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Abstract

In this paper, based on the notion of Gauge/Gravity duality, we explore the laws of entanglement thermo-
dynamics for most generic classes of Quantum Field Theories with hyperscaling violation. In our analysis, 
we note that for Quantum Field Theories with compressible quark like excitation, the first law of entangle-
ment thermodynamics gets modified due to the presence of an additional term that could be identified as 
the entanglement chemical potential associated with hidden Fermi surfaces of the boundary theory. Most 
notably, we find that the so called entanglement chemical potential does not depend on the size of the 
entangling region and is purely determined by the quark d.o.f. encoded within the entangling region.
© 2016 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Overview and motivation

In the recent years, the holographic models for non-relativistic Quantum Field Theories with 
hyperscaling violation [1–12] has been found to provide an excellent theoretical framework in 
order to describe compressible states of quark matter (distributed over the so called hidden Fermi 
surfaces) at strong coupling [13–15]. It turns out that for theories with holographic metals [16,
17], the total charge density (associated with the boundary theory) largely dominates over that of 
the volume enclosed by the Fermi surfaces. In [18,19], the authors argue that such a deficit could 
be made up by considering hidden Fermi surfaces of fractionalized deconfined charged fermionic 
excitation known as quarks.
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In a recent paper [13], the authors first pointed out that the presence of such compressible 
states of quark matter could be identified by computing the holographic entanglement entropy 
(HEE) [20,21] for the boundary theory, which instead of showing the usual area divergence, 
exhibits the so called logarithmic divergence. These arguments were further sharpened by the 
authors in [14], who showed that an emerging infra-red geometry with arbitrary dynamic expo-
nent (z) and hyperscaling violating parameter (θ ) precisely characterizes the presence of such 
compressible quark matter excitation distributed over the hidden Fermi surfaces of the boundary 
theory.

The most natural question that arises in this context is whether there exists any notion of so 
called entanglement thermodynamics [22–29] for small subsystems associated with these hidden 
Fermi surfaces of compressible quark excitation. In other words, whether one could possibly 
write down some version of the first law of entanglement thermodynamics in the presence of 
these fractionalized charged fermionic excitation. Now, in the presence of these additional quan-
tum numbers (fermionic d.o.f.), the first law of entanglement thermodynamics must be modified 
in order to include a term which should be analogous to that of the chemical potential term associ-
ated with the standard first law of thermodynamic. The question therefore turns out to be whether 
one could define such an entity (which we call entanglement chemical potential) associated with 
hidden Fermi surfaces that leads to a modified first law of entanglement thermodynamics and if 
such an entity exits then whether it is universal in the same sense as that of the entanglement tem-
perature. The purpose of the present article is to provide a systematic answer to these questions 
based on some concrete holographic computations.

The organization of the paper is the following: In Section 2, we provide details regarding the 
gravitational set up in the bulk. In Section 3, we explore the modified first law of entanglement 
thermodynamics and compute the entanglement chemical potential associated with compressible 
states of quark matter. Finally, we conclude in Section 4.

2. The background

We start our analysis with a formal description to the gravitational solution in the bulk space-
time. The action that typically one considers is of the following form [30],

S = SEH + SM

SEH = 1

16πGN

∫
M

dd+2x
√−gR + 1

8πGN

∫
∂M

dd+1x
√−hK

SM = 1

16πGN

∫
M

dd+2x
√−g

[
−1

2
(∂�)2 + V (�) − eλ1�

4
H 2 + eλ2�

4
(−F 2)s

]
(1)

where, H 2 = HmnH
mn and F 2 = FmnF

mn are the field strength tensors corresponding to two 
Abelian one forms Bm and Am respectively. The first Abelian two form (Hmn) coupled with the 
dilaton (�) generates the desired asymptotic solution of the Lifshitz type. On the other hand, the 
second Maxwell field (Fmn) gives rise to the non-linear charged Lifshitz black brane configura-
tion. Here, V (�)(= −2�eγ�) is the so called exponential potential for the dilaton.
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To proceed further, in our analysis we set d = 2. With this the resulting expression for (non-
linear) charged hyperscaling violating Lifshitz configuration turns out to be1 [30],

ds2 = r−θ

(
−r2zf (r)dt2 + dr2

r2f (r)
+ r2(dx2 + dy2)

)

f (r) = 1 − M
rz+2−θ

+ KQ
2s

2s−1

rζ+2+z−θ
, ζ = z − 2 + 2 − θ

2s − 1

K= (2s − 1)r
2(z−1−θ/2)

0

4(2 − θ)ζ
2

s
2s−1 (16π)

2s
2s−1 (2)

where, M is the mass and Q is the U(1) charge of the black brane.
The Hawking temperature [30] corresponding to the above black brane configuration (2) turns 

out to be,

TH = (2 + z − θ)rz
H

4π

[
1 − ζKQ2s/2s−1

2 + z − θ
r
−(2+ζ+z−θ)
H

]
. (3)

On the other hand, the entropy density of the black brane turns out to be,

s = r2−θ
H

4GN

. (4)

Combining (3) and (4), the energy density [30] finally turns out to be,

ε = (2 − θ)r2+z−θ
H

16πGN

(
1 + KN 2s/2s−1

V2s/2s−1
2

r
−(2+ζ+z−θ)
H

)
(5)

where, we have used the fact that the charge (density) of the black brane is dual to the quark
number density (N /V2) for the boundary field theory [30].

Before we proceed further, let us first adopt some suitable radial coordinate (variable) namely, 
u = rH /r such that the horizon of the black brane is placed at u = 1 and the boundary of the space 
time is located near u → 0. With this choice of coordinates, the corresponding black brane metric 
(2) turns out to be,

ds2 =
(

u

rH

)θ
(

−
( rH

u

)2z

f (u)dt2 + du2

u2f (u)
+ r2

H

u2
(dx2 + dy2)

)

f (u) = 1 −M
(

u

rH

)z+2−θ

+KQ
2s

2s−1

(
u

rH

)ζ+2+z−θ

(6)

which should be regarded as the starting point for our subsequent analysis.2

1 Here, θ is the hyperscaling violating exponent and z is the so called dynamic critical exponent. For the moment we 
skip details regarding the gauge fields as well as the dilation profile as they are not directly required for the present 
analysis. Interested reader may have a look for their details in [30].

2 Although throughout this paper we would try to keep our analysis to be most generic, however, since the ultimate 
goal of our analysis is to explore the entanglement thermodynamics associated with the (hidden) Fermi surfaces of the 
boundary theory, therefore, in our analysis we would finally set, θ = d − 1 = 1 [13,14] along with, z = 2 and s = 1. Our 
choice of s precisely corresponds to the fact that we are dealing with the linear Maxwell theory instead that of the Power 
Maxwell theory which we had started with. However, one could in principle choose other values of s as well and that 
should not affect any of the physical consequences of the theory.
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3. Entanglement thermodynamics

The holographic definition of entanglement entropy could be formally expressed as [20],

SA = Area(γA)

4GN

(7)

where, γA is the measure of the minimal area of the surface that ends on the boundary.
In order to compute the holographic entanglement entropy (HEE), we consider our subsystem 

to be a strip of size, V2 = Ll where, 0 < x < l and −L/2 < y < L/2 such that, l � L. We 
parametrize the minimal surface by, x = x(u) which yields the area of the extremal surface,

Area = 2L

rH

uT∫
ε

du
( rH

u

)2−θ

√
1

f (u)(1 − (u/uT )2(2−θ))
(8)

as well as the length of the strip as,

l = 2

rH

uT∫
0

du

(
u

uT

)2−θ
√

1

f (u)(1 − (u/uT )2(2−θ))
(9)

where, u = uT corresponds to the turning point of the extremal surface (γA).

3.1. Case I: Q = 0

In order to proceed further we first consider the uncharged case namely, Q = 0. Under such 
circumstances, turning on M essentially corresponds to thermal excitation about the Fermi sea. 
Considering l to be very small (i.e, uT /rH � 1) and expanding f (u) perturbatively in M, from 
(9) we find,

l

2
=

√
πuT �

(
3−θ

2(2−θ)

)
2rH (2 − θ)�

(
5−2θ

2(2−θ)

) +
√

πMuz+3−θ
T

4(2 − θ)rz+3−θ
H

�
(

5+z−2θ
2(2−θ)

)
�

(
7+z−3θ
2(2−θ)

) . (10)

On the other hand, from (8) we find,

SA = S(0)
A + SA (11)

where, S(0)
A ∼ log(ε/ l) is the usual Log divergence associated with the hidden Fermi surfaces 

where ε is the so called UV cut-off of the theory [13]. On the other hand, the change in HEE 
turns out to be,

SA =
√

πMLuz+1
T

8GN(2 − θ)rz+1
H

�
(

1+z
2(2−θ)

)
�

(
3+z−θ
2(2−θ)

) (12)

which by virtue of (10) could be formally expressed as,

SA ≈ MLlz+1(2 − θ)z

8GN(
√

π)z

�
(

1+z
2(2−θ)

)
�

(
3+z−θ

)
⎡
⎣�

(
5−2θ

2(2−θ)

)
�

(
3−θ

)
⎤
⎦

z+1

. (13)
2(2−θ) 2(2−θ)
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Using (5) and (13), the entanglement temperature finally turns out to be,

TE = E
SA

= V2ε

SA

= cl−z (14)

where,

c = πz/2−1

2(2 − θ)z−1

⎡
⎣�

(
1+z

2(2−θ)

)
�

(
3+z−θ
2(2−θ)

)
⎤
⎦

−1 ⎡
⎣�

(
5−2θ

2(2−θ)

)
�

(
3−θ

2(2−θ)

)
⎤
⎦

−(z+1)

. (15)

Finally, for θ = d − 1 = 1 and, z = 2 the entanglement temperature associated with the so 
called hidden Fermi surfaces could be trivially found to be,

T
(F)
E = c(F )l−2 (16)

where,

c(F ) = 4

(
√

π)3
. (17)

Eq. (16) precisely determines the universal entanglement temperature associated with so 
called Fermi surfaces of the boundary theory at strong coupling and zero chemical potential. 
The value of the universal constant c(F ) is fixed by the shape of the entangling region, which for 
the present example turns out to be the thin rectangular strip.

In the next subsection, we move on to the scenario with finite chemical potential which allows 
us to consider situations like exciting the system by creating particles even at zero temperature 
and therefore to check the validity of the laws of entanglement thermodynamics associated with 
Fermi surfaces at finite chemical potential.

3.2. Case II: Q �= 0

In this section, we explore the entanglement thermodynamics associated with (hidden) Fermi 
surfaces in the presence of additional conserved (global U(1)) charges and/or finite number den-
sity of particles in the theory. There could be two possible scenarios under such circumstances 
namely, one could consider the change in entanglement entropy due to the change in temperature 
at finite charge density and vice versa. In the following we consider them one by one.

We first compute the change in the HEE due to the change in temperature (TH ) at fixed quark 
number density (NA) encoded within the subsystem (A). To do that, we first write down the 
entity, SA at finite temperature and charge density,

SA(TH ,NA) ≈ Lrz+2−θ
H lz+1(2 − θ)z

8GN(
√

π)z

�
(

1+z
2(2−θ)

)
�

(
3+z−θ
2(2−θ)

)
⎡
⎣�

(
5−2θ

2(2−θ)

)
�

(
3−θ

2(2−θ)

)
⎤
⎦

z+1

×
(

1 + KN 2
A

V2
2

r
−2(1+z−θ)
H

)
− Ll2z+1−θ (2 − θ)2z−θKN 2

A

8GNV2
2 (

√
π)2z−θ

×
�

(
1+2z−θ
2(2−θ)

)
�

(
3+2z−2θ

)
⎡
⎣�

(
5−2θ

2(2−θ)

)
�

(
3−θ

)
⎤
⎦

2z+1−θ

. (18)
2(2−θ) 2(2−θ)
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Next, we note down the corresponding change at zero temperature and finite particle density 
namely,

SA(TH = 0,NA) ≈ Lr
(0)z+2−θ
H lz+1(2 − θ)z

8GN(
√

π)z

�
(

1+z
2(2−θ)

)
�

(
3+z−θ
2(2−θ)

)
⎡
⎣�

(
5−2θ

2(2−θ)

)
�

(
3−θ

2(2−θ)

)
⎤
⎦

z+1

×
(

1 + KN 2
A

V2
2

r
−(0)2(1+z−θ)
H

)
− Ll2z+1−θ (2 − θ)2z−θKN 2

A

8GNV2
2 (

√
π)2z−θ

×
�

(
1+2z−θ
2(2−θ)

)
�

(
3+2z−2θ
2(2−θ)

)
⎡
⎣�

(
5−2θ

2(2−θ)

)
�

(
3−θ

2(2−θ)

)
⎤
⎦

2z+1−θ

. (19)

Using (18) and (19), we finally obtain the change in entanglement variation (at fixed particle 
number density) as,

SA|NA
= SA(TH ,NA) − SA(TH = 0,NA)

= Llz+1(2 − θ)z

8GN(
√

π)z

�
(

1+z
2(2−θ)

)
�

(
3+z−θ
2(2−θ)

)
⎡
⎣�

(
5−2θ

2(2−θ)

)
�

(
3−θ

2(2−θ)

)
⎤
⎦

z+1

�(rH ) (20)

where,

�(rH ) = rz+2−θ
H

(
1 + KN 2

A

V2
2

r
−2(1+z−θ)
H

)
− r

(0)z+2−θ
H

(
1 + KN 2

A

V2
2

r
−(0)2(1+z−θ)
H

)
. (21)

Similar calculations for the energy density (5) yields,

ε|NA
= (2 − θ)

16πGN

�(rH ). (22)

Eqs. (20) and (22) could be combined together in order to yield the first law of Entanglement 
thermodynamics namely,

E |NA
= TE SA|NA

(23)

where TE is the entanglement temperature as defined above in (14).
We next move on to the second scenario where one could possibly have a variation in the 

entanglement entropy due to the variation in the particle number within the system itself. To do 
that, as first step of our analysis, from (3) we note that,

TH = 0 ⇒ rH = 2(z − θ)KNAr
−(1+2z−2θ)
H

zV2
2 (2 + z − θ)

(
1 + (z−θ)KN 2

A(2+z−2θ)

zV2
2 (2+z−θ)

r
−2(1−θ+z)
H

)NA. (24)

Using (24), from (18) we finally obtain,

SA|TH

NA

=
⎡
⎣�

(
5−2θ

2(2−θ)

)
�

(
3−θ

)
⎤
⎦

z+1 ⎡
⎣��

(
1+z

2(2−θ)

)
�

(
3+z−θ

) − l2z−1−θ (2 − θ)2z−θKNA

4GNL(
√

π)2z−θ
2(2−θ) 2(2−θ)
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×
�

(
1+2z−θ
2(2−θ)

)
�

(
3+2z−2θ
2(2−θ)

)
⎡
⎣�

(
5−2θ

2(2−θ)

)
�

(
3−θ

2(2−θ)

)
⎤
⎦

z−θ
⎤
⎥⎦ (25)

where,

� =
KNA(z − θ)r−z+θ

H lz−1(2 − θ)z
(

1 + z(θ−z)KN 2
Ar

−2(1−θ+z)
H

L2l2(z+2−θ)

)

4GNL(
√

π)zz

(
1 + (z−θ)KN 2

A(2+z−2θ)

zL2l2(2+z−θ)
r
−2(1−θ+z)
H

)

+ lz−1KNA(2 − θ)zr−z+θ
H

4GNL(
√

π)z
. (26)

On the other hand, performing similar variations in (5) we find,

V2ε|TH

NA

= (2 − θ)

16πGN

×

⎛
⎜⎜⎝

2(z − θ)KNAr−z+θ
H

(
1 + z(θ−z)KN 2

Ar
−2(1−θ+z)
H

L2l2(z+2−θ)

)

zLl

(
1 + (z−θ)KN 2

A(2+z−2θ)

zL2l2(2+z−θ)
r
−2(1−θ+z)
H

) + 2KNAr−z+θ
H

Ll

⎞
⎟⎟⎠ . (27)

Using (14), one could in fact combine (25) and (27) into a nice identity, namely the first law 
of entanglement thermodynamics,

TESA|TH
= E |TH

− μENA (28)

where,

μE = KNA(2 − θ)z−θ+1

8π1+(z−θ)/2GNLl1+θ−z

�
(

1+2z−θ
2(2−θ)

)
�

(
3+2z−2θ
2(2−θ)

)
⎡
⎣�

(
5−2θ

2(2−θ)

)
�

(
3−θ

2(2−θ)

)
⎤
⎦

z−θ ⎡
⎣�

(
1+z

2(2−θ)

)
�

(
3+z−θ
2(2−θ)

)
⎤
⎦

−1

(29)

is the most general form of the entanglement chemical potential associated with holographic 
Lifshitz theories in the presence of hyperscaling violation. Eq. (29), therefore suggests that for 
generic hyperscaling violating theories (with arbitrary z and θ ) the entanglement chemical po-
tential is universal, namely it is determined by the size of the entangling region,

μE ∼NAlz−θ−1. (30)

However, we encounter a surprise for a theory with holographic (hidden) Fermi surfaces (with, 
z = 2 and θ = 1), where we find that unlike the case for the entanglement temperature, the 
entanglement chemical potential does not at all depend on the size of the entangling region 
namely,

μ
(F)
E = KNA

6π2GNL
(31)

which therefore suggests that the entanglement chemical potential associated with hidden Fermi 
surfaces of compressible quark matter is directly proportional to the total number of quark ex-
citation encoded within the entangling region. Therefore, this leads to the following conclusion 
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that for sufficiently small entangling regions, the entanglement chemical potential associated 
with (holographic) Fermi surfaces is independent that of the size of the entangling region and is 
determined solely due to the fractionalized fermionic d.o.f. associated with compressible quark 
matter distributed over the hidden Fermi surfaces.

4. Summary and final remarks

We now summarize the key findings of our analysis. In the present paper, we consider holo-
graphic models that describe compressible quark like excitation distributed over hidden Fermi 
surfaces of the boundary theory and explore the laws of entanglement thermodynamics associ-
ated with small subsystems in such a configuration. The upshot of our analysis is the following: 
We note that in the presence of fermionic excitation, one could associate quantities like entan-
glement chemical potential with that of the hidden Fermi surfaces of the theory and indeed write 
down a modified version of the usual entanglement thermodynamics. Throughout this paper we 
keep our analysis to be most generic. However, as a surprise, for small entangling regions, we 
note that the so called entanglement chemical potential associated with compressible quark ex-
citation does not depend on the size of the entangling region and is solely determined by the 
total number of quark excitation encoded within that subsystem. This turns out to be the main 
result of our analysis and it clearly categories a theory with hidden Fermi surfaces into a separate 
universality class from that of the other non-conformal theories those have been studied earlier 
in the literature [27].

Acknowledgement

The author would like to acknowledge the financial support from UGC (Project No.
UGC/PHY/2014236).

References

[1] X. Dong, S. Harrison, S. Kachru, G. Torroba, H. Wang, Aspects of holography for theories with hyperscaling 
violation, J. High Energy Phys. 1206 (2012) 041, http://dx.doi.org/10.1007/JHEP06(2012)041, arXiv:1201.1905 
[hep-th].

[2] M. Alishahiha, A.F. Astaneh, P. Fonda, F. Omidi, Entanglement entropy for singular surfaces in hyperscal-
ing violating theories, J. High Energy Phys. 1509 (2015) 172, http://dx.doi.org/10.1007/JHEP09(2015)172, 
arXiv:1507.05897 [hep-th].

[3] M. Alishahiha, E.O. Colgain, H. Yavartanoo, Charged black branes with hyperscaling violating factor, J. High 
Energy Phys. 1211 (2012) 137, http://dx.doi.org/10.1007/JHEP11(2012)137, arXiv:1209.3946 [hep-th].

[4] M. Alishahiha, H. Yavartanoo, On holography with hyperscaling violation, J. High Energy Phys. 1211 (2012) 034, 
http://dx.doi.org/10.1007/JHEP11(2012)034, arXiv:1208.6197 [hep-th].

[5] M. Alishahiha, A.F. Astaneh, M.R.M. Mozaffar, Thermalization in backgrounds with hyperscaling violating factor, 
Phys. Rev. D 90 (4) (2014) 046004, http://dx.doi.org/10.1103/PhysRevD.90.046004, arXiv:1401.2807 [hep-th].

[6] J. Gath, J. Hartong, R. Monteiro, N.A. Obers, Holographic models for theories with hyperscaling violation, J. High 
Energy Phys. 1304 (2013) 159, http://dx.doi.org/10.1007/JHEP04(2013)159, arXiv:1212.3263 [hep-th].

[7] D. Roychowdhury, Holography for anisotropic branes with hyperscaling violation, J. High Energy Phys. 1601 
(2016) 105, http://dx.doi.org/10.1007/JHEP01(2016)105, arXiv:1511.06842 [hep-th].

[8] M. Edalati, J.F. Pedraza, W. Tangarife Garcia, Quantum fluctuations in holographic theories with hyperscaling 
violation, Phys. Rev. D 87 (4) (2013) 046001, http://dx.doi.org/10.1103/PhysRevD.87.046001, arXiv:1210.6993 
[hep-th].

[9] P. Bueno, W. Chemissany, P. Meessen, T. Ortin, C.S. Shahbazi, Lifshitz-like solutions with hyperscaling viola-
tion in ungauged supergravity, J. High Energy Phys. 1301 (2013) 189, http://dx.doi.org/10.1007/JHEP01(2013)189, 
arXiv:1209.4047 [hep-th].

http://dx.doi.org/10.1007/JHEP06(2012)041
http://dx.doi.org/10.1007/JHEP09(2015)172
http://dx.doi.org/10.1007/JHEP11(2012)137
http://dx.doi.org/10.1007/JHEP11(2012)034
http://dx.doi.org/10.1103/PhysRevD.90.046004
http://dx.doi.org/10.1007/JHEP04(2013)159
http://dx.doi.org/10.1007/JHEP01(2016)105
http://dx.doi.org/10.1103/PhysRevD.87.046001
http://dx.doi.org/10.1007/JHEP01(2013)189


344 D. Roychowdhury / Nuclear Physics B 909 (2016) 336–344
[10] J. Sadeghi, B. Pourhasan, F. Pourasadollah, Thermodynamics of Schrödinger black holes with hyperscaling viola-
tion, Phys. Lett. B 720 (2013) 244, http://dx.doi.org/10.1016/j.physletb.2013.02.011, arXiv:1209.1874 [hep-th].

[11] P. Dey, S. Roy, Lifshitz metric with hyperscaling violation from NS5–Dp states in string theory, Phys. Lett. B 720 
(2013) 419, http://dx.doi.org/10.1016/j.physletb.2013.02.039, arXiv:1209.1049 [hep-th].

[12] B.S. Kim, Schródinger holography with and without hyperscaling violation, J. High Energy Phys. 1206 (2012) 116, 
http://dx.doi.org/10.1007/JHEP06(2012)116, arXiv:1202.6062 [hep-th].

[13] N. Ogawa, T. Takayanagi, T. Ugajin, Holographic Fermi surfaces and entanglement entropy, J. High Energy Phys. 
1201 (2012) 125, http://dx.doi.org/10.1007/JHEP01(2012)125, arXiv:1111.1023 [hep-th].

[14] L. Huijse, S. Sachdev, B. Swingle, Hidden Fermi surfaces in compressible states of gauge-gravity duality, Phys. 
Rev. B 85 (2012) 035121, http://dx.doi.org/10.1103/PhysRevB.85.035121, arXiv:1112.0573 [cond-mat.str-el].

[15] E. Shaghoulian, Holographic entanglement entropy and Fermi surfaces, J. High Energy Phys. 1205 (2012) 065, 
http://dx.doi.org/10.1007/JHEP05(2012)065, arXiv:1112.2702 [hep-th].

[16] H. Liu, J. McGreevy, D. Vegh, Non-Fermi liquids from holography, Phys. Rev. D 83 (2011) 065029, http://
dx.doi.org/10.1103/PhysRevD.83.065029, arXiv:0903.2477 [hep-th].

[17] S.S. Lee, A non-Fermi liquid from a charged black hole: a critical Fermi ball, Phys. Rev. D 79 (2009) 086006, 
http://dx.doi.org/10.1103/PhysRevD.79.086006, arXiv:0809.3402 [hep-th].

[18] L. Huijse, S. Sachdev, Fermi surfaces and gauge-gravity duality, Phys. Rev. D 84 (2011) 026001, http://dx.doi.org/
10.1103/PhysRevD.84.026001, arXiv:1104.5022 [hep-th].

[19] S. Sachdev, Holographic metals and the fractionalized Fermi liquid, Phys. Rev. Lett. 105 (2010) 151602, http://
dx.doi.org/10.1103/PhysRevLett.105.151602, arXiv:1006.3794 [hep-th].

[20] S. Ryu, T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 
181602, http://dx.doi.org/10.1103/PhysRevLett.96.181602, arXiv:hep-th/0603001.

[21] S. Ryu, T. Takayanagi, Aspects of holographic entanglement entropy, J. High Energy Phys. 0608 (2006) 045, 
http://dx.doi.org/10.1088/1126-6708/2006/08/045, arXiv:hep-th/0605073.

[22] J. Bhattacharya, M. Nozaki, T. Takayanagi, T. Ugajin, Thermodynamical property of entanglement entropy 
for excited states, Phys. Rev. Lett. 110 (9) (2013) 091602, http://dx.doi.org/10.1103/PhysRevLett.110.091602, 
arXiv:1212.1164.

[23] N. Lashkari, M.B. McDermott, M. Van Raamsdonk, Gravitational dynamics from entanglement ‘thermodynamics’, 
J. High Energy Phys. 1404 (2014) 195, http://dx.doi.org/10.1007/JHEP04(2014)195, arXiv:1308.3716 [hep-th].

[24] D. Allahbakhshi, M. Alishahiha, A. Naseh, Entanglement thermodynamics, J. High Energy Phys. 1308 (2013) 102, 
http://dx.doi.org/10.1007/JHEP08(2013)102, arXiv:1305.2728 [hep-th].

[25] G. Wong, I. Klich, L.A. Pando Zayas, D. Vaman, Entanglement temperature and entanglement entropy of excited 
states, J. High Energy Phys. 1312 (2013) 020, http://dx.doi.org/10.1007/JHEP12(2013)020, arXiv:1305.3291 [hep-
th].

[26] D.W. Pang, Entanglement thermodynamics for nonconformal D-branes, Phys. Rev. D 88 (12) (2013) 126001, 
http://dx.doi.org/10.1103/PhysRevD.88.126001, arXiv:1310.3676 [hep-th].

[27] C. Park, Holographic entanglement entropy in the nonconformal medium, Phys. Rev. D 91 (12) (2015) 126003, 
http://dx.doi.org/10.1103/PhysRevD.91.126003, arXiv:1501.02908 [hep-th].

[28] S. Chakraborty, P. Dey, S. Karar, S. Roy, Entanglement thermodynamics for an excited state of Lifshitz system, 
J. High Energy Phys. 1504 (2015) 133, http://dx.doi.org/10.1007/JHEP04(2015)133, arXiv:1412.1276 [hep-th].

[29] S. He, D. Li, J.B. Wu, Entanglement temperature in non-conformal cases, J. High Energy Phys. 1310 (2013) 142, 
http://dx.doi.org/10.1007/JHEP10(2013)142, arXiv:1308.0819 [hep-th].

[30] M.H. Dehghani, A. Sheykhi, S.E. Sadati, Thermodynamics of nonlinear charged Lifshitz black branes with 
hyperscaling violation, Phys. Rev. D 91 (12) (2015) 124073, http://dx.doi.org/10.1103/PhysRevD.91.124073, 
arXiv:1505.01134 [hep-th].

http://dx.doi.org/10.1016/j.physletb.2013.02.011
http://dx.doi.org/10.1016/j.physletb.2013.02.039
http://dx.doi.org/10.1007/JHEP06(2012)116
http://dx.doi.org/10.1007/JHEP01(2012)125
http://dx.doi.org/10.1103/PhysRevB.85.035121
http://dx.doi.org/10.1007/JHEP05(2012)065
http://dx.doi.org/10.1103/PhysRevD.83.065029
http://dx.doi.org/10.1103/PhysRevD.79.086006
http://dx.doi.org/10.1103/PhysRevD.84.026001
http://dx.doi.org/10.1103/PhysRevLett.105.151602
http://dx.doi.org/10.1103/PhysRevLett.96.181602
http://dx.doi.org/10.1088/1126-6708/2006/08/045
http://dx.doi.org/10.1103/PhysRevLett.110.091602
http://dx.doi.org/10.1007/JHEP04(2014)195
http://dx.doi.org/10.1007/JHEP08(2013)102
http://dx.doi.org/10.1007/JHEP12(2013)020
http://dx.doi.org/10.1103/PhysRevD.88.126001
http://dx.doi.org/10.1103/PhysRevD.91.126003
http://dx.doi.org/10.1007/JHEP04(2015)133
http://dx.doi.org/10.1007/JHEP10(2013)142
http://dx.doi.org/10.1103/PhysRevD.91.124073
http://dx.doi.org/10.1103/PhysRevD.83.065029
http://dx.doi.org/10.1103/PhysRevD.84.026001
http://dx.doi.org/10.1103/PhysRevLett.105.151602

	Entanglement rules for holographic Fermi surfaces
	1 Overview and motivation
	2 The background
	3 Entanglement thermodynamics
	3.1 Case I:  Q=0 
	3.2 Case II:  Q<>0 

	4 Summary and ﬁnal remarks
	Acknowledgement
	References


