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SUMMARY

The immune system must distinguish viable cells
from cells damaged by physical and infective
processes. The damaged cell-recognition molecule
Clec9A is expressed on the surface of the mouse
and human dendritic cell subsets specialized for
the uptake and processing of material from dead
cells. Clec9A recognizes a conserved component
within nucleated and nonnucleated cells, exposed
when cell membranes are damaged. We have identi-
fied this Clec9A ligand as a filamentous form of actin
in association with particular actin-binding domains
of cytoskeletal proteins. We have determined the
crystal structure of the human CLEC9A C-type lectin
domain and propose a functional dimeric structure
with conserved tryptophans in the ligand recognition
site. Mutation of these residues ablated CLEC9A
binding to damaged cells and to the isolated ligand
complexes. We propose that Clec9A provides tar-
geted recruitment of the adaptive immune system
during infection and can also be utilized to enhance
immune responses generated by vaccines.

INTRODUCTION

Dendritic cells (DCs) are an essential link between the adaptive

and innate immune systems. DCs initiate adaptive immune

responses by processing and presenting antigens to T cells
646 Immunity 36, 646–657, April 20, 2012 ª2012 Elsevier Inc.
(Banchereau et al., 2000; Steinman et al., 2003). DCs also

monitor the environment by using a series of innate receptors

for pathogen-associated molecular patterns (PAMPs) and

damaged cell-associated molecular patterns (DAMPs). This

enables DCs to adjust the balance between tolerance and immu-

nity and to tailor the immune response to particular pathogens.

Particular DC subsets are specialized in detailed aspects of

these general functions. In the mouse, the CD8+ DCs are espe-

cially efficient at the uptake and processing of material from

dead cells (Shortman and Heath, 2010). Human CD141+

(BDCA-3+) DCs have been identified as the lineage and func-

tional equivalents of the mouse CD8+ DCs (Villadangos and

Shortman, 2010), and therefore they would be expected to

have a particular pattern of PAMP and DAMP receptors related

to these functions.

One such DAMP receptor on mouse CD8+ DCs and on human

CD141+ DCs is Clec9A (also called DNGR-1) (Caminschi et al.,

2008; Huysamen et al., 2008; Sancho et al., 2008); our laboratory

and that of Reis e Sousa (Sancho et al., 2009) have found that it

binds to dead cells. Clec9A also regulates the cross-presenta-

tion of dead cell-associated antigens in a Syk-dependent

manner (Sancho et al., 2009). There is particular interest in

Clec9A because it has been found to be an especially effective

target for delivery of antigens to DCs, and therefore promotes

immune responses (Caminschi et al., 2008; Idoyaga et al.,

2011; Lahoud et al., 2011; Sancho et al., 2008). Thus, Clec9A

has great promise for enhancing vaccine efficacy.

Here we have sought to understand the function of Clec9A as

a DAMP receptor. We have presented the crystal structure of the

Clec9A C-type lectin-like domain (CTLD) and identified a region

involved in ligand recognition. We have shown that the ligand is
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a cytoskeletal component of nucleated and nonnucleated cells,

exposed upon cell death and membrane rupture as would occur

after cellular lysis by pathogens or physical damage. We have

identified the ligand as a filamentous form of actin normally com-

plexed to the calponin homology-based actin binding domain

(ABD) motif of cytoskeletal molecules, including spectrin b and

a-actinin.

RESULTS

Mouse and Human Clec9A Bind to Damaged Cells
As reagents to identify Clec9A ligands, we generated recombi-

nant tagged soluble forms of the ectodomains of mouse Clec9A

(mClec9A) and human CLEC9A (hCLEC9A). These consist of

a FLAG-tag, a biotinylation consensus sequence, and either

the full ectodomain (Clec9A-ecto), the Clec9A-CTLD, or the

Clec9A-stalk (Figures S1A–S1C available online). To determine

whether Clec9A recognizes self-components, a range of mouse

and human cells were stained with the Clec9A ectodomains. No

binding was observed to the surface of viable cells, but binding

was observed to dead cells identified by propidium iodide (PI)

staining, as previously described (Sancho et al., 2009). We

then investigated various stages of cell death, by following

thymocytes undergoing apoptosis induced by g-irradiation or

mouse embryonic fibroblasts (MEFs) undergoing apoptosis

induced by BH3-only ligands (van Delft et al., 2006). We stained

cells with Annexin V, an early marker of apoptosis, and with PI,

a late marker that stains nuclei once the cell membrane is

damaged. mClec9A-ecto strongly bound to late-stage

apoptotic, secondary necrotic cells (Annexin V+PI+) but not to

early-stage apoptotic cells where cell membranes are still intact

(Annexin V+PI�) (Figure S1D). Both mClec9A and hCLEC9A

strongly bound to the late-stage apoptotic MEFs, but not to

live cells (Figure S1E). In all cases binding to dead cells was

much higher than any ‘‘nonspecific’’ binding seen with other

C-type lectins tested, namely Cire (Figures 1A–1D and S1D–

S1I) and Clec12A.

To determine whether membrane rupture was sufficient to

reveal the ligand, cells were stained immediately after freezing

and thawing. This served as a model of primary necrosis.

mClec9A and hCLEC9A ectodomains bound strongly to

freeze-thawed mouse 3T3 cells (Figure S1F) or human 293 cells

(Figure S1G), as well as to fixed and permeabilized cells (data not

shown). Sancho et al. (2009) have drawn similar conclusions.

The binding of mClec9A or hCLEC9A to dead cells occurred in

the presence of ethylenediamine tetraacetic acid (EDTA) (Fig-

ure S1G). Thus, ligand recognition was not dependent on readily

chelated divalent metal ions, as would be expected of a classical

C-type lectin binding to a carbohydrate. Treatment of late-stage

apoptotic cells with proteases, but not with nucleases, reduced

the Clec9A binding, suggesting that the ligand was protein (Fig-

ure S1H). However, pretreatment of viable cells with trypsin prior

to freeze thawing did not eliminate Clec9A binding after freeze

thawing, emphasizing that the ligand was intracellular and

revealed only on membrane disruption.

Cell and Species Distribution of the Clec9A Ligand
Both mClec9A and hCLEC9A ectodomains bound to all dead

mouse or human nucleated cells tested, including cultured cell
lines and primary cells (Figures 1 and S1). They also bound to

freeze-thawed Chinese hamster (CHO), African green monkey

(Vero) (data not shown), and freeze-thawed insect (SF21) cells,

but not to freeze-thawed bacteria or yeast (Figure 1A). Thus,

recognition of the dead cell ligand was conserved across a

wide evolutionary range. A clue to the nature of the ligand was

the finding that mClec9A-ecto and hCLEC9A-ecto also bound

to disrupted nonnucleated cells, including apoptotic mouse

platelets (Figure 1B) and mouse and human erythrocyte (RBC)

ghosts prepared by saponin treatment (Figures 1C and S1I).

The binding of the Clec9A CTLD or the Clec9A stalk was

compared to the binding of the full ectodomain. At saturating

concentrations, both mClec9A-CTLD and hCLEC9A-CTLD

showed similar binding to both dead cells and saponin-lysed

erythrocytes as the full ectodomains (Figure 1C). In contrast,

the Clec9A stalk region showed no binding.

Examination of mClec9A-ecto binding to permeabilized 3T3

cells by immunofluorescence microscopy revealed staining

over the cytoplasmic area, in a pattern indicative of membrane

or cytosolic localization (Figure 1D). Colocalization studies with

the cytoskeletal protein actin were performed with an actin anti-

body that labels all cellular actin and with phalloidin which labels

filaments of actin (F-actin). This revealed that Clec9A binding

localized with actin filaments but not with all of the cellular actin

(Figures 1E and 1F). This directed attention to cytoskeletal

complexes associated with actin filaments.

Clec9A Binds to Cytoskeletal Components Including
Complexes Containing Spectrin
Several approaches suggested that the intracellular ligand for

Clec9A could be a cytoskeletal component. Mass spectrometry

analysis of Clec9A complexes isolated by coimmunoprecipita-

tion from the lysates of mouse thymocytes and of a suspen-

sion-adapted subline of human embryonic kidney cells (Free-

style 293F) revealed a complex of cytoskeletal proteins that

migrated at 250–300 kDa, including spectrin, filamin, myosin

(Table S1), and smaller proteins including actin and actin-related

proteins. However, the extraction of these poorly soluble

complexes was inefficient and identification of a single protein

ligand was challenging.

Selective extraction of spectrin from erythrocyte ghosts re-

sulted in a marked reduction of binding of mClec9A-ecto to the

ghosts (Figure 2A), suggesting that spectrin was a likely Clec9A

ligand. Erythroid spectrin is composed of an aI (246 kDa) bI

(280 kDa) heterodimer that self-associates to form a tetramer

and binds to cytoskeletal proteins including actin and band 4.1

to form the membrane skeleton (An et al., 2011; Baines, 2010).

We therefore tested the binding of mClec9A-ecto to a commer-

cial preparation of human erythrocytic spectrin, by ELISA (Fig-

ure 2B). Analysis of this spectrin preparation by SDS-PAGE

and protein staining (Figure S2A) indicated that the preparation

was relatively pure as judged by the expected 246 kDa and

280 kDa sized protein bands, but minor bands were also evident.

Mass spectroscopic analysis revealed a majority of peptides

corresponding to the expected spectrin aI and spectrin bI, but

also peptides corresponding to spectrin-associated proteins

including actin, band 4.1, adducins, and tropomodulins (Table

S2). High-affinity binding was observed to this commercial prep-

aration of spectrin and associated proteins, compared to very
Immunity 36, 646–657, April 20, 2012 ª2012 Elsevier Inc. 647



Figure 1. Clec9A Binds to Species-Conserved Components of Dead Cells

(A) Mouse 3T3 cells, insect SF21 cells, bacterial JM109 cells, and yeast (Pichia pastoris) cells were freeze-thawed twice then incubated with biotinylated

mClec9A-ecto (solid line) or biotinylated control (Cire-ecto, dashed line). Binding was detected via SA-PE and flow cytometry.

(B) Mouse platelets were induced to undergo apoptosis by treatment with 0.5 mM ABT-737 for 90 min at 37�C. Control (viable) and ABT-737-treated (apoptotic)

platelets were harvested and incubated with mClec9A-ecto (solid line), hCLEC9A-ecto (solid line), or Cire-ecto (background control, dashed line). Binding was

detected via FITC-conjugated FLAG mAb and flow cytometry. Control platelets were confirmed to be Annexin V� and ABT-737-treated platelets AnnexinV +.

(C) Human 293F cells were freeze-thawed. Human red blood cells (RBC) were isolated, permeabilized with PBS containing 0.15% saponin and 13 EDTA-free

complete protease inhibitors (Roche), and repeatedly washed with the saponin-containing buffer in order to generate saponin-permeabilized RBC ghosts.

Freeze-thawed human 293F cells and human RBC saponin-permeabilized ghosts were incubated with mClec9A and hCLEC9A-ectodomains (-ecto), C-type

lectin like domains (-CTLD) or stalk regions (-stalk) (solid line), or Cire-ecto (dashed line). Binding was detected with a FITC-conjugated FLAG mAb and flow

cytometry.

(D) Fixed and permeabilized mouse 3T3 cells were incubated with biotinylated mClec9A-ecto or Cire-ecto and binding detected with SA-Alexa594. Fibroblasts

were counterstained with DAPI and analyzed by confocal microscopy. Scale bars represent 20 mM.

(E) Fixed and permeabilized mouse embryonic fibroblasts were incubated with biotinylated mClec9A-ecto or Cire-ecto and binding detected via SA-Alexa594.

Cells were counterstained with DAPI and with a rabbit anti-actin Ab and binding detected with anti-rabbit Ig-Alexa488, then analyzed by confocal microscopy.

Scale bars represent 20 mM.

(F) Fixed and permeabilized mouse embryonic fibroblasts were incubated with biotinylated mClec9A-ecto and binding detected via SA-Alexa488. Cells were

counterstained with DAPI and with phalloidin-Alexa594, then analyzed by confocal microscopy. Scale bars represent 20 mM.

See also Figure S1 and Table S1.
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low binding of the controls mCire-ecto and mClec12A-ecto. The

mClec9A-ecto showed little binding to a commercial preparation

of actin, because actin was considered a possible contaminant.

Clec9A Binds to a Higher-Order Complex Including
Erythrocyte Spectrin
These results prompted an examination of the conditions

required to extract spectrin as the putative Clec9A-binding

ligand. Spectrin extractions from mouse erythrocyte ghosts

prepared by osmotic lysis were performed at 4�C, which enables
648 Immunity 36, 646–657, April 20, 2012 ª2012 Elsevier Inc.
the extraction of spectrin in the form of tetramers and higher-

order complexes, or at 37�C, which produces mainly spectrin

dimers (Gratzer, 1982; Ungewickell and Gratzer, 1978). The iso-

lated spectrin was coated onto ELISA plates and investigated for

Clec9A binding. Binding of mClec9A-ecto was obtained to spec-

trin if isolated at 4�C, but not if isolated at 37�C (Figure 3A). The

spectrin preparations were examined by SDS-PAGE (Figure 3B)

and bymass spectrometry (Table S3). There were no differences

detected between the two extracts, themajor components being

spectrin aI and spectrin bI together with actin and band 4.1.



Figure 2. Mouse Clec9A Ectodomain Binds to Erythrocytic Spectrin

(A)Mouse saponin-permeabilized RBC ghostswere generated as in Figure 1C,

then treated in the presence or absence of spectrin extraction buffer for 1 hr

at 37�C. RBC ghost membranes were recovered by ultracentrifugation

(26,0003 g, 40 min). Biotinylated mClec9A-ecto binding to untreated saponin

ghosts (solid thick line), mClec9A-ecto binding to spectrin-extracted saponin

ghosts (solid thin line), and Cire-ecto binding (dashed line) were detected via

SA-PE and flow cytometry.

(B) Human erythrocytic spectrin (Sigma) and bovine muscle actin (Sigma) were

coated onto ELISA plates and binding of mClec9A-ecto and mCire-ecto

detected via anti-FLAG-HRP.

See also Figure S2 and Table S2.
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This suggested that the differences in Clec9A binding were

due to differences in the incidence of higher-order complexes.

Accordingly, the two spectrin samples were analyzed by size-

exclusion chromatography. Mouse erythrocyte spectrin gave

one major peak of protein when isolated at 4�C (peak 1, Fig-

ure 3C), whereas isolation at 37�C yielded two peaks, a minor

peak corresponding to peak 1 and a major peak 2 of smaller

molecular size (Figure 3C). Fractions spanning these regions

were coated onto ELISA plates and tested for their ability to

bind mClec9A-ecto. The higher molecular size samples from

peak 1 bound Clec9A, whereas material from peak 2 did not

bind (Figure 3D). Analysis by SDS-PAGE revealed that although

both peak 1 and peak 2 were primarily composed of spectrin,

peak 1 contained two additional bands at 75 and 45 kDa, corre-

sponding to band 4.1 and actin, respectively (Figure 3E). The

commercial preparation of human erythrocyte spectrin also dis-

played a principle peak of protein eluting at the position of peak

1, and this retained all the ability to bind mClec9A-ecto (Figures
S2B–S2D). Overall these experiments indicated that Clec9A

binds to a complex of spectrin with associated proteins, but

not to spectrin alone.

Clec9A Binds to a Higher-Order Complex Including
Nucleated Cell Spectrin
Spectrin complexes are found in both erythrocytic and nonery-

throcytic cells, although different subunits of spectrin are

expressed in different cell types (Baines, 2010; Rotter et al.,

2004; Uribe and Jay, 2009). To determine whether a spectrin

complex represented a Clec9A ligand within nucleated cells,

we isolated and analyzed by size-exclusion chromatography

spectrin from 293F cells. A protein peak appeared in the same

elution position as erythrocyte spectrin peak 1 (Figure 3F), sepa-

rated from a spread of proteins of lower molecular sizes. When

the fractions were coated on ELISA plates, mClec9A-ecto bound

predominantly to fractions corresponding to peak 1 (Figure 3G).

SDS-PAGE and mass spectroscopic analysis revealed that the

major constituent of peak 1 from these nucleated cells was spec-

trin a and b chains, together with other protein components

including actin (Figures 3H and 3I; Table S3). Thus Clec9A binds

to a spectrin complex from nucleated as well as nonnucleated

cells. Furthermore, a spectrin complex isolated from apoptotic

cells was similarly bound by Clec9A (Figures S2E–S2G). Thus

Clec9A recognition of spectrin complexes is maintained, even

after apoptotic cell death and associated proteolysis. Impor-

tantly, the binding of mClec9A to spectrin complexes was stable

over the pH range 7.4 to 4.0 (Figure S2H), indicating that Clec9A

recognition of such complexes is likely to be stable in endosomal

compartments of the cell.

Spectrin-Actin Interaction Required for Clec9A Binding
We sought to determine what features of the erythrocytic

spectrin complexes were essential for recognition by Clec9A.

Spectrin complexes were extracted from mouse erythrocyte

ghosts at 4�C, then treated for 1 hr at 37�C to dissociate

the complex into its individual components. Size-exclusion

chromatography revealed that most of the complex had been

dissociated, shifting to the lower molecular size peak 2 (Fig-

ure S3A). Binding of mClec9A-ecto to the dissociated spectrin

preparation was greatly reduced and size-exclusion chromatog-

raphy showed that the residual binding was restricted to

the remaining undissociated complex in peak 1 (Figure S3B).

Importantly, the dissociated spectrin at peak 2, now free of

most other proteins (Figure S3C), showed no binding of Clec9A

(Figure S3B). No binding was observed to fractions containing

other dissociated protein components of the complex, nor was

there binding under these conditions to the G-form of actin

alone. The purified, dissociated, and nonbinding spectrin frac-

tions of peak 2 were then concentrated and allowed to reassoci-

ate in the presence of either bovinemuscle actin or bovine serum

albumin (BSA) as a control for 2 hr at 30�C. Both samples

showed partial reassociation, as judged by regeneration of the

larger molecular size peak 1 on size-exclusion chromatography

(Figure S3D). However, only the peak 1 complex reconstituted

with actin showed pronounced binding to mClec9A-ecto (Fig-

ure S3E). Even the slight binding of the complex reconstituted

with BSA could be attributed to traces of actin remaining in the

preparation (Figures S3D and S3F). This indicated that Clec9A
Immunity 36, 646–657, April 20, 2012 ª2012 Elsevier Inc. 649



Figure 3. Mouse Clec9A Ectodomain Binds to Erythrocytic and Nonerythrocytic Spectrin Cytoskeletal Complexes

(A) Analysis of mouse Clec9A binding to spectrin by ELISA. Mouse erythrocytic spectrin, isolated at 4�C or at 37�C, was coated onto ELISA plates, and binding of

mClec9A-ecto and the control, Clec12A-ecto, to erythrocytic spectrin was detected with anti-FLAG-HRP.

(B) Mouse erythrocytic spectrin (5 mg), isolated at 4�C or at 37�C, was analyzed by SDS-PAGE under reducing conditions. Protein bands were visualized, and

bands A to E subjected to mass spectrometry analysis. See also Table S3.

(C) Analysis by size-exclusion chromatography (SEC) of mouse spectrin isolated from red blood cells at 4�C (black line) or 37�C (red line). Mouse erythrocytic

spectrin was chromatographed on a Superose 6 column and fractions collected for subsequent analysis.

(D) mClec9A binding to SEC fractions of erythrocytic spectrin. Spectrin fractions (C) were coated onto ELISA plates, and binding of mClec9A-ecto (0.3 mg/ml)

detected.
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binds to a higher-order complex consisting of both spectrin and

actin.

Minimal Requirements for a Spectrin-Actin Complex
that Binds Clec9A
We then asked what regions of erythrocyte spectrin were

essential for assembly of a Clec9A binding complex. Erythroid

and nonerythroid spectrins contain multiple spectrin repeat

elements, an actin binding domain (ABD) in the N terminus of

b-spectrin, and a calmodulin-like domain at the C terminus of

the a-spectrin (An et al., 2011; Baines, 2010). We therefore

tested recombinant fragments of human erythrocytic spectrin

(Figure 4A) for ability to bind mClec9A-ecto in the presence or

absence of bovine muscle actin (Figure S4A). None of the indi-

vidual fragments of spectrin showed binding, nor did actin alone.

However, the complex of actin with the N-terminal domains of

the b chain of spectrin (bI N-4), which encompasses the spectrin

b1 actin-binding domain (ABD) and repeats 1–4, showed signif-

icant binding. We then compared the binding of Clec9A to

a complex of muscle actin with either the N-terminal domains

of spectrin bI (bI N-4) or with the ABD only (bI N). We found

Clec9A binding activity was directed to the complex of spectrin

bI ABD with actin (Figure 4B).

The binding of Clec9A to this reconstructed complex was

lower than the binding to the commercial human erythrocyte

spectrin sample, so we compared the effects of different forms

of actin on Clec9A binding. There are three classes of actin:

a-actins found in muscle and b- and g-actins found in most

cell types associated with the cytoskeleton (Bergeron et al.,

2010). Therefore, we compared Clec9A binding to complexes

of the spectrin bI ABD with muscle actin or with platelet actin

(85% b-actin, 15% g-actin). Clec9A binding to spectrin bI ABD

with platelet actin was higher and comparable to that of com-

mercial human erythrocytic spectrin (Figure 4B), indicating that

the main determinant of Clec9A binding to erythrocytic spectrin

is a complex of the spectrin bI ABD with cytoskeletal actins.

To test whether this binding of Clec9A to the spectrin-actin

complex was related to the recognition of dead cells, Clec9A-

ecto was preincubated with spectrin bI ABD and actin. This

inhibited the ability of Clec9A-ecto to bind to dead cells, both

freeze-thawed and apoptotic cells (Figure 4C), supporting the

concept thatClec9A recognizesspectrinbI ABD-actin complexes

by using similar determinants to the recognition of dead cells.

Other Actin-Complexed Cytoskeletal Proteins Bind
Clec9A
The ABD of spectrin b chains is composed of two calponin

homology domains of approximately 110 residues each. This
(E) Analysis of erythrocytic spectrin fractions by SDS-PAGE. Erythrocytic spectrin

and protein bands visualized by silver staining.

(F) Analysis of human nonerythrocytic spectrin extract isolated from 293F cells a

(G) mClec9A binding to SEC fractions of nonerythrocytic spectrin extracts. Fractio

plates, and binding of mClec9A-ecto (0.3 mg/ml) detected.

(H) Analysis of nonerythrocytic spectrin fractions by SDS-PAGE. Nonerythrocyti

reducing conditions and protein bands visualized by silver staining.

(I) Analysis of nonerythrocytic spectrin fractions by SDS-PAGE. Nonerythrocytic sp

(G), were pooled, concentrated, and analyzed by SDS-PAGE under reducing co

spectrometry analysis. See also Table S3.

See also Figure S3.
domain is also found in other proteins of the spectrin family

and several other actin binding proteins, including a-actinin,

dystrophin, and filamin (Uribe and Jay, 2009; Korenbaum and

Rivero, 2002). Accordingly, we compared the binding of Clec9A

to a complex of the ABD of erythrocytic spectrin (spectrin bI N),

nonerythrocytic spectrin (spectrin bII N), and human a-actinin 1

(a-actinin 1 N) in the presence and absence of platelet actin.

The mClec9A-ecto showed significant and comparable binding

to the complex of the ABD of erythrocytic and nonerythrocytic

spectrins and a-actinin with platelet actin (Figures 4D and 4E)

but not to the individual components of these complexes.

Furthermore, preincubation of Clec9A with actin complexed

with the ABD of erythrocytic spectrin, nonerythrocytic spectrin,

and a-actinin 1 inhibited the ability of Clec9A-ecto to bind to

dead cells (Figure S4B). In contrast, Clec9A did not bind actin

complexedwith an unrelated actin binding protein, Cofilin-1 (Fig-

ure S4C). Thus Clec9A recognizes a widespread form of actin

complexed with ABDs with the 2 calponin homology domain

motif. Importantly, Clec9A expressed in its native state on the

surface of transfected CHO-K1 cells showed binding to actin

complexed with the ABD of nonerythrocytic spectrin (Figure 4F).

Clec9A Recognizes F-Actin
From the preceding results, Clec9A might recognize a pattern

formed by the complex between actin and the ABDs or a confor-

mational form of actin induced by the interaction with ABDs.

Focus shifted to actin itself when two of seven commercial

preparations of actin showed direct binding to Clec9A in ELISA

assays after preincubation at room temperature, in contrast to

the results in Figures 4 and S4. To examine this further, the prep-

arations were first incubated under conditions promoting

the G-actin form, and then the G-actin was purified by size-

exclusion chromatography to eliminate contaminating actin-

binding proteins. G-actin was then converted to F-actin, incu-

bated with mClec9A-ecto or Clec12A-ecto as control, and

then centrifuged. Clec9A was found to sediment with F-actin

to a much greater extent than Clec12A, showing that it had

a capacity to recognize and bind to the filamentous conformation

of actin itself (Figures 5A and 5B). We therefore propose that the

role of the ABDs in Clec9A recognition is to promote or maintain

the conformation of actin found in actin filaments.

Structure of the Clec9A C-Type Lectin-like Domain
We determined the crystal structure of the CTLD and compared

it to other C-type lectin receptors. The CTLD of human CLEC9A

(hCLEC9A) was expressed in 293F cells with an N-terminal

FLAG tag. Glycosylation was eliminated through mutation of

the sole glycosylation site (223-NCS-225) to the equivalent
fractions from SEC (C) were analyzed by SDS-PAGE under reducing conditions

t 4�C by SEC on a Superose 6 column.

ns of the nonerythrocytic spectrin extract from SEC (F) were coated onto ELISA

c spectrin extract fractions from SEC (F) were analyzed by SDS-PAGE under

ectrin fractions 18–22 from SEC (F), corresponding to the Clec9A binding peak

nditions. Protein bands were visualized and bands F to H subjected to mass

Immunity 36, 646–657, April 20, 2012 ª2012 Elsevier Inc. 651



Figure 4. Clec9A Binds to a Complex of Actin with the Actin Binding Domain of Spectrin b1 and Other Cytoskeletal Proteins

(A) Schematic representation of the spectrin aI and bI proteins demonstrating the spectrin a1 repeats 1–21 and the C-terminal EF hand domains (EF), and the

spectrin bI repeats 1–17 and the N-terminal actin binding domain (ABD). The regions encompassed by the recombinant spectrin fragments investigated are

demonstrated below each chain.

(B) Clec9A binding to recombinant GST-tagged erythrocytic spectrin fragments in the presence or absence of actin. Recombinant spectrin was preassociated

with either muscle or platelet actin (30�C) before coating onto ELISA plates and incubation with mClec9A-ecto (1 mg/ml) or the control protein mClec12A-

ecto. Binding was detected with anti-FLAG-HRP. Cumulative data of four experiments are shown, demonstrating the mean ± standard errors of the mean

(SEM). Clec9A-ecto binding to the bI N-4 + muscle actin was significantly greater than binding to bI N-4 alone (p < 0.0001) or to muscle actin alone (p < 0.0005).

Similarly, Clec9A-ecto binding to bI N + muscle actin was significantly greater than binding to bI N alone or to muscle actin alone (p < 0.0001); Clec9A-ecto

binding to bI N-4 + platelet actin and to bI N + platelet actin was significantly greater than binding to bI N or bI N-4 alone, respectively, or to platelet actin alone

(p < 0.0001).

(C) Clec9A binding to dead cells is inhibited by preincubation of Clec9A with GST-tagged erythrocytic spectrin bI N plus actin. Preassociated spectrin bI N plus

actin was incubated with mClec9A-ecto (0.5 hr, 21�C), before incubation with freeze-thawed 293F cells or with late apoptotic (PI+) thymocytes. Binding of

mClec9A-ecto (5 mg/ml; solid line) in the presence or absence of actin (50 mg/ml platelet actin for freeze-thawed 293F cells; 100 mg/ml muscle actin for apoptotic

thymocytes) plus spectrin bI N (50–100 mg/ml) or the control Cire-ecto (dashed line) was detected with a FITC-conjugated FLAG mAb and flow cytometry.

(D) Clec9A binding to recombinant GST-tagged ABD of erythrocytic spectrin (spectrin bI N), nonerythrocytic spectrins (spectrin bII N), and a-actinin 1 (a-actinin

1 N) in the presence or absence of actin. Preassociated ABD ± platelet actin were coated onto ELISA plates and incubated with mClec9A-ecto (1 mg/ml) or

mClec12A-ecto, and binding was detected with anti-FLAG-HRP. Cumulative data of three experiments are shown, demonstrating the mean ± SEM. Clec9A-ecto

binding to the spectrin bI N + actin was significantly greater than binding to bI N alone (p < 0.0001) or to actin alone (p < 0.0005). Similarly, Clec9A-ecto binding to

the spectrin bII N + actin was significantly greater than binding to bII N or to actin alone (p < 0.0001); Clec9A-ecto binding to a-actinin 1 N + actin was significantly

greater than binding to a-actinin 1 N or to actin alone (p < 0.0001).

(E) Clec9A binding to recombinant GST-tagged spectrin bI N, spectrin bII N, and a-actinin 1 N in the presence or absence of actin. Preassociated ABD plus

platelet actin were coated onto ELISA plates, and binding of mClec9A-ecto or mClec12A-ecto detected.
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Figure 5. Clec9A Binds to Actin Filaments

Ectodomains of mClec9A (5 mM) were incubated with

various concentrations of actin in the form of preformed

muscle actin filaments, then centrifuged.

(A) An example of gel electrophoresis of the pellet (P) and

supernatant (S) fractions.

(B) Quantitation of the proportion of mClec9A-ecto

sedimenting with F-actin, compared to mClec12A-ecto as

a nonspecific binding control. Data are mean ± SEM from

three experiments.
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murine sequence (NCD). The resulting protein, hCLEC9A-CTLD

(S225D), maintained binding activity to dead cells as compared

to the native hCLEC9A-CTLD (Figure S5A). Crystals diffracting

to high resolution were obtained by including enterokinase in

the crystallization drops to remove the extraneous N-terminal

sequence including the FLAG tag.

The CLEC9A CTLD displayed the canonical fold of C-type lec-

tin domains. A DALI search (Holm and Rosenström, 2010)

revealed the CTLD of CLEC8A (LOX-1) (PDB: 1YPU) (Park

et al., 2005) to have the strongest structural homology to the

CLEC9A CTLD (Figure 6B). Crystals contained two copies of

the CLEC9A CTLD within the asymmetric unit related by 2-fold

symmetry (Figure 6A; Table S4). This dimer interface is unlike

those previously characterized for CTLD domains (e.g., CLEC8A

[Park et al., 2005], CD69 [Natarajan et al., 2000]). Because it is

highly fenestrated and contains little buried surface area, this

dimer is probably an artifact of crystallization. Furthermore, anti-

bodies targeting a loop region within this dimer interface (posi-

tion 185–211, shown in pink in Figures 6A and 6C) are biologically

active and highly effective for targeting antigen to CLEC9A, indi-

cating that this loop is exposed on cell surface CLEC9A. Full-

length Clec9A exists as a disulphide-linked dimer on the cell

surface (Figure S1B; Sancho et al., 2008), most probably medi-

ated by cysteine residues in CLEC9A N-terminal stalk regions

of the ecto-domain. Orientation of the CLEC9A CTLD in

a CLEC8A style dimer revealed that the CLEC9A structure is

compatible with such a dimer interface with only small refolding

of a loop present at the top of the interface (166-KIKG-169) being

required to remove backbone clashes (Figures 6B and 6C).

Crystal packing is mediated by burial of two exposed trypto-

phan residues (W131, W227; shown in blue, Figures 6A and

6C) into the edge of the crystallographic dimer groove of adja-

cent asymmetric units (Figure S5B). These tryptophans are

conserved between the human and mouse. Although the trypto-

phans are unlikely to adopt these exposed conformations

in solution, they are both located close to the human and

murine glycosylation sites (Figure S5C). Within a monomer of

the CLEC9A-CTLD, a Ca2+ ion was observed coordinated by

E152, E156, E223, the peptide carbonyl of Q150, and two waters

(Figure S5D). This site is analogous to a previously described

Ca2+ binding site on CTLDs (site 4 [Zelensky and Gready,

2005]), where its role is to stabilize the structure of the protein

rather than being directly involved in receptor-ligand interac-
(F) Membrane-associated Clec9A binding to recombinant GST-tagged spectrin

parental CHO-K1 cells, were incubated with preassociated recombinant GST-tag

off and binding of spectrin-actin complexes was detected with a monoclonal mo

See also Figure S4.
tions. Thermofluor assays confirmed that Ca2+ stabilizes, and

EDTA destabilizes, the tertiary structure of hCLEC9A-CTLD

(Figure S5E).

Regions of the Clec9A CTLD Involved in Ligand
Recognition
In order to identify regions of CLEC9A involved in ligand recog-

nition, constructs of the hCLEC9A ectodomain were prepared

with a range of mutations. Like CLEC8A (Ohki et al., 2005),

CLEC9A has a stretch of basic residues on or near the surface

of the CLEC8A-style dimer (K166, K168, K215, K228; Fig-

ure S5F). Although CLEC9A mutant K228A did not express,

mutants K166A, K168A, and K215A were expressed and

exhibited binding to dead cells comparable to that of wild-type

CLEC9A (Figure 7A). The most striking effects were obtained

with the double mutant W131A, W227A (W131 andW227 shown

in blue, Figure 6C). This mutant had comparable secondary

structure to the original CLEC9A-CTLD based on circular

dichroism analysis but showed functional differences in binding

Clec9A ligands. This mutant did not bind freeze-thawed human

nucleated cells, mouse erythrocyte saponin ghosts (Figures 7A

and 7B), or human erythrocytic or nonerythrocytic spectrin

(Figures 7C and 7D). Furthermore, it did not bind recombinant

spectrin b1, spectrin bII, or a-actinin-1 ABD associatedwith actin

(Figures 7E and 7F). All binding readouts were abrogated by the

samemutation, so this further supports the hypothesis that actin

in the filamentous form normally complexed with actin-binding

proteins containing calponin homology-based ABD represent

dead cell ligands recognized by Clec9A.

DISCUSSION

The response of the immune system to the danger posed by

necrotic, late-apoptotic, or otherwise damaged cells depends

on the initial recognition of particular DAMPs.Clec9A is a special-

ized DAMP recognition molecule, conserved from mouse to

humans but restricted to the surface of the particular DC subsets

that are especially efficient at processing material from dead

cells. Our previous studies (Caminschi et al., 2008; Idoyaga

et al., 2011; Lahoud et al., 2011) and that of the Reis e Sousa

team (Sancho et al., 2008) have shown that targeting antigens

to Clec9A on DCs in situ is an exceptionally efficient way of

enhancing immune responses and so represents a promising
bII N and actin. CHO-K1 transfectant cells expressing full-length mClec9A, or

ged spectrin bII N and actin. Unbound spectrin-actin complexes were washed

use GST antibody followed by anti-mouse Ig-PE and flow cytometric analysis.
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Figure 6. Crystal Structure of the hCLEC9A-C-type

Lectin-like Domain

(A) Crystal structure of the hCLEC9A-CTLD dimer in the

asymetric unit. This dimer is probably an artifact of crys-

tallization. The conserved tryptophans (W131, W227) are

presented in blue. The peptide region to which the

CLEC9A Ab were raised (Caminschi et al., 2008) is shown

in pink.

(B) Overlay of the hCLEC9A-CTLD monomer with the

CLEC8A dimer. The CLEC9A CTLDmonomer is displayed

in orange; the CLEC8A dimer is displayed in blue.

(C) CLEC9A as a CLEC8A style dimer. Tryptophans

(W131, W227) are shown in blue. The peptide region to

which the CLEC9A Ab were raised is in pink.

See also Figure S5 and Table S4.
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strategy for improving vaccines. The effectiveness of antibodies

against Clec9A in targeting antigens to DCs and enhancing

immune responses involves ‘‘hijacking’’ this uptake and pro-

cessing system, so a single model vaccine antigen is handled

with the same high efficiency as the multiple antigens from

damaged cell material. Both the basic immunology of DAMP

function and these practical implications for vaccine delivery

prompted our investigation of the structure of Clec9A and the

nature of its dead cell ligand.

In agreement with Sancho et al. (2009), we found that the

Clec9A dead cell ligand is a normal cell component exposed

when the cell membrane is ruptured. We find that the exposed

cytoskeleton of the damaged cell provides the DAMPs recog-

nized by Clec9A. Our results suggest that there is a limited

window during which a damaged cell, such as a cell being

destroyed by infection with a lytic virus or intracellular pathogen,

would be detected by the Clec9A system. The early stages of

apoptosis are not detected by Clec9A and it is likely that macro-

phages would eliminate most apoptotic cells at this stage. If any

apoptotic cells persist, they would be recognized by Clec9A,

along with cells undergoing necrotic death, soon after the

membrane is ruptured but before digestion of the cytoskeletal

structure by proteolytic enzymes. Because antigen delivery to

Clec9A on DCs results in induction of potent humoral and cellular

immunity, we postulate that uptake and processing of damaged

or infected cell antigens associated with the cytoskeletal Clec9A

ligand would similarly lead to activation of potent immune

responses. The capacity of Clec9A also to bind the cytoskeleton

of red cells may imply a role in early responses to malaria infec-

tion and other intracellular pathogens.

We have attempted to define in more precise molecular terms

the cytoskeletal DAMPs recognized by Clec9A. In the case of

damaged erythrocytes, we found that a multimeric complex of

spectrin with actin binds to Clec9A with high affinity and repre-

sents a major ligand. Other C-type lectins do not bind this

complex and the dissociated components of the complex do

not bind to Clec9A. The minimal requirement for recognition by

Clec9A appeared to be a form of actin complexed with the cal-

ponin homology ABDs of cytoskeletal molecules, including

spectrin b chains and a-actinins. In the case of nucleated cells

where there are several molecules containing such domains,

additional structures of this form would be exposed upon cell
654 Immunity 36, 646–657, April 20, 2012 ª2012 Elsevier Inc.
damage. This posed the question of whether it was the complex

structure itself that was recognized, or some conformational

change in the ABDs or in actin subsequent to the interaction.

The finding that Clec9A binds directly to filaments of actin

suggests that the latter is the case. The ABDs may either cata-

lyze the formation of actin filaments or may help maintain actin

in this particular filamentous structure. Because cofilin bound

to actin did not bind Clec9A, and because cofilin remodels the

structure of actin filaments (Galkin et al., 2011), only particular

forms of filamentous actin appear to bind Clec9A. Our immuno-

fluorescence results indicating that Clec9A binds to certain actin

filaments rather than all the actin in the cell supports this model.

Although F-actin may be the basic structure recognized, actin

filaments in a cell would always be associated with a number

of molecules with the appropriate ABDs, and Clec9A would

bind to this entire cytoskeletal complex when it is exposed by

cell damage.

We have performed structural studies on the other half of this

recognition system, theCLEC9A-CTLD itself. These suggest that

CLEC9A could form a dimer with structural homology to

CLEC8A; confirmation of this will require crystallization of the

CLEC9A ectodomain including the stalk region. The structure

of the CTLD has also revealed other features related to CLEC9A

functions. A Ca2+ ion is coordinated within the structure, as

observed in other CTLDs (site 4 as described by Zelensky and

Gready, 2005). We find no evidence that calcium is directly

involved in ligand interaction, consistent with previous reports

of CTLDs with a site 4 Ca2+ ion, and unlike CTLDs with a site 2

Ca2+ that coordinates at a ligand-receptor interface (Zelensky

and Gready, 2005). Rather, it plays a structural role with a stabi-

lizing effect, again consistent with the observed role of this Ca2+

site in other CTLDs. Two tryptophans, conserved between the

human and mouse CLEC9A and located in a potentially exposed

region, are crucial to DAMP recognition by CLEC9A. Mutation at

these sites ablates binding to dead nucleated cells, to erythro-

cyte ghosts, and to actin complexed with spectrin-ABD and

a-actinin-ABD. The finding that the mutation affects all three

supports the case that actin filaments in the form normally com-

plexed with particular cytoskeletal ABDs is the ligand recognized

on damaged cells. It is notable that our targeting Clec9A mono-

clonal antibodies that enhance immune responses were directed

against peptides well outside this region. Antibodies or other



Figure 7. Structural Requirements for Clec9A Binding to Ligands

(A) CLEC9A binding to dead cells requires Trp-mediated interactions. Wild-type and mutated hCLEC9A (K166A, K168A, K215A, and W131A and W227A shown

as W/A) ectodomains and CTLD were generated and binding examined to freeze-thawed human 293F cells (solid line). Binding of the control Clec12A is

indicated (dashed line). Clec binding was detected with a FITC-conjugated FLAG mAb and flow cytometry.

(B) CLEC9A binding to RBC ghosts requires Trp-mediated interactions. Wild-type andmutated hCLEC9A (W131A andW227A shown asW/A) ectodomains and

CTLD were examined for binding to saponin-permeabilized mouse RBC ghosts (solid line). Binding of the control Clec12A is indicated (dashed line). Clec binding

was detected with a FITC-conjugated FLAG mAb and flow cytometry.

(C) CLEC9A binding to human erythroid spectrin requires Trp-mediated interactions. Erythroid spectrin (Sigma) was coated onto plates, and binding of wild-type

and mutated CLEC9A-ecto and controls were detected by ELISA with FLAG mAb HRP.

(D) Clec9A binding to spectrin requires Trp-mediated interactions. Erythroid spectrin (Sigma) and nonerythroid spectrin isolated from nucleated 293F cells were

coated onto plates. Binding of wild-type and mutated CLEC9A-ecto and controls (1 mg/ml) was detected by ELISA.

(E) Clec9A binding to ABD-actin complexes requires Trp-mediated interactions. Preassociated complexes of the ABD of erythrocytic spectrin (spectrin bI N),

nonerythrocytic spectrins (spectrin bII N), and a-actinin 1 (a-actinin 1 N) with platelet actin were coated onto plates. Binding of wild-type and mutated CLEC9A-

ecto and controls (1 mg/ml) was detected by ELISA by FLAGmAbHRP. Cumulative data of three experiments are shown, demonstrating themean ±SEM. Binding

of the wild-type hCLEC9A-ecto binding to the spectrin bI N + actin, spectrin bII N + actin, or a-actinin 1 N + actin was significantly greater than binding of the

mutated hCLEC9A-ecto (W/A) (***p < 0.0001) or the binding of the control Clec12A-ecto (***p < 0.0001) to the ABD-actin complexes.

(F) Clec9A binding to ABD-actin complexes requires Trp-mediated interactions. Spectrin bI N, spectrin bII N, and a-actinin 1 Nwere associated with platelet actin

and coated onto plates. Binding of wild-type and mutated CLEC9A-ecto and controls was detected by ELISA with FLAG mAb HRP. Cumulative data of three

experiments are shown, demonstrating the mean ± SEM.
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antagonists of this ligand-binding region of Clec9A may be

powerful inhibitors of the immune responses initiated by the

Clec9A-bearing DC subtypes.

The recognition of actin filaments of damaged cells by Clec9A

on DC subtypes has the potential to play an important role both

in enhancing immunity to intracellular infections and in exacer-

bating autoimmune diseases, such as systemic lupus erythema-

tosus. Harnessing the knowledge revealed in this study of the

Clec9A structural requirements for actin filament recognition
will facilitate the design of agonistic and antagonistic molecules

that may lay the basis of therapeutic strategies for human

disease.
EXPERIMENTAL PROCEDURES

Isolation of Primary Cells

Female C57BL/6J Wehi mice, 8–12 weeks of age, were bred under specific-

pathogen-free conditions at TheWalter and Eliza Hall Institute (WEHI). Animals
Immunity 36, 646–657, April 20, 2012 ª2012 Elsevier Inc. 655
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were handled according to the guidelines of the National Health and Medical

Research Council of Australia. Experimental procedures for isolation of mouse

and human primary cells were approved by the Animal Ethics Committee and

Human Research Ethics Committee, WEHI.

Generation of Clec Ectodomains

cDNA fragments encoding all or part of Clec9A ectotodomains were amplified

from the original Clec9A cDNA sequence (Caminschi et al., 2008) or were

synthesized with the required mutations and subcloned into either a pEF-

Bos or a pcDNA3.1+ expression vector modified to encode a FLAG tag

and a biotinylation consensus sequence (Brown et al., 1998). Clec ectodo-

mains were expressed in mammalian cells and purified with anti-FLAG resin

and size-exclusion chromatography (SEC) (Supplemental Experimental

Procedures). FLAG-tagged ectodomains of two mouse C-type lectin mole-

cules including Cire (mouse DC-Sign) (Caminschi et al., 2001) and Clec12A

(Lahoud et al., 2009; Pyz et al., 2008) were generated as controls.

Recombinant soluble Clec ectodomains were either enzymatically biotinylated

and detected with streptavidin-PE (SA-PE) or detected with anti-FLAG

reagents.

Crystallization and Structure Determination

Crystals of purified, glycosylation-null, human CLEC9A-CTLD (S225D) were

grown in hanging drops at 4�C (reservoir solution; 30% PEG8000, 0.2 M

MgCl2, 0.1 M Tris [pH 8.0], drop supplemented with a 1:50 molar ratio of

enterokinase). Crystals were equilibrated in cryo-protectant consisting of

reservoir solution supplemented with 15% (v/v) ethylene glycol and then

flash-frozen in liquid N2. X-ray data were collected at the Australian Synchro-

tron on beamline PX2 at 100 K. The data were processed with XDS (Kabsch,

2010). The structure was solved by molecular replacement with PHASER

(McCoy et al., 2007) and a Chainsaw (Stein, 2008) modified model of CD69

as the search model (PDB: 1FM5) (Natarajan et al., 2000). Several rounds of

building were performed in COOT (Emsley and Cowtan, 2004) and refinement

in PHENIX (Adams et al., 2010) incorporating simulated annealing, TLS, indi-

vidual site refinement, and individual ADP refinement. The final refinement

statistics are given in Table S4.

Cytoskeletal Proteins

Cellular spectrin complexes were isolated as in Gratzer (1982) and Ungewick-

ell and Gratzer (1978), then purified by SEC (Supplemental Experimental

Procedures). Spectrins were reassociated with actin by concentrating

dissociated spectrin in the presence of either bovine muscle actin or a control

protein BSA, followed by incubation for 2.5 hr at 30�C and further purification

by SEC.

Recombinant GST-tagged cofilin-1 (Wong et al., 2011) and GST-tagged

fragments of erythrocytic spectrin (spectrin bI) (Pei et al., 2005), nonerythro-

cytic spectrin (spectrin bII), and a-actinin I were expressed and purified with

Glutathione-Sepharose 4B resin and SEC (Supplemental Experimental Proce-

dures). Reassociation of ABD with actin was performed by incubating GST-

tagged spectrin and actinin proteins with bovine muscle actin (Sigma) or

platelet actin (>99% purity, Cytoskeleton) for 2 hr at 4�C.

ELISA

ELISA plates were coatedwith cellular or recombinant spectrin complexes and

controls, blocked, then incubated with FLAG-taggedClec9A ectodomain frag-

ments or controls (mClec12A-ecto, mCire-ecto). Binding was detected with

anti-FLAG HRP (Supplemental Experimental Procedures). Statistical analysis

of ELISA data was performed by an unpaired two-tailed t test on log-trans-

formed data. The significance of difference is indicated as ***p < 0.0001.

Analysis was performed in Prism (GraphPad Software).

Sedimentation Binding Assay

Full details are in Wong et al. (2011). G-actin was purified from a rabbit muscle

actin preparation (Cytoskeleton) by SEC, then transformed into F-actin.

Various concentrations of the actin filaments weremixedwith the ectodomains

of mClec9A or mClec12A for 30min at room temperature and then centrifuged

at 100,000 3 g for 1 hr. Supernatant and pellet fractions were analyzed by

SDS-PAGE.
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The atomic coordinates and structure factors for CLEC9A (PDB ID code 3VPP)

have been deposited in the Protein Data Bank, Research Collaboratory for

Structural Bioinformatics, Rutgers University (http://www.rcsb.org).

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

five figures, and four tables and can be found with this article online at

doi:10.1016/j.immuni.2012.03.009.
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