\prime} \in A_{1}$, then $\left\{x_{3}, x_{2}, y, z, y^{\prime}\right\}$ induces an F_{1}. It follows that $Y \subseteq A_{2}$. But this implies vertices y_{2} and x_{2} are adjacent and have the same color, a contradiction. So Y is not a stable set.

Therefore Y induces a clique. Put $Z=Y \cup\{z\}$. Suppose that some $x_{i} \in Q$ has two neighbours in Z. Then it sees all of Z, for otherwise $\left\{x_{i}, y, y^{\prime}, y^{\prime \prime}\right\}$ induces a diamond for any $y, y^{\prime} \in Z \cap N\left(x_{i}\right), y^{\prime \prime} \in Z \backslash N\left(x_{i}\right)$. Then $i=1$, for otherwise z sees both x_{1} and x_{i}, a contradiction. But $Z \cup\left\{x_{1}\right\}$ is a clique of size $b(G)$ implying $\chi(G) \geq b(G)$, a contradiction to our assumption on G. So no vertex of Q sees two vertices of Z. Since every vertex of Z has exactly one neighbour in Q, we have $|Z|=|Q|$, so $q=b(G)-1$. The vertices of Z can be renamed z_{1}, \ldots, z_{q} such that $z_{i} x_{i}$ is an edge for each $i=1, \ldots, q$ and there is not other edge between Z and Q. Consider any vertex $u \in V(G) \backslash(Q \cup Z)$. We have $u \in A_{i}$ for some i. If u has two neighbours in Z, then it sees all of Z, for otherwise $\left\{u, y, y^{\prime}, y^{\prime \prime}\right\}$ induces a diamond for any $y, y^{\prime} \in Z \cap N(u), y^{\prime \prime} \in Z \backslash N(u)$. But then $\left\{u, x_{i}, z_{i}, z_{j}\right\}$ induces a diamond for any $j \neq i$. So u has at most one neighbour in Z. If it sees z_{i} or no vertex of Z, then $\left\{u, x_{i}, x_{j}, z_{j}, z_{k}\right\}$ induces an F_{1} for any $j, k \neq i$. If it sees z_{j} for some $j \neq i$, then $\left\{u, x_{i}, z_{j}, x_{k}, z_{k}\right\}$ induces a C_{5} for any $k \neq i, j$. Thus such a vertex u cannot exist, that is, $V(G)=Q \cup Z$. Now x_{2}, y_{2} are the only vertices of color 2 in G. However, x_{2} is not a b-vertex because it has no neighbour of color $q+1$, and y_{2} is not a b-vertex because it has no neighbour of color 1 , a contradiction. This completes the proof of Theorem 1.1.

4. Proof of Theorem 1.2

Suppose that the theorem is false. Let G be a counterexample to the theorem with the smallest number of vertices, and let c be a b-coloring of G with $b(G)>\chi(G)$ colors. If G is diamond-free, then the result follows from Theorem 1.1. So we may assume that G contains a diamond. Thus $\chi(G)=3$. If $b(G)>4$, then the subgraph of G induced by the vertices of colors $1, \ldots, 4$ is also a counterexample to the theorem, which contradicts the minimality of G. So $b(G)=4$. For any integer $k \geq 4$, the k-wheel is the (complete) join of a vertex and a chordless cycle of length k. Note that G contains no 5-wheel, since a 5 -wheel cannot be colored with 3 colors. Likewise, G contains no K_{4}.

If $\{u, v, x, y\}$ induces a diamond, where u, v are not adjacent, then $N(u) \subseteq N(v)$ or $N(v) \subseteq N(u)$ and (consequently), u, v have different colors.

For suppose that none of the two inclusions holds. So there is a vertex u^{\prime} that sees u and misses v, and there is a vertex v^{\prime} that sees v and misses u. If x misses both u^{\prime} and v^{\prime}, then either $\left\{u^{\prime}, u, x, v, v^{\prime}\right\}$ induces an F_{1}, or $\left\{u^{\prime}, u, x, v, v^{\prime}, y\right\}$ induces an F_{16}, F_{17} or a 5-wheel. So, up to symmetry, x sees u^{\prime}. Then u^{\prime} misses y, for otherwise $\left\{u, u^{\prime}, x, y\right\}$ induces a K_{4}. By symmetry, y sees v^{\prime}, and v^{\prime} misses x. But then $\left\{u, u^{\prime}, v, v^{\prime}, x, y\right\}$ induces an F_{4} or F_{10}. Thus one of the inclusions $N(u) \subseteq N(v)$ or $N(v) \subseteq N(u)$ holds; and it follows from Lemma 2.3 that u, v have different colors. Thus (11) holds.
G does not contain a C_{5}.

For suppose that G contains a C_{5}. Then it admits a partition into sets $X_{1}, \ldots, X_{6}, T, Z$ as in Lemma 2.5 . For $j=2,3,5$ let a_{j} be an arbitrary vertex in X_{j}, and let $a_{1} \in X_{1}$ and $a_{4} \in X_{4}$ be non-adjacent vertices. We claim that G satisfies the hypotheses of Theorem 2.6. We have $T=\emptyset$ because G contains no 5 -wheel. The set X_{1} is a stable set, for if it contained two adjacent vertices x, y, then $\left\{x, y, a_{4}, a_{5}\right\}$ would induce a K_{4}. Likewise X_{4} is a stable set. Also X_{6} is a stable set, for if it contained two adjacent vertices x, y then $\left\{x, y, a_{2}, a_{3}\right\}$ would induce a K_{4}. Finally, suppose that some vertex $z \in Z$ is a b-vertex, say of color 1. Let Y be the component of Z that contains Z. By property of Lemma 2.5 and since $T=\emptyset, Y$ is a homogeneous clique. By Lemma 2.2, z has two neighbours u, v that are not adjacent, and so they are both in $V(G) \backslash Z$. We have $|Y| \leq 2$, for otherwise $Y \cup\{u\}$ induces a clique of size at least 4. If z has a neighbour in X_{6} then it cannot have a neighbour in $X_{1} \cup X_{4}$ by property 10 of Lemma 2.5. So either z has no neighbour in $\left(X_{1} \backslash X_{1}^{\prime}\right) \cup\left(X_{4} \backslash X_{4}^{\prime}\right)$ or z has no neighbour in X_{6}. If $|Y|=1$, then we have $N(z) \subset N\left(a_{5}\right)$, with strict inclusion, which contradicts Lemma 2.3. So Y has two elements z, y. By (11), we may assume that y has color 2 and u, v have color respectively 3 , 4. If u, v are in $\left(X_{1} \backslash X_{1}^{\prime}\right) \cup\left(X_{4} \backslash X_{4}^{\prime}\right)$, then, since they are not adjacent, and by the definition of X_{1}^{\prime} and X_{4}^{\prime}, and up to symmetry, they are both in $\left(X_{1} \backslash X_{1}^{\prime}\right)$. Then $\left\{a_{4}, a_{5}, u, v\right\}$ induces a diamond, and so one of a_{4}, a_{5} is a b-vertex of color 1 . If u, v are in X_{6}, then, $\left\{a_{2}, a_{3}, u, v\right\}$ induces a diamond, and so one of a_{2}, a_{3} is a b-vertex of color 1. Thus, there are b-vertices of all four colors in $X_{1} \cup \cdots \cup X_{6}$. So G satisfies the hypotheses of Theorem 2.6, so G is not minimally b-imperfect, a contradiction. Thus (12) holds.
G does not contain a 4 -wheel.
For if G contains a 4 -wheel, then, by (11), all the vertices of the 4 -wheel must have different colors, which is impossible since c is a 4 -coloring. Thus (13) holds.

Call 3-diamond a graph that consists of five vertices u, v, w, x, y and seven edges $x y, u x, u y, v x, v y, w x, w y$.
G does not contain a 3-diamond.
For if G contains a 3-diamond, with the above notation, then, by (11), vertices u, v, w have three different colors that are also different from the two colors of x, y, which is impossible since c is a 4 -coloring. Thus (14) holds.

Call gem any graph that consists of five vertices u, v, w, x, y and seven edges $u v, v w, w x, u y, v y, w y, x y$.
G does not contain a gem.
For suppose that G contains a gem, with vertices u, v, w, x, y and edges $u v, v w, w x, u y, v y, w y, x y$. By (11) and up to symmetry, we may assume that $c(u)=c(x)=1, c(v)=2, c(w)=3, c(y)=4$. Thus v, w, y are b-vertices of colors $2,3,4$. By (11) again we have $N(u) \subset N(w)$ and $N(x) \subset N(v)$, and by Lemma 2.3, vertices u and x are not b-vertices. Let z be a b-vertex of color 1 ; so $z \neq u, x$. If z sees v, then in the graph $G \backslash\{u\}$ (with the same colors) vertices z, v, w, y are b-vertices of colors $1, \ldots, 4$, which contradicts the minimality of G. Therefore z misses v and similarly w. In summary, z misses all of u, v, w, x.
Suppose that z sees y. Let z_{2}, z_{3} be two neighbours of z of color 2 and 3 respectively. So $z_{2} \neq v, z_{2}$ misses v and (since $N(x) \subset N(v))$ misses x too. Likewise $z_{3} \neq w$ and z_{3} misses both u, w. Suppose that z_{2} and z_{3} are not adjacent. Since $\left\{u, v, w, x, z, z_{2}, z_{3}\right\}$ cannot induce an F_{2}, it must be that one of z_{2}, z_{3} has a neighbour in $\{u, v, w, x\}$, and we may assume, up to symmetry, that z_{2} sees one of u, w. Then z_{2} must see both u and w, for otherwise $\left\{z, z_{2}, u, v, w\right\}$ induces an F_{1}. Then z_{3} sees x, for otherwise $\left\{z_{3}, z, z_{2}, w, x\right\}$ induces an F_{1}. But then $\left\{u, z_{2}, z, z_{3}, x\right\}$ induces an F_{1}. Thus z_{2} and z_{3} are adjacent. Since $\left\{u, v, w, x, y, z, z_{2}, z_{3}\right\}$ cannot induce an F_{8}, it must be that one of z_{2}, z_{3} has a neighbour in $\{u, v, w, x\}$, and we may assume, up to symmetry, that z_{2} sees one of u, w. Then z_{2} must see both u, w, for otherwise $\left\{z, z_{2}, u, v, w\right\}$ induces an F_{1}. Then z_{2} misses y, for otherwise $\left\{u, v, w, y, z_{2}\right\}$ induces a 4-wheel. If z_{3} sees x, then z_{3} sees v (since $N(x) \subset N(v)$) and misses y (for otherwise $\left\{v, w, x, y, z_{3}\right\}$ induces a 4-wheel); but then $\left\{u, v, w, x, y, z, z_{2}, z_{3}\right\}$ induces an F_{22}. So z_{3} misses x. Then z_{3} misses v, for otherwise $\left\{z, z_{3}, v, w, x\right\}$ induces an F_{1}; and z_{3} sees y, for otherwise $\left\{z_{3}, z_{2}, u, y, x\right\}$ induces an F_{1}. But then $\left\{u, v, w, y, z, z_{2}, z_{3}\right\}$ induces an F_{11}. Therefore z misses y.
Since G is connected, there is a path $z-p_{1} \cdots-p_{h}$ such that p_{h} has a neighbour in $X=\{u, v, w, x, y\}$ and the path is as short as possible. So the path is chordless and its vertices other than p_{h} have no neighbour in X. We have $h \leq 3$ since G contains no F_{1}. If $h=3$, then there is still an F_{1}, induced by z, p_{1}, p_{2}, p_{3} and a neighbour of p_{3} in X. If $h=2$, then p_{2} must see all of X, for otherwise there is still an F_{1} induced by z, p_{1}, p_{2} and some two adjacent vertices of X; but then $X \cup\left\{p_{2}\right\}$ contains a K_{4}. So $h=1$. Let us now write p instead of p_{1}. We claim that p sees y. For suppose not. If p sees v, then it sees x (for otherwise $\{z, p, v, y, x\}$ induces an F_{1}) and u (for otherwise $\{z, p, x, y, u\}$ induces an F_{1}); p sees w, for otherwise $\{z, p, u, y, w\}$ induces an F_{1}; thus p must have color 4 , and so the diamond induced by $\{p, y, w, x\}$ contradicts (11). So p misses v and similarly w, and so it must see one of u, x, say u; but then $\{z, p, u, v, w\}$ induces an F_{1}. So p sees y as claimed. We may assume up to symmetry that p has color 2 . So p misses v, it also misses x because $N(x) \subset N(v)$. Vertex p also misses w, for otherwise $\{v, w, y, p\}$ induces a diamond that contradicts (11). Then p misses u, for otherwise $\{p, u, v, w, x\}$ induces an F_{1}. Let z_{4} be a neighbour of z of color 4. So z_{4} and y are different and not adjacent. If z_{4} misses p, then it sees u, for otherwise $\left\{z_{4}, z, p, y, u\right\}$ induces an F_{1}; and similarly z_{4} sees v; but then $\left\{u, v, y, z_{4}\right\}$ induces a diamond that contradicts (11). So z_{4} sees p. Since $\left\{u, v, w, x, y, p, z, z_{4}\right\}$ cannot induce an F_{8}, it must be that z_{4} has a neighbour in the path $P=u-v-w-x$. If z_{4} has only one neighbour in P, then some three consecutive vertices of P plus z and z_{4} induce an F_{1}. On the other hand, if z_{4} has two consecutive neighbours in P, then these two neighbours plus y and z_{4} induce a diamond that contradicts (11). So z_{4} has exactly two neighbours in P, and they are not adjacent. If these two neighbours are u and x, then $\left\{u, v, w, x, y, z_{4}\right\}$ induces an F_{17}. So the two neighbours of z_{4} in P
are either u and w or v and x. In either case, $\left\{u, y, x, z, z_{4}\right\}$ (not necessarily in this order) induces an F_{1}. Thus (15) holds.

> If $D=\{u, v, x, y\}$ is a diamond in G, where u, v are not adjacent, then any vertex in $G \backslash D$ sees at most two vertices of D, and if it sees two, then these two are u and v.

This is an immediate consequence of the preceding claims.
G does not contain two vertex-disjoint diamonds.
For suppose that G has two vertex-disjoint diamonds $D=\{u, v, x, y\}$ and $D^{\prime}=\left\{u^{\prime}, v^{\prime}, x^{\prime}, y^{\prime}\right\}$ where u, v are not adjacent and u^{\prime}, v^{\prime} are not adjacent. By (16), there are at most two edges between $\{x, y\}$ and $\left\{x^{\prime}, y^{\prime}\right\}$, and if there are two, then they form a matching.
Suppose that there is no edge between $\{x, y\}$ and $\left\{u^{\prime}, v^{\prime}\right\}$ and no edge between $\left\{x^{\prime}, y^{\prime}\right\}$ and $\{u, v\}$. If there is no edge between $\{u, v\}$ and $\left\{u^{\prime}, v^{\prime}\right\}$, then $D \cup D^{\prime}$ induces an F_{6}, F_{7} or F_{12}. So let u see u^{\prime}. Then v sees u^{\prime}, for otherwise $\left\{v, x, u, u^{\prime}, y^{\prime}\right\}$ induces an F_{1}; and similarly, v^{\prime} sees u, and v^{\prime} sees v; but then $D \cup D^{\prime}$ induces an F_{13}, F_{14} or F_{15}. So we may assume, up to symmetry, that there is an edge between $\{x, y\}$ and $\left\{u^{\prime}, v^{\prime}\right\}$, say the edge $x u^{\prime}$.
By (16), u^{\prime} misses u, y, v and x misses x^{\prime}, y^{\prime}. By (16), y misses a vertex z^{\prime} among x^{\prime}, y^{\prime}. If x misses v^{\prime}, then $\left\{y, x, u^{\prime}, z^{\prime}, v^{\prime}\right\}$ induces an F_{1} or C_{5}. So x sees v^{\prime}, and u^{\prime}, v^{\prime} have no neighbour in $D \backslash\{x\}$.
Suppose that one of x^{\prime}, y^{\prime}, say x^{\prime}, sees one of u, v. Then, by similar arguments, we obtain that x^{\prime} see both u, v and there is no other edge between D and D^{\prime} except possibly $y y^{\prime}$. Consider any vertex w not in $D \cup D^{\prime}$. If w sees u, then it misses x and y by (16), and it sees u^{\prime}, for otherwise $\left\{w, u, x, u^{\prime}, y^{\prime}\right\}$ induces an F_{1} or C_{5}. But then w misses x^{\prime} by (16), and $\left\{y, u, w, u^{\prime}, y^{\prime}\right\}$ induces an F_{1} or C_{5}. Therefore w misses u, and, by symmetry, it misses v, u^{\prime} and v^{\prime}. If w sees y, then it misses x by (16), and $\left\{w, y, x, u^{\prime}, x^{\prime}\right\}$ induces an F_{1} or C_{5}. So w misses y, and similarly y^{\prime}.

Moreover, w does not see both x, x^{\prime}, for otherwise $\left\{w, x, x^{\prime}, y, y^{\prime}\right\}$ induces an F_{1} or C_{5}. Define $X=\left\{z \notin D \cup D^{\prime} \mid\right.$ $\left.N(z) \cap\left(D \cup D^{\prime}\right)=\{x\}\right\}, X^{\prime}=\left\{z \notin D \cup D^{\prime} \mid N(z) \cap\left(D \cup D^{\prime}\right)=\left\{x^{\prime}\right\}\right\}$, and $Z=\left\{z \notin D \cup D^{\prime} \mid N(z) \cap\left(D \cup D^{\prime}\right)=\emptyset\right\}$. We have established that $V(G)=D \cup D^{\prime} \cup X \cup X^{\prime} \cup Z$. If there are vertices $w \in X$ and $w^{\prime} \in X^{\prime}$, then $\left\{w, x, u, x^{\prime}, w^{\prime}\right\}$ induces an F_{1} or C_{5}. So we may assume that $X^{\prime}=\emptyset$. If $Z \neq \emptyset$, then, since G is connected, there is an edge $z w$ with $z \in Z$ and $w \in X$. But then $\left\{z, w, x, u, x^{\prime}\right\}$ induces an F_{1}. So $Z=\emptyset$. Thus $V(G)=D \cup D^{\prime} \cup X$. By Lemma $2.3, u, v, u^{\prime}, v^{\prime}$ are not b-vertices. By (11), we may assume that u, v, x, y have colors respectively $1,2,3,4$. Consequently, $c\left(x^{\prime}\right) \in\{3,4\}$ and one of the colors 1,2 , say color 1 , does not have a b-vertex in $D \cup D^{\prime}$. So there must be a b-vertex w of color 1 in X. By Lemma 2.2, w has two neighbours $w^{\prime}, w^{\prime \prime}$ that are not adjacent, and necessarily $w^{\prime}, w^{\prime \prime} \in X$. But then $\left\{w, w^{\prime}, w^{\prime \prime}, y, u, x^{\prime}, u^{\prime}\right\}$ induces an F_{2}.
Now we may assume that x^{\prime} and y^{\prime} do not see any of u, v. Consider any vertex w not in $D \cup D^{\prime}$. If w sees u, then it misses x and y by (16), and it sees u^{\prime}, for otherwise $\left\{w, u, x, u^{\prime}, y^{\prime}\right\}$ induces an F_{1} or C_{5}. But then w misses x^{\prime} by (16) and $\left\{y, u, w, u^{\prime}, y^{\prime}\right\}$ induces an F_{1} or C_{5}. Therefore w misses u, and, by symmetry, it misses v. If w sees y, then it misses x by (16), and it sees u^{\prime}, for otherwise $\left\{w, y, x, u^{\prime}, x^{\prime}\right\}$ induces an F_{1} or C_{5}; but then $\left\{u, y, w, u^{\prime}, x^{\prime}\right\}$ induces an F_{1}. So w misses y. If w sees one of u^{\prime}, v^{\prime}, then it sees both, for otherwise $\left\{w, u^{\prime}, x^{\prime}, v^{\prime}, u, v, y\right\}$ induces an F_{2}. In this case w is in the set $U^{\prime}=\left\{z \notin D \cup D^{\prime} \mid N(z) \cap\left(D \cup D^{\prime}\right)=\left\{u^{\prime}, v^{\prime}\right\}\right.$ or $\left.\left\{u^{\prime}, v^{\prime}, x\right\}\right\}$. Next, suppose that $w \notin D \cup D^{\prime} \cup U^{\prime}$. Then w misses x^{\prime}, for otherwise either $\left\{w, x^{\prime}, u^{\prime}, x, u\right\}$ induces an F_{1} or $\left\{u, x, w, x^{\prime}, y^{\prime}\right\}$ induces an F_{1}. Similarly w misses y^{\prime}. So in this case w is either in the set $X=\left\{z \notin D \cup D^{\prime} \mid N(z) \cap\left(D \cup D^{\prime}\right)=\{x\}\right\}$ or in the set $Z=\left\{z \notin D \cup D^{\prime} \mid N(z) \cap\left(D \cup D^{\prime}\right)=\emptyset\right\}$.
If $Z \neq \emptyset$, then since G is connected there is an edge $z w$ with $z \in Z$ and $w \in U^{\prime} \cup X$. But then either $\left\{z, w, x, u^{\prime}, x^{\prime}\right\}$ induces an F_{1} (if $w \in X$) or $\left\{z, w, u^{\prime}, x^{\prime}, u, y, v\right\}$ induces an F_{2} (if $w \in U^{\prime}$). So $Z=\emptyset$. Thus $V(G)=D \cup D^{\prime} \cup U^{\prime} \cup X$. By Lemma 2.3, $u, v, u^{\prime}, v^{\prime}$ are not b-vertices. By (11), we may assume that $c\left(x^{\prime}\right)=1, c\left(y^{\prime}\right)=2, c\left(u^{\prime}\right)=3, c\left(v^{\prime}\right)=4$. Consequently, x has color 1 or 2 , so one of the colors 3,4 , say color 4 , has no b-vertex in $D \cup D^{\prime}$. So there is a b-vertex w of color 4 in $U^{\prime} \cup X$. In fact $w \in U^{\prime}$ is not possible since w, v^{\prime} have color 4 ; so $w \in X$. Vertex w has a neighbour w_{3} of color 3, and necessarily $w_{3} \in X$. Also w has a neighbour w_{2} of color 2. If $w_{2} \in U^{\prime}$, then w_{2} sees w_{3}, for otherwise $\left\{w_{3}, w, w_{2}, u^{\prime}, x^{\prime}\right\}$ induces an F_{1}; also, w_{2} misses x, for otherwise $\left\{w_{2}, w, w_{3}, x\right\}$ induces a K_{4}; but then $\left\{u, v, x, y, w, w_{2}, w_{3}\right\}$ induces an F_{5}. So $w_{2} \in X$, and w_{2}, w_{3} are not adjacent, for otherwise $\left\{x, w, w_{2}, w_{3}\right\}$ induces a K_{4}. But then $\left\{w, w_{2}, w_{3}, u, y, v, u^{\prime}, x^{\prime}, v^{\prime}\right\}$ induces an F_{3}. Thus (17) holds.

Let u, v, x, y be four vertices of G that induce a diamond, where u and v are not adjacent. Put $D=\{u, v, x, y\}$. By (16), no vertex of $G \backslash D$ can see two adjacent vertices of D. By (11), we may assume that $N(v) \subseteq N(u)$. Thus if we set $U=N(u) \backslash D$, $X=N(x) \backslash D, Y=N(y) \backslash D$, and $Z=\{z \in V(G) \mid N(z) \cap D=\emptyset\}$, then D, U, X, Y, Z form a partition of $V(G)$. We may assume that u, v, x, y have color respectively $1,2,3,4$. By Lemma 2.3 and the assumption $N(v) \subseteq N(u), v$ is not a b-vertex. Let z be a b-vertex of color 2 (the color of v). First, we claim that:
z is not in U.
Suppose that z is in U. Let z_{3}, z_{4} be neighbours of z of color respectively 3 and 4 (such vertices exist since z is a bvertex). If z_{3} misses u, then $\left\{z_{3}, z, u, x, v\right\}$ induces an F_{1} or a C_{5}. So z_{3} sees u. Likewise, z_{4} sees u. By (16), z_{3} and z_{4} both miss x and y. Then z_{3} misses z_{4}, for otherwise $\left\{u, z, z_{3}, z_{4}\right\}$ induces a K_{4}. Now if v sees both z_{3}, z_{4}, then the seven vertices $\left\{u, v, x, y, z, z_{3}, z_{4}\right\}$ induces an F_{11}; if it misses both, then the seven vertices induce an F_{5}; and if it sees exactly one of them, say z_{3}, then $\left\{x, v, z_{3}, z, z_{4}\right\}$ induces an F_{1}. So (18) holds.

Now, we claim that:
z is not in Z.

Suppose that z is in Z. Since G is connected, there is a path $z-p_{1} \cdots \cdots-p_{h}$ such that p_{h} has a neighbour in D and the path is as short as possible. So the path is chordless and its vertices other than p_{h} have no neighbour in D, and $p_{h} \in U \cup X \cup Y$. We have $h \leq 3$ since G contains no F_{1}. If $h=3$, then there is still an F_{1}, induced by z, p_{1}, p_{2}, p_{3} and a neighbour of p_{3} in D. If $h=2$, then there is still an F_{1}, induced by z, p_{1}, p_{2} and some two adjacent vertices of D. So $h=1$. Let us now write p instead of p_{1}. Suppose that $p \notin X \cup Y$. So p sees at least one of u, v, and it actually sees both, for otherwise $\{z, p, u, x, v\}$ induces an F_{1}. Up to symmetry we may assume that p has color 3 . Let z_{1}, z_{4} be neighbours of z of color respectively 1,4 . So $z_{1}, z_{4} \notin D$. Vertex z_{1} misses u (which has color 1) and consequently misses v too. Then z_{1} sees p, for otherwise $\left\{z_{1}, z, p, u, x\right\}$ induces an F_{1} or C_{5}. Then z_{4} misses both p, z_{1}, for otherwise $\left\{p, z, z_{1}, z_{4}\right\}$ induces either a K_{4} or a diamond disjoint from D, which contradicts (17). If z_{4} sees u, then z_{1}, z, z_{4}, u, y induces an F_{1} or a C_{5}. So z_{4} misses u, and consequently it misses v. But then $\left\{z_{4}, z, p, u, y\right\}$ induces an F_{1}. Therefore, we have $p \in X \cup Y$, say, up to symmetry, $p \in X$. So p sees x and, by (16), it misses u, v, y. Let z_{3} be a neighbour of z of color 3 . So $z_{3} \notin D$. If z_{3} misses p, then z_{3}, z, p, x and one of u, v, y induce an F_{1}. So z_{3} sees p. Let z^{\prime} be a neighbour of z whose color is not 2,3 or the color of p (z^{\prime} exists since z is a b-vertex). Then z^{\prime} misses both p, z_{3}, for otherwise $\left\{p, z, z_{3}, z^{\prime}\right\}$ induces either a K_{4} or a diamond disjoint from D. Then z^{\prime} sees x, for otherwise z^{\prime}, z, p, x and one of u, v, y induce an F_{1}. By (16), z^{\prime} misses u, v, y. But then z_{3}, z, z^{\prime}, x and one of u, v, y induce an F_{1} or C_{5}. Thus (19) holds. By (18) and (19) we have:

$$
\begin{equation*}
z \text { is in } X \cup Y \tag{20}
\end{equation*}
$$

Without loss of generality, we may assume that z is in X. So z sees x and, by (16), misses u, v, y. Let z_{1}, z_{4} be neighbours of z of color respectively 1,4 (such vertices exist since z is a b-vertex). Note that z_{1} misses u, because they both have color 1 , and v, because $N(v) \subseteq N(u)$. Clearly z_{4} misses y. Now we claim that:

$$
\begin{equation*}
N(u)=N(v) \tag{21}
\end{equation*}
$$

We already have $N(v) \subseteq N(u)$. Suppose that there exists a vertex t that sees u and not v. By (16), t misses x and y. Then t misses z, for otherwise $\{z, t, u, y, v\}$ induces an F_{1}. So $t \neq z_{1}, z_{4}$. Then z_{1} sees x, for otherwise $\left\{z_{1}, z, x, u, t\right\}$ induces an F_{1} or C_{5}. By (16), z_{1} misses y. Then z_{1} misses t, for otherwise $\left\{z_{1}, t, u, y, v\right\}$ induces an F_{1}. If z_{1} misses z_{4}, then either $\left\{z_{1}, z, z_{4}, t, u, y, v\right\}$ induces an F_{2} or z_{1}, z, z_{4} and some two adjacent vertices of t, u, y, v induce an F_{1}. So z_{1} sees z_{4}. Then z_{4} misses x, for otherwise $\left\{z, z_{1}, z_{4}, x\right\}$ induces a K_{4}; and it sees u, for otherwise $\left\{z_{4}, z_{1}, x, u, t\right\}$ induces an F_{1} or C_{5}. But then either $\left\{z_{1}, z_{4}, u, y, v\right\}$ induces an F_{1} (if z_{4} misses v), or $\left\{u, v, x, y, z, z_{1}, z_{4}\right\}$ induces an F_{11} (if z_{4} sees v). Therefore no such t exists, so (21) holds.

Now u and v play symmetric roles, and u is not a b-vertex. Let w be a b-vertex of color 1 (the color of u). By symmetry, (20) holds with w replacing z, that is, $w \in X \cup Y$. We claim that:

$$
\begin{equation*}
w \text { is in } X \tag{22}
\end{equation*}
$$

For suppose that $w \in Y$. So w sees y and, by (16) and (21), it misses u, v, x. Let w_{2}, w_{3} be neighbours of w of color respectively 2, 3. Clearly w_{3} misses x. By (21), w_{2} misses u and v. If w, z are adjacent, then z_{4} sees w, for otherwise $\left\{z_{4}, z, w, y, u\right\}$ induces an F_{1} or C_{5}; and by symmetry w_{3} sees z; and w_{3} misses z_{4}, for otherwise $\left\{w, z, w_{3}, z_{4}\right\}$ induces a K_{4}; but then $\left\{w, z, w_{3}, z_{4}\right\}$ induces a diamond disjoint from D, a contradiction to (17). So w and z are not adjacent, and consequently $w \neq z_{1}$ and $z \neq w_{2}$. Then w_{3} sees y, for otherwise $\left\{w_{3}, w, y, x, z\right\}$ induces an F_{1} or a C_{5}. And by (16), w_{3} misses u and v. Similarly, z_{4} sees x and misses u and v. If both $x z_{1}, y w_{2}$ are edges, then either the two sets $\left\{x, z, z_{1}, z_{4}\right\}$ and $\left\{y, w, w_{2}, w_{3}\right\}$ induce two disjoint diamonds or one of them induces a K_{4}, a contradiction. So, up to symmetry, x misses z_{1}. Then z_{1} sees y, for otherwise $\left\{z_{1}, z, x, y, w\right\}$ induces an F_{1}. Then z_{4} sees z_{1}, for otherwise $\left\{z_{4}, z, z_{1}, y, u\right\}$ induces an F_{1} or a C_{5}. Thus $D_{z}=\left\{z, z_{1}, z_{4}, x\right\}$ induces a diamond. Then w_{2} misses both y, w_{3}, for otherwise $\left\{y, w, w_{2}, w_{3}\right\}$ induces either a K_{4} or a diamond disjoint from D_{z}, which contradicts (17). Then w_{2} sees x, for otherwise $\left\{w_{2}, w, y, x, z\right\}$ induces an F_{1}. But now $\left\{u, x, w_{2}, w, w_{3}\right\}$ induces an F_{1}. Thus (22) holds.

Therefore w sees x and, by (16) and (21), it misses u, v, y. Let w_{2}, w_{4} be neighbours of w of color respectively 2, 4. Clearly w_{4} misses y. By (21), w_{2} misses both u and v. We claim that:
w misses z.
For suppose that w sees z. If w, z have a common neighbour t of color 4, then t misses x, for otherwise $\{x, t, w, z\}$ induces a K_{4}, but then $\{u, v, x, y, w, z, t\}$ induces an F_{5} (if t misses both u, v) or an F_{11} (if t sees both u, v). So w and z do not have a common neighbour of color 4. Thus $w_{4} \neq z_{4}$ and $\left\{w_{4}, w, z, z_{4}\right\}$ induces a P_{4}. Then u misses both w_{4}, z_{4}, for otherwise $\left\{u, w_{4}, w, z, z_{4}\right\}$ induces an F_{1} or C_{5}, and similarly v misses both w_{4}, z_{4}. But then $\left\{w_{4}, w, z, z_{4}, u, v, y\right\}$ induces an F_{2}. Thus (23) holds.

We claim that:
Either z_{1} sees z_{4} or w_{2} sees w_{4}.
For suppose the contrary. So both $\left\{z, z_{1}, z_{4}\right\}$ and $\left\{w, w_{2}, w_{4}\right\}$ induce a P_{3}. If $w_{4}=z_{4}$, then $\left\{z, w, z_{1}, w_{2}, z_{4}\right\}$ induces an F_{1} or C_{5}. So, $w_{4} \neq z_{4}$. Write $P=\{u, y, v\}$, and $Q=\left\{z, z_{1}, z_{4}, w, w_{2}, w_{4}\right\}$. If z_{4} sees a vertex in P, then by (21) it sees both u and v; but then $\left\{y, u, z_{4}, z, z_{1}\right\}$ induces an F_{1} or C_{5}. So, z_{4} misses all of P. Similarly, w_{4} misses all of P. If z_{1} sees y, then $\left\{z_{4}, z, z_{1}, y, u\right\}$ induces an F_{1}. Thus z_{1}, and similarly, w_{2} have no neighbour in P, i.e., there is no edge between P and Q. We may assume that Q does not contain a P_{4}, for otherwise this P_{4} and P induce an F_{2}. It follows that:
z_{1} misses w_{2}, for otherwise $\left\{z, z_{1}, w_{2}, w\right\}$ induces a P_{4};
z_{1} misses w_{4}, for otherwise $\left\{z_{1}, w_{4}, w, w_{2}\right\}$ induces a P_{4};
z misses w_{4}, for otherwise $\left\{z, w_{4}, w, w_{2}\right\}$ induces a P_{4};
z_{4} misses every $w^{\prime} \in\left\{w, w_{2}\right\}$, for otherwise $\left\{w^{\prime}, z_{4}, z, z_{1}\right\}$ induces a P_{4}. But now $P \cup Q$ induce an F_{3}, a contradiction. Thus (24) holds.

By (24) and by symmetry, we may assume that $\left\{z, z_{1}, z_{4}\right\}$ induces a K_{3}. If x sees z_{1}, then it misses z_{4}, for otherwise, $\left\{x, z, z_{1}, z_{4}\right\}$ induces a K_{4}, and z_{1} misses y by (16); but then $\left\{u, v, x, y, z, z_{1}, z_{4}\right\}$ induces either an F_{5} or F_{11}. So x misses z_{1}. If x sees z_{4}, then z_{4} misses u and v by (16), and z_{1} sees y, for otherwise again $\left\{u, v, x, y, z, z_{1}, z_{4}\right\}$ induces an F_{5}. But now $\left\{x, z, z_{1}, z_{4}\right\}$ induces a diamond in which the two non-adjacent vertices do not have the same neighbourhood; by the mapping $z \rightarrow x, z_{4} \rightarrow y, z_{1} \rightarrow u, x \rightarrow v$, we have a contradiction to (21). So x misses z_{4}. If x misses a vertex $w^{\prime} \in\left\{w_{2}, w_{4}\right\}$, then w^{\prime} sees z, for otherwise $\left\{z_{1}, z, x, w, w^{\prime}\right\}$ induces an F_{1} or C_{5}. So $w^{\prime}=w_{4}$. Then w_{4} misses z_{1}, for otherwise $\left\{z_{1}, w_{4}, w, x, y\right\}$ induces an F_{1} or C_{5}. And so $w_{4} \neq z_{4}$. Then z_{1} misses y and w_{4} misses u, for otherwise $\left\{w_{4}, z, z_{1}, y, u\right\}$ induces an F_{1} or C_{5}; and by (21) w_{4} misses v. But then $\left\{z_{1}, z, w_{4}, w, u, y, v\right\}$ induces an F_{2}. Therefore x sees both w_{2}, w_{4}. So w_{2}, w_{4} are not adjacent, for otherwise $\left\{x, w, w_{2}, w_{4}\right\}$ induces a K_{4}; and, by (16), they both miss u, v and y. We have the following implications:
z_{1} misses y, for otherwise $\left\{z_{4}, z_{1}, y, x, w\right\}$ induces an F_{1} or C_{5};
z_{4} misses w, for otherwise $\left\{z_{1}, z_{4}, w, x, y\right\}$ induces an F_{1};
z_{4} misses u, for otherwise $\left\{z_{1}, z_{4}, u, x, w\right\}$ induces an F_{1};
z_{4} misses v by (21);
z_{4} misses w_{2}, for otherwise $\left\{z_{4}, w_{2}, w, w_{4}, u, y, v\right\}$ induces an F_{2};
z_{1} misses each $w^{\prime} \in\left\{w_{2}, w_{4}\right\}$, for otherwise $\left\{z_{4}, z_{1}, w^{\prime}, x, y\right\}$ induces an F_{1}.
But now $\left\{u, v, x, y, z, z_{1}, z_{4}, w, w_{2}, w_{4}\right\}$ induces an F_{9}. This completes the proof of Theorem 1.2.

Acknowledgements

The first author's research is supported by NSERC. The second author's research is supported by CAPES/COFECUB project number 359/01. The third author's research is supported by ADONET (Marie-Curie Research Training Network of the European Community).

References

[1] G. Bacsó, Zs. Tuza, Dominating cliques in P5-free graphs, Period. Math. Hungar. 21 (1990) 303-308.
[2] C. Berge, Graphs, North Holland, 1985.
[3] B. Effantin, H. Kheddouci, The b-chromatic number of some power graphs, Discrete Math. Theor. Comput. Sci. 6 (2003) 45-54.
[4] A. El-Sahili, M. Kouider, About b-colourings of regular graphs. Res. Rep. 1432, LRI, Univ. Orsay, France, 2006.
[5] T. Faik, La b-continuité des b-colorations: complexité, propriétés structurelles et algorithmes. Ph.D. Thesis, Univ. Orsay, France, 2005.
[6] C.T. Hoàng, M. Kouider, On the b-dominating coloring of graphs, Discrete Appl. Math. 152 (2005) 176-186.
[7] R.W. Irving, D.F. Manlove, The b-chromatic number of graphs, Discrete Appl. Math. 91 (1999) 127-141.
[8] M. Kouider, b-chromatic number of a graph, subgraphs and degrees, Res. Rep. 1392, LRI, Univ. Orsay, France, 2004.
[9] M. Kouider, M. Mahéo, Some bounds for the b-chromatic number of a graph, Discrete Math. 256 (2002) 267-277.
[10] M. Kouider, M. Zaker, Bounds for the b-chromatic number of some famillies of graphs, Discrete Math. 306 (2006) 617-623.
[11] J. Kratochvíl, Zs. Tuza, M. Voigt, On the b-chromatic number of graphs, in: Graph-Theoretic Concepts in Computer Science: 28th International Workshop, WG 2002, in: Lecture Notes in Computer Science, vol. 2573, 2002, pp. 310-320.
[12] D.F. Manlove, Minimaximal and maximinimal optimisation problems: A partial order-based approach. Ph.D. Thesis. Tech. Rep. 27, Comp. Sci. Dept., Univ. Glasgow, Scotland, 1998.

[^0]: * Corresponding author. Tel.: +1 519 8840710; fax: +1 5197460677.

 E-mail address: choang@wlu.ca (C.T. Hoàng).

