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a b s t r a c t

In the present article, we develop two interval based fuzzy systems for identification of some possible
genes mediating the carcinogenic development in various tissues. The methodology involves dimension-
ality reduction, classifying the genes through incorporation of the notion of linguistic fuzzy sets low, med-
ium and high, and finally selection of some possible genes mediating a particular disease, obtained by a
rule generation/grouping technique. The effectiveness of the proposed methodology, is demonstrated
using five microarray gene expression datasets dealing with human lung, colon, sarcoma, breast cancer
and leukemia. Moreover, the superior capability of the methodology in selecting important genes, over
five other existing gene selection methods, viz., Significance Analysis of Microarrays (SAM), Signal-to-
Noise Ratio (SNR), Neighborhood analysis (NA), Bayesian Regularization (BR) and Data-adaptive (DA) is
demonstrated, in terms of the enrichment of each GO category of the important genes based on P-values.
The results are appropriately validated by earlier investigations, gene expression profiles and t-test. The
proposed methodology has been able to select genes that are more biologically significant in mediating
the development of a disease than those obtained by the others.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Cancer is a class of diseases for which a group of cells undergoes
uncontrolled growth. It causes destruction of adjacent tissues
(invasion) and sometimes spreads to other locations in the body
via lymph or blood (metastasis). People at all ages may be affected
by cancer, but the risk for most varieties increases with age. About
13% of all deaths in the world are due to cancer. According to the
American Cancer Society, 7.6 million people died from cancer in
the world during 2007. Nearly all cancers are caused by abnormal-
ities in the genetic material of the transformed cells (http://
en.wikipedia.org/wiki/Cancer). Various research efforts, including
ones based on surgery, chemotherapy, radiotherapy, are being
made to fight against cancer.

Recent studies [12,5,20] involving gene expression profiles,
obtained by microarray technology, have a profound impact on
cancer research. In some examples [12,5], correlations between
the expression levels of a gene or a set of genes, and clinically rel-
evant subclassifications of specific tumor subtypes have been stud-
ied. These results show that true molecular classification and
substaging of multiple tumor types may be possible, leading to
ll rights reserved.
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prognosis and patient management. Analysis of cancers using array
technologies has identified subgroups of tumors that differ accord-
ing to tumor types and histological subclasses, and to a lesser ex-
tent, survival among carcinogenic patients [20].

Fuzzy set theory is capable of handling uncertainty in the gene
expression values arising due to incompleteness, imprecision, noise
and experimental errors. The theory provides a tool for natural com-
puting as the systems built on the theory behave like human reason-
ing process [41,42]. The notion of fuzzy sets has been used in the
domain of gene expression analysis. These include, among others,
development of rule discovery procedure by Zhang et al. [43], based
on knowledge extraction of gene by classification; transformation of
gene expression by fuzzy heuristic rule set [40]; classifying fuzzy
inference system [22]; development of a fuzzy model for gene regu-
latory networks [30]; measuring performance of small rule-based
classifiers using fuzzy logic [38]; identification of normal and tumor
patients using fuzzy neural network model [3].

In microarray gene expression data, genes have expression val-
ues that are in some intervals under different conditions. There ex-
ists methodology [10] based on these intervals for finding genes
responsible for a particular disease. Although each interval has
some well defined boundary, they are highly overlapped. Thus it
is better to use fuzzy set theory to handle such overlapping inter-
vals. This fact motivates us to develop fuzzy set theoretic methods
for identifying genes responsible for a particular disease.

https://core.ac.uk/display/82438638?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://en.wikipedia.org/wiki/Cancer
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Here we develop two interval based fuzzy systems to identify a
set of possible genes mediating the development of cancerous
growth in cell. The methodologies involve the task of dimensionality
reduction, gene selection using interval ratio filter, formulation of
linguistic fuzzy sets and their matching, and rule generation and
grouping. Dimensionality reduction step is used to reduce the varia-
tion among the expression levels of the gene over different samples
and is performed using an algorithm similar to the cyclic loess nor-
malization algorithm [7]. Linguistic fuzzy sets, e.g., low, medium
and high [41] are modeled using triangular membership functions
in the next step, where genes are grouped into these fuzzy sets.
Incorporation of linguistic variables provides a natural way of rea-
soning like human [41,42]. Note that the idea of using normalization
algorithm for dimensionality reduction and modeling expression
profiles of various genes using linguistic fuzzy sets is novel in this
article. An existing rule generation and rule grouping algorithm
[10] is used for both the methods in the final step for finding a set
of possible genes mediating the development of cancer in human
cells. Existing gene selection methods like SAM [13], SNR [37], NA
[15], BR [32,8], DA [27] that do not include the notion of fuzzy sets
is used for comparative analysis. In this article, we consider five gene
expression datasets, viz., human lung gene expression data [4], hu-
man colon expression data [1], human breast expression data [24],
human soft tissue sarcoma data [11], human lymphocytes and plas-
ma cell expression data [16]. As already discussed, there exist many
articles in literature for microarray gene expression analysis. Here
we have considered the reference [10] as it deals with association
rule mining and provides an algorithm for rule grouping that is effec-
tive in the area of gene expression analysis.

Finally, we present a set of possible genes obtained by both
these methods, which may be responsible for cancerous growth
in human cell. The results are appropriately validated by some ear-
lier investigations and gene expression profiles, and compared
using t-test and number of enriched attributes. Moreover, the pro-
posed methodology has found more true positives than the exist-
ing ones in identifying responsible genes.

2. Methodology

In this paper, we have developed two methods, called Linguistic
Fuzzy Rule Generation and Grouping (LFRGG) and Expression
Interval based Rule Generation and Grouping (EIRGG) for the inter-
val based fuzzy system and applied to the gene expression datasets
to find out some possible genes mediating the development of can-
cer. In LFRGG, we have used cyclic loess normalization like algo-
rithm for dimensionality reduction, concept of fuzzy sets, and the
notion rule generation and grouping. Note that although the pur-
pose of normalization is different from that are widely used in
practice, we have used this kind of technique for transforming sev-
eral expression values of a gene over a number of samples into a
single expression value for the said gene. This reduces the compu-
tational complexity of the proposed methodology to a great extent.
The entire methodology is described in details below.

2.1. Linguistic Fuzzy Rule Generation and Grouping (LFRGG)

The proposed methodology, called LFRGG, has a few stages.
Each of these stages is described below.

2.1.1. Stage I — dimensionality reduction
The need for normalization arises naturally when we deal with

experiments involving multiple arrays. Here we use an algorithm
similar to a normalization algorithm, called cyclic loess, [7] to
the dataset for normal samples as well as that for tumor samples.
However, the purpose of normalization is to deal with this obscur-
ing variation.
The algorithm transforms expression values of a gene over a
number of samples into a single expression value, corresponding
to normal as well as to tumor samples separately. It is based on the
idea of creating an M versus A plot, where M is the difference in
ðlogÞ expression values and A is the average of the ðlogÞ expression
values. An M versus A plot for normalized data should show a point
cloud scattered about the M ¼ 0 axis. In particular, for any two arrays
i, j with expression values xki and xkj, k ¼ 1; . . . ; p being the gene in-
dex, we calculate Mk ¼ log2ðxki=xkjÞ and Ak ¼ 1=2log2ðxkixkjÞ. A nor-
malization curve is used to fit to these M versus A plot. For details
of cyclic loess, one may refer to [7]. Note that the idea of using nor-
malization algorithm in dimensionality reduction is novel. The steps
of the algorithm is mentioned below.

Algorithm:
For each gene, do

Step 1: choose pair wise samples.
Step 2: compute Mk and Ak for each pair.
Step 3: fit Mk with respect to Ak. Here we are going for parabolic
curve fitting. So for a set of Ak values that we have defined in the

previous step, we get a set of estimated bMk values. Finally, we

get m
2

� �
number of ðMk � bMkÞ values, for m samples. We call

these ðMk � bMkÞ values as adjustments for m samples.
Step 4: record these adjustments for each sample and compute
the resultant adjustment for each sample.
Step 5: update the old ðlogÞ expression value for each sample by
the following formula

newxki ¼ oldxki þ resultant adjustment:

Step 6: repeat Steps 1 through 5 until the differences among the
ðlogÞ expression values are less than some threshold values
specified by the analyzer (i.e., repeat these steps until the
ðlogÞ expression values of different samples are close enough).

2.1.2. Stage II — formulation of linguistic fuzzy sets and their matching
This stage is a two-step process — Step 1 and Step 2. In conven-

tional statistical methods, the absolute expression pattern of genes
is presented to a system for further computations. However, in real
life situations, gene expression pattern may be uncertain and/or
incomplete. In such cases it may be convenient to use linguistic vari-
ables such as low, medium, high to replace numerical expression val-
ues [28,29]. This transformation is capable of handling absolute
expression pattern, i.e., numerical and linguistic forms of the input
data. Any input expression value can be described through a combi-
nation of membership values in the linguistic property sets low, med-
ium and high. Note that incorporation of linguistic fuzzy sets
provides a tool for natural computing [41,42] as the resulting system
is capable of reasoning like human. This is due to the fact that we (hu-
man) often measure a quantity in terms of low, medium or high, and
make the subsequent decision accordingly. The idea of modeling
gene expression profiles using linguistic fuzzy sets is novel. Using
these fuzzy sets, we are partitioning domain of expression values
of a gene into three (Fig. 1 in Supplementary material). However,
one may consider four, five or even more linguistic fuzzy sets to par-
tition the domain into four, five or more.

Step 1: formulation of linguistic fuzzy sets.
Each input expression value xj of jth gene in quantitative form

can be expressed in terms of membership values to each of the
three linguistic properties low, medium and high. That is, a 3-d
membership vector for the fuzzy sets low, medium and high corre-
sponding to xj is given by

vj ¼ ½UlowðxjÞ;UmediumðxjÞ;UhighðxjÞ�T :
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Here UlowðxjÞ is the membership value of the jth gene with expres-
sion value xj to the fuzzy set low. Similarly, UmediumðxjÞ and UhighðxjÞ
are defined accordingly. Therefore an n-dimensional gene expres-
sion pattern for n genes x ¼ ½x1; x2; . . . ; xn�T can be represented as a
3n dimensional vector

v¼ ½Ulowðx1Þ;Umediumðx1Þ;Uhighðx1Þ; . . . ;UlowðxnÞ;UmediumðxnÞ;UhighðxnÞ�T :

Mathematical formulations of the membership functions U’s are de-
scribed in the Supplementary material.

Step 2: matching.
After representing the genes with three linguistic variables, we

group the genes based on their membership values into low, med-
ium or high. That is, a gene with membership value to low greater
than 0.5, is considered as a member of the fuzzy set low. Thus we
have got three classes of genes in low, medium and high. This pro-
cess is executed both on normal and tumor samples separately.
However, the values of the parameters (of these fuzzy sets), for
both normal and tumor samples, are computed based on the nor-
mal samples only.

Now we perform matching among these classes. We first match
the class low of normal with the classes medium and high of tumor
samples. The main significance of this type of matching is that we
want to know the genes of class low of normal, which move to the
class medium or high of tumor. These genes are identified as the
over expressed genes. Similarly, we perform matching of class
medium (high) of normal with the classes of low (low) and high
(medium) of tumor. Thus we have identified the genes that have
changed their classes from normal to tumor samples.

2.1.3. Stage III — rule generation and grouping
Here we describe the technique in [10] that is adopted in this

article for rule generation and grouping. Note that it involves
grouping of similar rules to get top-k rule groups, where k ¼ 1
has been assumed in the present article.

Step 1: generation of intervals, item support set and gene support
set.

After selecting the genes in Stage II, we generate intervals of the
gene expression values. The corresponding genes form a set R. For
a jth gene, the corresponding interval of gene expression values is
an item Ij: Let I ¼ fI1; I2; . . . ; Ipg be the complete set of such items.
Each item could be one of the two types, i.e., normal or tumor.
As a mapping between genes and items, we define the item sup-
port set, denoted by RðbIÞ which is the largest set of genes that con-
tain bI (a subset of I). Likewise, we define the gene support set,
denoted by IðbRÞ as the largest set of items common among the
genes in bR (a subset of R).

Step 2: rule generation.
In Step 2 of Stage III, we generate some rules, where each rule is

of the form A! C. Here A is the subset of I and forms the anteced-
ent, and C (normal or tumor) forms the consequent.

Step 3: rule grouping.
Here we find a compact set of rules that can describe an exhaus-

tive set of items. If the number of each such rules covering all the
items is large, it may create confusion in the decision making pro-
cess. On the other hand, less number of rules unable to cover all the
items exhaustively will be of no use. Thus the rules we have ob-
tained by the above method need to be checked for their appropri-
ateness. They often need to be grouped to form an optimal set of
rules, based on certain measures called support (SUP) and confi-
dence (CONF).

SUP of a rule A! C is the ratio of the number of genes whose
expression values lie in an interval in A for C type (i.e., either
normal or tumor) data to the total number of genes in both normal
and tumor. CONF of a rule A! C is the ratio of the number of genes
lying in an interval A for C type data to those lying in the same
interval for both normal and tumor samples [10].

As mentioned earlier, the idea of rule grouping helps one to re-
duce the number of rules discovered, by identifying rules that
come from the same set of genes. For example, if
RðI1Þ ¼ RðI2Þ ¼ RðI3Þ ¼ RðI1; I2Þ ¼ RðI1; I3Þ ¼ RðI2; I3Þ ¼ RðI1; I2; I3Þ;
then they make up rule groups

I1 ! C; I2 ! C; . . . ; ðI1; I2; I3Þ ! C

for the same consequent C with the supremum ðI1; I2; I3Þ ! C. It is
obvious that all the rules in the same rule group have the same sup-
port SUP and confidence factor CONF since they are essentially de-
rived from the same subset of genes. Based on the supremum of a
rule group, it is easy to identify the remaining members. Now to
evaluate the significant rule group, we use the criteria that rule
group 1, denoted by rg1, is more significant than rule group 2, de-
noted by rg2, if ðrg1:CONF > rg2:CONFÞ OR ðrg1:SUP > rg2:SUP AND
rg1:CONF ¼ rg2:CONFÞ: Here, rgi:CONF and rgi:SUP, indicate values

of CONF and SUP of an ith rule group, respectively. Then we select
the genes that are covered by the most significant rule group. For
details of this rule grouping algorithm, one may refer to [10].
2.2. Expression Interval based Rule Generation and Grouping (EIRGG)

We now describe another method, called Expression Interval
based Rule Generation and Grouping (EIRGG) [10], for the same
purpose. EIRGG involves the tasks like interval generation, rule
generation using these intervals and grouping of these rules using
SUP and CONF factors [10] defined above. Let us consider a gene
expression dataset D consisting of a set R of rows, r1, r2,. . ., rn cor-
responding to n genes. Let I ¼ fi1; i2; . . . ; img be the complete set of
items of dataset D; each item represents an interval of gene expres-
sion levels. Data in D are distributed in k different classes C1, C2,. . .,
Ck. For example, if there are two types of data, i.e., normal and tu-
mor, then k ¼ 2.
2.2.1. Stage I — generation of intervals
Let us assume that the dataset consists of n number of genes

(number of rows) and d number of samples (number of columns).
Also assume that the number of classes (i.e., C1 for normal and C2

for tumor) is two, i.e., k ¼ 2. Among these d samples let d1 be the
number of normal samples and d2 is that of tumor samples.

Step 1: identification of overlapping and non-overlapping intervals.
We can represent each gene by d1 number of values in normal

dataset and d2 number of values in tumor dataset. We assume that
the minimum gene expression value of gene gi in normal dataset is
ximin and the maximum gene expression value of gene gi in normal
dataset is ximax. Similarly, for tumor dataset, the minimum and
maximum values of the gene gi are yimin and yimax, respectively.
Now, we examine that whether yimin is in between ximin and ximax.
If so then we conclude that the interval of gene gi has an overlap-
ping region. So the interval may be broken as yimin � ximin,
yimax � ximax (if yimax > ximax) and ximax � yimin. These three regions
are included into our interval set. It indicates that gene gi has three
intervals. Now, if yimin does not lie between ximin and ximax then the
interval for gi has no overlapping region. So here the intervals are
ðyimax � yiminÞ and ðximax � ximinÞ. Similarly, we can generate intervals
for gene gi if yimax 6 ximax. Using this procedure we generate all
intervals for all genes. For the case yimin 6 ximin 6 yimax, if
yimax < ximax then the generated intervals are ðximin � yiminÞ,
ðyimin � ximinÞ and ðximax � yimaxÞ, and if yimax > ximax then they are
ðximin � yiminÞ, ðximax � ximinÞ and ðyimax � ximaxÞ.
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Step 2: elimination of redundant intervals.
Now we eliminate the redundant intervals from the set of inter-

vals obtained by the above process. If the lower and upper bound
values of a pair of intervals match then we delete the interval. In
this way, we eliminate the redundant intervals.

2.2.2. Stage II — selection of genes
After generating intervals, we select the genes in which the

gene expression values have changed significantly from normal
to tumor samples.

Step 1: selection of genes based on expression values.
In order to do this, we first choose those genes whose expres-

sion values are in non-overlapping region between normal and tu-
mor samples. Then we define a parameter ratio (0 6 ratio 6 1)
which is basically a ratio of the length of the overlapping region
and total length of expression values (both for tumor and normal
samples). We also assume that yimin lies between ximin and ximax

and yimax > ximax. So for this gene gi an overlapped region is created
ximax � yimin and the total length of expression value of gene gi is
yimax � ximin. Thus the ratio becomes ðximax � yiminÞ=ðyimax � ximinÞ.

Step 2: generation of intervals of selected genes.
If ratio is very close to zero, the overlapping region correspond-

ing to the gene is a very small. We use a threshold value of ratio to
select the genes. After selection of these two types of genes (i.e.,
genes with expression values in non-overlapping and low overlap-
ping intervals), we obtain the intervals of the corresponding genes.

2.2.3. Stage III — rule generation and grouping
On selecting the genes and the intervals described by Stage II,

we generate the rules based on these intervals. This rule generation
and grouping step (i.e., Stage III of EIRGG) is identical to that of
LFRGG (described in Section 2.1.3).
3. Results and discussion

In this section, the effectiveness of the proposed methods
LFRGG and EIRGG is demonstrated on five cancer gene expression
datasets (described in the Supplementary material), viz., human
lung gene expression data [4], human colon expression data [1],
human breast expression data [24], human soft tissue sarcoma
data [11], human lymphocytes and plasma cell expression data
[16]. The superior performance of LFRGG and EIRGG over other
methods called SAM [13], SNR [37], NA [15], BR [32,8], DA [27] is
also established.

3.1. Analysis of the results using LFRGG and EIRGG

Lung expression data contains 10 normal samples for expres-

sion values of 7129 genes. So there are 10
2

� �
pairs, i.e., 45 pairs

for each gene. After calculating the first adjustments based on
the parabolic curve fitting, we noted the required adjustment. After
5 or 6 iterations, we have got the normalized value of each sample
for a gene. Then the log expression values of 10 samples become
close enough. In this way we normalized 7129 genes for normal
samples and tumor samples separately. After normalization, we
have taken mean of the resulting expression values of the genes.
Thus we represented each gene with a single value.

In this way we reduced the entire dataset through dimensional-
ity reduction. After this we applied membership functions to these
resulting gene expression values to get membership values. In or-
der to do this, we represent each gene by three dimensions (i.e.,
low, medium and high). Now, we got three different sets of genes
that belong to three different classes low, medium and high for
normal samples and tumor samples separately. Now we perform
the matching operation among the classes separately between nor-
mal and tumor samples. We found 45 genes that changed their
class from normal to tumor. This is actually Step II of LFRGG.

Finally we used the rule generation followed by grouping tech-
nique on these 45 genes. In order to do this, we first generate the
intervals based on the entire dataset. It results in 174 intervals.
Each interval is an item I corresponding to a gene. Then we gener-
ate the rules based on this interval. The general form of the rule is
I! C1 which indicates that if the gene with expression value is in
the interval I then the sample is normal. Similarly, rules with con-
sequent part representing tumor samples are obtained. We found
12 rules for normal class and 7 rules for tumor class. After this,
we used the rule grouping algorithm on these two sets of rules sep-
arately. We finally found 2 rule groups for normal class and 1 rule
group for tumor class. After this, we found the most significant rule
group among these 3 rule groups. A total of 27 genes were found to
be covered by the most significant rule group.

Similarly, we have applied EIRGG on the lung expression data.
We found 2 rule groups; among them 1 rule group were for normal
class and 1 for tumor class. A total of 24 genes were found to be
covered by the most significant rule group. Here we considered
0.013 as the threshold value, as for this threshold value we got
maximum difference in the number of genes for two consecutive
threshold values, and the number of genes selected is moderately
large. Note that we started with 0.001 with an interval of 0.001
as the threshold values.

Similarly, for breast, leukemia, sarcoma, colon expression data,
we found 4, 5, 3 and 2 rule groups by applying LFRGG, respectively.
Finally, a total of 28, 32, 31, 21 were found to be covered by most
significant rule groups for breast, leukemia, sarcoma, colon expres-
sion datasets, respectively.

Likewise, applying EIRGG on breast, leukemia, sarcoma, colon
expression data, we found 3, 2, 4 and 3 rule groups, respectively.
Finally, a total of 24, 34, 32, 22 were found to be covered by most
significant rule groups for breast, leukemia, sarcoma, colon expres-
sion datasets, respectively.

3.2. Comparative analysis of LFRGG and EIRGG with other existing
methods

3.2.1. Based on GO attributes
In our study, the enrichment of each GO category [18] for each

of the genes has been calculated by its P-value. A low P-value indi-
cates that the genes belonging to the enriched functional catego-
ries are biologically significant. Here only functional categories
with P-value < 5:0� 10�5 were considered. We have made com-
parative study, with other methods, viz., SAM [13], SNR [37], NA
[15], BR [32,8] and DA [27] in terms of their ability to identify func-
tionally enriched genes. Table 1 shows the number of functionally
enriched attributes corresponding to these methods for different
sets of genes. It is found that for all the datasets, LFRGG and EIRGG
performed the best. These results show that the proposed method-
ology has been able to select more important genes responsible for
mediating a particular type of adenocarcinoma than the other
methods considered here. The comparative analysis between the
proposed methods (LFRGG) and EIRGG in identifying responsible
genes has also been demonstrated. LFRGG has found more true
positives than those obtained by EIRGG. It is difficult to mention
the figures corresponding to false positives, and true and false neg-
atives. The reason behind the difficulty is that gene expression
datasets consist of a large number of genes.

3.2.2. Based on level of significance
We have applied t-test on the genes identified by LFRGG, EIRGG,

SAM, SNR, NA, BR, DA on each dataset. We have considered top 20



Table 1
Comparative results on number of enriched attributes of various sets of genes.

Dataset Gene set Number of enriched attributes

LFRGG EIRGG SAM SNR NA BR DA

Lung First 5 63 51 14 21 26 27 24
First 10 87 85 13 9 15 21 27
First 15 84 82 30 14 16 16 30
First 20 86 86 28 13 15 16 32

Colon First 5 61 66 27 34 28 28 30
First 10 63 74 30 39 30 31 35
First 15 80 79 30 35 30 31 38
First 20 78 66 33 44 33 33 41

Sarcoma First 5 73 63 41 49 67 66 42
First 10 95 84 50 54 67 53 49
First 15 75 79 61 40 31 34 51
First 20 73 68 65 43 41 34 55

Lymphocytes First 5 63 51 59 19 36 52 41
First 10 87 85 60 26 48 59 47
First 15 84 82 70 37 55 70 55
First 20 86 86 51 13 52 73 58

Breast First 5 39 28 5 6 16 15 12
First 10 47 38 3 12 18 13 14
First 15 45 44 6 9 7 17 14
First 20 38 42 15 12 10 21 16
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genes obtained by each method for each dataset. Here we perform
comparison based on the number of genes (out of top 20) that
matches with different levels of significance. Higher this number,
better is the performance of the method in selecting genes. Tables
3–7 (in Supplementary material) show that LFRGG and EIRGG per-
form the best as the number of matched genes (shown in bracket
in the third column) are the highest over the others.

For human lung expression data (Table 3 in Supplementary
material), on applying LFRGG and EIRGG, we have identified some
important genes like CALCA (4.02), PFKP (5.78), TYMS (3.98),
IGFBP3 (6.98), IARS (5.98), HBB (7.08), HLA-B (5.42), SFTPA2
(6.89), and TNF (4.23). The number in the bracket indicates t-value
corresponding to the gene. The t-value of these set of genes ex-
ceeds the value for P ¼ 0:001. It indicates that these set of genes
are highly significant (99.9% level of significance). Similarly, genes
like IGHG3 (2.67), PRKACA (2.89), MEN1 (3.15) and IGHM (3.25)
exceeds the t-value for P ¼ 0:01. This means that these genes are
significant at the level of 99%. Likewise, RPLP1 (2.14), LARS
(2.22), SMCIL1 (2.07), MGP (2.31), RNASE1 (2.43), SFTPC (2.37),
and HLA-DRA (2.27) genes are important at the level of 95% signif-
icance. We have performed t-test for the genes identified by some
other gene selection algorithms like SAM, SNR, NA, BR and DA. But
highly significant (99.9% significance level) genes like PFKP, TYMS,
IARS, and HLA-B are not included in the set of first twenty selected
genes by these methods. This result suggests that LFRGG and
EIRGG are able to find more true positive genes than the existing
methods.

Similarly, for human breast expression data (Table 4 in Supple-
mentary material), applying our methods we have identified some
important genes like NARS (5.63), BAT1 (6.05), GDI2 (5.89), KRAS
(6.88), HAL (6.10), FNTA (5.94), BCAN (5.76). The t-values of this
set of genes indicate that these genes are highly significant
(99.9% level of significance). Likewise, the t-values of genes FMO2
(3.73), COX4I1 (3.89), SDHC (3.82), TTN (3.69), TRIO (3.60), H3F3A
(3.79), IGHG1 (3.98) indicate that their significance levels are 99%.
The t-values of LARS (2.14), FADS2 (2.26), NPM1 (2.18), PTPRA
(2.20), CANX (2.08) indicate 95% level of significance.

We have applied LFRGG and EIRGG on human colon expression
data. As a result (Table 5 in Supplementary material), we have
found some genes like microtubule-associated protein-2 (4.26),
thymidylate syntase (5.34), phosphofructokinase, platelet type
(4.21), Calcitonin (5.04), major histocompatibility complex
enhancer-binding protein (4.43), isoleucyl-tRNA synthetase
(3.78), hemoglobin beta chain (5.87), insulin-like growth
factor-binding protein-6 (6.22), tumor necrosis factor (4.12),
whose t-values indicate that these genes are statistically highly
significant (level of significance 99.9%). Genes like flavin-contain-
ing monooxygenase form II (2.41), colon carcinoma kinase-4
(2.78), methylthioadenosine phosphorylase (2.65) are found to be
significant at a level of 99%. The t-values of the genes like pepsin-
ogen C (1.89), cytochrome P450 4F2 (1.68), platelet-derived
growth factor receptor alpha (2.07), vasoactive intestinal peptide
(1.72) indicate 95% level of significance.

For human lymphocytes and plasma cell expression data (Table
6 in Supplementary material), we have identified some highly sig-
nificant (99.9% level of significance) genes like BAX (4.15), PFKP
(3.98), TYMS (5.67), NARS (4.89), BAT1 (5.08), BCR (4.98), HBB
(6.52), HAL (3.89), IGFBP3 (4.79), CALCA (5.34), HLA-B (6.22), IARS
(4.79), BRCA1 (5.37). It was also reported that genes like GDI2
(2.71), FNTA (2.56), SDHC (2.78), KRAS (2.67), IGF1 (2.90), H3F3A
(2.39) have a significance level of 99%. In our results, the t-values
of the genes like LARS (1.98), ATP6V0B (2.02), CDKN2A (2.11) indi-
cate 95% of significance level.

Likewise, applying both the methods on human sarcoma
expression data (Table 7 in Supplementary material), we found
some highly significant (99.9% level of significance) genes like
BAX (3.98), CALCA (4.07), PFKP (3.87), TYMS (4.89), IARS (5.46),
NARS (3.77), BRCA1 (3.92), BCR (4.32), HBB (5.76), IGFBP3 (6.23),
HLA-B (4.23). It was also reported that genes like FMO2 (2.62),
PTEN (2.98), IGF1 (3.02), CDKN2A (2.79), MEN1 (2.56), IGHM
(2.40) have a significance level at 99% and genes like VEGFA
(1.77), AGER (1.89), LARS (2.12), FHL1 (2.02) have a significance le-
vel at 95%.

3.3. Validation of the results obtained by both LFRGG and EIRGG

Here we provide an account for validating the results obtained
by LFRGG and EIRGG. On applying the two methods on the five
datasets, we have found some genes that are common in some of
the datasets. These genes are either over or under expressed in tu-
mor samples than in normal ones. In each case, we have found the
same nature of growth and decay in terms of expression values of
these genes. Moreover, we have made a broader search through
internet to validate our results with the existing ones. It has been
found that some of these genes were already found to be responsi-
ble for cancer.

3.3.1. Using existing literature
Applying LFRGG and EIRGG to human lung expression data, we

have found some important genes, like CALCA [2,23,39], TYMS
[21,33], IGFBP3 [9,19], HLA-B [26,34], HBB [25], TNF [14,6,36],
IGHG3 [31], SFTPA1 [17,35], and SFTPA2 [35] that have a quite sig-
nificant number of enriched attributes (Table 1). Genes like PFKP
and IARS have a quite a significant number of enriched attributes,
but there is no information in literature to our knowledge about
these genes. This result suggests that the aforesaid genes may have
impact on lung adenocarcinoma.

On applying other existing methods like SAM, SNR, NA, BR and DA
on this dataset, we have found a set of important genes (CALCA,
IGFBP3, HBB, SFTPA2) that are also present in the results of LFRGG
and EIRGG. Thus we may conclude that genes like CALCA, IGFBP3,
HBB, SFTPA2 have a quite a significant role to the development of
lung adenocarcinoma. It is interesting to note that the proposed
LFRGG and EIRGG have been able to find more responsible genes
(for mediating lung adenocarcinoma) supported by wide range of
earlier investigations than those of other methods. Thus the method-
ology developed in this article is able to select biologically more sig-
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nificant genes than the others. Similar findings (Tables 3–7 in Sup-
plementary material) have been obtained for the other datasets too.

3.3.2. Using expression profile plots
Here we consider some genes that are among the most signifi-

cant genes of our results. The expression values of these genes have
changed significantly from normal samples to diseased samples.
Applying LFRGG and EIRGG on human lung expression data, we re-
port that genes like IGFBP3, PFKP, IARS, TYMS, among the top 10
most important genes, are over expressed in tumor samples
(Fig. 2 in Supplementary material). On the other hand, the expres-
sion value of gene HBB has reduced quite significantly in tumor
samples (Fig. 2 in Supplementary material). This gene is identified
as under expressed gene.

In the case of human colon expression profile, the genes like cal-
citonin (CALCA), colon carcinoma kinase-4 (CCK4), isoleucyl-tRNA
synthetase (IARS), thymidylate syntase (TYMS), Hemoglobin Beta
Chain (HBB), tumor necrosis factor receptor (TNF), insulin-like
growth factor-binding protein-6 (IGFBP6) have changed their
expression values from normal colon samples to tumor ones.
Among these genes, CALCA, CCK4, IARS, TYMS are identified as
up regulated genes (Fig. 3 in Supplementary material). On the
other hand, HBB, TNF, IGFBP6 are the down regulated (Fig. 4 in
Supplementary material).

For human breast cell expression profile, we clearly see that
genes like BCAN, GDI2, NARS (among the ten most important genes
obtained by LFRGG and EIRGG) change their expression levels quite
significantly from normal breast mammary epithelial cell samples
to breast cancer ones. The expression value of the gene BCAN in-
creases in breast cancer cell lines whereas the expression value
of genes GDI2 and NARS decrease drastically in breast cancer cell
lines. The expression profile plot of these genes are depicted in
(Fig. 5 in Supplementary material).

Similarly, for human soft tissue sarcoma expression data, genes
like BRCA1, TYMS, IARS, HBB have changed their expression values
from normal tissue to sarcoma tissue (Fig. 6 in Supplementary
material). The expression value of gene HBB drastically decreases
in diseased sarcoma samples, whereas that of BRCA1, TYMS, IARS
increase in diseased samples.

For human lymphocytes and plasma cell expression data, we re-
port that expression values of the genes like BAX, CALCA, ATP6V0B,
NARS have changed significantly from normal B lymphocytes and
plasma cells to macroglobulinemia, chronic lymphocytic leukemia,
multiple myeloma samples. Fig. 7 (in Supplementary material)
clearly indicates that genes like BAX, NARS, ATP6V0B are over ex-
pressed in diseased samples, whereas the gene CALCA is under ex-
pressed in diseased samples.
4. Conclusions

In this article, we have developed two methods, called Linguis-
tic Fuzzy Rule Generation and Grouping (LFRGG), and Expression
Interval based Rule Generation and Grouping (EIRGG), that have
demonstrated how fuzzy sets and linguistic variables can be used
to select a few possible genes responsible for mediating a specific
disease. Note that use of linguistic variables makes it possible to
develop the system capable of reasoning like human. Note that,
incorporation of fuzzy set theory makes the system capable of han-
dling exact/inexact forms of input data. A small set of possible
genes have been identified that have moved from one class of nor-
mal to another class of diseased samples. An existing rule genera-
tion and grouping algorithm [10] has finally been used to find a set
of possible genes responsible for cancer. A comparative analysis of
the performance of the methods with some others, viz., SAM [13],
SNR [37], NA [15], BR [32,8] and DA [27] has been provided.
Applying the above methods on five cancer datasets, we have
found the genes whose over/under expression may cause a partic-
ular type of cancer. The results are appropriately validated by some
statistical parameters, earlier investigations and gene expression
profile plots. It has been demonstrated that the numbers of en-
riched attributes corresponding to the sets of genes obtained by
LFRGG and EIRGG are much higher than those obtained by the
aforesaid existing methods. The results of both LFRGG and EIRGG
are statistically more significant than those of the others. LFRGG
has been able to find more true positives than EIRGG in identifying
responsible genes. This results in important genes that may have
role in mediating development of a particular disease. The results
are verified using some existing results and expression profile
plots. It has been found that the methods provided here are able
to detect more important genes in mediating a disease than the
other existing ones considered here. Note that most of these genes
did not pass through the interval ratio filter of EIRGG [10]. Hence
they have not been detected by EIRGG. These results facilitate
the researchers carrying out biochemical experiments to do further
analysis on these genes instead of on the entire genome.
Appendix A. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at doi:10.1016/j.jbi.2009.06.003.
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