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Abstract

In this paper, we study a class of singularities of codimension 1 holomorphic germs of foliations
in (C3,0), namely those ones having only one separatrix, that is a quasi-ordinary surface, and whose
reduction of singularities agrees with the combinatorial desingularization of the separatrix. We show
that the analytic classification of these germs can be read in the holonomy of a certain component of
the exceptional divisor of the desingularization.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction and motivation

We would like to study the reduction of the singularities and the analytic classifica-
tion, in some cases that we shall describe, of germs of singular holomorphic foliations in
(C3,0), with non-zero linear part. Consider, more generally, a germ ω in (Cn,0) of an
integrable 1-form, and let

ω = ω1 + ω2 + · · ·
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be its decomposition in homogeneous forms (ωi = ∑n
j=1 Aij dxi , Aij is a homogeneous

polynomial of degree i). Suppose, moreover, that ω1 �≡ 0. In general, we can write

ω1 =
n∑

1�i,j�n

cij xj dxi, cij ∈ C.

The integrability condition ω ∧ dω = 0 implies that ω1 ∧ dω1 = 0. Let C be the matrix
(cij )i,j ∈ Mn×n(C). Writing down explicitly the integrability condition, the coefficient of
dxi ∧ dxj ∧ dxk (i < j < k) in ω1 ∧ dω1 is

ci(ckj − cjk) − cj (cki − cik) + ck(cji − cij ),

where ci = ∑n
j=1 cij xj . Two cases appear:

(1) C is a symmetric matrix.
(2) C is not symmetric. So, it exists (j, k) with ckj �= cjk .

In the last case, the polynomials ci , cj , ck are linearly dependent for every i, j , k, and
so rk(C) � 2. Moreover, dω1(0) = dω(0) �= 0, so we are in presence of a Kupka-type
phenomenon and, in fact, there exists a biholomorphism f such that f ∗ω ∧ η = 0, where
η is a form in 2-variables. For bidimensional phenomena, lots of works have been done.

We then focus on the symmetric case. A linear change of coordinates changes C in
P tCP , P invertible, so we can suppose C diagonal and moreover,

ω1 =
r∑

i=1

xi dxi, r � n.

If r = n, G. Reeb, in his thesis [19] shows that there always exists a holomorphic first
integral. The behaviour of the foliation is, then, the behaviour of a function. Using Mal-
grange’s singular Frobenius theorem [13], we recover this result.

If r < n, some work was done by R. Moussu [17] under additional hypothesis. The
fundamental paper of Mattei and Moussu [14] completes the mentioned results. Let us
recall in this case, briefly, the 2-dimensional situation. The foliations studied are defined
by 1-forms y dy + · · · . Following Takens [20] such a foliation has a formal normal form

ωN = d
(
y2 + xm

) + xpU(x)dy,

where m � 3, p � 2, U(x) ∈ C�x�, U(0) �= 0.
The generic case (m = 3) was studied by Moussu [18] and a generalization (m � 3,

2p > m) by Cerveau and Moussu [5]. In both cases, the reduction of the singularities of
ω (and ωN ) agrees with the reduction of the curve y2 + xm = 0. Projective holonomy
classifies and, generically, there is a rigidity phenomenon formal/analytic. If m is even and
2p = m, it has been studied by Meziani [15] under some restrictions on the values of U(0).
If 2p < m the study was done (not in full generality) by Berthier, Meziani and Sad [1]. We
shall call “cuspidal” these foliations.
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The goal of the present work is to generalize this situation to dimension three. We want
to study foliations whose linear part is given by d(x2 + y2) or by d(z2). In this paper we
shall focus in the case d(z2). A surface that controls the resolutions of the singularities,
with an equation z2 + · · · = 0 will appear in the considered cases.

Let us recall some results about reduction of the singularities of a complex surface,
following Hironaka [9]. A surface X in C3 has an equation

f = fν + fν+1 + · · · = 0,

where fi is homogeneous of degree i. For such a surface, define, at the origin:

(1) The tangent cone, CX , as the cone fν = 0.
(2) The Zariski tangent cone TX , as Spec(M/M2), M being the maximal ideal corre-

sponding to the origin of C�x, y, z�/(f ). This is the smallest linear space contain-
ing CX .

(3) The strict tangent cone SX , as the largest linear subspace T of TX such that CX =
CX + T . The codimension of SX is the minimum number of variables required to
write down the equations of CX .

The resolution of singularities of an analytic surface X is a problem that may be stated
as follows: to find a non-singular surface X̃ and a birational morphism X̃ → X composed
of quadratic (point blow-ups) and monoidal (curve blow-ups) transformations. These must
be done in a precise order. The main case to consider is when the three tangent spaces
defined above coincide, and the most difficult case is when, moreover, dimSX = 2. In this
case, the tangent cone can be written as zν . The resolution may be controlled by Hironaka’s
characteristic polyhedra of the singularities [9]. The precise sequence of blow-ups needed
can be read in the polyhedra.

A kind of surface singularities whose resolution is particularly simple, and combinato-
rial, are quasi-ordinary singularities. To define them, consider a finite projection X

π−→ C2

and let Δ be discriminant locus of π (i.e., the projection of the apparent contour). If Δ has
normal crossings the singularities of X are called quasi-ordinary.

Quasi-ordinary singularities are studied not only because they are relatively simple, but
because they arise in the Jungian approach to desingularization. First of all desingularize
the discriminant locus in order to obtain quasi-ordinary singularities. Then, the problem
(simpler) is to reduce the singularities of a quasi-ordinary surface. Some good references
of this are the articles of Giraud [8] and Cossart [7].

Quasi-ordinary singularities can be parametrized by fractional power series, as branches
of curves: ⎧⎨⎩

x = x,

y = y,

z = ∑
i,j cij x

i/nyj/n.

By the condition of the discriminant, it can be seen that the set of points {(i, j) ∈ R2:
cij �= 0} is contained in a quadrant (a, b)+R2+, where cab �= 0. Characteristic pairs may be
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defined for this parametrization, as is the case of curves, and they still determine the local
topology of the singularity, while the converse is not known [11].

Coming back to foliations, this is related with the case we shall study. More precisely,
we search a class of foliations in (C3,0) whose reduction process can be read in a quasi-
ordinary surface. For the case considered ω1 = d(z2), by Weierstrass preparation theorem
and Tschirnhausen transformations we find that, in appropriate coordinates, the surface is
z2 +ϕ(x, y) = 0, that is not necessarily a separatrix. The natural generalization of cuspidal
foliations will be those with an equation

ω = d
(
z2 + ϕ(x, y)

) + A(x,y) dz.

In fact, in a recent work, Frank Loray [12] finds an analytic normal form as

ω = dF + z dG + z dz,

where F,G ∈ C{x, y}, for integrable holomorphic foliations with linear part not tangent
to the radial vector field. Note that a coordinate change z → z − G(x,y) in Loray’s form
gives an equation like our expression for the foliations. This is integrable if and only if
dϕ ∧ dA = 0, i.e., if ϕ, A are analytically dependent. As are shall restrict to the quasi-
ordinary case, we have that ϕ(x, y) = xpyqU(x, y), with U a unit. A convenient change
of variable in x, y, allows us to suppose that ϕ(x, y) = xpyq . Let d = gcd(p, q) p = dp′
q = dq ′. The integrability condition dϕ ∧ dA = 0 is then that A(x,y) = L(xp′

yq ′
) where

L(u) ∈ C{u}.
The plan of this paper is as follows. In Section 2 we shall review the notion of simple

singularity of a foliation, in the sense defined by Cano and Cerveau [3], and its analytic
classification according to Cerveau and Mozo [6]. Section 3 is devoted to describe the
resolution of singularities of the quasi-ordinary foliations we are going to study, and the
topology of the exceptional divisor. In Section 4, we construct a Hopf fibration associated
to the quasi-ordinary foliations, making a reduction of the separatrix to a canonical form.
Finally, Section 5 is devoted to present the main result of the paper: In the considered cases,
the holonomy of a certain component of the exceptional divisor classifies analytically the
foliation. The cases we study, as we shall see, are essentially the sames that are studied in
dimension two.

Some notations used throughout the paper are presented here. Diff(C,0) will denote the
group (under composition) of germs of analytic diffeomorphisms of (C,0). If Ω denotes
a holomorphic integrable 1-form, defining a foliation, and D is a component of the divisor
obtained after reduction of singularities, HΩ,D :π1(D \ S) → Diff(C,0) is the holonomy
representation, defined over a transversal to D (omitted from the notation), where S is the
singular set of the reduced foliation.

2. Simple singularities of foliations and analytic classification

The process of reduction of singularities for a holomorphic foliation is well known in
dimension two. After a finite number of point blow-ups performed in any order, a germ of
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analytic space and a foliation are obtained, and around the singular points, the foliation is
generated by a one-form

ω = (λy + h.o.t.) dx + (μx + h.o.t.) dy,

with μ �= 0, λ/μ /∈ Q<0.
The analytic classification is well studied in a wide variety of cases:

(1) If λ/μ /∈ R�0, ω is analytically linearizable, i.e., there exists an analytic diffeomor-
phism φ : (C2,0) → (C2,0) such that

φ∗ω ∧ (λy dx + μx dy) = 0.

(2) If λ/μ ∈ R>0 \ Q, but it is not “well-approached” by rational numbers, it is also
linearizable. If it is well-approached, we face a problem of small divisors, and the
situation becomes more complicated.

(3) If λ = 0 or λ/μ ∈ Q+, Martinet and Ramis find a large moduli space formal/analytic.
In this case the classification of the foliation agrees with the classification of the
holonomy of a strong separatrix (i.e., a separatrix in the direction of a non-zero eigen-
value). Moreover, in the resonant case ( λ

μ
∈ Q+) or in the saddle-node case (λ = 0)

with analytic center manifold, the conjugation of the foliation is fibered (see [1] for
the saddle-node case). This means the following: choose coordinates x, y such that the
axis are the separatrices, y = 0 being a strong one (this means that it is tangent to the
eigenspace that corresponds to a non-zero eigenvalue); the foliations are defined by
1-forms

ωi = yAi(x, y) dx + μ/λx
(
1 + Bi(x, y)

)
dy,

with i = 1,2. Let h(i)(x) be the holonomies of y = 0, supposed conjugated. Then the
foliations are conjugated by a diffeomorphism φ(x, y) = (x, yg(x, y)).

The singularities obtained after this reduction process are called simple or reduced. The
class of simple singularities is stable under blow-ups. Let us observe that the notion of
simple singularity is not only analytic, but formal: if ω1, ω2 are analytic 1-forms, and φ̂ is
a local diffeomorphism such that φ̂∗ω1 ∧ ω2 = 0, then ω1 has a simple singularity if and
only if ω2 has.

If the dimension of the ambient space is greater or equal than three, the notion of simple
singularity has been developed in [2,3], and its analytic classification studied in [6]. The
reduction of singularities is only achieved when the dimension of the ambient space is
at most three, and in this case, simple singularities are the final ones obtained after the
reduction process. Let us summarize here, for convenience of the reader, the main results
in dimension three.

First of all, let us recall the notion of “dimensional type.” A foliation has dimensional
type r if there exist analytic (resp. formal) coordinates such that the foliation is defined by
an integrable 1-form ω that can be written in coordinates x1, . . . , xr (r � n), but not less.
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So, a three-dimensional singularity of foliation has dimensional type 2 and 3. For instance,
if we are in presence of a Kupka phenomenon, the dimensional type is 2. The notions of
formal dimensional type or analytic dimensional type are equivalent, as seen in [6]. So, we
have simple singularities of dimensional types 2 and 3. If the dimensional type is 2, simple
singularities are defined by a simple 2-dimensional 1-form. They have 2 separatrices, of
which at most one is formal.

If the dimensional type is three, simple singularities are the ones that admit one of the
following formal normal forms:

ω = xyz

(
α

dx

x
+ β

dy

y
+ γ

dz

z

)
, (1)

with α/γ , β/γ , α/β /∈ Q− (and αβγ �= 0, as the dimensional type is 3). This is the lineariz-
able case. If, for instance, some of the quotients is not real, the linearization is analytic [4].

ωN = xyz
(
xpyqzr

)s
[
α

dx

x
+ β

dy

y
+

(
λ + 1

(xpyqzr)s

)(
p

dx

x
+ q

dy

y
+ r

dz

z

)]
, (2)

where p,q, r ∈ N, qr �= 0, s ∈ N∗, α, β constants, not both zero. This is the resonant case.
Several things can be said about foliations that are formally equivalent to this normal form:

(1) F has three separatrices, of which at most one is formal (which, in the preceding coor-
dinates, would be x = 0). This is a confluence of simple two-dimensional singularities
defined along the axis. Saddle-nodes only appear if p = 0, and only in this case the
existence of a formal, nonconvergent separatrix is possible.

(2) The holonomy group of z = 0 (strong separatrix) classifies analytically the foliation.
Moreover, the conjugations is fibered if the three separatrices are convergent.

(3) If α/β /∈ Q, there is a rigidity phenomenon: every such foliation is analytically equiv-
alent to ωN .

A typical case in which we are in presence of a simple singularity and that will appear
in the sequel, is when the foliation is defined by a 1-form

ω = xyz

[(
p + A(x,y, z)

) dx

x
+ (

q + B(x, y, z)
) dy

y
+ (

r + C(x, y, z)
) dz

z

]
, (3)

with p,q, r ∈ N∗, ν(A), ν(B), ν(C) > 0.
More can be said: the transformation φ that converts ω in its formal normal form ωN ,

even if it is not analytic, it is transversally formal and fibered. This means in particular that
such a φ can be found in the form

φ(x, y, z) = (
x, y,ϕ(x, y, z)

)
.

The existence of local holomorphic first integrals, according to Mattei and Moussu [14],
is equivalent to the periodicity of the holonomy group. Moreover, an integrable 1-form ω,
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that generates a reduced foliation of dimensional type three, has a holomorphic first integral
if and only if there exists analytic coordinates (x, y, z) such that

ω ∧ (pyzdx + qxzdy + rxy dz) = 0,

where p,q, r ∈ N∗.

3. Reduction of singularities and topology of the divisor

In this paper, we shall study the analytic classification of quasi-ordinary cuspidal fo-
liations in dimension three, i.e., foliations such that, in appropriate coordinates, can be
defined by an integrable 1-form

ω = d
(
z2 + xpyq

) + A(x,y) dz.

The integrability condition here is equivalent to d(xpyq) ∧ dA = 0. So, let d = gcd(p, q),
p = dp′, q = dq ′. Such a 1-form can be written as

ω = d
(
z2 + xpyq

) + (
xp′

yq ′)k
h
(
xp′

yq ′)
dz,

where h(u) ∈ C{u}, h(0) �= 0. Fixing p, q , we shall call Σpq the set of holomorphic folia-
tions that are analytically equivalent to the foliation defined by one of these 1-forms.

As it will become clear from the development of the paper, the separatrices of this
foliation have the equation

z2 + xpyq + h.o.t. = 0,

and Weierstrass preparation theorem and Tschirnhausen transformation show that this sep-
aratrix is analytically equivalent to z2 + xpyq = 0.

The reduction of singularities for these foliations is quite simple, similar to plane curves,
and the main objective of this section is their detailed analysis. For convenience, we divide
the problem in three cases:

Case 1. p, q even.
Case 2. p even, q odd.
Case 3. p, q odd.

Case 1. Suppose p, q are even and d = 2d ′. If k > d ′, the reduction of the singularities is
obtained after p+q

2 blow-ups:

(a) First of all, blow up p
2 times the y-axis. We obtain a sequence of divisors

D1, . . . ,Dp/2, topologically germs (P1
C

× C,P1
C
). The intersection of two consecutive

components is a germ of a line (C,0), Li = Di ∩ Di+1, 1 � i <
p
2 . In the appropriate

chart, these blow-ups have the equations
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⎧⎨⎩
x = x,

y = y,

ti−1 = x · ti ,

where t0 = z, 1 � i � p
2 .

(b) Then blow-up q
2 times the x-axis, obtaining again a sequence of divisors Dp/2+1, . . . ,

D(p+q)/2, topologically equal to (P1
C

× C,P1
C
). Again, the intersection between two con-

secutive components is a line Li = Di ∩ Di+1, p
2 + 1 � i <

p+q
2 . Now, the coordinates of

the blow-ups are ⎧⎨⎩
x = x,

y = y,

ti−1 = y · ti ,

with p
2 < i <

p+q
2 .

The result of the composition of all the blow-ups in the preceding charts is the map
π(x, y, t(p+q)/2) = (x, y, x

p
2 · y q

2 · t(p+q)/2). The pull-back of the foliation is given by

π∗ω = xp−1yq−1 ·
[

2xyt dt + (
t2 + 1

)
xy

(
p

dx

x
+ q

dy

y

)
+ (

xp′
yq ′)k−d ′

h
(
xp′

yq ′)
xyt ·

(
p

2

dx

x
+ q

2

dy

y
+ dt

t

)]
(here t = t(p+q)/2).

The foliation, now, is reduced. Let S be the singular locus of this reduced foliation. S
is an analytic, normal crossing space of dimension one, composed by (see Fig. 1):

(i) The lines Li of intersection of the divisors. These are resonant singular points of
dimensional type two.

(ii) The lines L, L′ in D(p+q)/2 of equations (y = 0, t = i), (y = 0, t = −i), and also the
lines M ′, M ′′ in Dp/2 of equations (x = 0, t = i), (x = 0, t = −i) (in the last chart).
These lines are the intersections of the two separatrices S′, S′′ with the divisors.

(iii) The intersection Pi := Dp/2 ∩ Di ,
p
2 < i � p+q

2 is a projective line composed of
points of dimensional type two, except at the corners:
(A) mi = Pi ∩Li = Dp/2 ∩Di ∩Di+1, p

2 < i <
p+q

2 . These are the resonant singular
points of dimensional type three, having Dp/2, Di , Di+1 as separatrices.

(B) m′ := Dp/2 ∩ D(p+q)/2 ∩ S′ = L′ ∩ M ′ ∩ P(p+q)/2, and

m′′ := Dq/2 ∩ D(p+q)/2 ∩ S′′ = L′′ ∩ M ′′ ∩ P(p+q)/2.

These are the resonant singular points of dimensional type three corresponding
to the separatrices of the foliations.
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Fig. 1. Final form in Case 1.

According to the preceding description of the resolution of the singularities, we have all
the information about the topology of Di \ S , and more precisely about the fundamental
group of these components. We have:

• D1 \ S is topologically C × C, so simply connected.
• Di \ S (1 < i <

p
2 ) is topologically C∗ × C. The generator of the fundamental group

is a loop γi that turns around Li (or γ −1
i around Li−1).

• Dp/2+1 \S ∼= C∗×C. The fundamental group is generated by a loop αi around Pp/2+1.
• Di \S ∼= C∗ ×C∗ ( p

2 +1 < i <
p+q

2 ). The fundamental group has generators γi around
Li and αi around Pi , that commute.

• D(p+q)/2 \S ∼= (C \ {m′,m′′}) × C∗. We have one loop α(p+q)/2 around P(p+q)/2 and
loops γ ′, γ ′′ around the separatrices (i.e., around m′, m′′).

• Dp/2 \ S ∼= C2 \ C, where C is the curve with coordinates t2
p/2 + yq = 0, composed

of two smooth branches that meet tangentially at the origin. In this case (see [10]),
π1(C

2 \ C) is the group, written in terms of generators and relations as

π1
(
C2 \ C) = 〈

α,β;α q
2 β = βα

q
2
〉
.

These loops go as follows. Consider the curve t2
p/2 + yq = 0 on C2, and cut by y = 1.

You obtain C \ {m′,m′′}; then α is a loop in y = 1 that turns around these two points
m′, m′′, and β is a loop in tp/2 = 0 that turns around the origin. At the end of the
reduction process, α is going to be a loop in Dp/2 around the two separatrices, and β

a loop around P(p+q)/2 “between S′ and S′′.”
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The case k = d ′ (2k = d) is almost identical, except for some values of the coefficient
h(0). More precisely, after p+q

2 blow-ups, in order to obtain the complete reduction of
singularities (i.e., simple singular points) it is necessary and sufficient that

h(0)2 �= (16 + r)2

16 + 2r
, ∀r ∈ Q>0.

Moreover, if in the preceding expression we put r = 0, we have then h(0) = ±4. In this
case, only one separatrix is obtained, but it is a three-dimensional saddle-node, the divisor
being the weak separatrix (then convergent). We shall assume that this is not the case, i.e.,
if k = d ′ we shall assume that

h(0)2 �= (16 + r)2

16 + 2r
, ∀r ∈ Q�0.

The reader may verify that this condition is equivalent to P2 property in [15,16] (i.e.,
h(0) �= ±2(

√
r + 1√

r
), ∀r ∈ (0,1] ∩ Q).

Suppose now that k < d ′. In this case, the reduction of singularities is achieved blowing-
up kp′ times the y-axis and kq ′ times the x-axis. After these, in the last chart we ob-
tain as singularities the sets L′ = (x = t = 0), M ′ = (y = t = 0), L′′ = (x = 0, t = 1),
M ′′ = (y = 0, t = 1). These are also two singular points of dimensional type three, namely
m′ = L′ ∩M ′ ∩Pk(p′+q ′), m′′ = L′′ ∩M ′′ ∩Pk(p′+q ′) (with analogous notations as before),
corresponding respectively to the points (0,0,0) and (0,0,1). But now m′′ is a saddle-
node, so the separatrix S′′ is maybe formal. In this paper, we shall assume that always S′′
is convergent, i.e., there is a center manifold.

Case 2. Suppose p even, q odd. If k > d , the reduction of singularities is obtained after the
following sequence of blow-ups.

(a) First, blow-up p
2 times the y-axis, obtaining divisors D1, . . . ,Dp/2 linked by lines

L1, . . . ,Lp/2−1. The equations of these blow-ups are⎧⎨⎩
x = x,

y = y,

ti = x · ti+1,

where t0 := z, i <
p
2 .

(b) Blow-up q−1
2 times the x-axis, obtaining Dp/2+1, . . . ,D(p+q−1)/2 joined by lines

Li = Di ∩ Di+1, and Di joined to Dp/2 by a projective Pi . The equations are⎧⎨⎩
x = x,

y = y,

ti = y · ti+1,

p � i <
p+q−1

.
2 2



260 P. Fernández-Sánchez, J. Mozo-Fernández / J. Differential Equations 226 (2006) 250–268
(c) It appears a tangency in the singular locus. In order to break it, blow-up again the
x-axis and take a chart centered in the point corresponding to t(p+q−1)/2. The equations
are now ⎧⎨⎩

x = x,

y = s · t(p+q−1)/2,

t(p+q−1)/2 = t(p+q−1)/2,

and we obtain a new component D′ such that D′ ∩ D(p+q−1)/2 = L(p+q−1)/2, D′ ∩
Dp/2 = P ′.

(d) Finally, blow-up again the x-axis, in order to obtain normal crossings. We obtain a
final component D′′ and the only separatrix S of the foliation cuts D′ transversely in a line
L (and Dp/2 in a line M). We have L′ = D′ ∩ D′′ and P ′′ = D′′ ∩ Dp/2.

The singular points of dimensional type three are

mi := Dp/2 ∩ Di ∩ Di+1
p

2
< i <

p + q − 1

2
,

m(p+q−1)/2 := Dp/2 ∩ D(p+q−1)/2 ∩ D′,

m′ = Dp/2 ∩ D′ ∩ D′′ and m = Dp/2 ∩ D′ ∩ S.

The topology of the components is as in Case 1 (see Fig. 2). If S is the singular locus,
D1 \ S ∼= C2 is simply connected, Di \ S ∼= C∗ × C if 1 < i <

p
2 , Dp/2+1 \ S ∼= C∗ × C,

Di \S ∼= C∗ × C∗ if p
2 + 1 < i <

p+q−1
2 , D′ \S ∼= (C \ {m,m′′})× C∗, D′′ \S ∼= C × C∗.

Finally, Dp/2 \S ∼= C2 \C, where C is the curve with coordinates t2
p/2 +yq = 0. As before,

π1
(
C2 \ C) = 〈

α,β;αq = β2〉.
When k < d , as in dimension two, the situation is as in Case 1, with k < d ′.

Case 3. p, q odd. Now, the resolution is something different than before. First, blow-up
p−1

2 times the y-axis and q−1
2 times the x-axis obtaining D1, . . . ,D(p−1)/2,D(p+1)/2, . . . ,

D(p+q)/2−1. In the new coordinates (x, y, t := t(p+q)/2−1) the singular locus is given by
the three coordinate axis, that corresponds to the intersection of the divisors and the inter-
section of the cone t2 + xy = 0 with the divisors.

Now, blow-up the origin, obtaining P , a projective P2
C

. The three coordinate axis, now
transverse to P , continue being singular. Over P , the singular locus is composed by two
projective lines and a conic tangent to both lines. In order to finish, blow-up twice each of
the axis x and y transverse to P , obtaining D′

(1), D′′
(1), D′

(2), D′′
(2) (see Fig. 3).

With respect to the topology of the divisors, the only interesting case (i.e., not similar
to the preceding ones) to comment is P \S . As we said before, P ∩S is composed by two
lines and a regular conic, so

π1(P \ S) ∼= 〈
α,β;α2β = βα2〉.
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Fig. 2. Final form in Case 2.

Fig. 3. Final form in Case 3.

4. Reduction of the separatrix to a canonical form

Let F be a germ of a singular foliation defined on (C3,0), and let π : (M,D) → (C3,0)

be the minimal reduction of the singularities of F in Cano–Cerveau sense, as described
above [3]. Let F̃ be the strict transform of the foliation F by π and let Di be a component
of the exceptional divisor D.

We recall, that a Hopf fibration HFΩ
adapted to FΩ ∈ ∑

pq is a holomorphic transversal
fibration f :M → Di to the foliation FΩ , i.e.:

(1) f is a retraction, more precisely, f is a submersion and f |Di
= IdDi

.
(2) The fibers f −1(p) of HFΩ

are contained in the separatrices of FΩ , for all p ∈ Di ∩
Sing(F̃Ω).
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(3) The fibers f −1(p) of HFΩ
are transversal to the foliation FΩ , for all p ∈ Di \

Sing(F̃Ω).

We shall be interested in finding a Hopf fibration adapted to the foliation, relative to
a particular component of the exceptional divisor. For, if p is even, call D̃ := Dp/2, i.e.,
the last component obtained after the first sequence of line blow-ups. If p and q are odd,
D̃ := P , i.e., the projective obtained after the (only) point blow-up.

The task of finding a Hopf fibration associated to the foliation FΩ is not easy in the
actual coordinates (x, y, z). As it is done in the two-dimensional case, to overcome this
obstacle, we analyze the desingularization of FΩ in order to obtain a simple equation for
the separatrices.

From Section 3 we know that the foliation FΩ ∈ Σpq defined by the one-form

Ω = d
(
z2 + (

xp′
yq ′)d) + (

xp′
yq ′)k

h
(
xp′

yq ′)
dz,

has a separatrix analytically equivalent to S : z2 + (xp′
yq ′

)r = 0 for some r ∈ N. In order to
find a Hopf fibration HF of the foliation F , we need to normalize the one-form Ω such that
the foliation defined by this normal form has exactly S : z2 + (xp′

yq ′
)r = 0 as separatrix,

for certain r . So, the strict transformed of S by the desingularization is an hyperplane in
these coordinates and invariant by Hopf fibration.

Proposition 1. The foliation FΩ is analytically equivalent to a foliation defined by the
one-form

d
(
z2 + (

xp′
yq ′)r) + g

(
xp′

yq ′
, z

)
.xp′

yq ′
z

(
2

dz

z
− p′ dx

x
− q ′ dy

y

)
,

where r = d if 2k � d and r = 2k if 2k < d . In particular, the separatrix of the foliation
FΩ is analytically equivalent to S: z2 + (xp′

yq ′
)r = 0.

Proof. The foliation FΩ is defined by the 1-form

Ω = d
(
z2 + (

xp′
yq ′)d) + (

xp′
yq ′)k

h
(
xp′

yq ′)
dz,

where (p, q) = d , p = p′d , q = q ′d . That is, Ω is the pull-back of the 1-form Ω0 =
d(z2 + ud) + ukh(u)dz by the ramified fibration

ρ :
(
C3,0

) → (
C2,0

)
, (x, y, z) → (

xp′
yq ′

, z
) = (u, z).

The equation of the separatrices of Ω is of the form z2 + ud + h.o.t. = 0 (if d is even,
this is a joint equation, i.e., the product of the two separatrices).

Using Weierstrass’ preparation theorem, we can assume that the local equation of the
separatrix is a polynomial in z: z2 +a(u)z+b(u) = 0, with a(0) = b(0) = 0. If Φ1(u, z) =
(u, z − a(u)/2) is the Tschirnhausen transformation, then the pull-back Φ∗

1 Ω0 has z2 +
c(u) = 0 as separatrix, with c(u) = b(u)−a(u)2/4 = urf (u), f (0) �= 0. If d > 2 (cuspidal
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case), we have that ν(a) > 1, ν(b) > 2, and then r > 2. In fact, r = d when 2k > d or
r = 2k when 2k � d (see [1,2,5]). Similar computations are valid when d = 1 or d = 2 (in
these cases, 2k � d).

Let us write this reduced equation of the separatrices as

z2

f (u)
+ ur = 0,

and let f (u)1/2 be a square root of the unit f (u). If Φ2(u, z) = (u, z · f (u)1/2), and Φ :=
Φ1 ◦ Φ2, then Φ∗Ω0 has z2 + ur = 0 as separatrix. This map has the form

Φ(u, z) =
(

u, z · f (u)1/2 − a(u)

2

)
.

Consider the diagram

C3
ρ

F

C2

Φ

C3
ρ

C2.

We want to find a diffeomorphism F = (F1,F2,F3) that makes commutative the dia-
gram, i.e., such that

(
F

p′
1 F

q ′
2 ,F3

) =
(

xp′
yq ′

, zf
(
xp′

yq ′) 1
2 − a(xp′

yq ′
)

2

)
.

For, we may choose F1 = x, F2 = y, F3 = z ·f (xp′
yq ′

)1/2 −a(xp′
yq ′

)/2. The form Φ∗Ω0,
having z2 + ur = 0 as a separatrix is, up to a unit, d(z2 + ur) + g(u, z)(2udz − dzdu), so
F ∗Ω0 defines the same foliation that

d
(
z2 + (

xp′
yq ′)r) + g

(
xp′

yq ′
, z

)
.xp′

yq ′
z

(
2
dz

z
− p′ dx

x
− q ′ dy

y

)
.

We reproduce part of the proof presented in [5] in order to find the transformation F

fibered. �
As a consequence of this normal form for FΩ , there exists coordinates (x, y, z), such

that the separatrix S of the normal form is given by the equation: z2 + (xp′
yq ′

)r = 0, where
r is as in the Proposition 1, and not only “analytically equivalent to.” Now, we can find a
Hopf fibration, from a holomorphic vector field X1 for which S is an invariant set, that is,

X1 =
{

x ∂
∂x

+ p
2 z ∂

∂z
, p is even,

x ∂ + y ∂ + (p+q )
z ∂ , p and q are odd.
∂x ∂y 2 ∂z
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So, we have that the Hopf fibration HFΩ
(f : M → D̃), adapted to the foliation defined by

the one-form Ω ∈ ∑
pq will be determined (not uniquely) by a linearizable singularity of

a holomorphic vector field X = X1 + X2 + · · ·.
Having defined a Hopf fibration adapted to FΩ , we can define the holonomy of the leaf

D̃ \ Sing(F̃Ω) respect to this fibration. In order to determine it, we fix a point p0 ∈ D̃ \
Sing(F̃Ω). Over this point we have a transversal f −1(p0) and by path lifting construction,
a representation of the fundamental group of D̃ \ Sing(F̃Ω) in Diff(C,0) is determined,
denoted by H

Ω,D̃

H
Ω,D̃

:π1
(
D̃ \ Sing(F̃Ω),p0

) → Diff(C,0).

This representation is independent of p0 modulo conjugacy and its image will be called
the exceptional holonomy and denoted H

Ω,D̃
.

5. Classification of the singularities

From Section 3 we know that the homotopy group π1(D̃ \ Sing(F̃Ω); t0) can be gener-
ated by two elements α and β in all the cases considered, with different relations in each
case:

(1) If p and q are even: α
q
2 β = βα

q
2 ,

(2) If p is even and q is odd: αq = β2,
(3) If p and q are odd: α2β = βα2.

If γ is an element of the homotopy group, let us denote hγ its image by the map H
Ω,D̃

in the exceptional holonomy. This holonomy can be generated by hα , hβ , which at least
satisfy the same relations than α, β . But in some cases, these relations may be improved.
The following proposition collects some of these improvements:

Proposition 2.

(1) If p is even, h
p
2
α = id.

(2) If p is even and q is odd, h
p
2
α = h

p′
β = id.

Proof. Consider p even. After p
2 blow-ups, the strict transform of the separatrix S is given

by a surface analytically equivalent to t2
p/2 +yq = 0. This singular surface is a cylinder over

a curve, that is either a cuspidal curve of characteristic pair (2, q) or a couple of regular
curves tangent at the origin at order q

2 . Applying Picard–Lefschetz techniques, it can be
seen that the loop α is a simple curve contained in the plane y = ε, with |ε| small enough,
that turns around the points (t, y) = (±i · ε

q
2 , ε). Thus, the holonomy hα is completely

determined by the holonomy of a loop that turns around the line Dp/2−1 ∩Dp/2. Along this
line, the foliation is a reduced foliation of dimensional type 2 (in fact, we are in presence
of a Kupka phenomenon), and its analytic type is determined by a two-dimensional section
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transversal to the y-axis. This foliation has a linearizable, periodic holonomy, and h′
α(0) =

e
−2πi· p−2

p .
If, moreover, q is odd, the periodicity of hα implies the periodicity of hβ , and so, hβ is

linearizable, h′
β(0) = e2πiq ′/p′

. Nevertheless, it does not mean necessary that the holonomy
group H

Ω,D̃
is linearizable, since in particular we don’t know if it is abelian or not. �

The following theorem contains the main result of the paper. In the proof, several tech-
niques from [1,5,6,15] are frequently used, and we shall not enter in details about them.

Theorem 1. Let Ω1, Ω2 be elements of
∑

pq . Consider the foliations FΩ1 and FΩ2 , and

their exceptional holonomies H
Ωi,D̃

= 〈hi
α,hi

β〉, i = 1,2, defined as before. Then, the foli-

ations are analytically conjugated if and only if the couples (hi
α, hi

β) are also analytically

conjugated, i.e., if and only if there exists Ψ ∈ Diff(C,0) such that Ψ ∗h1
γ = h2

γ , where
γ = α,β .

Proof. If the foliations are conjugated then clearly their exceptional holonomies are also
conjugated. Conversely, suppose that the exceptional holonomies are conjugated via Ψ ,
and let F̃Ω1 , F̃Ω2 be the desingularized, reduced foliations. Because of the existence of
the Hopf fibration relative to D̃, Ψ can be extended to a neighbourhood of D̃, away from
the singular points. These singular points are the intersections of D̃ with the other compo-
nents of the divisor, and with the separatrix (the separatrices in the even–even case). All
these points are singular points of dimensional types two or three, and for all of them, D̃

is a strong separatrix. In this situation, the conjugation of the holonomies of D̃ implies
conjugation of the reduced foliations in a neighbourhood of the singular points [6].

So, we have that F̃Ω1 , F̃Ω2 are conjugated in a neighbourhood of D̃. Suppose now that
p is even. We need to conjugate the foliations also in a neighbourhood of D1, . . . ,Dp/2−1.
As D1 is simply connected, its holonomy is trivial. So, the holonomy of D2, generated by
one loop around L1 = D1 ∩ D2 is periodic (the argument is the same as in [14]). The same
argument shows that Di has a periodic holonomy, 1 � i <

p
2 , and so, the foliations have

first integrals in a neighbourhood of each Li , 1 � i <
p
2 . These are points of dimensional

type two. By analogous reasons as in the two-dimensional case, Ψ can be extended to a
neighbourhood of the exceptional divisor, so, FΩ1 , FΩ2 are conjugated outside the singular
locus, which has codimension two. We conclude using Hartogs’ theorem to extend the
conjugation to a neighbourhood of the origin.

Suppose now that p, q are odd. F̃Ω1 and F̃Ω2 are conjugated in a neighbourhood of
D̃ (that is a projective P2

C
in this case). The fundamental group of D(p−1)/2 is generated

by only one loop, that, after the resolution, can be seen as a loop around D(p−1)/2 ∩ D′′
(1).

This is one of the loops that generates the holonomy of D(p−1)/2 locally at the reduced
singular points, and following similar arguments as in the preceding cases, and as the two-
dimensional case, the foliation is linearizable around these points. Let us detail, in this
case, how the use of first integrals allows the extension of the conjugation.

Consider, for instance, the singular point D(p−1)/2 ∩ D(p+q)/2−2 ∩ D(p+q)/2−1, with
coordinates (x′, s′, t ′) as in Fig. 4.
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Fig. 4. Coordinates (x′, s′, t ′) the singular point D(p−1)/2 ∩ D(p+q)/2−2 ∩ D(p+q)/2−1.

We have a conjugation Ψ between the foliations FΩ1 and FΩ2 defined over an annulus{|x′| < ε
} × {|s′| < ε

} × {
c1 < |t ′| < c2

}
that respects the fibration. In these coordinates, the foliation is given by x′t ′ = cst., s′t ′2 =
cst., and the first integral of FΩj

is x′p−1s′q−1t ′q−3 · Uj (x
′, s′, t ′), Uj (0) = 1. This first

integral may be extended to{|x′| < ε
} × {|s′| < ε

} × {|t ′| < c
}
,

where c1 < c, eventually making ε small enough. We look first for a diffeomorphism Ψj

that transforms this first integral into x′p−1s′q−1t ′q−3, respecting the fibration. This diffeo-
morphism is

Ψj (x
′, s′, t ′) = (x′ · V1j , s

′ · V2j , t
′ · V3j ),

and the conditions mean that

V
p−1
1 · V q−1

2 · V q−3
3 = Uj , V1 · V3 = 1, V2 · V 2

3 = 1.

So, V1j = U
−(p+q)
j ; V2j = U

−2(p+q)
j ; V3j = U

p+q
j .

Consider now the diffeomorphism Ψ̃ := Ψ1 ◦Ψ ◦Ψ −1
2 . It respects both the fibration and

the first integral x′p−1s′q−1t ′q−3. Write Ψ̃ = (θ1, θ2, θ3). The conditions above mean that

θ1 · θ3 = x′t ′, θ2 · θ2
3 = s′t ′2,

θ
p−1
1 · θq−1

2 · θq−3
3 = x′p−1s′q−1t ′q−3 · g(

x′p−1s′q−1t ′q−3),
with g(0) �= 0. As before, we have that θ1 = x′ ·g−(p+q); θ2 = s′ ·g−2(p+q); θ3 = t ′ ·gp+q .
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This is a map defined, in the considered chart, over a set of the type {|x′p−1s′q−1t ′q−3|
< ε}, and this set intersects the domain of definition of Ψ . So, Ψ = Ψ −1

1 ◦ Ψ̃ ◦ Ψ2 may be
extended to a neighbourhood of L(p+q)/2−1 = D(p−1)/2 ∩ D(p+q)/2−1.

Repeating the argument, we extend the conjugation to a neighbourhood of D(p−1)/2 ∩
(D(p+1)/2 ∪ · · · ∪ D(p+q)/2). Now, similar arguments as in the preceding situations, and as
in the two-dimensional case, allow us to extend Ψ to a neighbourhood of the exceptional
divisor, and again Hartogs’ theorem completes the result. �
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