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a b s t r a c t

A b-coloring is a coloring of the vertices of a graph such that each color class contains a
vertex that has a neighbour in all other color classes. The b-chromatic number of a graph
G is the largest integer k such that G admits a b-coloring with k colors. A graph is b-perfect
if the b-chromatic number is equal to the chromatic number for every induced subgraph
H of G. A graph is minimally b-imperfect if it is not b-perfect and every proper induced
subgraph is b-perfect. We give a list F of minimally b-imperfect graphs, conjecture that
a graph is b-perfect if and only if it does not contain a graph from this list as an induced
subgraph, and prove this conjecture for diamond-free graphs, and graphs with chromatic
number at most three.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

A proper coloring of a graph G is a mapping c from the vertex-set V (G) of G to the set of positive integers (colors) such
that any two adjacent vertices are mapped to different colors. Each set of vertices colored with one color is a stable set of
vertices of G, so a coloring is a partition of V into stable sets. The smallest number k for which G admits a coloring with k
colors is the chromatic number χ(G) of G.
Many graph invariants related to colorings have been defined. Most of them try to minimize the number of colors used

to color the vertices under some constraints. For some other invariants, it is meaningful to try to maximize this number. The
b-chromatic number is such an example.Whenwe try to color the vertices of a graph, we can start from a given coloring and
try to decrease the number of colors by eliminating color classes. One possible such procedure consists in trying to reduce
the number of colors by transferring every vertex from a fixed color class to a color class in which it has no neighbour, if any
such class exists. A b-coloring is a proper coloring in which this is not possible, that is, every color class i contains at least one
vertex that has a neighbour in all the other color classes. Any such vertex will be called a b-vertex of color i. The b-chromatic
number b(G) is the largest integer k such that G admits a b-coloring with k colors.
The behavior of the b-chromatic number can be surprising. For example, the values of k for which a graph admits a b-

coloring with k colors do not necessarily form an interval of the set of integers; in fact any finite subset of {2, . . .} can be the
set of these values for some graph [5]. Irving andManlove [7,12] proved that decidingwhether a graph G admits a b-coloring
with a given number of colors is an NP-complete problem, even when it is restricted to the class of bipartite graphs [11].
On the other hand, they gave a polynomial-time algorithm that solves this problem for trees. The NP-completeness results
have incited researchers to establish bounds on the b-chromatic number in general or to find its exact values for subclasses
of graphs (see [3,9,10,2,4,8]).
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Fig. 1. Class F = {F1, . . . , F22}.

Clearly everyχ(G)-coloring of a graph G is a b-coloring, and so every graph G satisfiesχ(G) ≤ b(G). As usual with such an
inequality, it may be interesting to look at the graphs that satisfy it with equality. However, graphs such that χ(G) = b(G)
do not have a specific structure; to see this, we can take any arbitrary graph G and add a component that consists of a clique
of size b(G); we obtain a graph G′ that satisfies χ(G′) = b(G′) = b(G). This led Hoàng and Kouider [6] to introduce the
class of b-perfect graphs: a graph G is called b-perfect if every induced subgraph H of G satisfies χ(H) = b(H). Hoàng and
Kouider [6] proved the b-perfectness of some classes of graphs, and asked whether b-perfectness can be characterized in
some way. Here we propose a precise conjecture in this direction and some evidence for its validity. For a fixed graph F ,
we say that a graph G is F-free if it does not contain an induced subgraph that is isomorphic to F . For a set F of graphs, we
say that a graph G is F -free if it does not have an induced subgraph that is isomorphic to a member of F . Let us say that a
graph is minimally b-imperfect if it is not b-perfect and each of its proper induced subgraphs is b-perfect. Let ω(G) denote
the number of vertices in a largest clique of G.
Let F = {F1, . . . , F22} be the set of graphs depicted in Fig. 1.

Conjecture 1. A graph is b-perfect if and only if it is F -free.

One direction of this conjecture is easy to establish, namely that the graphs in class F are b-imperfect. More precisely,
for i ∈ {1, 2, 3}, we have χ(Fi) = 2 and b(Fi) = 3; a b-coloring of Fi with three colors is obtained by giving colors 1, 2, 3
to the three vertices of degree two and coloring the remaining vertices in such a way that the first three are b-vertices. For
i ∈ {4, . . . , 22}, we have χ(Fi) = 3 and b(Fi) = 4; a b-coloring of Fi with four colors is obtained by giving colors 1, 2, 3, 4
to four carefully chosen vertices of degree at least three and coloring the remaining vertices in such a way that the chosen
vertices are b-vertices: for i ∈ {4, 5, 6, 7, 8, 9, 12, 16} there is only one choice of four such vertices; for i ∈ {13, 14, 15},
choose the two leftmost and the two rightmost vertices; for other values of i we omit the details. Moreover, it is a routine
matter to check (and we omit the details) that every proper induced subgraph of every member of F is b-perfect; so every
graph in class F is minimally b-imperfect.

Conjecture 2. A minimally b-imperfect graph G that is not triangle-free has b(G) = 4 and ω(G) = 3.

The diamond is the graph with four vertices and five edges. The purpose of this paper is to prove the following two
theorems.
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Theorem 1.1. A diamond-free graph is b-perfect if and only if it is {F1, F2, F3, F18, F20}-free.

Theorem 1.2. Let G be a graphwith chromatic number at most 3. Then G is b-perfect if and only if it does not contain Fi as induced
subgraph for i = 1, 2, . . . , 22.

The following results were proved by Hoàng and Kouider [6].

Theorem 1.3 (Hoàng and Kouider [6]).

– A bipartite graph is b-perfect if and only if it is {F1, F2, F3}-free.
– A P4-free graph is b-perfect if and only if it is {F3, F6}-free.

Thus we can view Theorems 1.1–1.3 as evidence for Conjecture 1.
The rest of this paper is organized as follows. We give preliminary results in Section 2, the proof of Theorem 1.1 in

Section 3, and the proof of Theorem 1.2 in Section 4. In the remainder of this section, we introduce the definitions needed
in the proofs.
Let G be a graph, and x be a vertex of G. The neighbourhood of v is the set N(v) = {u ∈ V (G) | uv ∈ E} and the degree of

v is deg(v) = |N(v)|. If a vertex v is adjacent to a vertex x, then we say that v sees x, otherwise we say v misses x. Vertices v
and x are comparable if N(v)− {x} ⊆ N(x), or N(x)− {v} ⊆ N(v). v and x are twins if N(v) = N(x), in particular, twins miss
each other. A set X of vertices is homogeneous if 2 ≤ |X | < |V (G)| and every vertex in G − X either sees all, or misses all
vertices of X . A homogeneous clique is a clique that is a homogeneous set. For integer k ≥ 1, we denote by Pk the chordless
path with k vertices. For integer k ≥ 3, we denote by Ck the chordless cycle with k vertices.

2. Preliminary results

Lemma 2.1 (Hoàng and Kouider [6]). Let G be a minimal b-imperfect graph. Then no component of G is a clique. �

Lemma 2.2. Let G be a minimal b-imperfect graph and x be any simplicial vertex of G. Then x is not a b-vertex for any b-coloring
of G with b(G) colors.

Proof. Suppose that x is a b-vertex for some b-coloring c of Gwith b(G) colors. Then all b(G) colors of c appear in the clique
formed by x and its neighbours. Thus b(G) ≤ ω(G) ≤ χ(G) < b(G), a contradiction. �

Lemma 2.3. Let G be a minimal b-imperfect graph, let u, v be two non-adjacent vertices of G such that N(u) ⊆ N(v), and let c
be any b-coloring with b(G) colors. Then c(u) 6= c(v), and u is not a b-vertex. In particular, if N(u) = N(v), then none of u, v is
a b-vertex.

Proof. Suppose that c(u) = c(v) = 1. Consider the restriction of c to G \ u. Every b-vertex z of color i ≥ 2 in G is still a
b-vertex in G \ u, because it cannot be that u is the only neighbour of z of color 1. Moreover, it cannot be that u is the only b-
vertex ofG of color 1, because if it is a b-vertex then v is also a b-vertex. But then b(G\u) ≥ b(G) > χ(G) ≥ χ(G\u), soG\u is
b-imperfect, a contradiction. Thus c(u) 6= c(v). This implies that u cannot be a b-vertex, for it has no neighbour of color c(v).
In particular, if N(u) = N(v), then the preceding argument works both ways, which leads to the desired conclusion. �

Lemma 2.4. Let G be a minimal b-imperfect F -free graph. Then G is connected.

Proof. Suppose that G has several components G1, . . . ,Gp, p ≥ 2. By Lemma 2.1, each Gi has a subset Si of three vertices
that induce a chordless path. Then G is P4-free, for otherwise, since a P4 is in one component of G, G contains an F2. But then
Theorem 1.3 is contradicted. Thus the lemma holds. �

In the remainder this section,we assume thatG is anF -free graph that contains an induced C5, andwe try in the following
claims to describe the structure of G as precisely as possible.

Claim 2.1. Let C = {c1, . . . , c5} be the vertex-set of an induced C5 in G, with edges cici+1, i = 1, . . . , 5 and with the subscripts
taken modulo 5. Let v be any vertex of V (G) \ C that has a neighbour in C. Then either:

– N(v) ∩ C = C, or
– N(v) ∩ C = {ci, ci+2, ci+3} for some i ∈ {1, . . . , 5}, or
– N(v) ∩ C = {ci, ci+2} for some i ∈ {1, . . . , 5}.

Proof. Suppose that the claim does not hold. Then N(v) ∩ C is equal to either {ci} or {ci, ci+1} or {ci, ci+1, ci+2} or
{ci, ci+1, ci+2, ci+3} for some i ∈ {1, . . . , 5}. In the first two cases, {v, ci, ci−1, ci−2, ci−3} induces an F1. In the third case,
C ∪ {v} induces an F16. In the last case, C ∪ {v} induces an F17. In either case we have a contradiction to G being F -free. So
the claim holds. �
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Since G has an induced C5, V (G) contains five disjoint and non-empty subsets A1, . . . , A5 such that (with subscripts
modulo 5) every vertex of Ai sees every vertex of Ai−1 ∪ Ai+1 and misses every vertex of Ai−2 ∪ Ai+2. We choose these five
sets such that their union A1 ∪ · · · ∪ A5 is as large as possible. Now we define additional subsets of vertices as follows, for
i = 1, . . . , 5:

• Let T be the set of vertices of V (G) \ (A1 ∪ · · · ∪ A5) that see all of A1 ∪ · · · ∪ A5;
• Let Z be the set of vertices of V (G) \ (A1 ∪ · · · ∪ A5) that see none of A1 ∪ · · · ∪ A5;
• Let Di be the set of vertices of V (G) \ (A1 ∪ · · · ∪ A5) that see all of Ai ∪ Ai−2 ∪ Ai+2 and miss all of Ai−1 ∪ Ai+1;
• Let B−i be the set of vertices of V (G) \ (A1 ∪ · · · ∪ A5) that see all of Ai−1 ∪ Ai+1, miss all of Ai ∪ Ai+2 and see at least one
but not all vertices of Ai−2;
• Let B+i be the set of vertices of V (G) \ (A1 ∪ · · · ∪ A5) that see all of Ai−1 ∪ Ai+1, miss all of Ai ∪ Ai−2 and see at least one
but not all vertices of Ai+2.

Claim 2.2. The sets Ai, B−i , B
+

i ,Di (i = 1, . . . , 5) and T , Z form a partition of V (G).

Proof. It is easy to check that the sets are pairwise disjoint, from their definition. So we need only prove that every vertex
v of V (G) \ (A1 ∪ · · · ∪ A5) lies in one of the remaining sets. For this purpose, pick a vertex ai in Ai for each i = 1, . . . , 5. Put
C = {a1, . . . , a5} and s = |N(v) ∩ C |. We choose C so that s is as large as possible. By Claim 2.1, we have s ∈ {0, 2, 3, 5}.
First suppose that s = 5. Then, for each i = 1, . . . , 5, vertex v sees all of Ai, for otherwise (C \ ai) ∪ {v, xi} induces an F17
for any xi ∈ Ai \ N(v). So v lies in T . Now suppose that s = 3. By Claim 2.1 and up to symmetry, we may assume that
N(v) ∩ C = {a1, a3, a4}. Then v has no neighbour in A2 ∪ A5, for otherwise the choice of C that maximizes s is contradicted.
Then v sees all of A1, for otherwise {v, a4, a5, x1, a2} induces an F1 for any x1 ∈ A1 \ N(v). Then v either sees all of A3 or all
of A4, for otherwise {v, a1, a2, x3, x4} induces an F1 for any x3 ∈ A3 \ N(v) and x4 ∈ A4 \ N(v). So v lies in D1 or in B+2 or
B−5 . Now suppose that s = 2. By Claim 2.1 and up to symmetry, we may assume that N(v) ∩ C = {a1, a3}. Then v has no
neighbour in A2 ∪ A4 ∪ A5, for otherwise the choice of C that maximizes s is contradicted. Then v sees all of A1, for otherwise
{a5, x1, a2, a3, v} induces an F1 for any x1 ∈ A1 \ N(v); and similarly, v sees all of A3. But then we could add v to A2 and
contradict the maximality of A1 ∪ · · · ∪ A5. Finally, if s = 0 then v lies in Z . Thus the claim holds. �

In the following claims, for each i = 1, . . . , 5, we let ai denote a fixed (arbitrary) vertex of Ai.

Claim 2.3. For i = 1, . . . , 5, the set Ai is a stable set.

Proof. For if u, v are two adjacent vertices in, say, A1, then {u, v, a2, a3, a4, a5} induces an F16, a contradiction. �

Claim 2.4. For i = 1, . . . , 5, every vertex of B−i ∪ Di+1 sees all of B
+

i+3 ∪ Di+2 and misses all of Di−1. Every vertex of B
−

i misses
every vertex of Di+1.

Proof. Put i = 1. Pick any x ∈ B−1 ∪ D2. So x sees a2, a5, misses a1, a3, and has a neighbour u4 ∈ A4. If x misses a vertex
y ∈ B+4 ∪ D3, then there is a vertex u1 ∈ A1 that sees y, and {x, y, u1, a3, u4} induces an F1, a contradiction. If x sees a vertex
d5 ∈ D5, then {x, d5, a2, a3, u4, a5} induces an F10. This proves the first part of the claim. For the second part, let x be in B−1 ;
so x misses a vertex v4 ∈ A4. If x sees a vertex d2 ∈ D2, then {x, d2, a2, a3, v4, a5} induces an F17, a contradiction. Thus the
claim holds. �

Claim 2.5. At least three of the Di’s are empty.

Proof. For suppose the contrary, that is, at least three of the Di’s are not empty. For i = 1, . . . , 5, pick any di in any non-
empty Di. Up to symmetry there are two cases. In the first case, D1,D2,D3 are not empty. By the preceding claim we have
edges d1d2, d2d3 and no edge d1d3, and then {a3, a4, a5, d1, d2, d3} induces an F10. In the second case, D1,D2,D4 are not
empty. By the preceding claim we have an edge d1d2 and no edge d1d4 nor d2d4, and then {a1, . . . , a5, d1, d2, d4} induces an
F22. In either case we have a contradiction. Thus the claim holds. �

Claim 2.6. Suppose that B−i is not empty. Then, all the B
±

j ’s are empty, except possibly B
+

i+3, and Di = ∅ and Di+3 = ∅.

Proof. Suppose the contrary, that is, there exists a vertex x in one of the sets we claim are empty. Put i = 1. Pick any b ∈ B−1 .
So b sees all of A2∪A5, misses all of A1∪A3, and there are vertices u4, v4 ∈ A4 such that b sees u4 andmisses v4. By Claim 2.3,
u4 and v4 are not adjacent.
First suppose that x lies in D1 or B−5 . So x sees a1, u4, v4, misses a2, a5, and has a neighbour u3 ∈ A3. If x misses b, then

{a5, b, a2, u3, x} induces an F1, while if x sees b, then {b, x, u3, u4, v4, a5} induces an F10, a contradiction. Thus, we have
D1 = ∅, B−5 = ∅. This argument shows that if B

−

i 6= ∅ then B
−

i−1 = ∅ for all i. Thus, if B
−

2 6= ∅ then B
−

1 = ∅, a contradiction
to our choice of b. Therefore, we also have B−2 = ∅.
Now suppose that x lies in B−3 or D4. So x sees a2, u4, v4, misses a3, a5, and has a neighbour u1 ∈ A1. Note that b misses

u1. If xmisses b, then {b, x, u1, a2, a3, u4, v4, a5} induces an F20, while if x sees b, then {u1, a2, b, x, u4, a5} induces an F10, a
contradiction. Thus, we have B−3 = ∅ andD4 = ∅. This argument shows that if B

−

i 6= ∅ then B
−

i+2 = ∅ for all i. Thus, if B
−

4 6= ∅

then B−1 = ∅, a contradiction to our choice of b. Therefore, we also have B
−

4 = ∅.
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Now suppose that x ∈ B+1 . So x sees a2, a5, misses a1, u4, v4, and there are vertices u3, v3 ∈ A3 such that x sees u3 and
misses v3. By Claim 2.3, u3 and v3 are not adjacent. Note that bmisses u3, v3. If xmisses b, then {b, x, a2, u3, v3, u4, v4, a5}
induces an F20, while if x sees b, then {b, x, a2, u3, u4, a5} induces an F10, a contradiction. Thus B+1 = ∅.
Now suppose that x ∈ B+2 . So x sees a1, a3 and misses a2, a5. If xmisses b, then {b, a5, a1, x, a3} induces an F1. So x sees b.

Suppose that x sees u4. If xmisses v4, then {b, x, a3, u4, v4, a5} induces an F17, while if x sees v4, then the same set induces an
F10. So xmisses u4. If x sees v4, then {b, x, a1, a2, a3, u4, v4, a5} induces an F20. So xmisses v4. This argument actually implies
that x cannot have any neighbour in A4, and this contradicts the definition of B+2 . Thus B

+

2 = ∅.
Now suppose that x ∈ B+3 . So x sees a2, u4, v4, misses a1, a3, and there are vertices u5, v5 ∈ A5 such that x sees u5 and

misses v5. By Claim 2.3, u5 and v5 are not adjacent. Note that b sees u5, v5. If xmisses b, then {b, x, u4, v4, u5, v5} induces an
F10, while if x sees b then {b, x, a1, a2, u4, v5} induces an F17, a contradiction. Thus B+3 = ∅.
Finally suppose that x lies in B+5 . So x sees a1, u4, v4, misses a3, a5, and has a neighbour u2 ∈ A2. If x misses b, then

{b, x, a1, u2, a3, u4, v4, a5} induces an F20, while if x sees b then {b, x, a1, u2, u4, a5} induces an F10, a contradiction. Thus
B+5 = ∅. This completes the proof of the claim. �

Claim 2.7. For i = 1, . . . , 5, the set Ai ∪ B−i ∪ B
+

i is a stable set.

Proof. Suppose on the contrary, and up to symmetry, that there exist two adjacent vertices b, c ∈ A1∪B−1 ∪B
+

1 . By Claim 2.3
and by the definition of B±1 , vertices b, c are not in A1. By Claim 2.6, and up to symmetry, we may assume that they are both
in B−1 . So b, c both see a2, a5 and miss a1, a3. By the definition of B

−

1 , vertex b has a non-neighbour v4 ∈ A4. If v4 also misses
c , then {b, c, a2, a3, v4, a5} induces an F16. So v4 sees c. Vertex c has a non-neighbour w4 ∈ A4, and by the same argument,
w4 sees b. By Claim 2.3, v4 and w4 are not adjacent. But then {b, c, a3, v4, w4, a5} induces an F17, a contradiction. Thus the
claim holds. �

Claim 2.8. There is no edge between Z and B±i .

Proof. Suppose on the contrary, and up to symmetry, that there is an edge zbwith b ∈ B−1 . By the definition of B
−

1 , vertex b
has a non-neighbour v4 ∈ A4. Then {z, b, a2, a3, v4} induces an F1, a contradiction. Thus the claim holds. �

Claim 2.9. Every vertex of T is adjacent to every vertex of Di and B±i (i = 1, . . . , 5).

Proof. Suppose on the contrary, and up to symmetry, that some t ∈ T is not adjacent to a vertex x in B−1 ∪ D2. Vertex x sees
a2, a5, misses a1, a3, and has a neighbour u4 ∈ A4. Then {d, t, a1, a2, u4, a5} induces an F10, a contradiction. �

By Claim 2.6, and up to symmetry, we may assume that all the B±j ’s are empty, except possibly B
−

1 and B
+

4 , and also D1
and D4 are empty.

Claim 2.10. Any two non-adjacent vertices of X1 = A1 ∪ B−1 ∪ D2 have inclusionwise comparable neighbourhoods in V (G) \ X1.

Proof. Suppose the contrary, that is, there are non-adjacent vertices x, y ∈ X1 and x′, y′ ∈ V (G) \ X1 with edges xx′, yy′ and
none of the edges xy′, x′y. By the definition of these sets and by previous claims, x′ and y′ are in A4∪B+4 ∪D3∪Z . So they both
miss a2. Then x′y′ is an edge, for otherwise {a2, x, y, x′, y′} induces an F1. If x′, y′ both miss a3, then {a3, a2, x, x′, y′} induces
an F1. Now we may assume that x′ sees a3, and so it is in A4 ∪ B+4 ∪ D3. If y

′ also sees a3, then {x, a2, a3, y, a5, x′} induces an
F17. So y′ misses a3 and therefore is in Z . Then x′ is in D3, so x′ 6= a4 and x′ misses a4. Also y is in D2, so y sees a4. Then x sees
a4, else {a2, x, y, x′, a4} induces an F1. But now {x, y, x′, y′, a4, a5} induces an F17. Thus the claim holds. �

Claim 2.11. Any two non-adjacent vertices in D5 have inclusionwise comparable neighbourhoods in V (G) \ D5.

For suppose on the contrary that there are non-adjacent vertices x, y ∈ D5 and vertices x′, y′ with edges xx′, yy′ and non-
edges xy′, x′y. By the definition of the sets and previous claims, x′ and y′ are in Z . If x′, y′ are not adjacent, then {x′, x, a5, y, y′}
induces an F1. If x′, y′ are adjacent, then {y′, x′, x, a2, a1} induces an F1. Thus the claim holds. �

Claim 2.12. Every component of Z is a clique.

Proof. For in the opposite case, Z has three vertices that induce a chordless path x–y–z, and then {a1, a2, a3, a4, x, y, z}
induces an F2. �

Claim 2.13. If D5 6= ∅, then there is no edge between Z and D2 ∪ D3.

Proof. For suppose that there is a vertex d5 ∈ D5 and an edge zxwith z ∈ Z and (up to symmetry) x ∈ D2. No vertex inD5 sees
a vertex ofD2∪D3 by Claim 2.4. If zmisses d5, then {z, x, a5, d5, a3} induces an F1. If z sees d5, then {a1, a2, a3, a4, a5, x, d5, z}
induces an F18. �

Claim 2.14. If a vertex of Di has a neighbour in a component of Z , then it sees all of that component.
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Proof. Suppose on the contrary that some vertex d ∈ D1 has a neighbour u and a non-neighbour v in a component of Z . We
may assume that u, v are adjacent. Then {u, v, d, a1, a2} induces an F1, a contradiction. Thus the claim holds. �

Let us say that a set A of vertices is complete (respectively, anti-complete) to a set B if every vertex of A sees (respectively,
misses) every vertex of B.
We can summarize the preceding claims as follows.

Lemma 2.5. Let G be an F -free graph that contains a C5. Then V (G) can be partitioned into sets X1, . . . , X6, T , Z such that:

1. Each X1, . . . , X5 is non-empty.
2. For every j modulo 5, Xj is complete to Xj+1.
3. For every j modulo 5 and j 6= 4, Xj is anti-complete to Xj+2, and some vertex of X1 misses a vertex X4.
4. X6 is complete to X2 ∪ X3 ∪ X5 and anti-complete to X1 ∪ X4.
5. X2, X3, X5 are stable sets.
6. The sets X ′1 = {x ∈ X1 | x has a non-neighbour in X4} and X

′

4 = {x ∈ X4 | x has a non-neighbour in X1} are stable sets, and
there is no edge between X ′1 and X1 \ X

′

1 and no edge between X
′

4 and X4 \ X
′

4.
7. One of X1 \ X ′1, X4 \ X

′

4, X6 is empty.
8. Any two non-adjacent vertices of X1 have inclusionwise comparable neighbourhoods in V (G) \ X1, and the same holds for X4
and X6.

9. T is complete to X1 ∪ · · · ∪ X6.
10. Z is anti-complete to X ′1 ∪ X2 ∪ X3 ∪ X

′

4 ∪ X5; and if X6 6= ∅, then Z is anti-complete to X1 ∪ X2 ∪ X3 ∪ X4 ∪ X5.
11. Every component of Z is a clique and is a homogeneous set in G \ T .

Proof. Consider the sets defined before this lemma, and set X1 = A1 ∪ B−1 ∪ D2, X2 = A2, X3 = A3, X4 = A4 ∪ B
+

4 ∪ D3,
X5 = A5, X6 = D5. Then the lemma is a reformulation of Claims 2.2–2.14. �

Theorem 2.6. Let G be an F -free graph. Suppose that G contains a C5 and that, with the notation of Lemma 2.5, X1, X4, X6 are
stable sets and T = ∅. If there exists a b-coloring c with b(G) colors such that there is a b-vertex of color i in X1 ∪ · · · ∪ X6 for
every color i = 1, . . . , b(G), then G is not minimally b-imperfect.

Proof. As usual, for j = 2, 3, 5 let aj be an arbitrary vertex in Xj, and for j = 1, 4 let a1, a4 be non-adjacent vertices of X1 and
X4 respectively. We start with some observations:

For j = 2, 3, 5, any two vertices in Xj are twins. (1)

This follows directly from Lemma 2.5 (properties 2, 3, 4, 5, 10).

For j = 1, 4, 6, any two vertices in Xj have inclusionwise comparable neighbourhoods. (2)

This follows from Lemma 2.5 (properties 2, 3, 4, 8, 10) and the hypothesis that X1, X4 and X6 are stable sets.
Let ui be a b-vertex of color i for each i = 1, . . . , b(G). It follows from (1), (2) and Lemma 2.3 that each of X1, . . . , X6

contains at most one ui.
Suppose that G is minimally b-imperfect, so b(G) > χ(G), and let c be a b-coloring with b(G) colors. For i = 1, . . . , b(G),

by the hypothesis, there is a b-vertex ui of color i in X1 ∪ · · · ∪ X6. By (1), (2) and Lemma 2.3, in each of the sets X1, . . . , X6,
all vertices have different colors, and each of these sets contains at most one b-vertex of c. Thus b(G) ≤ 6. Moreover, for
j = 2, 3, 5, if Xj contains a b-vertex, then |Xj| = 1. Also, if X1 contains a b-vertex, then either |X1| = 1 or this vertex has
a neighbour in X4 ∪ Z , and therefore in X4; and similarly for X4; and if X6 contains a b-vertex, then either |X6| = 1 or this
vertex has a neighbour in Z (by condition 8 of Lemma 2.5).
Note that χ(G) ≥ 3 since G contains a C5, and so b(G) ≥ 4. Thus b(G) ∈ {4, 5, 6}.

At least one of X1, X4 and X6 does not contain any of u1, . . . , ub(G). (3)

For suppose on the contrary that there are vertices ui ∈ X1, uj ∈ X4, uk ∈ X6 for three different integers i, j, k ∈ {1, . . . , b(G)}.
SinceX6 6= ∅, by property 10 of Lemma2.5,ui anduj havenoneighbour in Z . Vertexuimust have a neighbour vk of color k, and
since N(ui) \X4 ⊆ N(uk), we must have vk ∈ X4. Likewise, uj has a neighbourwk or color k, and wemust havewk ∈ X1. Now
if ui, uj are not adjacent, then {vk, ui, a2, wk, uj} induces an F1; and if ui, uj are adjacent, then {ui, a2, a3, uj, a5, uk, vk, wk}
induces an F22, a contradiction. Thus (3) holds.

At least one of X2, X3 and X5 does not contain any of u1, . . . , ub(G). (4)

For suppose on the contrary that there are vertices ui ∈ X2, uj ∈ X3, uk ∈ X5 for three different integers i, j, k ∈ {1, . . . , b(G)}.
As observed above, we have |Xj| = 1 for j = 2, 3, 5. Vertex ui must have a neighbour wk of color k, and since N(ui) \ X3 ⊂
N(uk), it must be thatwk is in X3; but this is impossible since the unique vertex of X3 has color j. Thus (4) holds.
Now it follows from (3) and (4) that b(G) = 4.

At least one of X1 and X4 does not contain any of u1, . . . , u4. (5)
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For suppose on the contrary that u1 ∈ X1 and u4 ∈ X4. Then X6 contains no b-vertex by (3). Also |X5| ≤ 2, because all vertices
of X5 have different colors and they cannot have color 1 or 4. So either X5 has two vertices, of color 2 and 3, and no b-vertex
by (1) and Lemma 2.3, or X5 has only one vertex, which (up to symmetry) has color 2; and in either case we may assume
that u3 ∈ X3.
We are going to prove that |X5| = 2. Vertex u1 must have a neighbour v3 of color 3. Vertex u3 must have a neighbourw1

of color 1, and necessarily we havew1 ∈ X4 ∪ X6. Ifw1 is in X6, then by property 10 of Lemma 2.5 u1, u4 have no neighbour
in Z . Ifw1 ∈ X4, then u1 has a non-neighbourw1 in X4, so u1 ∈ X ′1, so u1 again has no neighbour in Z . In either case, it follows
that N(u1) \ X5 ⊂ N(u3), and so v3 ∈ X5; so |X5| = 2, as announced, which restores the symmetry between colors 2 and 3,
and we may assume that u2 ∈ X2, and u4 has no neighbour in Z .
Vertex u1 must have a neighbour v4 of color 4, and necessarily v4 is in X4. Since vertices in X4 must have different colors,

we have v4 = u4. So u1, u4 are adjacent. Vertex u2must have a neighbourw4 of color 4, and necessarilywe havew4 ∈ X1∪X6.
If both w1, w4 are in X6, then u1, u2, u3, u4, w1, w4 and the two vertices of X5 induce an F15. If only one of w1, w4 is in X6,
then the same eight vertices induce an F21. Thus we must have w1 ∈ X4 and w4 ∈ X1. Note that |X1| = 2 since the vertices
of X1 have colors different from 2, 3; and similarly |X4| = 2. Then w4 misses w1, for otherwise {u1, u2, u4, w1, w4} induces
an F1. But then the six vertices u1, . . . , u4, w1, w4 plus the two vertices of X5 induce an F19. Thus (5) holds.
By (3)–(5) and up to symmetry, we may assume that u1 ∈ X6, u4 ∈ X4 and X1 does not contain u2, u3. Since X6 6= ∅,

vertices in X1 ∪ X4 have no neighbour in Z . Vertex u4 must have a neighbour v1 of color 1, and necessarily v1 ∈ X1. Vertex u1
must have a neighbour v4 or color 4, and necessarily v4 ∈ X2∪Z . If v4 is in Z , then {v4, u1, a3, u4, v1} induces an F1. Sowe have
v4 ∈ X2. By Lemma 2.3, if |X2| ≥ 2, then it contains no b-vertex. Since X2 already contains v4, it cannot contain a b-vertex
of color 2 or 3, so we may assume that u3 ∈ X3 and u2 ∈ X5. Vertex u2 must have a neighbour v3 of color 3, and necessarily
v3 ∈ X1. Vertex u3 must have a neighbour v2 of color 2, and necessarily v2 ∈ X2. Now {u1, . . . , u4, v1, . . . , v4} induces an F21
(if u4, v3 are not adjacent) or an F15 (if u4, v3 are adjacent), a contradiction. This completes the proof of Theorem 2.6. �

3. Proof of Theorem 1.1

In this section we assume that G is a diamond-free F -free graph, and we prove that G is b-perfect. For this purpose, we
may assume on the contrary that G is minimally b-imperfect. We have b(G) > χ(G). Let c be a b-coloring of G with b(G)
colors. By Theorem 1.3, we may assume that G is not bipartite, so χ(G) ≥ 3 and b(G) ≥ 4.
(I) First assume that G contains an induced C5. We use the notation of Lemma 2.5. For j = 2, 3, 5, let aj be a vertex of Xj,

and let a1 ∈ X1 and a4 ∈ X4 be non-adjacent vertices.

T = ∅. (6)

For if t is any vertex in T , then {t, a1, a2, a3} induces a diamond.

X1, X4 are stable sets. (7)

For suppose, without loss of generality, that there are adjacent vertices x, y ∈ X1. Then {x, y, a2, a5} induces a diamond. Thus
(7) holds.

|X6| ≤ 1. (8)

For suppose that there are two vertices x, y ∈ X6. If x, y are adjacent, then {x, y, a2, a5} induces a diamond. If they are not
adjacent, then {x, y, a2, a3} induces a diamond. Thus (8) holds.

Z contains no b-vertex for c. (9)

For suppose that some vertex z ∈ Z is a b-vertex. By Lemma 2.2, z has two neighbours u, v that are not adjacent. Let Y be
the component of Z that contains z. By property 11 of Lemma 2.5 and since T = ∅, Y is a homogeneous clique, so u, v are
in (X1 \ X ′1) ∪ (X4 \ X

′

4) ∪ X6. Then Y = {z}, for otherwise two vertices of Y and u, v would induce a diamond. But now we
have N(z) ⊂ N(a5), and so z cannot be a b-vertex, a contradiction. Thus (9) holds.
It follows from the preceding facts that G satisfies the hypotheses of Theorem 2.6, so it is not minimally b-imperfect, a

contradiction.
(II) Now we may assume that G contains no induced C5. By Lemma 2.4, G is connected. A theorem due to Bacsó and

Tuza [1] states that every connected, P5-free and C5-free graph has a dominating clique, that is, a clique Q such that every
vertex of G \ Q has a neighbour in Q . We choose a dominating clique Q of size as large as possible. Clearly, |Q | ≥ 2.
Suppose that |Q | = 2, and let Q = {x1, x2}. For i = 1, 2, let Ai = N(xi) \ {x3−i}. Note that no vertex z of G sees both x1, x2,

for otherwise {x1, x2, z}would be a dominating clique of size 3, contradicting the choice of Q . So A1∪{x1} and A2∪{x2} form
a partition of V (G), and there is no edge between Ai and x3−i for i = 1, 2. Note that, for i = 1, 2, the subgraph of G induced
by Ai contains no P3 (for otherwise, adding xi, we would obtain a diamond), and so each component of G[Ai] is a clique. We
may assume that xi has color c(xi) = i for i = 1, 2. Let y3 be a b-vertex with color c(y3) = 3. Without loss of generality, we
have y3 ∈ A2. Let Y be the (clique) component of G[A2] that contains y3. Since y3 is a b-vertex, it has a neighbour y1 with
color c(y1) = 1, and since y1 6∈ A1, we have y1 ∈ Y . Since Y ∪ {x2} is a clique, we have |Y ∪ {x2}| ≤ χ(G) < b(G), and
so there is a color used by c , say color 4, that does not appear in Y ∪ {x2}. Vertex y3 must have a neighbour z4 with color
c(z4) = 4, and so z4 ∈ A1. Let Z be the (clique) component of A1 that contains z4. Note that z4 misses every vertex y ∈ Y \ y3,
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for otherwise {z4, y, y3, x2} induces a diamond. Then y3 sees every vertex u ∈ A1 \ Z , for otherwise {u, x1, z4, y3, y1} induces
an F1 or C5. Since Y ∪ {x2} is a clique of size at least 3, it is not dominating, so there exists a vertex z ′ that has no neighbour
in that clique, and we must have z ′ ∈ Z \ z4. Then z4 sees every vertex v ∈ A2 \ Y , for otherwise {v, x2, y3, z4, z ′} induces an
F1 or C5. In fact we have A2 \ Y = ∅, for if uwas any vertex in that set, then {z ′, z4, u, x2, y1}would induce an F1 (z ′ misses u,
for otherwise we have a diamond with vertices u, z ′, z4, x1). Likewise, we have A1 \ Z = ∅, for if v was any vertex in that set,
then {z ′, x1, v, y3, y1}would induce an F1. Now we have V (G) = {x1, x2} ∪ Y ∪ Z , and z4 is the only vertex of Gwith color 4.
So all the b-vertices of any color different from 4 must be neighbours of z4. Since N(z4) = (Z \ z4) ∪ {x1, y3}, it follows that
x1 is the only b-vertex of color 1. Since N(x1) = Z ∪ {x2} and c(x2) = 2, it follows that each of the colors 3, . . . , b(G)must
appear in Z , and so b(G)− 2 ≤ |Z | ≤ ω(G)− 1 (because Z ∪ {x1} is a clique) ≤ χ(G)− 1 ≤ b(G)− 2. Thus we must have
equality throughout, which implies that Z contains no vertex of color 2, and then z4 cannot be a b-vertex, a contradiction.
Now suppose that |Q | ≥ 3. Put q = |Q | andQ = {x1, . . . , xq}. Every vertex z ofG\Q sees at least one vertex ofQ , because

Q is dominating, and it sees at most one, for otherwise either Q ∪ {z} would be a larger dominating clique or {z, xi, xj, xk}
would induce a diamond for any xi, xj ∈ N(z), xk 6∈ N(z). For i = 1, . . . , q, let Ai = N(xi) \ Q . So Q , A1, . . . , Aq form a
partition of V (G), and for i = 1, . . . , q, any vertex of Ai misses every vertex of Q \ xi. We may assume that c(xi) = i for each
i = 1, . . . , q. We have 3 ≤ q ≤ ω(G) ≤ χ(G) < b(G), so c uses at least q + 1 ≥ 4 colors. Let z be a b-vertex with the
largest color b(G) ≥ q + 1. We may assume that z ∈ A1. Since z is a b-vertex, it has neighbours y2, . . . , yb(G)−1 with colors
2, . . . , b(G)− 1 respectively, and they are not in Q . Put Y = {y2, . . . , yb(G)−1}. We claim that

Y is either a stable set or a clique. (10)

For in the opposite case, Y contains three vertices y, y′, y′′ that induce a subgraph with either one edge or two edges. If it
induces two edges, then {z, y, y′, y′′} induces a diamond. So suppose it induces one edge y′y′′. If y′ ∈ A1, then y′′ ∈ A1, for
otherwise {x1, z, y′, y′′} induces a diamond; then y 6∈ A1, for otherwise {x1, y, z, y′} induces a diamond; then, up to symmetry,
y ∈ A2, and {y′, z, y, x2, x3} induces an F1, a contradiction. Thus y′ 6∈ A1, and similarly y′′ 6∈ A1. So, up to symmetry, y′ ∈ A2.
Then y′′ 6∈ A2, for otherwise {x2, y′, y′′, z} induces a diamond. So, up to symmetry, y′′ ∈ A3. Then, up to symmetry we have
y 6∈ A3, and then {x2, x3, y′′, z, y} induces an F1 or C5, a contradiction. Thus (10) is established.
Suppose that Y is a stable set. Since b(G) ≥ 4, we have |Y | ≥ 2. Consider vertices y, y′ ∈ Y . We cannot have both

y, y′ ∈ A1 for otherwise G contains a diamondwith vertices x1, z, y, y′. Thus, wemay assume y ∈ A2. We cannot have y′ ∈ Aj
with j 6∈ {1, 2}, for otherwise {z, y, y′, x2, xj} induces a C5. It follows that Y ∩Aj = ∅ for j > 3. If y′ ∈ A1, then {x3, x2, y, z, y′}
induces an F1. It follows that Y ⊆ A2. But this implies vertices y2 and x2 are adjacent and have the same color, a contradiction.
So Y is not a stable set.
Therefore Y induces a clique. Put Z = Y ∪ {z}. Suppose that some xi ∈ Q has two neighbours in Z . Then it sees all of Z ,

for otherwise {xi, y, y′, y′′} induces a diamond for any y, y′ ∈ Z ∩N(xi), y′′ ∈ Z \N(xi). Then i = 1, for otherwise z sees both
x1 and xi, a contradiction. But Z ∪ {x1} is a clique of size b(G) implying χ(G) ≥ b(G), a contradiction to our assumption on
G. So no vertex of Q sees two vertices of Z . Since every vertex of Z has exactly one neighbour in Q , we have |Z | = |Q |, so
q = b(G)−1. The vertices of Z can be renamed z1, . . . , zq such that zixi is an edge for each i = 1, . . . , q and there is not other
edge between Z and Q . Consider any vertex u ∈ V (G)\ (Q ∪Z). We have u ∈ Ai for some i. If u has two neighbours in Z , then
it sees all of Z , for otherwise {u, y, y′, y′′} induces a diamond for any y, y′ ∈ Z ∩ N(u), y′′ ∈ Z \ N(u). But then {u, xi, zi, zj}
induces a diamond for any j 6= i. So u has at most one neighbour in Z . If it sees zi or no vertex of Z , then {u, xi, xj, zj, zk}
induces an F1 for any j, k 6= i. If it sees zj for some j 6= i, then {u, xi, zj, xk, zk} induces a C5 for any k 6= i, j. Thus such a
vertex u cannot exist, that is, V (G) = Q ∪ Z . Now x2, y2 are the only vertices of color 2 in G. However, x2 is not a b-vertex
because it has no neighbour of color q + 1, and y2 is not a b-vertex because it has no neighbour of color 1, a contradiction.
This completes the proof of Theorem 1.1. �

4. Proof of Theorem 1.2

Suppose that the theorem is false. Let G be a counterexample to the theorem with the smallest number of vertices, and
let c be a b-coloring of G with b(G) > χ(G) colors. If G is diamond-free, then the result follows from Theorem 1.1. So we
may assume that G contains a diamond. Thus χ(G) = 3. If b(G) > 4, then the subgraph of G induced by the vertices of
colors 1, . . . , 4 is also a counterexample to the theorem, which contradicts theminimality of G. So b(G) = 4. For any integer
k ≥ 4, the k-wheel is the (complete) join of a vertex and a chordless cycle of length k. Note that G contains no 5-wheel, since
a 5-wheel cannot be colored with 3 colors. Likewise, G contains no K4.

If {u, v, x, y} induces a diamond, where u, v are not adjacent, then N(u) ⊆ N(v) or N(v) ⊆ N(u) and
(consequently), u, v have different colors. (11)

For suppose that none of the two inclusions holds. So there is a vertex u′ that sees u andmisses v, and there is a vertex v′ that
sees v and misses u. If xmisses both u′ and v′, then either {u′, u, x, v, v′} induces an F1, or {u′, u, x, v, v′, y} induces an F16,
F17 or a 5-wheel. So, up to symmetry, x sees u′. Then u′ misses y, for otherwise {u, u′, x, y} induces a K4. By symmetry, y sees
v′, and v′ misses x. But then {u, u′, v, v′, x, y} induces an F4 or F10. Thus one of the inclusions N(u) ⊆ N(v) or N(v) ⊆ N(u)
holds; and it follows from Lemma 2.3 that u, v have different colors. Thus (11) holds.

G does not contain a C5. (12)



C.T. Hoàng et al. / Discrete Applied Mathematics 157 (2009) 3519–3530 3527

For suppose that G contains a C5. Then it admits a partition into sets X1, . . . , X6, T , Z as in Lemma 2.5. For j = 2, 3, 5 let aj
be an arbitrary vertex in Xj, and let a1 ∈ X1 and a4 ∈ X4 be non-adjacent vertices. We claim that G satisfies the hypotheses
of Theorem 2.6. We have T = ∅ because G contains no 5-wheel. The set X1 is a stable set, for if it contained two adjacent
vertices x, y, then {x, y, a4, a5} would induce a K4. Likewise X4 is a stable set. Also X6 is a stable set, for if it contained two
adjacent vertices x, y then {x, y, a2, a3}would induce a K4. Finally, suppose that some vertex z ∈ Z is a b-vertex, say of color
1. Let Y be the component of Z that contains z. By property of Lemma 2.5 and since T = ∅, Y is a homogeneous clique. By
Lemma 2.2, z has two neighbours u, v that are not adjacent, and so they are both in V (G)\Z . We have |Y | ≤ 2, for otherwise
Y ∪ {u} induces a clique of size at least 4. If z has a neighbour in X6 then it cannot have a neighbour in X1 ∪ X4 by property
10 of Lemma 2.5. So either z has no neighbour in (X1 \ X ′1) ∪ (X4 \ X

′

4) or z has no neighbour in X6. If |Y | = 1, then we have
N(z) ⊂ N(a5), with strict inclusion, which contradicts Lemma 2.3. So Y has two elements z, y. By (11), we may assume that
y has color 2 and u, v have color respectively 3, 4. If u, v are in (X1 \ X ′1) ∪ (X4 \ X

′

4), then, since they are not adjacent, and
by the definition of X ′1 and X

′

4, and up to symmetry, they are both in (X1 \ X
′

1). Then {a4, a5, u, v} induces a diamond, and so
one of a4, a5 is a b-vertex of color 1. If u, v are in X6, then, {a2, a3, u, v} induces a diamond, and so one of a2, a3 is a b-vertex
of color 1. Thus, there are b-vertices of all four colors in X1 ∪ · · · ∪ X6. So G satisfies the hypotheses of Theorem 2.6, so G is
not minimally b-imperfect, a contradiction. Thus (12) holds.

G does not contain a 4-wheel. (13)

For if G contains a 4-wheel, then, by (11), all the vertices of the 4-wheel must have different colors, which is impossible since
c is a 4-coloring. Thus (13) holds.
Call 3-diamond a graph that consists of five vertices u, v, w, x, y and seven edges xy, ux, uy, vx, vy, wx, wy.

G does not contain a 3-diamond. (14)

For if G contains a 3-diamond, with the above notation, then, by (11), vertices u, v, w have three different colors that are
also different from the two colors of x, y, which is impossible since c is a 4-coloring. Thus (14) holds.
Call gem any graph that consists of five vertices u, v, w, x, y and seven edges uv, vw,wx, uy, vy, wy, xy.

G does not contain a gem. (15)

For suppose that G contains a gem, with vertices u, v, w, x, y and edges uv, vw,wx, uy, vy, wy, xy. By (11) and up to
symmetry, we may assume that c(u) = c(x) = 1, c(v) = 2, c(w) = 3, c(y) = 4. Thus v,w, y are b-vertices of colors
2, 3, 4. By (11) again we have N(u) ⊂ N(w) and N(x) ⊂ N(v), and by Lemma 2.3, vertices u and x are not b-vertices. Let z be
a b-vertex of color 1; so z 6= u, x. If z sees v, then in the graph G \ {u} (with the same colors) vertices z, v, w, y are b-vertices
of colors 1, . . . , 4, which contradicts the minimality of G. Therefore z misses v and similarly w. In summary, z misses all of
u, v, w, x.
Suppose that z sees y. Let z2, z3 be two neighbours of z of color 2 and 3 respectively. So z2 6= v, z2 misses v and (since
N(x) ⊂ N(v)) misses x too. Likewise z3 6= w and z3 misses both u, w. Suppose that z2 and z3 are not adjacent. Since
{u, v, w, x, z, z2, z3} cannot induce an F2, it must be that one of z2, z3 has a neighbour in {u, v, w, x}, and we may assume,
up to symmetry, that z2 sees one of u, w. Then z2 must see both u and w, for otherwise {z, z2, u, v, w} induces an F1. Then
z3 sees x, for otherwise {z3, z, z2, w, x} induces an F1. But then {u, z2, z, z3, x} induces an F1. Thus z2 and z3 are adjacent.
Since {u, v, w, x, y, z, z2, z3} cannot induce an F8, it must be that one of z2, z3 has a neighbour in {u, v, w, x}, and we may
assume, up to symmetry, that z2 sees one of u, w. Then z2 must see both u, w, for otherwise {z, z2, u, v, w} induces an F1.
Then z2 misses y, for otherwise {u, v, w, y, z2} induces a 4-wheel. If z3 sees x, then z3 sees v (since N(x) ⊂ N(v)) and misses
y (for otherwise {v,w, x, y, z3} induces a 4-wheel); but then {u, v, w, x, y, z, z2, z3} induces an F22. So z3 misses x. Then z3
misses v, for otherwise {z, z3, v, w, x} induces an F1; and z3 sees y, for otherwise {z3, z2, u, y, x} induces an F1. But then
{u, v, w, y, z, z2, z3} induces an F11. Therefore z misses y.
Since G is connected, there is a path z-p1-· · ·-ph such that ph has a neighbour in X = {u, v, w, x, y} and the path is as short as
possible. So the path is chordless and its vertices other than ph have no neighbour in X . We have h ≤ 3 since G contains no
F1. If h = 3, then there is still an F1, induced by z, p1, p2, p3 and a neighbour of p3 in X . If h = 2, then p2 must see all of X , for
otherwise there is still an F1 inducedby z, p1, p2 and some twoadjacent vertices ofX; but thenX∪{p2} contains aK4. Soh = 1.
Let us nowwrite p instead of p1. We claim that p sees y. For suppose not. If p sees v, then it sees x (for otherwise {z, p, v, y, x}
induces an F1) and u (for otherwise {z, p, x, y, u} induces an F1); p seesw, for otherwise {z, p, u, y, w} induces an F1; thus p
must have color 4, and so the diamond induced by {p, y, w, x} contradicts (11). So pmisses v and similarlyw, and so it must
see one of u, x, say u; but then {z, p, u, v, w} induces an F1. So p sees y as claimed. We may assume up to symmetry that p
has color 2. So pmisses v, it also misses x because N(x) ⊂ N(v). Vertex p also missesw, for otherwise {v,w, y, p} induces a
diamond that contradicts (11). Then pmisses u, for otherwise {p, u, v, w, x} induces an F1. Let z4 be a neighbour of z of color
4. So z4 and y are different and not adjacent. If z4 misses p, then it sees u, for otherwise {z4, z, p, y, u} induces an F1; and
similarly z4 sees v; but then {u, v, y, z4} induces a diamond that contradicts (11). So z4 sees p. Since {u, v, w, x, y, p, z, z4}
cannot induce an F8, it must be that z4 has a neighbour in the path P = u-v-w-x. If z4 has only one neighbour in P , then some
three consecutive vertices of P plus z and z4 induce an F1. On the other hand, if z4 has two consecutive neighbours in P , then
these two neighbours plus y and z4 induce a diamond that contradicts (11). So z4 has exactly two neighbours in P , and they
are not adjacent. If these two neighbours are u and x, then {u, v, w, x, y, z4} induces an F17. So the two neighbours of z4 in P
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are either u andw or v and x. In either case, {u, y, x, z, z4} (not necessarily in this order) induces an F1. Thus (15) holds.

If D = {u, v, x, y} is a diamond in G, where u, v are not adjacent, then any vertex in G \ D sees at most
two vertices of D, and if it sees two, then these two are u and v. (16)

This is an immediate consequence of the preceding claims.

G does not contain two vertex-disjoint diamonds. (17)

For suppose that G has two vertex-disjoint diamonds D = {u, v, x, y} and D′ = {u′, v′, x′, y′}where u, v are not adjacent
and u′, v′ are not adjacent. By (16), there are at most two edges between {x, y} and {x′, y′}, and if there are two, then they
form a matching.
Suppose that there is no edge between {x, y} and {u′, v′} and no edge between {x′, y′} and {u, v}. If there is no edge between
{u, v} and {u′, v′}, then D∪ D′ induces an F6, F7 or F12. So let u see u′. Then v sees u′, for otherwise {v, x, u, u′, y′} induces an
F1; and similarly, v′ sees u, and v′ sees v; but then D∪D′ induces an F13, F14 or F15. So we may assume, up to symmetry, that
there is an edge between {x, y} and {u′, v′}, say the edge xu′.
By (16), u′ misses u, y, v and x misses x′, y′. By (16), y misses a vertex z ′ among x′, y′. If x misses v′, then {y, x, u′, z ′, v′}
induces an F1 or C5. So x sees v′, and u′, v′ have no neighbour in D \ {x}.
Suppose that one of x′, y′, say x′, sees one of u, v. Then, by similar arguments, we obtain that x′ see both u, v and there is
no other edge between D and D′ except possibly yy′. Consider any vertex w not in D ∪ D′. If w sees u, then it misses x and
y by (16), and it sees u′, for otherwise {w, u, x, u′, y′} induces an F1 or C5. But then w misses x′ by (16), and {y, u, w, u′, y′}
induces an F1 or C5. Therefore w misses u, and, by symmetry, it misses v, u′ and v′. If w sees y, then it misses x by (16), and
{w, y, x, u′, x′} induces an F1 or C5. Sow misses y, and similarly y′.
Moreover, w does not see both x, x′, for otherwise {w, x, x′, y, y′} induces an F1 or C5. Define X = {z 6∈ D ∪ D′ |

N(z) ∩ (D ∪ D′) = {x}}, X ′ = {z 6∈ D ∪ D′ | N(z) ∩ (D ∪ D′) = {x′}}, and Z = {z 6∈ D ∪ D′ | N(z) ∩ (D ∪ D′) = ∅}.
We have established that V (G) = D∪ D′ ∪ X ∪ X ′ ∪ Z . If there are verticesw ∈ X andw′ ∈ X ′, then {w, x, u, x′, w′} induces
an F1 or C5. So we may assume that X ′ = ∅. If Z 6= ∅, then, since G is connected, there is an edge zw with z ∈ Z and w ∈ X .
But then {z, w, x, u, x′} induces an F1. So Z = ∅. Thus V (G) = D ∪ D′ ∪ X . By Lemma 2.3, u, v, u′, v′ are not b-vertices. By
(11), we may assume that u, v, x, y have colors respectively 1, 2, 3, 4. Consequently, c(x′) ∈ {3, 4} and one of the colors
1, 2, say color 1, does not have a b-vertex in D ∪ D′. So there must be a b-vertexw of color 1 in X . By Lemma 2.2,w has two
neighboursw′, w′′ that are not adjacent, and necessarilyw′, w′′ ∈ X . But then {w,w′, w′′, y, u, x′, u′} induces an F2.
Now we may assume that x′ and y′ do not see any of u, v. Consider any vertex w not in D ∪ D′. If w sees u, then it
misses x and y by (16), and it sees u′, for otherwise {w, u, x, u′, y′} induces an F1 or C5. But then w misses x′ by (16) and
{y, u, w, u′, y′} induces an F1 or C5. Therefore w misses u, and, by symmetry, it misses v. If w sees y, then it misses x by
(16), and it sees u′, for otherwise {w, y, x, u′, x′} induces an F1 or C5; but then {u, y, w, u′, x′} induces an F1. So w misses
y. If w sees one of u′, v′, then it sees both, for otherwise {w, u′, x′, v′, u, v, y} induces an F2. In this case w is in the set
U ′ = {z 6∈ D ∪ D′ | N(z) ∩ (D ∪ D′) = {u′, v′} or {u′, v′, x}}. Next, suppose that w 6∈ D ∪ D′ ∪ U ′. Then w misses x′, for
otherwise either {w, x′, u′, x, u} induces an F1 or {u, x, w, x′, y′} induces an F1. Similarly w misses y′. So in this case w is
either in the set X = {z 6∈ D ∪ D′ | N(z) ∩ (D ∪ D′) = {x}} or in the set Z = {z 6∈ D ∪ D′ | N(z) ∩ (D ∪ D′) = ∅}.
If Z 6= ∅, then since G is connected there is an edge zw with z ∈ Z and w ∈ U ′ ∪ X . But then either {z, w, x, u′, x′} induces
an F1 (if w ∈ X) or {z, w, u′, x′, u, y, v} induces an F2 (if w ∈ U ′). So Z = ∅. Thus V (G) = D ∪ D′ ∪ U ′ ∪ X . By Lemma 2.3,
u, v, u′, v′ are not b-vertices. By (11), we may assume that c(x′) = 1, c(y′) = 2, c(u′) = 3, c(v′) = 4. Consequently, x has
color 1 or 2, so one of the colors 3, 4, say color 4, has no b-vertex in D∪D′. So there is a b-vertexw of color 4 in U ′∪X . In fact
w ∈ U ′ is not possible since w, v′ have color 4; so w ∈ X . Vertex w has a neighbour w3 of color 3, and necessarily w3 ∈ X .
Also w has a neighbour w2 of color 2. If w2 ∈ U ′, then w2 sees w3, for otherwise {w3, w,w2, u′, x′} induces an F1; also, w2
misses x, for otherwise {w2, w,w3, x} induces a K4; but then {u, v, x, y, w,w2, w3} induces an F5. So w2 ∈ X , and w2, w3
are not adjacent, for otherwise {x, w,w2, w3} induces a K4. But then {w,w2, w3, u, y, v, u′, x′, v′} induces an F3. Thus (17)
holds.
Let u, v, x, y be four vertices of G that induce a diamond, where u and v are not adjacent. Put D = {u, v, x, y}. By (16), no

vertex of G \ D can see two adjacent vertices of D. By (11), we may assume that N(v) ⊆ N(u). Thus if we set U = N(u) \ D,
X = N(x) \ D, Y = N(y) \ D, and Z = {z ∈ V (G) | N(z) ∩ D = ∅}, then D,U, X, Y , Z form a partition of V (G). We may
assume that u, v, x, y have color respectively 1, 2, 3, 4. By Lemma 2.3 and the assumption N(v) ⊆ N(u), v is not a b-vertex.
Let z be a b-vertex of color 2 (the color of v). First, we claim that:

z is not in U . (18)

Suppose that z is in U . Let z3, z4 be neighbours of z of color respectively 3 and 4 (such vertices exist since z is a b-
vertex). If z3 misses u, then {z3, z, u, x, v} induces an F1 or a C5. So z3 sees u. Likewise, z4 sees u. By (16), z3 and z4 both
miss x and y. Then z3 misses z4, for otherwise {u, z, z3, z4} induces a K4. Now if v sees both z3, z4, then the seven vertices
{u, v, x, y, z, z3, z4} induces an F11; if it misses both, then the seven vertices induce an F5; and if it sees exactly one of them,
say z3, then {x, v, z3, z, z4} induces an F1. So (18) holds.
Now, we claim that:

z is not in Z . (19)
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Suppose that z is in Z . Since G is connected, there is a path z-p1-· · ·-ph such that ph has a neighbour in D and the path is
as short as possible. So the path is chordless and its vertices other than ph have no neighbour in D, and ph ∈ U ∪ X ∪ Y . We
have h ≤ 3 since G contains no F1. If h = 3, then there is still an F1, induced by z, p1, p2, p3 and a neighbour of p3 in D. If
h = 2, then there is still an F1, induced by z, p1, p2 and some two adjacent vertices of D. So h = 1. Let us nowwrite p instead
of p1. Suppose that p 6∈ X ∪ Y . So p sees at least one of u, v, and it actually sees both, for otherwise {z, p, u, x, v} induces an
F1. Up to symmetry we may assume that p has color 3. Let z1, z4 be neighbours of z of color respectively 1, 4. So z1, z4 6∈ D.
Vertex z1 misses u (which has color 1) and consequently misses v too. Then z1 sees p, for otherwise {z1, z, p, u, x} induces
an F1 or C5. Then z4 misses both p, z1, for otherwise {p, z, z1, z4} induces either a K4 or a diamond disjoint from D, which
contradicts (17). If z4 sees u, then z1, z, z4, u, y induces an F1 or a C5. So z4 misses u, and consequently it misses v. But then
{z4, z, p, u, y} induces an F1. Therefore, we have p ∈ X ∪ Y , say, up to symmetry, p ∈ X . So p sees x and, by (16), it misses
u, v, y. Let z3 be a neighbour of z of color 3. So z3 6∈ D. If z3 misses p, then z3, z, p, x and one of u, v, y induce an F1. So z3 sees
p. Let z ′ be a neighbour of z whose color is not 2, 3 or the color of p (z ′ exists since z is a b-vertex). Then z ′ misses both p, z3,
for otherwise {p, z, z3, z ′} induces either a K4 or a diamond disjoint from D. Then z ′ sees x, for otherwise z ′, z, p, x and one
of u, v, y induce an F1. By (16), z ′ misses u, v, y. But then z3, z, z ′, x and one of u, v, y induce an F1 or C5. Thus (19) holds. By
(18) and (19) we have:

z is in X ∪ Y . (20)
Without loss of generality, we may assume that z is in X . So z sees x and, by (16), misses u, v, y. Let z1, z4 be neighbours

of z of color respectively 1, 4 (such vertices exist since z is a b-vertex). Note that z1 misses u, because they both have color
1, and v, because N(v) ⊆ N(u). Clearly z4 misses y. Now we claim that:

N(u) = N(v). (21)
We already have N(v) ⊆ N(u). Suppose that there exists a vertex t that sees u and not v. By (16), t misses x and y. Then
t misses z, for otherwise {z, t, u, y, v} induces an F1. So t 6= z1, z4. Then z1 sees x, for otherwise {z1, z, x, u, t} induces
an F1 or C5. By (16), z1 misses y. Then z1 misses t , for otherwise {z1, t, u, y, v} induces an F1. If z1 misses z4, then either
{z1, z, z4, t, u, y, v} induces an F2 or z1, z, z4 and some two adjacent vertices of t, u, y, v induce an F1. So z1 sees z4. Then z4
misses x, for otherwise {z, z1, z4, x} induces a K4; and it sees u, for otherwise {z4, z1, x, u, t} induces an F1 or C5. But then
either {z1, z4, u, y, v} induces an F1 (if z4 misses v), or {u, v, x, y, z, z1, z4} induces an F11 (if z4 sees v). Therefore no such t
exists, so (21) holds.
Now u and v play symmetric roles, and u is not a b-vertex. Let w be a b-vertex of color 1 (the color of u). By symmetry,

(20) holds withw replacing z, that is,w ∈ X ∪ Y . We claim that:
w is in X . (22)

For suppose thatw ∈ Y . Sow sees y and, by (16) and (21), itmisses u, v, x. Letw2, w3 be neighbours ofw of color respectively
2, 3. Clearlyw3misses x. By (21),w2misses u and v. Ifw, z are adjacent, then z4 seesw, for otherwise {z4, z, w, y, u} induces
an F1 or C5; and by symmetryw3 sees z; andw3 misses z4, for otherwise {w, z, w3, z4} induces a K4; but then {w, z, w3, z4}
induces a diamond disjoint from D, a contradiction to (17). So w and z are not adjacent, and consequently w 6= z1 and
z 6= w2. Then w3 sees y, for otherwise {w3, w, y, x, z} induces an F1 or a C5. And by (16), w3 misses u and v. Similarly, z4
sees x and misses u and v. If both xz1, yw2 are edges, then either the two sets {x, z, z1, z4} and {y, w,w2, w3} induce two
disjoint diamonds or one of them induces a K4, a contradiction. So, up to symmetry, xmisses z1. Then z1 sees y, for otherwise
{z1, z, x, y, w} induces an F1. Then z4 sees z1, for otherwise {z4, z, z1, y, u} induces an F1 or a C5. Thus Dz = {z, z1, z4, x}
induces a diamond. Thenw2 misses both y, w3, for otherwise {y, w,w2, w3} induces either a K4 or a diamond disjoint from
Dz , which contradicts (17). Then w2 sees x, for otherwise {w2, w, y, x, z} induces an F1. But now {u, x, w2, w,w3} induces
an F1. Thus (22) holds.
Thereforew sees x and, by (16) and (21), it misses u, v, y. Letw2, w4 be neighbours ofw of color respectively 2, 4. Clearly

w4 misses y. By (21),w2 misses both u and v. We claim that:
w misses z. (23)

For suppose that w sees z. If w, z have a common neighbour t of color 4, then t misses x, for otherwise {x, t, w, z} induces
a K4, but then {u, v, x, y, w, z, t} induces an F5 (if t misses both u, v) or an F11 (if t sees both u, v). So w and z do not have
a common neighbour of color 4. Thus w4 6= z4 and {w4, w, z, z4} induces a P4. Then u misses both w4, z4, for otherwise
{u, w4, w, z, z4} induces an F1 or C5, and similarly v misses both w4, z4. But then {w4, w, z, z4, u, v, y} induces an F2. Thus
(23) holds.
We claim that:
Either z1 sees z4 orw2 seesw4. (24)

For suppose the contrary. So both {z, z1, z4} and {w,w2, w4} induce a P3. Ifw4 = z4, then {z, w, z1, w2, z4} induces an F1 or
C5. So,w4 6= z4. Write P = {u, y, v}, and Q = {z, z1, z4, w,w2, w4}. If z4 sees a vertex in P , then by (21) it sees both u and v;
but then {y, u, z4, z, z1} induces an F1 or C5. So, z4misses all of P . Similarly,w4misses all of P . If z1 sees y, then {z4, z, z1, y, u}
induces an F1. Thus z1, and similarly,w2 have no neighbour in P , i.e., there is no edge between P and Q . Wemay assume that
Q does not contain a P4, for otherwise this P4 and P induce an F2. It follows that:
z1 missesw2, for otherwise {z, z1, w2, w} induces a P4;
z1 missesw4, for otherwise {z1, w4, w,w2} induces a P4;
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z missesw4, for otherwise {z, w4, w,w2} induces a P4;
z4 misses everyw′ ∈ {w,w2}, for otherwise {w′, z4, z, z1} induces a P4.

But now P ∪ Q induce an F3, a contradiction. Thus (24) holds.
By (24) and by symmetry, we may assume that {z, z1, z4} induces a K3. If x sees z1, then it misses z4, for otherwise,

{x, z, z1, z4} induces a K4, and z1 misses y by (16); but then {u, v, x, y, z, z1, z4} induces either an F5 or F11. So x misses
z1. If x sees z4, then z4 misses u and v by (16), and z1 sees y, for otherwise again {u, v, x, y, z, z1, z4} induces an F5. But
now {x, z, z1, z4} induces a diamond in which the two non-adjacent vertices do not have the same neighbourhood; by
the mapping z → x, z4 → y, z1 → u, x → v, we have a contradiction to (21). So x misses z4. If x misses a vertex
w′ ∈ {w2, w4}, thenw′ sees z, for otherwise {z1, z, x, w,w′} induces an F1 orC5. Sow′ = w4. Thenw4misses z1, for otherwise
{z1, w4, w, x, y} induces an F1 or C5. And sow4 6= z4. Then z1misses y andw4misses u, for otherwise {w4, z, z1, y, u} induces
an F1 or C5; and by (21) w4 misses v. But then {z1, z, w4, w, u, y, v} induces an F2. Therefore x sees both w2, w4. So w2, w4
are not adjacent, for otherwise {x, w,w2, w4} induces a K4; and, by (16), they both miss u, v and y. We have the following
implications:
z1 misses y, for otherwise {z4, z1, y, x, w} induces an F1 or C5;
z4 missesw, for otherwise {z1, z4, w, x, y} induces an F1;
z4 misses u, for otherwise {z1, z4, u, x, w} induces an F1;
z4 misses v by (21);
z4 missesw2, for otherwise {z4, w2, w,w4, u, y, v} induces an F2;
z1 misses eachw′ ∈ {w2, w4}, for otherwise {z4, z1, w′, x, y} induces an F1.

But now {u, v, x, y, z, z1, z4, w,w2, w4} induces an F9. This completes the proof of Theorem 1.2. �
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