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Abstract

In this paper, we give several approaches to construct new End-regular (-orthodox) graphs by means of the join and the lexicographic
product of two graphs with certain conditions. In particular, the join of two connected bipartite graphs with a regular (orthodox)
endomorphism monoid is explicitly described.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction and preliminary concepts

Endomorphism monoids of graphs (or just monoids of graphs) are a generalizations of automorphism groups of
graphs (or just groups of graphs). In recent years much attention has been paid to endomorphism monoids of graphs
and many interesting results concerning graphs and their endomorphism monoids have been obtained. The aim of the
research in this line is to establish the relationship between graph theory and algebraic theory of semigroup and to
apply the theory of semigroups to graph theory. Just as Petrich and Reilly pointed out in [13], in the great range of
special classes of semigroups, regular semigroups take a central position from the point of view of richness of their
structural “regularity”. So it is natural to ask for which graph G the endomorphism monoid of G is regular (such an open
question was raised in [11]). However, it seems difficult to obtain a general answer to this question. So the strategy for
solving this question is finding various kinds of regularity conditions for various kinds of graphs. In [14], the connected
bipartite graphs whose endomorphism monoids are regular were explicitly found. The joins of two trees with regular
endomorphism monoids were characterized in [9]. The split graphs with regular endomorphism monoids were studied
in [10]. In this paper, we give several approaches to construct End-regular graphs by means of joins and lexicographic
products of two graphs with certain conditions. In particular, we determine the End-regular (End-orthodox) joins of
two connected bipartite graphs.

The graphs considered in this paper are finite undirected graphs without loops and multiple edges. Let X be a graph.
The vertex set of X is denoted by V (X) and the edge set of X is denoted by E(X). If two vertices x1 and x2 are adjacent
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in graph X, the edge connecting x1 and x2 is denoted by {x1, x2} and write {x1, x2} ∈ E(X). For a vertex v of X,
denote by NX(v) (or briefly by N(v)) the set {x ∈ V (X)|{x, v} ∈ E(X)} and call it the neighborhood of v in X. A
subgraph H is called an induced subgraph of X if for any a, b ∈ V (H), {a, b} ∈ E(H) if and only if {a, b} ∈ E(X).
A graph X is called bipartite if X has no odd cycle. It is known that, if a graph X is a bipartite graph, then its vertex
set can be partitioned into two disjoint non-empty subsets, such that no edge joins two vertices in the same set. A
set S ⊆ V (X) is called an independent set of X if for any a, b ∈ S, {a, b} /∈ E(X). We call the length of a shortest
cycle in X the girth of X and denote it by girth(X). We call the length of a shortest odd cycle in X the odd girth
of X.

Let X1 and X2 be two graphs. The join of X1 and X2, denoted by X1 + X2, is a graph such that V (X1 + X2) =
V (X1) ∪ V (X2) and E(X1 + X2) = E(X1) ∪ E(X2) ∪ {{x1, x2}|x1 ∈ V (X1), x2 ∈ V (X2)}. The lexicographic
product of X1 and X2, denoted by X1[X2], is a graph with vertex set V (X1[X2]) = V (X1) × V (X2), and edge set
E(X1[X2]) = {{(x, y), (x1, y1)}|{x, x1} ∈ E(X1), or x = x1 and {y, y1} ∈ E(X2)}. The generalized lexicographic
product of a graph G with a family of graphs {Bi |i ∈ V (G)}, denoted by G(Bi)i∈V (G), is defined as a graph whose
vertex set V (G(Bi)i∈V (G)) = {(x, yx)|x ∈ V (G), yx ∈ V (Bx)}, and {(x, yx), (x

′, y′
x′)} ∈ E(G(Bi)i∈V (G))if and only

if {x, x′} ∈ E(G), or x = x′ and {yx, y
′
x′ } ∈ E(Bx).

Let X and Y be two graphs. A mapping f from V (X) to V (Y ) is called a homomorphism if {a, b} ∈ E(X) implies that
{f (a), f (b)} ∈ E(Y ). A homomorphism from X to itself is called an endomorphism of X. An endomorphism f is called
a half-strong endomorphism if {f (a), f (b)} ∈ E(X) implies that there exist x1, x2 ∈ V (X) with f (x1) = f (a) and
f (x2)=f (b) such that {x1, x2} ∈ E(X). An endomorphism f is called a strong endomorphism if {f (a), f (b)} ∈ E(X)

implies that any preimage of f (a) is adjacent to any preimage of f (b). An endomorphism f is called an automorphism
if f is bijective and f −1 is an endomorphism. By End(X), hEnd(X), sEnd(X) and Aut(X) we, respectively, denote
the set of endomorphisms, half-strong endomorphisms, strong endomorphisms and automorphisms of graph X. It is
known that End(X) and sEnd(X) form monoid and Aut(X) forms a group.

A subgraph of X is called the endomorphic image of X under f, denoted by If , if V (If )=f (V (X)) and {f (a), f (b)} ∈
E(If ) if and only if there exist c ∈ f −1(f (a)) and d ∈ f −1(f (b)) such that {c, d} ∈ E(X). Let f be an endomor-
phism of X and H1, H2 be two induced subgraph of X. If f (H1) ⊆ H2, we will denote by f |H1 the mapping
from V (H1) to V (H2) such that f |H1(x) = f (x) for any x ∈ V (H1). Clearly, f |H1 is a homomorphism from H1
to H2. Let f be an endomorphism of X. By �f we denote the equivalence relation on V (X) induced by f, i.e. for
any a, b ∈ V (X), (a, b) ∈ �f if and only if f (a) = f (b). Denote by [a]�f

the equivalence class of a ∈ V (X)

under �f .
An element a of a semigroup S is called regular if there exists x ∈ S such that axa = a. A semigroup S is called

regular if all its elements are regular. A semigroup S is called orthodox if S is regular and the set of all idempotents
forms a subsemigroup, that is, a regular semigroup is orthodox if the product of any two of its idempotents is still
an idempotent. A graph X is said to be End-regular (End-orthodox) if its endomorphism monoid End(X) is regular
(orthodox). Clearly, End-orthodox graphs are End-regular.

For undefined notations and terminology in this paper the reader refer to [3,5].
We list some known results which will be used in the sequel.

Lemma 1.1 (Li [9]). Let X be a graph and let f ∈ End(X). Then

(1) f ∈ hEnd(X) if and only if If is an induced subgraph of X.
(2) If f is regular, then f ∈ hEnd(X).

Lemma 1.2 (Li [8]). Let X be a graph and let f ∈ End(X). Then f is regular if and only if there exist g, h ∈ Idpt(X)

such that �g = �f and Ih = If .

Lemma 1.3 (Li [9]). Let X and Y be two graphs. If X + Y is End-regular, then both X and Y are End-regular.

Lemma 1.4 (Li [9]). Let X be a graph. Then X is End-regular if and only if X + Kn is End-regular for any n�1.

Lemma 1.5 (Hou et al. [4]). Let X and Y be two graphs. If X + Y is End-orthodox, then both of X and Y are End-
orthodox.
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Lemma 1.6 (Wilkeit [14]). Let X be a connected bipartite graph. Then X is End-regular if and only if X is one of the
following graphs:

(1) Complete bipartite graph.
(2) Tree T with d(T ) = 3.
(3) Cycle C6 and C8.
(4) Path with five vertices, i.e. P5.

Lemma 1.7 (Li [9]). Let T1 and T2 be two trees. Then T1 + T2 is End-regular if and only if either (1) one of them is
End-regular and the other is K1 or K2, or (2) d(T1) = d(T2) = 2.

Lemma 1.8 (Fan [2]). Let X be a bipartite graph. Then X is End-orthodox if and only if X is one of the following
graphs: K1, K2, P3, P4, C4, 2K1, K1 ∪ K2.

2. Endomorphism regular graphs

In this section, we shall give various End-regular graphs by means of the join and the lexicographic product of two
graphs with certain conditions.

Recall that a graph X is said to be E–S-unretractive if End(X)= sEnd(X). It is known that if X is finite, then sEnd(X)

is regular. Thus E–S-unretractive graphs give a family of End-regular graphs. The following lemma gives some results
about E–S-unretractive graph, which will be used in the sequel.

Lemma 2.1 (Knauer [6]). Let X and Y be two E–S-unretractive graph. Then:

(1) End(X + Y ) = sEnd(X + Y ).
(2) End(C2m+1[X]) = sEnd(C2m+1[X]).
(3) End(X(Yx)x∈X) = sEnd(X(Yx)x∈X), where (Yx)x∈X be graphs with E(Yx) = � for all x ∈ X.

A proper coloring of a graph X is a map from V (X) into some finite set of colors such that no two adjacent vertices
are assigned the same colors. If X can be properly colored with a set of k colors, then we say that X can be properly
k-colored. The least value of k for which X can be properly k-colored is the chromatic number of X, and is denoted
by �(X). We know that if there is a homomorphism from X to Y, then �(X)��(Y ). A graph X is unretractive, if
End(X) = Aut(X). A subgraph Y of X is a core of X if Y is a unretractive and there is a homomorphism from X to Y.
Let X and Y be two graphs. We say X and Y are homomorphically equivalent if there is a homomorphism from X to Y,
and there is a homomorphism from Y to X. It is known that two graphs X and Y are homomorphically equivalent if and
only if their cores are isomorphic.

Lemma 2.2. Let X and Y be two K3-free graphs. If both of them are non-bipartite, then for any endomorphism f of
X + Y , either f (X) ⊆ X and f (Y ) ⊆ Y , or f (X) ⊆ Y and f (Y ) ⊆ X.

Proof. Let f be an endomorphism of X +Y . We show that either f (X) ⊆ X, or f (X) ⊆ Y . Otherwise, there exist two
vertices x1, x2 ∈ V (X) such that f (x1) ∈ X and f (x2) ∈ Y .

Since Y is not bipartite, then Y has an odd cycle as its subgraph, by the definition of endomorphism, f (Y ) also has
an odd cycle as its subgraph, thus f (Y ) either has an edge in X, or has an edge in Y. Without loss of generality, suppose
{f (y1), f (y2)} ∈ E(Y ) for some y1, y2 ∈ V (Y ). Note that {f (y1), f (x2)} ∈ E(Y ) and {f (y2), f (x2)} ∈ E(Y ), then
f (x2), f (y1), f (y2) form a triangle in Y. It is a contradiction to Y being K3-free.

A similar argument will show that for any endomorphism f ∈ End(X + Y ), either f (Y ) ⊆ X, or f (Y ) ⊆ Y .
Now we claim that if f (X) ⊆ X, then f (Y )�X. Otherwise, there exists a homomorphism from X + Y to X, so
�(X + Y ) = �(X) + �(Y )��(X). A contradiction. Similarly, if f (X) ⊆ Y , then f (Y )�Y . Now the assertion follows
immediately. �

Lemma 2.3. Let X and Y be two End-regular graphs. If for any f ∈ End(X + Y ), f (X) ⊆ X and f (Y ) ⊆ Y , then
X + Y is End-regular.
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Proof. Let f ∈ End(X + Y ). To show that f is regular, we only need to show that there exist two idempotents g and h
in End(X + Y ) such that �g = �f and Ih = If .

Since f (X) ⊆ X, f |X is an endomorphism of X. As X is End-regular, there exist two idempotents g1 and h1 in
End(X) such that �g1

= �f |X and Ih1 = If |X . Similarly, there exist two idempotents g2 and h2 in End(Y ) such that
�g2

= �f |Y and Ih2 = If |Y .
Let g be a mapping from V (X + Y ) to itself defined by

g(x) =
{

g1(x) if x ∈ V (X),

g2(x) if x ∈ V (Y ).

Then g ∈ End(X + Y ), g2 = g and �g = �f .
Let h be a mapping from V (X + Y ) to itself defined by

h(x) =
{

h1(x) if x ∈ V (X),

h2(x) if x ∈ V (Y ).

Then h ∈ End(X + Y ), h2 = h and If = Ih, as required. �

Theorem 2.4. Let X andY be two K3-free End-regular non-bipartite graphs. If the cores of X andY are not isomorphic,
then X + Y is End-regular.

Proof. Let f be an endomorphism of X + Y . By Lemma 2.2, either f (X) ⊆ X and f (Y ) ⊆ Y , or f (Y ) ⊆ X and
f (X) ⊆ Y . In the second case, f |X is a homomorphism from X to Y and f |Y is a homomorphism from Y to X. Thus
X and Y are homomorphically equivalent and so the cores of them are isomorphic. A contradiction. Hence f (X) ⊆ X

and f (Y ) ⊆ Y . By Lemma 2.3, End(X + Y ) is regular. �

Let X and Y be two graphs. Recall that if �(X) �= �(Y ), or X and Y have different odd girth, then the cores of X and
Y are not isomorphic. As a direct consequence of Theorem 2.4, we have

Corollary 2.5. Let X and Y be two K3-free End-regular non-bipartite graph. If �(X) �= �(Y ), or X and Y have different
odd girth, then X + Y is End-regular.

Example 2.6. Let X and Y be two K3-free non-bipartite graph as shown in Fig. 1. Theorem 2.4 shows that if the cores
of X andY are not isomorphic, then X+Y is End-regular if and only if both of X andY are End-regular. In the following,
we give an example to show that if the cores of X and Y are isomorphic, then both of X and Y are End-regular may not
imply that X + Y is End-regular. Let X and Y be two graphs as shown in the following:

Then both of X and Y are End-regular. Now let

f =
(

x1 x2 x3 x4 x5 x6 x7 x8 y1 y2 y3 y4 y5 y6 y7 y8
y1 y2 y3 y2 y1 y8 y7 y8 x1 x2 x3 x4 x5 x6 x7 x8

)
.

It is a routine matter to check f is an endomorphism of X+Y . Now {x4, x5} ∈ E(X+Y ), f −1(x4)=y4 and f −1(x5)=y5.
Since {y4, y5} /∈ E(X + Y ), If is not an induced subgraph of X + Y . By Lemma 1.1 f is not regular.

Theorem 2.7. Let X and Y be two K3-free End-regular non-bipartite graph. If X or Y is unretractive, then X + Y is
End-regular.

Fig. 1. Illustration for Example 2.6.
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Proof. Without loss of generality, suppose X is unretractive. If the core of Y is not isomorphic to X, then X + Y is
End-regular by Theorem 2.4.

If the core of Y is isomorphic to X, then for any f ∈ End(X + Y ), either f (X) ⊆ X and f (Y ) ⊆ Y , or f (X) ⊆ Y

and f (Y ) ⊆ X. In the first case, by the proof of Lemma 2.3, f is regular. In the second case, f (X) is a core of Y and
f (Y ) = X. Thus f (X + Y ) is isomorphic to X + X. So it is an induced subgraph of X + Y . Define a mapping from
X + Y to itself by

g(x) =
{

x if x ∈ V (X),

f −1(f (x)) ∩ f (X) if x ∈ V (Y ).

Then g ∈ End(X + Y ), g2 = g, �g = �f and Ig = If . By Lemma 1.2, f is regular. Hence X + Y is End-regular. �

Theorem 2.8. Let X be a bipartite graph and Y be a K3-free non-bipartite graph. Then X + Y is End-regular if and
only if both of X and Y are End-regular.

Proof. The direct part follows directly from Lemma 1.3.
Conversely, let f be an endomorphism of X + Y . We prove that f (X) ⊆ X and f (Y ) ⊆ Y . There are two cases.
Case 1: E(X) = �. First we show that f (X) ⊆ X. Otherwise, there exist a vertex x1 ∈ V (X) such that f (x1) ∈ Y .

Since Y is non-bipartite, Y contains an odd cycle. So f (Y ) also has an odd cycle. As E(X) = �, then f (Y ) has an edge
in Y, say {f (y1), f (y2)}. Then f (y1), f (y2), f (x1) form a triangle in Y. A contradiction.

Next we prove f (Y ) ⊆ Y . Otherwise, there exists a vertex y1 ∈ V (Y ) such that f (y1) ∈ X. Since {y1, x} ∈ E(X+Y )

for any x ∈ V (X), then {f (y1), f (x)} ∈ E(X + Y ). Note that f (y1), f (x) ∈ V (X), so {f (y1), f (x)} ∈ E(X). This
contradicts to E(X) = �.

Case 2: E(X) �= �. First we show that f (X) ⊆ X. Assume that f (X)�X. Then either f (X) ⊆ Y , or there exist two
vertices x1 and x2 in V (X) such that f (x1) ∈ X and f (x2) ∈ Y . In the first case, since X contains at least one edge,
f (X) contains at least one edge, say {a, b}. Now we claim f (Y ) ⊆ X. Otherwise, there exists a vertex y0 ∈ V (Y ) such
that f (y0) ∈ V (Y ), then a, b, f (y0) form a triangle. A contradiction. Hence f |Y is a homomorphism from Y to X, and
we have �(Y )��(X). Since X is bipartite and Y is non-bipartite, so �(X) = 2 and �(Y )�3. This is a contradiction. In
the second case, since Y contains an odd cycle, f (Y ) also contains an odd cycle. Thus f (Y ) either has an edge in X or
has an edge in Y. With a similar proof as that of Lemma 2.2, we have either there exists a triangle in X or there exists a
triangle in Y. A contradiction in both cases. Hence f (X) ⊆ X.

Next we prove f (Y ) ⊆ Y . Otherwise, there exists a vertex y1 ∈ V (Y ) such that f (y1) ∈ V (X) and f (y1) is adjacent
to every vertex of f (X). Since f (X) contains at least one edge, X contains a triangle. A contradiction. �

Now the assertion follows from Lemma 2.3.

Theorem 2.9. Let X be a K3-free End-regular non-bipartite graph and Y be an End-regular graph which has at least
one triangle. If �(Y ) < �(X) + 1, then X + Y is End-regular.

Proof. We show that f (Y )�X. Otherwise, there exists a homomorphism from Y to X. Since any homomorphism f
maps a triangle to a triangle and Y has at least one triangle, then X also has at least one triangle. A contradiction. Hence
either f (Y ) ⊆ Y , or there exist two vertices y1 and y2 in Y such that f (y1) ∈ Y and f (y2) ∈ X.

In the second case, if f (X) ⊆ X, then f |X is a homomorphism from X to itself, so �(X)=�(If |X). Note that f (y2) is
adjacent to every vertex of If |X , then �(X)��(If |X)+ 1. A contradiction. If f (X) ⊆ Y , then f |X is a homomorphism
from X to Y and f (y1) is adjacent to every vertex of If |X , thus �(Y )��(If |X) + 1��(X) + 1. A contradiction. If there
exist two vertices x1 and x2 in X such that f (x1) ∈ X, f (x2) ∈ Y , then both of f (X) and f (Y ) have no edge in X,
otherwise, there exists a triangle in X. This is impossible, because X is a K3-free graph.

Now f (Y ) ⊆ Y . If f (X)�X, then there exists a vertex x ∈ V (X) such that f (x) ∈ Y and f (x) is adjacent to every
vertex in V (If |Y ). Thus we have �(Y )��(If |Y ) + 1 = �(Y ) + 1. A contradiction. Hence f (X) ⊆ X and by Lemma
2.3, X + Y is End-regular. �

At the end of this section, we consider endomorphism regularity of the lexicographic product of two graphs. To this
aim, we need the following result which is due to Fan [1]. For the definition of the wreath product of semigroups the
reader refer to [12].
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Lemma 2.10 (Fan [1]). Let X andY be two K3-free connected graphs. If girth(X) or girth(Y ) is odd, then End(X[Y ])=
End(X)[End(Y )], where End(X)[End(Y )] is the wreath product of the monoids End(X) and End(Y ).

Let X and Y be two K3-free connected graphs such that girth(X) or girth(Y ) is odd. In [2] Fan proved that if both of
X and Y are End-regular, and one of them is unretractive, then X[Y ] is End-regular. Here we shall prove that if X is an
E–S-unretractive graph with |N(x1)| = |N(x2)| for any two vertices x1, x2 ∈ V (X), and Y is End-regular graph, then
X[Y ] is End-regular.

Recall that every graph is a generalized lexicographic product of an S-unretractive graph with sets (see [7]). Thus if
X is an E-S-unretractive graph with |N(x1)| = |N(x2)| for any two vertices x1, x2 ∈ V (X), then X is a lexicographic
product of an unretractive graph with a set. In this case, X = U [T ] for some unretractive graph U and some set T. We
need the following result which is due to Knauer (for details, the reader refer to [7]).

Lemma 2.11. Let X=U(Yu)u∈U be a graph with U=X|v and U < ∝. Let H be a small category with ObH={Yu|u ∈ U}
and Mor(Yu, Yv) = Map(Yu, Yv) (u, v ∈ U ). Then sEnd(X) = AutU [H ].

Let X be an E–S-unretractive graph with |N(x1)| = |N(x2)| for any two vertices x1, x2 ∈ V (X). Then X = U [T ] for
some unretractive graph U and some set T. Hence X[Y ]=U [T ][Y ] for some graph Y. In this case, every vertex of X[Y ]
can be written to form (u, t, y), where u ∈ U , t ∈ T and y ∈ Y . For each u ∈ U , let Tu = {(u, t, y)|t ∈ T , y ∈ Y }.

Theorem 2.12. Let X and Y be two K3-free connected graphs with girth(X) odd or girth(Y ) odd, and let

(1) X is E–S-unretractive with |N(x1)| = |N(x2)| for any two vertices x1, x2 ∈ V (X),
(2) Y is End-regular.

Then X[Y ] is End-regular.

Proof. Let X and Y be two graphs satisfying the assumptions of the theorem. To show that X[Y ] is End-regular, we
shall prove that for any � ∈ End(X[Y ]), there exists an endomorphism � ∈ End(X[Y ]) such that ��� = �.

Since X is E–S-unretractive with |N(x1)| = |N(x2)| for any two vertices x1, x2 ∈ V (X), X = U [T ] for some
unretractive graph U and some set T, then by Lemmas 2.10 and 2.11, End(X[Y ])= (Aut(U)[End(T )])[End(Y )], where
End(T ) is the set of all mapping from V (T ) to itself. Hence � = (s, f, g) for some s ∈ Aut(U), f ∈ End(T )U and
g ∈ End(Y )X.

Now we define an endomorphism � = (r, h, k) ∈ End(X[Y ]). Let u be an arbitrary vertex of U. Since s is an
automorphism of U, there exists a vertex u1 ∈ V (U) such that su1 = u. First let r = s−1, where s−1 is the inverse
of s in Aut(U). Next let h ∈ End(T )U and hu = h(u) be an automorphism of T such that for any t ∈ fu1(Tu1),
hu(t) ∈ f −1

u1
(t). Since End(T ) contains all the permutations of V (T ), clearly hu exists. Without loss of generality,

suppose hu(ti) = t ′i for any ti ∈ V (T ). Now g(u1,t
′
i )

∈ End(Y ). Since End(Y ) is regular, there exists g′
(u1,t

′
i )

∈ End(Y )

such that g(u1,t
′
i )
g′

(u1,t
′
i )
g(u1,t

′
i )

= g(u1,t
′
i )

. Now let k ∈ End(Y )X such that k(u,ti ) = k(u, ti) = g′
(u1,t

′
i )

. It remains to show

that ��� = �. Let(u1, t
′
i , y) be an arbitrary vertex of X[Y ]. Then

���(u1, t
′
i , y) = ��(su1, fu1(t

′
i ), g(u1,t

′
i )
(y))

= �(u1, hufu1(t
′
i ), k(u,ti )g(u1,t

′
i )
(y))

= (su1, fu1hufu1(t
′
i ), g(u1,t

′
i )
k(u,ti )g(u1,t

′
i )
(y))

= (su1, fu1(t
′
i ), g(u1,t

′
i )
(y))

= �(u1, t
′
i , y).

Since (u1, t
′
i , y) is an arbitrary vertex of X[Y ], we have ��� = �, as required. �
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3. End-regular (orthodox) joins of two bipartite graphs

Recall that End-regular bipartite graphs are characterized in Lemma 1.6, and End-regular joins of two trees are
determined in [9]. In this section, we shall characterize the End-regular (orthodox) joins of two connected bipartite
graphs.

Theorem 3.1. Let B1 and B2 be two connected bipartite graphs. Then B1 + B2 is End-regular if and only if

(1) One of them is End-regular and the other is K1 or K2, or
(2) B1 + B2 = T1 + T2, where T1 and T2 are trees with diameter 2, or
(3) B1 + B2 = Km1,n1 + Km2,n2 , where Kmi,ni

(i = 1, 2) denotes complete bipartite graphs, or
(4) B1 + B2 = T + Km,n, where Km,n denotes a complete bipartite graph and T denotes a tree with diameter 2.

Proof. Sufficiency: In case (1), using Lemma 1.4, we have immediately B1 + B2 is End-regular. Case (2) is given in
Lemma 1.7. In case (3), since Kmi,ni

is E–S-unretractive graphs, by Lemma 2.1, Km1,n1 + Km2,n2 is End-regular. In
case (4), T +Km,n = (K1 +Km)+Km,n =K1 + (Km +Km,n). Now since both of Km and Km,n are E–S-unretractive.
By Lemma 2.1, Km + Km,n is End-regular. Using Lemma 1.4, K1 + (Km + Km,n) is End-regular.

Necessity: For the join of two trees were considered in [9], we only need to show that B1 + B2 is not End-regular
for the following nine cases (see Fig. 2 for graphs appeared in all cases). The main idea of the proof is that, for each
cases, we will find an endomorphism f ∈ End(B1 + B2) such that f /∈ hEnd(B1 + B2)

Case 1: Km,n + T (s, t)

f =
(

c1 · · · cs d e f1 · · · ft a1 · · · an−1 an b1 · · · bm

c1 · · · c1 a1 e an · · · an b1 · · · b1 b1 d · · · d

)
.

Case 2: Km,n + C6

f =
(

a1 a2 · · · an b1 · · · bm 1 2 3 4 5 6
b1 b1 · · · b1 2 · · · 2 1 a1 3 an 3 a1

)
.

Case 3: Km,n + P5

f =
(

x1 x2 x3 x4 x5 a1 · · · an−1 an b1 · · · bm

x1 a1 x3 an x3 b1 · · · b1 b1 x2 · · · x2

)
.

Fig. 2. Graphs Km,n, C6, C8, P5 and T(s,t).
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Case 4: T (s, t) + C6

f =
(

c1 · · · cs d e f1 · · · ft 1 2 3 4 5 6
c1 · · · c1 1 e 3 · · · 3 2 d 2 d 2 d

)
.

Case 5: C6 + P5

f =
(

1 2 3 4 5 6 x1 x2 x3 x4 x5
2 x2 2 x2 2 x2 x1 1 x3 3 x3

)
.

Case 6: Km,n + C8

f =
(

a1 · · · an b1 · · · bm y1 y2 y3 y4 y5 y6 y7 y8
b1 · · · b1 y2 · · · y2 y1 a1 y3 an y3 an y3 a1

)
.

Case 7: T (s, t) + C8

f =
(

c1 · · · cs d e f1 · · · ft y1 y2 y3 y4 y5 y6 y7 y8
d · · · d y2 d y2 · · · y2 y1 c1 y3 e y3 e y3 c1

)
.

Case 8: C6 + C8

f =
(

1 2 3 4 5 6 y1 y2 y3 y4 y5 y6 y7 y8
2 y2 2 y2 2 y2 y1 1 y3 3 y3 3 y3 1

)
.

Case 9: C8 + P5

f =
(

x1 x2 x3 x4 x5 y1 y2 y3 y4 y5 y6 y7 y8
x1 y1 x3 y3 x3 y2 x2 y2 x2 y2 x2 y2 x2

)
.

The proof is completed. �

Proposition 3.2. Let G1 and G2 be two graphs. Then G1 + G2 is End-orthodox if and only if

(1) G1 + G2 is End-regular, and
(2) Both of G1 and G2 are End-orthodox.

Proof. The direct part follows immediately from Lemma 1.5.
Conversely, since G1 + G2 is End-regular, to show G1 + G2 is End-orthodox, we only need to prove that the

composition of any two idempotent endomorphisms of G1 + G2 is also an idempotent.
Let f be an idempotent of End(G1 + G2). Then f (G1) ⊆ G1. Otherwise, there exists a vertex x ∈ V (G1) such that

f (x) ∈ V (G2). Since f 2 = f , then f (f (x)) = f 2(x) = f (x). Note that {x, f (x)} ∈ E(G1 + G2), then {f (x), f (x)}
is a loop of G1 + G2. A contradiction. A similar argument will show that f (G2) ⊆ G2.

If f1 and f2 are two idempotents of End(G1 + G2), let g1 = f1|G1 , g2 = f1|G2 and h1 = f2|G1 , h2 = f2|G2 . Then
g1, h1 ∈ Idpt(G1) and g2, h2 ∈ Idpt(G2). Since both of G1 and G2 are End-orthodox, then g1h1 ∈ Idpt(G1) and
g2h2 ∈ Idpt(G2). Now f1f2|G1 = g1h1 and f1f2|G2 = g2h2 imply that f1f2 is an idempotent of End(G1 + G2).
Consequently, G1 + G2 is End-orthodox. �

Theorem 3.3. Let B1 and B2 be two connected bipartite graphs. Then B1 + B2 is End-orthodox if and only if

(1) One of them is End-orthodox and the other is K1 or K2, or
(2) B1 + B2 = P3 + C4.

Proof. Sufficiency: It follows directly from Lemma 1.8, Theorem 3.1 and Proposition 3.2.
Necessity: By Theorem 3.1, P3 + P4 and P4 + C4 are not End-regular, so they cannot be End-orthodox.
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