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Gabriele Migliorini,1 Philip J. Law,1 Xose S. Puente,4 David Martı́n-Garcı́a,2 Itziar Salaverria,2 Jesús Gutiérrez-Abril,4
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SUMMARY

Chronic lymphocytic leukemia (CLL) is an adult B cell
malignancy. Genome-wide association studies show
that variation at 15q15.1 influences CLL risk. We
deciphered the causal variant at 15q15.1 and the
mechanism by which it influences tumorigenesis.
We imputed all possible genotypes across the locus
and thenmapped highly associated SNPs to areas of
chromatin accessibility, evolutionary conservation,
and transcription factor binding. SNP rs539846
C>A, the most highly associated variant (p = 1.42 3
10�13, odds ratio = 1.35), localizes to a super-
enhancer defined by extensive histone H3 lysine 27
acetylation in intron 3 of B cell lymphoma 2 (BCL2)-
modifying factor (BMF). The rs539846-A risk allele al-
ters a conserved RELA-binding motif, disrupts RELA
binding, and is associated with decreased BMF
expression in CLL. These findings are consistent
with rs539846 influencing CLL susceptibility through
differential RELA binding, with direct modulation of
BMF expression impacting on anti-apoptotic BCL2,
a hallmark of oncogenic dependency in CLL.
INTRODUCTION

Although genome-wide association studies (GWASs) frequently

have identified statistically significant associations within non-

coding regions of the genome, the underlying causal variant

has been elucidated in only a few instances. GWASs of chronic

lymphocytic leukemia (CLL) have identified 31 risk loci, with
Cell Re
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the signal annotating B cell lymphoma 2 (BCL2)-modifying factor

(BMF) at 15q15.1 being highly robust (Berndt et al., 2013, 2016;

Crowther-Swanepoel et al., 2010; Di Bernardo et al., 2008;

Slager et al., 2011, 2012; Speedy et al., 2014).

Elevated expression of the anti-apoptotic protein BCL2 is

a hallmark of CLL, driving the accumulation of mature leukemic

lymphocytes (Hanada et al., 1993). BMF, a BH3-only pro-

apoptotic member of the BCL2 protein family, neutralizes the

anti-apoptotic activity of BCL2 through direct interaction (Putha-

lakath et al., 2001). Here we sought to identify the causal poly-

morphism(s) driving the 15q15.1 association with CLL suscepti-

bility as a basis for understanding BCL2 addiction mechanisms

in CLL.
RESULTS

Fine-Mapping of the 15q15.1 CLL Risk Locus
A previous GWAS reported an association between rs8024033

at 15q15.1 and CLL risk (Berndt et al., 2013). To refine the

association signal, we performed fine-mapping of the 15q15.1

CLL risk locus by imputation of our European GWAS to 1000

Genomes Project (Abecasis et al., 2012) and UK10K (UK10K

Consortium et al., 2015) reference panels. By this approach,

we identified four risk SNPs with minor allele frequency >0.01

and association p < 5.0 3 10�7 (Figure 1A; Table S1). The

lead SNP, rs539846 (odds ratio = 1.35, p = 1.42 3 10�13),

mapped to the third intron of BMF and was in high linkage

disequilibrium (LD, r2 = 0.91) with the published SNP,

rs8024033. We verified the fidelity of imputed rs539846 geno-

types by Sanger sequencing in a subset of 176 CLL cases,

demonstrating >95% concordance.

To rule out the existence of multiple statistical signals at

the BMF locus, we repeated association testing conditional on
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Figure 1. Genetic Mapping and Epigenetic

Landscape at the 15q15.1 Locus

(A) SNAP plot of the 15q15.1 chronic lymphocytic

leukemia susceptibility locus. Genotyped (tri-

angles) and imputed (dots) SNPs are shown based

on their megabase chromosomal position on the

x axis and -log10 p value on the y axis. Color in-

tensity of each symbol reflects the extent of LD

with rs539846 (white r2 = 0 to dark red r2 = to 1).

Recombination rates, estimated using HapMap

samples of European ancestry, are shown by a

light blue line. Physical positions are based on

NCBI build 37 of the human genome. Also shown

are relative gene positions and chromatin state

segmentation (ChromHMM) for GM12878 derived

from ENCODE project data.

(B) ChIP-seq data for H3K4Me1, H3K4Me3, and

H3K27Ac histone modifications and DNaseI hy-

persensitivity (HS) are illustrated for GM12878

from ENCODE (brown) and for CLL cells from the

Blueprint Project (blue). ChIP-seq data for RELA

in GM12878 also is shown. Data are shown rela-

tive to the genomic arrangement of BMF and

were plotted in the University of California, Santa

Cruz Genome Browser. Also illustrated are

the position-weighted matrix for RELA and the

motif sequence (underlined) altered by rs539846

(red box).
rs539846 genotypes, observing no significant variants (most sig-

nificant variant: rs181168015, p = 1.52 3 10�4; Figure S1). We

also found no rare non-synonymous variants inBMF in the germ-

line exomes of 141 CLL cases (enriched for genetic susceptibility

by virtue of family history; Supplemental Experimental Proce-

dures). Collectively these results are consistent with a single un-

derlying variant at the 15q15.1 locus.

Definition of rs539846 as a Plausible CLL Risk SNP
To further prioritize candidate CLL risk variants, we examined

the regulatory potential of SNPs in LD (r2 > 0.2) with rs539846,

based on epigenetic data from lymphoblastoid cell lines (LCLs

[ENCODE Project Consortium, 2012]) and primary CLL cells.

These data showed that rs539846 resides within an active
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enhancer region inferred byDNaseI sensi-

tivity and H3K4me1 and H3K27ac histone

modifications inbothcell types (Figure1B;

Table S1). Moreover, analysis of histone

H3K27ac data from lymphoid cells of

both B cell and T cell lineages defined a

B cell-specific 15q15.1 super-enhancer

that spans �80 kb, encompassing the

CLL risk locus (Hnisz et al., 2013), while

high-throughput chromosome conforma-

tion capture (Hi-C) data from LCLs (Rao

et al., 2014) show that this putative

super-enhancer element overlaps a chro-

matin contact domain (Figure 2A).

Since causal SNPs that drive GWAS

associations may function by altering
transcription factor binding, we examined whether 15q15.1

candidate risk SNPs disrupt predicted JASPAR motifs. This

revealed that rs539846 alters a highly conserved base within a

putative RELA-binding motif (GGGACTTT[C/A]C, phastCons

score = 1.00, Genomic Evolutionary Rate Profiling [GERP]

score = 4.81) (Figure 1B). Encyclopedia of DNA Elements

(ENCODE) transcription factor chromatin immunoprecipitation

sequencing (ChIP-seq) in LCLs confirmed the presence of

RELA binding across this site (Figure 1B) in cells homozygous

for the rs539846-C allele (non-risk allele, preserving the RELA

motif). Within the 15q15.1 chromatin contact domain, chromo-

some conformation capture–on-chip with sequencing (4C-seq)

in the MEC1 CLL cell line showed a high frequency of three-

dimensional contacts between the viewpoint (adjacent to



Figure 2. Contact Profile of the BMF 4C

Viewpoint in Combination with ChIP-Seq

Data

(A) Heatmap representing chromatin interactions

in GM12878 cells at 40.32–40.52 Mb on chromo-

some 15. Chromatin contact domains called by

the Arrowhead algorithm aremarked by white lines

(Rao et al., 2014). The contact domain and CD19+

B cell super-enhancer (Hnisz et al., 2013) encom-

passing rs539846 are labeled in pink and yellow,

respectively.

(B) 4C-seq analyses in MEC1 CLL cells indicate

the formation of a loop domain between rs539846

and cis-regulatory elements. The 4C viewpoint

(green box) lies adjacent to rs539846 (dotted line).

A 10-kb masked region (gray box) is also marked.

ENCODE ChIP-seq data from GM12878 cells

show the correspondence between loop formation

and CTCF and RELA transcription factor occu-

pancy. Canonical transcripts and chromosome 15

position also are shown.
rs539846) and the distal end of the predicted super-enhancer,

with both points overlapping regions of RELA and CTCF binding

(Figure 2B).

No other candidate CLL risk variant at the 15q15.1 locus

showed the unique combination of evolutionary conservation,

active enhancer localization, and disruption of a transcription

factor-binding motif, thus re-affirming that rs539846 is the single

best causal SNP candidate.

rs539846 Alters RELA-Mediated Enhancer Activity
We next performed luciferase reporter assays to determine the

effect of rs539846 on enhancer activity. MEC1 cells transfected

with constructs containing the risk A allele demonstrated a sig-

nificant reduction in normalized luminescence compared to the

C allele (p = 0.015, Figures 3A and 3B), indicating that the intact

RELA motif is required for enhancer activity. We assayed pro-

tein-DNA interactions for rs539846-C and -A alleles using elec-

trophoretic mobility shift assays (EMSAs). The C allele formed

stronger protein-DNA complexes compared with the A allele

(Figure 3C), and in an EMSA super-shift assay RELA was prefer-

entially recruited to the C allele (Figure 3C).

rs539846 Alters RELA-Mediated Regulation of BMF

To determine whether BMF is a target of RELA-mediated regula-

tion, we first queried the International Cancer Genome Con-

sortium (ICGC) dataset, revealing a correlation between RELA

and BMF expression in CLL (Table S2; p = 0.004). To establish

a direct relationship between RELA and BMF expression, we

performed small interfering RNA (siRNA) experiments in MEC1
Cell Rep
cells, where knockdown of RELA was

accompanied by a significant reduction

in BMF mRNA (Figure 4A, p = 0.02; Fig-

ure S2). We also investigated whether

the rs539846 genotype was associated

with BMF transcript levels in 426 primary

CLL cases. We observed a significant
dose relationship between the rs539846-A risk allele and

reduced BMF mRNA (p = 0.0003; Figure 4B). No association

was seen between the rs539846 genotype and levels of other

genes within 1 Mb of the SNP (false discovery rate < 0.05, Table

S2). To investigate whether the rs539846 genotype might influ-

ence splicing of BMF, we examined RNA sequencing (RNA-

seq) data from 30 CLL cases, finding no evidence of aberrant

splicing. We also found no differences in the splicing levels of

known BMF exons between the rs539846 risk allele and non-

risk allele homozygotes (Figure S3).

Impact of rs539846 on Prognosis and Survival in CLL
Patients
CLL can be classified on the basis of several prognostic factors,

including immunoglobulin heavy-chain variable (IGHV) mutation

status; expression levels of CD38, ZAP70, and CLLU1; as well

as somatic genomic abnormalities (trisomy 12, 13q14 deletion,

6q21 deletion, 11q23 deletion, 17p13 deletion, NOTCH1 muta-

tion, and SF3B1 mutation). We found no association between

the rs539846 genotype and these features in a subset of UK-

GWAS and ICGC study cases (Table S3). There was also no

association between rs539846 and overall patient outcome

(Table S4), and we noted that BMF transcript levels were not

associated with patient survival (Table S4).

DISCUSSION

Collectively, our data demonstrate that the underlying molecular

mechanism for the 15q15.1 CLL risk locus is mediated through
orts 16, 2061–2067, August 23, 2016 2063



Figure 3. rs539846 Affects RELA-Bound Enhancer Activity

(A) Allele-specific constructs containing a 591-bp putative regulatory sequence flanking rs539846 were cloned into the pGL3-promoter luciferase reporter vector.

(B) The ratio of luminescence from the experimental pGL3-rs539846 constructs to the Renilla internal control, pRL-SV40, was normalized to the empty pGL3-

SV40 vector. Data shown are mean ± SE from three independent experiments performed in triplicate. Difference in expression was assessed by the Student’s

t test. The rs539846-A risk allele had significantly decreased enhancer activity over the protective allele.

(C) EMSA showing differential binding of MEC1 nuclear protein to the rs539846-C allele (protective) and the rs539846-A allele (risk). Binding of double-stranded A

allele and C allele probes to MEC1 nuclear extract shows a marked reduction of DNA-protein binding associated with the A allele.
rs539846, which resides within a transcriptional enhancer and

disrupts a conserved RELA transcription factor-binding site.

Our data are compatible with the rs539846-A allele conferring

increased CLL risk through reduced RELA-mediated expression

of the pro-apoptotic BCL2 family gene, BMF. Furthermore,

epigenetic and chromosome conformation capture data are

consistent with rs539846 localizing within a chromatin contact

domain, overlapping a B cell super-enhancer (Hnisz et al.,

2013). This interval, anchored by divergent CTCF-binding sites,

forms a loop domain (Rao et al., 2014), which is expected to bring

two regions of RELA binding, separated by a linear distance

of around 65 kb, into physical contact close to the promoter

of BMF.

RELA (also known as p65) is a sub-unit of the necrosis factor

kappa B (NF-kB) protein complex. This transcription factor

complex regulates expression of genes involved in biological

processes, such as proliferation, survival, and inflammation.

NF-kB signaling is constitutively active in CLL (Furman et al.,

2000), while high levels of the pro-survival gene BCL2, an estab-

lished NF-kB target, are a hallmark of the disease (Scarfò and

Ghia, 2013).

Here, we provide direct evidence that BMF is transcrip-

tionally regulated by RELA, in keeping with the somewhat

counter-intuitive observation that levels of pro-apoptotic

BMF are high in CLL (Mackus et al., 2005). In the normal

response to cellular stress, BMF interacts with BCL2 at the

mitochondrial surface and neutralizes its anti-apoptotic prop-

erties (Puthalakath et al., 2001). In CLL, it is hypothesized

that, although cells maintain some ability to induce pro-

apoptotic BH3-only proteins like BMF in response to onco-
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genic stress, apoptosis ultimately fails due to overexpression

of pro-survival proteins.

Our data suggest that, in individuals carrying the rs539846 risk

allele, BMF transcript levels are reduced and thus the apoptotic

response may be attenuated further. Indeed, previous studies in

the myeloma cell line U266 have reported that siRNA-mediated

knockdown of BMF is associated with a decrease in apoptosis

following treatment with arsenic trioxide (Morales et al., 2008),

whereas mice lacking Bmf develop a B cell lymphadenopathy

caused by a resistance of B cells to apoptosis (Labi et al., 2008).

We did not observe an association between the SNP and

prognostic markers or patient survival in CLL. This is consistent

with differential expression of BMF being important in the early

phases of CLL rather than disease progression per se. We do,

however, acknowledge that our analysis had <50% power to

demonstrate a 10% difference in patient outcome, and to

robustly determine the relationship between BMF expression

and patient outcome requires much larger patient cohorts.

Finally, this study underlines the importance of BH3-only pro-

teins such as BMF in CLL development. Recently, a number of

BH3 mimetics have been developed as potential therapies for

lymphoid malignancies (Billard, 2013). These molecules are de-

signed to mimic endogenous BH3-only proteins and bind to

pro-survival members of the BCL2 family, facilitating the induc-

tion of apoptosis. One example, ABT-199 (Venetoclax), selec-

tively targets BCL2, and, in recent clinical trials involving

relapsed or refractory CLL, patients gave an overall response

rate of 79% (Roberts et al., 2016). Our findings thus further

demonstrate the utility of association studies to define clinically

relevant oncogenic pathways.



Figure 4. RELA Expression and the

rs539846 Genotype Are Correlated with

BMF Transcript Levels

(A) siRNA knockdown of RELA reduces transcript

levels of BMF. Data shown are mean ± SE for three

independent replicates relative to GAPDH refer-

ence mRNA, normalized to control siRNA. The

p values were determined with a two-tailed t test.

(B) The rs539846 CLL risk allele (A) was associated

with lower BMF mRNA levels in 462 patient sam-

ples. Boxplot indicates themedian (horizontal line),

first to third quartiles (box), and 1.5 times the in-

terquartile range (whiskers) of BMF expression.
EXPERIMENTAL PROCEDURES

Ethics

Ethical approval for this studywas obtained from the UKMulti-Research Ethics

Committee (MREC 99/1/082).

Fine-Mapping of the 15q15.1 Locus

We made use of data from two published CLL GWASs: (1) UK-CLL-1 (Di Ber-

nardo et al., 2008), a scan of 517 cases using Illumina HumanCNV370-Duo

BeadChips, with Hap1.2M-Duo Custom array data on 2,698 individuals from

the Wellcome Trust Case Control Consortium 2 (WTCCC2) 1958 Birth cohort

serving as controls; and (2) UK-CLL-2 (Speedy et al., 2014), a scan of 1,403

cases using the Illumina Omni Express BeadChips, with Hap1.2M-Duo

Custom array data on 2,501 individuals from the UK Blood Service Control

Group serving as controls. Individuals with low call rate (<90%), extremely

high or low heterozygosity (p < 1.0 3 10�4), and those evaluated to be of

non-European ancestry (using HapMap version 2 populations as a reference)

were excluded.

GWAS data were imputed using 1000 Genomes Project phase 1 integrated

release 3 (Abecasis et al., 2012), and UK10K 2014 release (UK10K Consortium

et al., 2015) as a reference in conjunction with IMPUTE2 v2.1.1 software

(Howie et al., 2009). Genotypes were aligned to the positive strand in both

imputation and genotyping. Poorly imputed SNPs defined by an information

measure, Is < 0.80, were excluded. The association between each SNP and

CLL risk was assessed by Cochran-Armitage trend test. To look for indepen-

dent effects, conditional logistic regression analysis was performed. SNP

rs539846 was included as a covariate and association statistics for SNPs

within the interval chr15:40379030–40532514 were recalculated (region spans

all SNPs in LD r2 > 0.2 with rs539846). To validate imputed rs539846 geno-

types, we performed Sanger sequencing in 176 CLL GWAS cases. Primers

are listed in Table S5.

Epigenetic Annotation

To explore the epigenetic profile of the interval, we examined LCL chro-

matin state segmentation, DNase sequencing (DNase-seq), histone modifi-

cation, and transcription factor ChIP-seq data from the ENCODE project

(ENCODE Project Consortium, 2012; Ernst and Kellis, 2012). In addition,

ChIP-seq (H3K4me3, H3K4me1, and H3K27ac) and DNase-seq data

generated using standard protocols within the Blueprint Consortium,

from cells of a CLL patient with mutated IGHV (>90% tumor cell content),

also were examined (Puente et al., 2015). Detailed protocols are available

from the Blueprint Consortium (http://www.blueprint-epigenome.eu).

We also used HaploReg (Ward and Kellis, 2012) to examine whether

rs539846 or proxy SNPs (r2 > 0.2 in 1000 Genomes EUR reference panel)

annotate transcription factor-binding sites or enhancer elements. We

assessed sequence conservation using GERP (Cooper et al., 2005) and

PhastCons (Siepel et al., 2005). We searched for overlap with annotated su-

per-enhancer regions in lymphoid cell types from B cell (CD19+ and CD20+)

and T cell (CD4+ naive and memory; CD8+ naive and memory) lineages

(Hnisz et al., 2013).
Hi-C and Definition of a Topological Domain at the 15q15.1 Locus

We made use of publicly available Hi-C data on GM12878 cells (Rao et al.,

2014), based on combined replicates digested using MboI, analyzed using

the balanced Knight-Ruiz normalization method (Knight and Ruiz, 2013) with

a uniform resolution of 5 kb. Contact domains were defined with the Arrow-

head algorithm (Rao et al., 2014).

Cell Culture

MEC1 (human CLL) cells were grown in Iscove’s modified Dulbecco’s medium

(Life Technologies) supplemented with 10% fetal calf serum.

4C-Seq

4C-seq libraries were prepared as described (van de Werken et al., 2012),

using ten million MEC1 cells cross-linked with 2% formaldehyde. Using

4C primer design software (http://mnlab.uchicago.edu/4Cpd/), we identified

a viewpoint adjacent to SNP rs539846. Primary and secondary restriction

enzymes were DpnII and HindIII (cut sites, chr15:40,397,659–40,397,662 bp

and chr15:40,396,692–40,396,697 bp, respectively). Primers are listed in

Table S5. Libraries were sequenced on an IlluminaMiSeq to obtain 150-bp sin-

gle-end reads.Readsweremapped to thehumangenomeusingBowtie (version

2.1.0) and filtered for PHRED score < 30. Implementing standard procedures,

unique 4C-seq reads were allocated to blind and non-blind fragments. Profiles

for the two classes of fragments were obtained at 100-bp resolution and an

averageprofile for a 5-kb runningwindowwascomputed. Fordata visualization,

we used Vispig (Scales et al., 2014) and incorporated processedChIP-seq data

from the ENCODE Project (ENCODE Project Consortium, 2012).

Plasmid Construction and Luciferase Assays

Allele-specific fragments of a 591-bp region spanning rs539846 were ampli-

fied from human genomic DNA using primers detailed in Table S5, cloned

into the PCR8/GW/TOPO vector, and then transferred into pGL3 luc2 pro-

moter vector using Gateway technology (Life Technologies). Reporter con-

structs were introduced into MEC1 cells by nucleofection, using program

X-01 on the Amaxa Nucleofector I (Amaxa Biosystems). Typically, 53 106 cells

were resuspended in 100 ml Cell Line Nucleofector Solution V and mixed with

3 mg reporter plasmid DNA and 60 ng internal control plasmid (pRL-SV40).

Transiently transfected cells were grown for 24 hr before assaying with the

Dual-Luciferase Reporter Assay System (Promega) and the Fluoroskan Ascent

FL plate reader (Labsystems). Relative luciferase activity was calculated as the

ratio of luminescence from the experimental reporter to that of the control re-

porter. Each transfection experiment was repeated three times and statistical

significance was calculated using the Student’s t test.

EMSA

Nuclear protein was extracted from MEC1 cells using NE-PER nuclear and

cytoplasmic extraction kits (Thermo Fisher Scientific). Infrared dye DY-682-

labeled (Eurofins Genomics) and unlabeled (Life Technologies) complemen-

tary oligonucleotides flanking rs539846 (50-GAGGGGACTTT[C/A]CCTCCCC

AAAC-30 and 50-GTTTGGGGAGG[G/T]AAAGTCCCCTC-30) were annealed

to generate double-stranded EMSA probes. Each 20 ml binding reaction
Cell Reports 16, 2061–2067, August 23, 2016 2065
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contained 50 fmol labeled target DNA, 13 binding buffer (10 mM Tris, 50 mM

KCl, 1 mM DTT [pH 7.5], 1 mg poly [dI.dC, Sigma-Aldrich], 2.5 mM DTT, and

10 mg nuclear protein extract). The reaction mix was incubated in the dark

for 30 min at room temperature. Competition assays were performed by add-

ing 200-fold molar excess of unlabeled probes to the binding reaction. Super-

shift EMSAs were conducted by adding 2 mg RELA antibody (Santa Cruz

Biotechnology) to the binding reaction and incubating for 15 min prior to the

addition of labeled probe. Post-incubation, 2 ml 103 Orange loading dye (LI-

COR Biosciences) was added to the reaction mix, and the DNA-protein com-

plexes were resolved by electrophoresis on a 6% DNA retardation gel (Life

Technologies) in 0.53 Tris-borate-EDTA (TBE) at 4�C. Gels were imaged using

the Odyssey Fc Infrared Imaging System (LI-COR Biosciences).

Gene Expression and Splicing Analysis

We used Spearman’s rank correlation to assess the relationship between BMF

and RELA transcript levels in the ICGC dataset (Puente et al., 2015). Expres-

sion quantitative trait locus analyses were performed for all genes in the

1-Mb region around rs539846, using Affymetrix Human Genome Array U219

data on 426 CLL patients (Puente et al., 2015). Four cases with 15q15.1

copy number losses were excluded. Genotypes were determined by imputa-

tion as described and were confirmed fromwhole-genome-sequencing (WGS)

data in 145 samples, with >99% concordance. The association between SNP

genotype and expression was evaluated by linear regression controlling for

false discovery using matrixEQTL (Shabalin, 2012) implemented in R (version

3.2.0). To assess the impact of rs539846 on splicing, we used RNA-seq data

from CLL tumors (Puente et al., 2015), counting individual k-mers supporting

each of the possible splicing events. Sample genotype for SNP rs539846

was determined from WGS data, and differences between k-mer counts for

rs539846-CC and -AA homozygotes were evaluated using a Student’s t test.

The accession numbers for the data utilized in this paper are European

Genome-phenome Archive EGAD00010000875 and EGAS00000000092.

siRNA Knockdown

siRNA targeting RELA and a control siRNA (Table S5) were obtained from

Eurofins Genomics. MEC1 cells were transfected with 100 nM siRNA using

nucleofection as described. Total RNA was extracted 24 hr post-transfection

using the RNeasy Plus Mini Kit (QIAGEN). The cDNA was produced using

SuperScript II Reverse Transcriptase (Life Technologies). Knockdown effi-

ciency was measured by qPCR and western blot using standard protocols.

RELA antibody was used with GAPDH antibody (FL-335; sc-25778, horse-

radish peroxidase [HRP]; Santa Cruz Biotechnology) as the loading control.

Transcript levels of RELA and BMF were quantified using SYBR Green PCR

mastermix (Life Technologies) and normalized to GAPDH. The experiment

was repeated three times. Primer sequences are detailed in Table S5.

Association between the rs539846 Genotype and Clinical Variables

Logistic regression was used to test the association between the rs539846

genotype and prognostic factors. Trisomy 12, 13q14 deletion, 6q21 deletion,

11q23 deletion, 17p13 deletion, CD38 expression, ZAP70 expression, CLLU1

expression,NOTCH1mutation, andSF3B1mutation statuseswere determined

in a subset of UK-CLL-1 patients who were participants in the LRF CLL4 Trial

(Catovsky et al., 2007), as previously described (Gonzalez et al., 2013; Oscier

et al., 2010, 2013). IGHVmutation statuswasdeterminedasperBIOMED-2pro-

tocols (van Dongen et al., 2003) in a subset of patients from UK-CLL-1, UK-

CLL-2, and the ICGCCLL project (Puente et al., 2015). In accordance with pub-

lished criteria (van Krieken et al., 2007), we classified sequences with germline

homology ofR98%as unmutated and thosewith homology <98%asmutated.

Survival analysis was performed using data from a subset of UK-CLL-1 and

ICGCCLL project cases. Analysis was carried out using the log-rank test (using

time from diagnosis to death or censoring at the end of follow-up).
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