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Abstract-Effective study of certain health care problems and biomedical systems requires 
development and utilization of duly validated models for characterization of tracer kinetics 
in compartmental systems. This report presents an efficient algorithm for evaluation of 
discrete-time models in this context, starting from real patient data. The procedure evolved 
is systematic and involves parameter identification, model order determination and ascer- 
taining the validity of the model: mathematical techniques proposed for this three-tier 
approach are robust as well as simple. A method for deriving state-space representations for 
multicompartmental systems directly from observations vector is also outlined. An illustra- 
tive example is given which demonstrates the effectiveness of the algorithm when applied to 
tracer analysis of the hepatobiliary system. The methodology proposed is recursive in nature 
such that it can be implemented very conveniently utilizing a microcomputer or even a 
programmable pocket calculator. 

1. INTRODUCTION 

Classical compartmental analysis has provided useful and conceptually simpler mathematical 
representations for studying the kinetics of distribution of a substance or a tracer in a 
biomedical system [l]. Some recent investigations have demonstrated that the methodology 
can provide efficient models for studying the system physiology, the primary objective in most 
cases being optimization of drug administration. Search for optimal compartmental models 
utilizing real life data has consequently become increasingly important in biosciences. In a 
recent paper, Brown [2] has presented a state-of-the-art survey, whereas an excellent study 
of the mathematical foundations has been made by Sandberg [3]. Conventionally, the output 
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of the tracer process observed from an accessible compartment is generally assumed to be 
represented by a sum of exponential functions with distinct decay constants [4]. 

Structural identification of compartmental systems essentially presents two fundamental 
problems: (i) the estimation of the number of compartments and (ii) the estimation of the 
corresponding kinetic parameters. Many algorithms have been developed for the second part 
of the problem which utilize the ordinary or generalized least-squares method, or the maximum 
liklihood method, for estimating the parameters of the compartmental model of a known 
order [5-27). The estimation of the number of exponential functions and the pertinent 
parameters in the output of a radioactive tracer kinetic process applying the Akaike 
information theoretical criterion has been discussed by Kajiya et al. [28]; although this 
appears to present a very powerful practical approach to the problem of model structure 
identification, it has been utilized so far only in relation to purely stochastic systems and is 
defined specifically in relation to maximum likelihood estimation. 

Derivation of conceptually simple compartmental models with explicit algorithms for 
practical implementation constitutes an important avenue of concern currently. The bio- 
medical scientist often requires a simple yet roboust procedure which is of a more general 
nature and emerges naturally during analysis. The present paper is an attempt to fill this gap. 
An efficient algorithm will1 be presented for estimating the order as well as the parameters 
of a compartmental model from the observed output samples of a tracer experiment. This 
algorithm is recursive in nature and can be implemented even on a programmable pocket 
calculator. 

The method for estimation of the parameters of a linear discrete-time model of known 
order using the output sampled data is outlined first. This is followed by a discussion of the 
procedure for determination of order of a model in the presence of noisy observations. Tests 
to be performed for validation of the models are described next. An example demonstrates 
that the algorithm is very efficient in developing a discrete-time model for studying the 
hepatobiliary system. 

2. PARAMETER IDENTIFICATION: MODEL OF KNOWN ORDER 

Assuming that the compartmental system is linear, the output of a tracer process may be 
considered as the impulse response of the linear system. The equally-spaced samples of its 
output may thus be utilized to obtain the discrete-time transfer function of a known order. 
Let this transfer function of order n be 

G(z) = 
a,+a,z-‘+a,z-2+~~~+u,Z-~ 
l+b,z-‘+b,z-2+...+b,z-“’ 

where z = eVr is the unit advance operator, and T is the sampling interval. 
The objective is to determine the (2n + 1) parameters a,, a, . . . a,, b,, b, . . . b, from the 

samples of the impulse response wO, w,, w2. . . wN, where N is much larger than 2n, and 

w, = w(iT) (2) 

From Eqs. (1) and (2), 

G(z) = f wiz-‘ (3) 
,=O 

Since Eqs. (1) and (3) represent the same transfer function, one can multiply both by the 
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denominator of Eq. (1) to obtain 
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a,+a,z-‘+a,z-*+... +a,z-“=w,+(w,+b,w,)z-I+...+ w,+ ib& 
( 

z_“+... 
i=l ) 

+ 

( 

w, + i bjW _,)z--+. . . +(WN+i, h,w,_,)z-~ (4) 
i=l 

where m > n. Thus the coefficients of like powers of z in Eq. (4) yield (n + 1) equations for 
the numerator coefficients, which can be arranged in the following form: 

0 0 
1 0 . . . 

b, 1 . . . 

bn-, b n-2 . . . 

0 
0 
0 

0 
0 
0 :I i 

wo 
WI #!I w2 

W” 

(5) 

Due to the lower triangular nature of the matrix in Eq. (5), it is evident that the calculation 
of the numerator coefficients does not require any matrix inversion, provided that the 
denominator coefficients, b, are known. 

To determine b,, we consider the terms containing z -(” + ‘, to z -N. Since there are no such 
terms on the left-hand side of Eq. (4), these equations do not contain ai, and can be 
rearranged in the following form: 

It may be noted that we have (N - n) equations and n unknowns. Since N should be much 
greater than 2n, we have many more equations than unknowns. Hence, we can obtain a 
least-squares solution for the denominator coefficients through the matrix pseudoinverse [29]. 
Matrix inversion may be completely avoided by using the recursive pseudoinverse algorithm 
given below. Define 

@i= Lwf3 wi+l . . . Wi+n-llT, (7) 

8 = [b,, b, . . . b,]? (8) 

Then, starting with go = 0, Q, = Z, PO = 0, where Qi and Pi are n x n matrices and 6 is the 
ith estimate of 8, we have for i I n, 

(9) 

(10) 

Pi+, = Qi- 
(PdJ(Qi4Jr + (QdXPi4Jr + (QAXQkJ’ . (1 + 4 TPi43 

4 TQdi (4 TQAJ’ ’ (11) 
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For i > n, 
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(12) 

(13) 

Details of the derivation are given in [29]. It may be added that if the impulse-response 
sequence is contaminated with uncorrelated zero-mean noise, the least-square estimate of the 
parameters bi obtained using the above algorithm will be unbiased. From these estimates of 
the denominator parameter, the numerator parameters using Eq. (5) may now be obtained. 

3. ORDER ESTIMATION 

If the observations are noise-free, it is well known that the order can be determined from 
the rank of the Hankel matrix H(f, k), defined as 

wk wk+l 

[* . 

Wk+2... wk+/-l 

H(l,k)” ?+I 7kt2 ~+3.ywk+i 

. . 1 (14) 
wk+/-l wk+l wk+/+l . . . wk+2/-2 

It is well known that if the order of the system is n, then the rank of H(I, k) is equal to n, 
provided that I is greater than or equal to n. 

Thus, one can determine n by evaluating the deteminant of H(l, k) for different values of 
1 since the determinant will vanish for all k when 1 is greater than n. In practice, the rank 
determinants will not vanish identically because of the noise contained in the data. There are 
several techniques available to circumvent this problem. 

One approach is to use the determinant ratio test: average the value of the determinant 
H(l, k) for each 1, and plot the ratio D, against I, where 

Average value of the determinant of H(I, k) 

D’ A Average value of the determinant of H(I + 1, k)’ 
(15) 

From this plot, the order n is obtained as that value of I for which D, is a maximum. Another 
approach is to first obtain an estimate of the autocorrelation sequence from the impulse 
response data using the relationship 

N-i 

4i=~_~+lk~oWkwk+i (16) 

and then determine the rank of the Hankel matrix, the elements of which are estimated 
autocorrelation coefficients, defined as 

p_2! 
’ 40’ 

i=O,l,2... (17) 

Again, the determinant may not exactly vanish, and one may use the determinant ratio test 
as before. 
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Another method of order determination is the information criterion (AIC) proposed by 
Akaike [30]. It is defined specifically in relation to maximum likelihood estimation, and the 
AIC is 

AIC = (- 2) lo&(maximum likelihood) (18) 

+ 2(number of independently adjustable model parameters) 

This criterion is very powerful and practical in the sense that it also emphasizes the parsimony 
of the model. However, the computation is rather cumbersome, as one must first estimate 
the parameters of models of different orders using the maximum likelihood method before 
the AIC can be calculated for each case. On the other hand, the determinant ratio tests are 
fairly easy to perform, and give very good results when the noise level is low. Since this 
happens to be the situation with most of the experiments on tracer kinetics, it is not necessary 
to use the AIC. 

4. MODEL VALIDATION 

The simplest diagnostic test for validating the model is to calculate the sequence of 
residuals, defined as the error between the actual response and the response calculated using 
the model. If the model is good, the residual sequence should be a zero-mean white-noise 
sequence. If there are several models for which the residual sequence satisfies the above 
condition, then among these, the model for which the variance of the sequence is minimum, 
will be regarded as the best model. This diagnostic validation therefore depends basically on 
testing the residual sequence for whiteness. 

We now outline two tests which may be used for determining whether a given sequence 
is white [31]. As is well known, a white noise sequence has the property that all of its 
correlation ordinates, with lag one or more, must be zero. This, however, requires that the 
correlation ordinates be calculated from an infinite sequence. In practice, however, we always 
have a finite amount of data, say N samples. Hence, one can only approximate the correlation 
ordinates, as in Eq. (16) and the calculate the correlation coefficients by dividing each of these 
by the estimated variance (which is the correlation ordinate for lag zero). These will seldom 
be zero. However, if each of the first twenty correlation ordinates is less than 1.85/,/%, we 
can be certain, within 95% confidence limits, that the sequence under test is white. 

Another test is the so-called Portmanteau Test. Following Stoica [31], a sequence of N 
samples is white within 95% confidence limits, if its correlation coefficients, pi, satisfy the 
following inequality 

N 5 pf <k + 1.65& (19) 

where k 2 20. In general, it is desirable to apply both of these tests. If the residual sequence 
satisfies both the tests, we can be certain that it is white and that the model is satisfactory. 

5. EXAMPLE 

An illustrative example indicating the strength of the proposed methodology is described 
in this section. The data considered for this analysis is that related to the radioactive rose 
bengal which is considered to be an excellent tracer in studying the hepatobiliary system. The 
uptake of the radioactive tracer by the liver and its decay in blood are observed following 
an intravenous injection which is considered to be an impulse function. Therefore, the two 
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observed outputs y, and y, in this case are considered to be impulse responses. Values 
recorded both from the blood and the liver at 2.5 min intervals for two hours are given in 
Table 1. Curves showing the uptake and decay are displayed in Fig. 1. 

The discrete model evaluation involves three steps: order determination, parameter 
estimation, and validation of the model. The ratio test using the impulse response data in 
constructing the Hankel matrix as well as the test that employs the autocorrelation sequence 

Table I. Observed outputs over the blood and 
the liver regions* 

Time (min) Blood (v,) Liver (yJ 

0.0000000 1 .oOOOOoo 0.0000000 
2.5000000 0.8000000 0.1900000 
5.0000000 0.5500000 0.3300000 
7.5000000 0.5400000 0.4400000 

10.0000000 0.4600000 0.5100000 
12.5000000 0.3900000 0.5700000 
15.0000000 0.3500000 0.6200000 
17.5000000 0.3100000 0.6400000 
20.0000000 0.2800000 0.6500000 
22.5000000 0.2600000 0.6700000 
25.0000000 0.2400000 0.6700000 
27.5000000 0.2300000 0.6700000 
30.0000000 0.2200000 0.6600000 
32.5000000 0.2100000 0.6600000 
35.0000000 0.2000000 0.6500000 
37.5000000 0.1900000 0.6400000 
40.0000000 0.1900000 0.6300000 
42.5000000 0.1800000 0.6200000 
45.0000000 0.1800000 0.6100000 
47.5000000 0.1800000 0.6000000 
50.0000000 0.1700000 0.5900000 
52.5000000 0.1700000 0.5800000 
55.0000000 0.1600000 0.5800000 
57.5000000 0.1600000 0.5700000 
60.0000000 0.1600000 0.5600000 
62.5000000 0.1500000 0.5500000 
65.0000000 0.1500000 0.5300000 
67.5000000 0.1500000 0.5200000 
70.0000000 0.1500000 0.5100000 
72.5000000 0.1400000 0.5000000 
75.0000000 0.1400000 0.4900000 
77.5000000 0.1400000 0.4800000 
80.0000000 0.1300000 0.4700000 
82.5000000 0.1300000 0.4700000 
85.0000000 0.1300000 0.4600000 
87.5000000 0.1300000 0.4500000 
90.0000000 0.1200000 0.4400000 
92.5000000 0.1200000 0.4400000 
95.0000000 0.1200000 0.4300000 
97.5000000 0.1200000 0.4200000 

100.0000000 0. I200000 0.4100000 
102.5000000 0.1100000 0.4100000 
105 .oOOooOO 0.1100000 0.3900000 
107.5000000 0.1100000 0.3800000 
11 o.ooooooo 0.1100000 0.3800000 
112.5000000 0.1000000 0.3700000 
115.0000000 0.1000000 0.3600000 
117.5000000 0.1000000 0.3600000 
120.0000000 0.1000000 0.3500000 

*Values of y, and y, are percentages of an 
initial injected dose. 
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TIME (mid 

Fig. 1. Radioactive tracer kinetics: (1) its uptake by the liver and (2) its decay in the blood. Both are shown as 
percentages of the dose injected initially. 

of the impulse response data reveal that system order is either 2 or 3 in both the blood and 
liver compartments. Therefore, the results for a second order as well as a third order model 
are recorded, and final decision follows after model validation. The computed results are 
shown in Tables 2 and 3, together with the values of the residuals mean and variance in each 
case. 

The residuals in all models satisfy the whiteness test according to the first criterion 
discussed earlier in Sec. 4, within 95% confidence limit except in one case. This case was the 
second order model regarding the blood. In this case, one of the correlation coefficients 
slightly exceeded the 95% confidence limit. However, from Tables 2 and 3, it is clear that the 
variance of the residuals is smaller in the case of a third order model than that of a second 
order, both in the blood as well as the liver. This indicates that the third order models are 

Table 2. Second-order models obtained for both the activity in the blood as well as 
the liver 

Identified 
Model 

Residuals 
Mean 

Blood Liver 
-0.842054~ -’ - 0.0081457~ -* 0.19~‘+O.O0162315z-* 

I - 1.642052 --I + 0.655498~ -* 1 - 1.7283~ -’ + 0.7328122 -’ 

0.0063725 0.0000756421 

Residuals 
Variance 

0.00173434 0.00250406 
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Table 3. Third-order models obtained for both the activity in the blood as well as the liver 

Blood Liver 
-0.288923~’ -0,551215z-* - O.O0128784z-3 0.19~‘+0.1001552-*+O.O0968121z-’ 

Identified ~ 
Model 1 - 1.08892~ -’ - 0.330077~ -* + 0.430574~ -3 1 - l.20971z-‘-0.163764z-2+0.379728z-3 

Residuals 
Mean 

0.000285606 -0.000295917 

Residuals 
Variance 

0.00112519 0.00177536 

more appropriate; they also satisfy the whiteness test. It should be noted here that twenty 
correlation coefficients for the residuals data have been calculated for the whiteness test 
discussed earlier in the context of model validation. 

6. CONCLUSIONS AND REMARKS 

An efficient algorithm for discrete modeling of tracer kinetics utilizing actual patient data 
is proposed in this paper. Determination of the model order is explained, and a straight- 
forward recursive technique fo identify the model parameters is presented. Having obtained 
the parameters of model, two ways to ascertain the validity of the model are demonstrated. 

The recursive algorithm proposed in this paper eliminates the need for matrix inversion 
and hence is very suitable for implementation on a microcomputer or even a programmable 
pocket calculator. Moreover, unlike most of the techniques proposed in the literature which 
usually formulate the problem as a nonlinear programming problem, the new technique of 
this paper offers a systematic and efficient alternative which is both robust, fast and simple. 

It is well known that nonlinear formulations normally result in convergence questions or 
lead to a local minimum, unless the initial conditions provided are very close to the solution: 
the proposed methodology avoids such mathematically intractable situations. 

Keeping in view the relevance of state-space formulations corresponding to multi- 
compartmental models of biosystems, it may be remarked that in such cases the response 
sequences of the output vectors can be utilized directly for evaluation of the model 
parameters. The procedure is outlined briefly in Appendix I. 

In case one requires a continuous-time model which has the same impulse response as 

G(z), this can also be achieved readily. A suggested procedure is given in Appendix II. 
It is envisaged that the methodology proposed would find applications not only in 

modelling of numerous biomedical systems but would also prove to be of interest to 
researchers from other disciplines. 

APPENDIX I. STATE-SPACE MODELS FOR MULTICOMPARTMENTAL SYSTEMS 

In many cases, multicompartmental models in the state-space form are more desirable. 
Such models are not unique, since a linear transfer of the state does not change the transfer 
function matrix. Hence, one often uses the state equations in some canonical form. An 
efficient algorithm for obtaining the state equation in a canonical form from the transfer 
function matrix is described in [32, 331. 

However, in practice, it is always better to determine state equations directly from the 
impulse response sequence when the observations are contaminated with noise. This is 
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because the different elements of the estimated transfer function matrix may not exhibit 
common eigenvalues with the result that the corresponding state equations may turn out to 
be of higher order than necessary. A method for obtaining the least-squares estimate of the 
parameters of the state-space model directly from the impulse response sequence is given 
below. Consider the state equations 

i=Ax+Bu 

y=Cx+Du, 
(1.1) 

where x is the n-dimensional state vector, u is the m-dimensional input vector, and A, B, C, 
and D are constant matrices of appropriate dimensions. Since compartmental models usually 
have one input and several outputs, let m = 1, that is, let tl be a scalar. 

For the case when the initial state x(0) = 0, and the input u(t) = s(t), the unit impulse, 
Eqs. (1 .I) can be solved to obtain 

x(r) = e”‘B 

y(t) = c eA’B + Da(t). 
(1.2) 

The output vectors at the sampling instants are given by 

y, = y (kT) a CFkB, (1.3) 

where 

F = e*‘. (1.4) 

First, we note that the order n of the model can be determined from the rank of the block 
Hankel matrix, defined as 

YO _h Y2 Yk 

s = Yl Y2 Y3 Yk+l 1 (1.5) 
Y2 Y3 Y4 Yk+2 

Y Yl,l Y/+2 Yk+l 

provided that k and I are sufficiently large. In practice, the order can be determined using 
the determinant ratio test. 

For the estimation of F, B, and C, it is most convenient to use the output identifiable 
canonical form. In this form the rows of C are the first p unit row vectors of dimension n, 
whereas B is obtained as the top n elements of the first column of S. The elements of the 
matrix F are then obtained to provide a least-squares solution to Eq. (1.3). 

The continuous-time state-space model can also be obtained after the matrix F has been 
estimated. From Eq. (1.4), it follows that the eigenvectors of F and AT are identical, whereas 
the eigenvalues of F are related to the eigenvalues AT. The prodedure for determining A from 
F, therefore, consists of the following steps: 

(i) Determine the eigenvalues of F. Let these be J.,, 1, . . . An. 
(ii) The eigenvalues of A are then 

f In I,, i In 1, . . . + In I,. 
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(iii) Let the eigenvectors of F be given by a,, v2, and form the modal matrix 

P = [?I,, v* . . . v,]. (1.6) 

(iv) Then A is determined from the relationship 

A = k P diag[l,l,, l,J, . . . l,A,] P - ’ (1.7) 

APPENDIX II. CONTINUOUS-TIME MODEL 

The problem of determining the continuous-time transfer function, G(s), which has the 
same impulse response as G(z) at the sampling instants is considered here. A unique solution 
is obtained if it is assumed that G(s) is of the same order as G(z). The procedure for 
determining G(s) consists of the following steps: 

(i) Determine the poles of G(z). 
(ii) Corresponding to each pole of G(z), determine a pole of G(s) according to the 

equation 

s = f In(z), 

where T is the sampling interval. It may be noted that for complex conjugate poles 
of G(z), one gets correspondingly complex conjugate poles of G(s). 

(iii) Evaluate the residues of (l/z)G(z) at its poles. 
(iv) Using the same residues at the corresponding poles of G(s), the transfer function G(s) 

is obtained. 
It may be noted that although the impulse response of G(s) is equal to that of G(z) at 

the sampling instants, there is no guarantee that the responses of G(s) and G(z) to other 
inputs will be equal at the sampling instants; the response of G(s) is determined largely by 
how the input varies between sampling instants. 

Acknowledgements-The research reported in this paper was supported by the NSERC (National Science and 
Engineering Research Council) of Canada: The authors acknowledge this with thanks. 

REFERENCES 

1. J. A. Jacquez, Compartmental Analysis in Biology and Medicine, Elsevier, Netherlands (1972). 
2. R. F. Brown, Compartmental system analysis: State of the art. IEEE Trans. Biomed. Eng. BME-27, 1-l 1 

(1980). 
3. I. W. Sandberg, On the mathematical foundations of compartmental analysis in biology, medicine and ecology. 

IEEE Trans. Circuits Systems CAS-25, 273-279 (1978). 
4. R. L. Shoenfeld and M. Berman, An electrical network analogy for isotope kinetics. IRE Nat. Cow. Rec., 

Pt. 4, 8489 (1957). 
5. S. Niazi, Application of a programmable calculator in data fitting according to one and two compartment 

open models in clinical pharmacokinetics. Comput. Prog. Biomed. 7, 41-44 (1977). 
6. D. A. Cook and G. S. Taylor, The use of the APL/360 system in pharmacology: A computer assisted analysis 

of efflux data. Compur. Biomed. Res. 4, 157-166 (1971). 
7. J. D. Powers, T. E. Powers, J. D. Baggot, J. Kowalski and K. Kerr, Automated processing of data from 

pharmacokinetic investigations. Comput. Biomed. Res. 9, 543-548 (1976). 
8. R. H. Luecke and W. D. Wosilait, A program to simulate drug elimination interactions: Warfarin and BSP-An 

illustrative example. Comput. Prog. Biomed. 8, 3543 (1978). 
9. B. Kanyar and J. Erodi, Program to estimate parameters of linear systems without numerical differentiation. 

Cornput. Prog. Biomed. 8, 135-140 (1978). 



Discrete modelling of tracer kinetics 267 

10. P. V. Pedersen, Curve fitting and modelhng in pharmacokinetics and some practical experiences with NONLIN 
and a new program FUNFIT. J. Pharmacokin. Biopharm. 5, 513-531 (1977). 

11. H. A. Feldman, A short parameter-fitting routine for compartmental models. Comput. Prog. Biomed. 7, 
135-144 (1977). 

12. A. Silvers and W. J. Sanders, Digital online computer display to investigate the structure of metabolic systems. 
Comput. Biomed. Res. 3, 133-145 (1970). 

13. A. Lemaitre and J. P. Malenge, An efficient method for multi-exponential fitting with a computer. Corn@. 
Biomed. Res. 4, 555-560 (1971). 

14. R. H. Davis and J. H. Ottaway, Application of optimization procedures to tracer kinetic data. Math Biosci. 
13, 265-282 (1972). 

15. A. J. Sedman and J. G. Wagner, CSTRIP, a Fortran IV computer program for obtaining initial 
polyexponential parameter estimates. J. Pharmaccut. Sci. 65, lOOblOl0 (1976). 

16. J. Markham, D. L. Snyder, and J. R. Cox, A numerical implementation of the maximum likelihood method 

17 

18. 

19. 

20. 

21. 

22. 

23. 

24. 

25. 

26. 

27. 

28. 

29. 

30. 

31. 
32. 

33. 

of parameter estimation for tracer-kinetic data. Math. Biosci. 28, 275300 (1976). 
R. L. Kodell and J. H. Matis, Estimating the rate constants in a two-compartment stochastic model. Biometrics 
32, 377400 (1976). 
C. G. Kallstrom, T. Essebo, and K. J. Astrom, A computer program for maximum likelihood identification 
of linear multivariable stochastic systems, in 4th WAC Symp. Syst. Parameter Estimation, Tbilisi, USSR, Paper 
12.1, pp. 508-521 (1976). 
C. E. Minde and I. McMillan, Estimation of linear compartmental model parameters using marginal 
likelihood. Biometrics 33, 333-341 (1977). 
P. Mancini and A. Pilo, A computer program for multiexponential fitting by the peeling method. Comput. 
Biomed. Res. 3, l-14 (1970). 
D. Z. D’Argenio and A. Schumitzky, A program package for simulation and parameter estimation in 
pharmacokinetic systems. Comput. Prog. Biomed. 9, 115-134 (1979). 
E. R. Carson, C. Cobelh, and L. Finkelstein, The identification of metabolic system-A review, presented 
at the 5th IFAC Symp. Ident. Syst. Parameter Estimation, Darmstadt, Germany (1979). 
J. H. Ottaway, Normalization in the fitting of data by iterative methds application to tracer kinetics and 
enzyme kinetics. Biochem. J. 134, 729-736 (1973). 
G. A. Bekey, M. T. Ung, and S. Karuza, Observations on some commonly used methods for identification 
of parameters in linear systems. Simulation 23, 69-75 (1974). 
M. Berman and R. L. Schoenfeld, Invariants in experimental data on linear kinetics and the formulation 
of models. J. Appl. Phys. 27, 1361-1370 (1956). 
M. Berman, E. Shahn, and M. R. Weiss, The routine fitting of kinetic data to models: A mathematical 
formalism for digital computers. Biophys. J. 2, 289-315 (1962). 
M. Berman and M. F. Weiss, User’s Manual for SAAM (Simulation, Analysis and Modeling), edited by 
National Institute of Arithritis and Metabolic Diseases, NIH, Bethesda, Maryland (1966). 
F. Kajiya, K. Kawagoe, S. Kodama, N. Hoki, and M. Inoue, A method of study of radioactive trace kinetics. 
IEEE Trans. Biomed. Eng. BME-26, 422428 (1979). 
N. K. Sinha and W. Pillie, On-line parameter estimation using the matrix pseudoinverse. Proc. IEEE 118, 
104-1046 (1971). 
H. Akaike, A new look at the statistical model identification. IEEE Trans. Automatic Control AC-19, 716-723 
(1974). 
P. Stoica, A test for whiteness. IEEE Trans. Automatic Control AC-22, 992-223 (1977). 
P. Rozsa and N. K. Sinha, Efficient algorithm for realization of rational matrices. Int. J. Control 20, 739-751 
(1974). 
N. K. Sinha and P. Rozsa, Some canonical forms for linear multivariable systems. Int. J. Control 23, 865-883 
(1976). 


