On the Existence of p-Blocks of Defect 0 in p-Nilpotent Groups

Hiroshi Fukushima

Communicated by Walter Feit

Received February 19, 1998

1. INTRODUCTION

Let G be a finite group of order g. Let p be a prime and $g=p^{a} g^{\prime}$ with $\left(p, g^{\prime}\right)=1$. An irreducible ordinary character of G is called p-defect 0 if and only if its degree is divisible by p^{a}. By [1, Theorem 4.18], G has a character of p-defect 0 if and only if G has a p-block of defect 0 .

An important question in the modular representation theory of finite groups is to find the group-theoretic conditions for the existence of characters of p-defect 0 in a finite group. If a finite group G has a character of p-defect 0 , then $O_{p}(G)=1$ [1, Corollary 6.9]. But the converse is not true. In this paper, we shall give sufficient conditions for a p-nilpotent group to have a character of p-defect 0 .

Before describing the next examples we need to define the following notation. Let $F=G F\left(q^{n}\right)$ be a finite field of q^{n} elements. Let V be the additive group of F. Then let $T\left(q^{n}\right)$ (the semi-linear group) be the set of semi-linear transformations of the form $v \rightarrow a v^{\sigma}$ with $v \in V, 0 \neq a \in F$, and σ a field automorphism (see [8, p. 229]). Then we can consider the semidirect product $V \rtimes T\left(q^{n}\right)$ (the affine semi-linear group) of V by $T\left(q^{n}\right)$. Now the following examples show that the converse is not true (as mentioned above).

Example 1. Suppose p and q are two distinct primes. Let V be an elementary abelian q-group of order q^{n} such that p divides $q^{n}-1$. Consider V the additive group of the field $G F\left(q^{n}\right)$ of q^{n} elements. Let $N=\{v \rightarrow$ $\left.a v \mid 0 \neq a \in G F\left(q^{n}\right)\right\}$. Thus $V \rtimes N \subseteq V \rtimes T\left(q^{n}\right)$. Let $\langle x\rangle$ be a cyclic group of order p and let $(V \rtimes N) \imath\langle x\rangle$ be the wreath product. Set $V_{0}=V \times$
$V^{x} \times \cdots \times V^{x^{p-1}}$ and $N_{0}=N \times N^{x} \times \cdots \times N^{x^{p-1}}$. Then we set $F(p, q, n)=$ $V_{0} \rtimes\left(\left(\Omega_{1}\left(O_{p}\left(N_{0}\right)\right)\left[N_{0}, x\right]\right) \rtimes\langle x\rangle\right) \subseteq(V \rtimes N) \imath\langle x\rangle$, where $\Omega_{1}\left(O_{p}\left(N_{0}\right)\right)=$ $\left\langle y \in O_{p}\left(N_{0}\right) \mid y^{p}=1\right\rangle$.

Example 2. Suppose p and q are two distinct prime numbers. Let V be an elementary abelian q-group of order $q^{p n}$ such that p divides $q^{n}-1$. Consider V the additive group of the field $G F\left(q^{p n}\right)$ of $q^{p n}$ elements. Let x be an element of the Galois group $\operatorname{Gal}\left(G F\left(q^{p n}\right) / G F(q)\right)$ of order p, and F_{0} a subgroup of the multiplicative group $G F\left(q^{p n}\right)^{\#}$ of or$\operatorname{der}\left(q^{p n}-1\right) /\left(q^{n}-1\right)$. Let $N=\left\{v \rightarrow a v \mid a \in F_{0}\right\}$. Then p divides $|N|$. Set $E(p, q, n)=V \rtimes(N \rtimes\langle x\rangle) \subseteq V \rtimes T\left(q^{n}\right)$. Then $E(p, q, n)$ is determined uniquely by the three parameters p, q, and n. It is easily seen that $E(p, q, n)$ is p-nilpotent and $O_{p}(E(p, q, n))=1$.

EXAMPLE 3. Let V be an elementary abelian group of order 7^{2}. Then $\operatorname{Aut}(V)$ contains a subgroup H that is isomorphic to $\operatorname{SL}(2,3) \times Z_{3}$, where Z_{3} is a cyclic group of order 3 . Indeed, let $L=\left\langle\left(\begin{array}{rr}0 & 1 \\ -1 & 0\end{array}\right),\left(\begin{array}{rr}3 & 2 \\ 2 & -3\end{array}\right)\right\rangle \rtimes\left\langle\left(\begin{array}{ll}4 & 0 \\ 1 & 2\end{array}\right)\right\rangle \simeq$ $S L(2,3)$ and let $Z=\left\langle\left(\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right)\right\rangle \simeq Z_{3}$. Then $L \times Z \subseteq G L(2,7)$. Thus $L \times Z$ acts naturally on V. We let J be the semi-direct product $V \rtimes H$. In Lemma 2.5, we can conclude that J is unique up to isomorphism.

In Example 1, we set $G=(V \rtimes N)$? $\langle x\rangle$. Let $H=N_{0}\langle x\rangle$ and $V_{0} \ni$ $v=v_{1} \cdots v_{p}$ with $v_{i} \in V^{x^{i-1}}, 1 \leq i \leq p$. If $v_{i}=1$ for some i, then $1 \neq$ $O_{p}\left(N^{x^{i-1}}\right) \subseteq C_{O_{p}\left(N_{0}\right)}(v) \subseteq O_{p}\left(C_{H}(v)\right)$. If $v_{i} \neq 1$ for any i, then $v=v_{1} \cdots v_{p}$ is conjugate to $v_{1} v_{1}^{x} \cdots v_{1}^{x^{p-1}}$ in N_{0} since N acts transitively on $V^{\#}$. Since $C_{H}\left(v_{1} v_{1}^{x} \cdots v_{1}^{x^{p-1}}\right)=\langle x\rangle, C_{H}(v)$ is of order p. In each case, $O_{p}\left(C_{H}(v)\right) \neq 1$.

Set $\bar{G}=G / V_{0}\left[N_{0}, x\right]$. Then $\bar{G}=\bar{N} \times\langle\bar{x}\rangle$ and $\bar{N} \simeq N$. Let y be an element of G of order p. Since N is cyclic, $\bar{y} \in \Omega_{1}\left(O_{p}(\bar{N})\right) \times\langle\bar{x}\rangle$. Let L be the inverse image of $\Omega_{1}\left(O_{p}(\bar{N})\right) \times\langle\bar{x}\rangle$. Then $L=F(p, q, n)$. Hence $1 \neq \Omega_{1}\left(O_{p}\left(C_{H}(v)\right)\right) \subseteq L$ for $v \in V_{0}$ and so $1 \neq O_{p}\left(C_{H \cap L}(v)\right)$.

Since $\left(|H \cap L|,\left|V_{0}\right|\right)=1, O_{p}\left(I_{H \cap L}(\varphi)\right) \neq 1$ for any $\varphi \in \operatorname{Irr}\left(V_{0}\right)$ by Lemma 2.2. Since $I_{H \cap L}(\varphi)$ has no characters of p-defect $0, L$ has no characters of p-defect 0 by Lemma 2.1.

In Example 2, we set $L=N \rtimes\langle x\rangle$. By [9, Prop. 1.4], L has no regular orbits on V. Hence $1 \neq C_{L}(v)$ for $\forall v \in V$. For $1 \neq v \in V, C_{L}(v)$ is of order p since $C_{N}(v)=1$. Since $O_{p}(L) \neq 1, O_{p}\left(C_{L}(v)\right) \neq 1$ for $\forall v \in V$. By Lemmas 2.1 and 2.2, $E(p, q, n)=V \rtimes L$ has no characters of p-defect 0 .

In Example 3, let Q be a subgroup of H which is isomorphic to quaternion of order 8 . Then $|Q \times Z|=24$ and $Q \times Z$ acts regularly on $V^{\#}$. Since $\left|V^{\#}\right|=48, Q \times Z$ has two orbits on $V^{\#}$. Let x be an element of $\operatorname{SL}(2,3)$ of order 3. Then x stabilizes each $Q \times Z$-orbit. Since $O_{3}(H) \neq 1, O_{3}\left(C_{H}(v)\right) \neq$ 1 for all $v \in V$. By Lemmas 2.1 and 2.2, $J=V \rtimes L$ has no characters of 3-defect 0 .

Now, in this paper we shall prove the following result.
Theorem. Let G be a solvable p-nilpotent group for some prime p. Suppose that $O_{p}(G)=1$ and G is $E(p, q, n), F(p, q, n)$-free for all possible q and n. Furthermore, if $p=3$, assume that G is J-free. Then G has a character of p-defect 0 . In particular, there exists an element $x \in O_{p^{\prime}}(G)$ such that $C_{G}(x)$ is a p^{\prime}-subgroup.

2. PRELIMINARIES

In this section we shall prove some lemmas which will be used to prove the theorem.

Let $G \triangleright V$. We let $\operatorname{Irr}(V)$ be the set of ordinary irreducible characters of V and let $I_{G}(\varphi)$ be the inertia group of $\varphi \in \operatorname{Irr}(V)$.

Lemma 2.1. Let $G=H V \triangleright V$, where V is an abelian p^{\prime}-group with $H \cap$ $V=1$. Let $\varphi \in \operatorname{Irr}(V)$. Then the following are equivalent.
(i) There exists $\chi \in \operatorname{Irr}(G)$ such that $\varphi \mid \chi_{V}$ and χ is a character of p-defect 0 .
(ii) Let $I=I_{H}(\varphi)=\left\{h \in H \mid \varphi^{h}=\varphi\right\}$. Then I has a character of p-defect 0 .

Proof. Set $V_{1}=\operatorname{Ker} \varphi$. Then V / V_{1} is cyclic since V is abelian. Let $\overline{I_{G}(\varphi)}=I_{G}(\varphi) / V_{1}$. Then $\overline{I_{G}(\varphi)}=\bar{V} \times \bar{I}$ since $I_{G}(\varphi)=V I$ and there is a bijection from $\operatorname{Irr}(\operatorname{IV} \mid \varphi)$ onto $\operatorname{Irr}(G \mid \varphi)$. For $\alpha \in \operatorname{Irr}(I V),|I V|_{p}$ divides $\alpha(1)$ if and only if $|G|_{p}$ divides $\alpha^{G}(1)$. Also φ extends to θ in $\operatorname{Irr}(I V)$ and so $\operatorname{Irr}(I V \mid \varphi)=\{\beta \theta \mid \beta \in \operatorname{Ir}(I V / V)\}$. Now $(\beta \theta)^{G}$ has p-defect 0 if and only if β is a p-defect 0 character of $I V / V \simeq I$.

Lemma 2.2 [3, p. 231, Theorem 13.24]. Let S act on G with S solvable and $(|G|,|S|)=1$. Then S permutes $\operatorname{Irr}(G)$ and S permutes the set $\operatorname{cl}(G)$ of conjugate class of G. Then the actions of S on $\operatorname{Irr}(G)$ and $\operatorname{cl}(G)$ are permutation isomorphic.

Lemma 2.3. Let $\langle x\rangle$ be a cyclic group of order r and $V a\langle x\rangle$-module of order q^{s}, where q is a prime. Suppose that every irreducible constituent of V is a faithful $\langle x\rangle$-module. Then the following hold.
(i) $\left\langle v^{x^{i}} \mid i=0, \ldots, r-1\right\rangle$ is an irreducible $\langle x\rangle$-module for all $v \in V^{\#}$.
(ii) If U is a subgroup of V with $|V / U|=q$, then $V / \bigcap_{i=0}^{r-1} U^{x^{i}}$ is an irreducible $\langle x\rangle$-module.

Proof. Since $(|V|, r)=1, V$ is a completely reducible $\langle x\rangle$-module. Let $V=V_{1} \oplus \cdots \oplus V_{n}$, where V_{i} are faithful irreducible $\langle x\rangle$-modules, $1 \leq i \leq$ n. Then we can identify V_{i} with the additive group of $G F\left(q^{m}\right)$ in such a way that $\langle x\rangle$ is contained in the set of linear transformations. Hence $V_{i}, 1 \leq i \leq n$, are isomorphic $\langle x\rangle$-modules, and so we may assume that $v_{i}^{x}=\alpha v_{i}$ with fixed $\alpha \in G F\left(q^{m}\right)$ and $\forall v_{i} \in V_{i}$. Then every non-zero vector v is contained in an irreducible $\langle x\rangle$-module W, which must be generated as stated. Likewise every maximal subspace U of V contains an $\langle x\rangle$-invariant W such that V / W is irreducible.

Lemma 2.4. Let P be an extra-special p-group of order $p^{2 r+1}, p$ a prime, and let $H=\{\sigma \in \operatorname{Aut}(P) \mid \sigma$ centralizes $Z(P)\}$. We may identify $Z(P)$ with the field of p-elements. Since $P / Z(P)$ is an elementary abelian p-group, the commutator map $[x, y]$ is a non-singular, alternating bilinear form on $\bar{P}=P / Z(P)$. Any automorphism of P that centralizes $Z(P)$ must preserve this form. Then there exist hyperbolic pairs $\left\{u_{1}, v_{1}\right\} \cdots\left\{u_{r}, v_{r}\right\}$ with $\left(u_{i}, v_{j}\right)=\delta_{i j}$ and $\left(u_{i}, u_{j}\right)=\left(v_{i}, v_{j}\right)=0$, where $\delta_{i j}$ is the Kronecker δ. Let $A=\left(\begin{array}{c}0 \\ -I \\ -I\end{array}\right)$ be the structure matrix with respect to this basis $\left\{u_{1}, \ldots, u_{r}, v_{1}, \ldots, v_{r}\right\}$ of \bar{P}, where I and 0 are the unit matrix and zero matrix of degree r, respectively. If $\sigma \in H$ centralizes $\left\langle u_{1}, \ldots, u_{r}\right\rangle$, then σ^{p} centralizes \bar{P}.

Proof. Let S be the matrix of σ with respect to the basis $\left\{u_{1}, \ldots, u_{r}\right.$, $\left.v_{1}, \ldots, v_{r}\right\}$. Then $S A S^{T}=A$, where S^{T} is the transpose matrix of S. Let $S=\left(\begin{array}{cc}I & 0 \\ K & L\end{array}\right)$, where I and 0 are the unit matrix and zero matrix of degree r, respectively, and K, L are matrices of degree r.

Then

$$
\begin{aligned}
&\left(\begin{array}{cc}
I & 0 \\
K & L
\end{array}\right)\left(\begin{array}{rr}
0 & I \\
-I & 0
\end{array}\right)\left(\begin{array}{cc}
I & K^{T} \\
0 & L^{T}
\end{array}\right) \\
&=\left(\begin{array}{rr}
0 & I \\
-L & K
\end{array}\right)\left(\begin{array}{ll}
I & K^{T} \\
0 & L^{T}
\end{array}\right) \\
&=\left(\begin{array}{rc}
0 & L^{T} \\
-L & -L K^{T}+K L^{T}
\end{array}\right)=\left(\begin{array}{rr}
0 & I \\
-I & 0
\end{array}\right) .
\end{aligned}
$$

Hence $L=I$ and $-K^{T}+K=0$. Therefore $S=\left(\begin{array}{cc}I & 0 \\ K & I\end{array}\right)$. Thus $S^{p}=$ $\left(\begin{array}{ccc}I & 0 \\ p K & I\end{array}\right)=\left(\begin{array}{ll}I & 0 \\ 0 & I\end{array}\right)$, and hence σ^{p} centralizes \bar{P}.

Lemma 2.5. Let H_{1} and H_{2} be subgroups of $G L(2,7)$ and Z_{3} a cyclic group of order 3. If $H_{1} \simeq H_{2} \simeq \operatorname{SL}(2,3) \times Z_{3}$, then H_{1} and H_{2} are conjugate in $G L(2,7)$.

Proof. Let Q_{i} be a Sylow 2-subgroup of $H_{i}(i=1,2)$. Then $Q_{i} \simeq Q_{8}$, where Q_{8} is a quaternion of order 8. Let S be a Sylow 2-subgroup of
$G L(2,7)$. Then S is semi-dihedral of order 32 and S has three maximal subgroups, that is, generalized quaternion, dihedral, and cyclic. Let S_{0} be a generalized quaternion subgroup of S. By conjugation, we may assume that Q_{1} and Q_{2} are subgroups of S_{0}. Set $\bar{S}=S / Z(S)$. Then \bar{S}, \bar{S}_{0} are dihedral groups of order 16,8 , respectively. Since \bar{Q}_{1} and \bar{Q}_{2} are conjugate in \bar{S}, Q_{1} and Q_{2} are conjugate in S. Thus we may assume that $Q_{1}=Q_{2}$. Therefore H_{1} and H_{2} are subgroups of $N_{L}\left(Q_{1}\right) \simeq G L(2,3) \times Z_{3}$, where $L=$ $G L(2,7)$. Since $O^{2}\left(H_{i}\right)=H_{i}(i=1,2)$ and $O^{2}\left(N_{L}\left(Q_{1}\right)\right) \simeq S L(2,3) \times Z_{3}$, $H_{1}=H_{2}=O^{2}\left(N_{L}\left(Q_{1}\right)\right)$.

3. PROOF OF THE THEOREM

In this section we shall prove the theorem stated in the Introduction. If G has a p-block of defect 0 , then there exists a p^{\prime}-element x such that $C_{G}(x)$ is a p^{\prime}-subgroup by the definition of the defect. Then $x \in O_{p^{\prime}}(G)$ since G is p-nilpotent. It therefore suffices to show that G has a character of p-defect 0 under the hypotheses of the theorem. Let G be a minimal counterexample of the theorem.

Lemma 3.1. The following conditions hold.
(i) $O^{p^{\prime}}(G)=G$.
(ii) $p\left|\left|C_{G}(x)\right|\right.$ for $\forall x \in O_{p^{\prime}}(G)$.
(iii) If V is a p^{\prime}-subgroup of G with $1 \neq V \triangleleft G$, then $O_{p}(G / V) \neq 1$.

Proof. (i) Let $\chi \in \operatorname{Irr}(G)$ and let $\zeta \in \operatorname{Irr}\left(O^{p^{\prime}}(G)\right)$ be a constituent of $\chi_{O^{p^{\prime}}(G)}$. Then $\chi(1) / \zeta(1)$ divides $\left|G: O^{p^{\prime}}(G)\right|$ by [3, Corollary 11.29]. Hence χ is a character of p-defect 0 if and only if ζ is a character of p-defect 0 .
(ii) follows immediately from [5, Lemma 1].
(iii) Set $\bar{G}=G / V$. If $O_{p}(\bar{G})=1$, then \bar{G} has a character of p-defect 0 by the minimality of G, and so has G.

Let $\Phi(G)$ be the Frattini subgroup (the intersection of all maximal subgroups of G). By [6, Theorem 1.12], if G is solvable, then $F(G / \Phi(G))=$ $F(G) / \Phi(G)$ is a completely reducible and faithful $G / F(G)$-module (possibly of mixed characteristic). Furthermore, $G / \Phi(G)$ splits over $F(G) / \Phi(G)$.

Lemma 3.2. $\quad \Phi(G)=1$. In particular, G splits over $F(G)$.
Proof. Since $O_{p}(G)=1, F(G)$ is a p^{\prime}-subgroup of G, and hence $F(G / \Phi(G))=F(G) / \Phi(G)$ is a p^{\prime}-group. Set $\bar{G}=G / \Phi(G)$. Then
$O_{p}(\bar{G})=1$. If $\Phi(G) \neq 1$, then \bar{G} has a character of p-defect 0 by the minimality of G, and so has G, a contradiction.

Let H be a complement of $F(G)$ in G. Then $G=F(G) \rtimes H$. We set $V=F(G)$.

Lemma 3.3. V is an irreducible H-module.
Proof. From the statement above, V is a completely reducible and faithful H-module. If V is not an irreducible H-module, then there exist V_{i} $(i=1,2)$ such that $V=V_{1} \times V_{2}$ and $1 \neq V_{i} \triangleleft G$. Set $\bar{G}=G / V_{2}$ and $\tilde{G}=G / V_{1}$. If $O_{p}(\bar{G})=1$, then \bar{G} has a character of p-defect 0 , and so has G, a contradiction. Hence $1 \neq O_{p}(\bar{G})=\bar{P}_{1}$, where P_{1} is a p-subgroup of G. In the same way, we have $1 \neq O_{p}(\tilde{G})=\tilde{P}_{2}$, where P_{2} is a p subgroup of G. Since P_{2} centralizes V_{2}, P_{2} acts faithfully on V_{1}. Hence $P_{2} \cap V P_{1}=C_{P_{2}}\left(V_{1}\right)=1$ since $\left[V_{1}, P_{1}\right]=1$.

Next we reset $\bar{G}=G / V P_{1}$ and $\tilde{G}=G / V_{2} P_{1}$. Then

$$
\begin{equation*}
1 \neq \bar{P}_{2} \subseteq O_{p}(\bar{G}) \tag{1}
\end{equation*}
$$

Since $O_{p}(\tilde{G})=1, \tilde{G}$ has a character χ of p-defect 0 by induction. By (1), \bar{G} has no characters of p-defect 0 , and so $\operatorname{Ker} \chi \nsupseteq V_{1}$. Hence there exists a $1 \neq \varphi \in \operatorname{Irr}\left(V_{1}\right)$ with $\varphi \mid \chi$. Since $\tilde{G}=\tilde{V} \rtimes \tilde{H}, I_{\tilde{H}}(\varphi)$ has a character of p-defect 0 by Lemma 2.1. Hence $O_{p}\left(I_{\tilde{H}}(\varphi)\right)=1$. We set $T=I_{G}(\varphi)=$ $\left\{g \in G \mid \varphi^{g}=\varphi\right\}$. Then

$$
\begin{equation*}
O_{p}\left(T / V P_{1}\right)=1 \tag{2}
\end{equation*}
$$

Hence $O_{p}\left(T / V_{1}\right) \subseteq V P_{1} / V_{1}$. Since P_{1} acts faithfully on $V_{2}, O_{p}\left(T / V_{1}\right)=$ 1 , and hence T / V_{1} has a character η of p-defect 0 . Since $1 \neq P_{1} V / V \subseteq$ $O_{p}(T / V), T / V$ have no characters of p-defect 0 . Therefore $\operatorname{Ker} \eta \nsupseteq V_{2}$. So there exists $1 \neq \zeta \in \operatorname{Irr}\left(V_{2}\right)$ with $\zeta \mid \eta_{V_{2}}$. Now, since $T=(T \cap H) V$,

$$
\begin{equation*}
O_{p}\left(I_{T \cap H}(\zeta)\right)=1 \tag{3}
\end{equation*}
$$

by Lemma 2.1. Then $I_{H}(\varphi \zeta)=I_{H}(\varphi) \cap I_{H}(\zeta)=I_{T \cap H}(\zeta)$, and hence $O_{p}\left(I_{H}(\varphi \zeta)\right)=1$. By induction, $I_{H}(\varphi \zeta)$ has a character of p-defect 0 . Hence G has a character of p-defect 0 by Lemma 2.1, a contradiction.
By Lemma 3.3, V is an elementary abelian q-group for some prime $q \neq p$.

Let $W \rtimes L$ such that W, L are elementary abelian q-group and q^{\prime}-group, q a prime, respectively. Furthermore, let $\varphi \in \operatorname{Irr}(W)$ and let U_{1}, U_{2} be subgroups of W such that $U_{2} \subseteq U_{1} \subseteq W$. Then we set $I_{L}(\varphi)=\{g \in L \mid$ $\left.\varphi^{g}=\varphi\right\}$ and $I_{L}\left(U_{1} / U_{2}\right)=\left\{g \in L \mid\left[U_{1}, g\right] \subseteq U_{2}\right\}$.

Lemma 3.4. Let H_{1} be a subgroup of H and set $G_{1}=V H_{1}$. Let $\varphi \in$ $\operatorname{Irr}(V)$. Then the following are equivalent.
(i) There exists $\chi \in \operatorname{Irr}\left(G_{1}\right)$ such that $\varphi \mid \chi_{V}$ and χ is a character of p-defect 0 .
(ii) $O_{p}\left(I_{H_{1}}(\varphi)\right)=1$.

Proof. By Lemma 2.1, (i) $\Leftrightarrow I_{H_{1}}(\varphi)$ has a character of p-defect $0 \Leftrightarrow$ $O_{p}\left(I_{H_{1}}(\varphi)\right)=1$ (by induction).

An irreducible H-module V is called quasi-primitive if V_{N} is homogeneous for all $N \triangleleft H$. Then we shall first consider the following case.

Case I

V is not a quasi-primitive H-module.
Lemma 3.5. There exists a subgroup H_{0} of H with $\left|H: H_{0}\right|=p, H_{0} \triangleleft$ H, and $V_{H_{0}}=V_{1} \times \cdots \times V_{p}$, where $V_{i}, 1 \leq i \leq p$, are the homogeneous components of V with respect to H_{0}.

Proof. Choose $N \triangleleft H$ maximal such that V_{N} is not homogeneous. Write $V_{N}=V_{1} \times \cdots \times V_{k}$, where V_{i} are the homogeneous components of V_{N}.

Let M / N be a chief factor of H. Since V_{M} is homogeneous, M transitively permutes the V_{i} (see [11, Lemma 1.6]). Since M / N is an abelian chief factor of G, M acts regularly on the V_{i} and $|M / N|=k$. Let $I=N_{H}\left(V_{1}\right)$, so that $M I=H$ and $M \cap I=N$. Let $C / N=C_{H / N}(M / N) \supseteq M / N$ and $B=$ $C \cap I \triangleleft M I=H$. Then B fixes each V_{i} and V_{B} is not homogeneous. Thus $B=N$ and $C=M$. Hence M / N is the unique minimal normal subgroup of H / N. Set $\bar{H}=H / N$.
Suppose that $\bar{M}=M / N$ is a p-group. Since \bar{H} is p-nilpotent, it has a normal Hall p^{\prime}-subgroup. Hence \bar{H} must be a p-group. Then $\bar{M} \subseteq Z(\bar{H})$ and so $M=H$. If we set $N=H_{0}$, then this lemma holds.
Next suppose that \bar{M} is a p^{\prime}-group. We set $I_{1}=O_{p}\left(C_{I}\left(V_{1}\right)\right)$. Since $\bar{M} \supseteq$ $\left[\bar{I}_{1}, \bar{M}\right] \triangleleft \bar{H},\left[\bar{I}_{1}, \bar{M}\right]=\bar{M}$ or 1 .

If $\left[\bar{I}_{1}, \bar{M}\right]=1$, then I_{1} centralizes $O_{p^{\prime}}(M) / O_{p^{\prime}}(N)$. Since I_{1} centralizes $O_{p^{\prime}}(N)$, I_{1} centralizes $O_{p^{\prime}}(M)$. On the other hand, for $i, 1 \leq i \leq p$, there exists $x_{i} \in O_{p^{\prime}}(M)$ with $V_{1}^{x_{i}}=V_{i}$. Hence $I_{1}=I_{1}^{x_{i}}=O_{p}\left(C_{r^{x_{i}}}\left(V_{i}\right)\right) \subseteq$ $C_{I_{1}}\left(V_{i}\right)$. Therefore $I_{1} \subseteq C_{I_{1}}(V)$, which implies that $O_{p}\left(C_{I}\left(V_{1}\right)\right)=I_{1}=1$. Then $O_{p}\left(V_{1} I\right)=1$. Therefore $V_{1} I$ has a character ζ of p-defect 0 . By Lemma 3.1(iii), $O_{p}(H) \neq 1$. If $O_{p}(H) \nsubseteq N$, then $\bar{M} \subseteq \overline{O_{p}(H)}$ by the minimality of \bar{M}. This contradicts that \bar{M} is a p^{\prime}-group. Hence $O_{p}(H) \subseteq N \subseteq I$, and so $1 \neq O_{p}(H) \subseteq O_{p}(I)$. Thus $1 \neq O_{p}(I)$. Therefore $V_{1} I / V_{1}$ has no characters of p-defect 0 . Hence $V_{1} \nsubseteq \operatorname{Ker} \zeta$, and so there exists $1 \neq \varphi \in \operatorname{Irr}\left(V_{1}\right)$ with $\varphi \mid \zeta_{V_{1}}$. Since $I V / V_{2} \times \cdots \times V_{p} \simeq I V_{1}, \zeta$ can be regarded as a character of $I V$. Hence there exists a $\chi \in \operatorname{Irr}\left(I_{I V}(\varphi)\right)$ such that $\varphi \mid \chi_{V_{1}}$ and $\chi^{I V}=\zeta$. On the other hand, $I_{G}(\varphi)=I_{I V}(\varphi)$, and hence $\chi^{G} \in \operatorname{Irr}(G)$. Then $\chi^{G}=\zeta^{G}$ is a character of p-defect 0 , a contradiction.

Next suppose that $\left[\bar{I}_{1}, \bar{M}\right]=\bar{M}$. Then $\left[\bar{I}_{1}, \overline{O_{p^{\prime}}(M)}\right]=\bar{M}$. Since $\left[I_{1}, O_{p^{\prime}}(N)\right] \subseteq I_{1} \cap O_{p^{\prime}}(N)=1, I_{1} \subseteq C_{H}\left(O_{p^{\prime}}(N)\right) \triangleleft H$. We set $M_{1}=$ $\left[I_{1}, O_{p^{\prime}}(M)\right] \subseteq C_{H}\left(O_{p^{\prime}}(N)\right)$. Let P_{0} be a Sylow p-subgroup of N. Then $\left[M_{1}, P_{0}\right] \subseteq M_{1} \cap N$ since P_{0} normalizes M_{1}. Thus P_{0} centralizes $M_{1} / M_{1} \cap N$. Since M_{1} is a p^{\prime}-group, $M_{1}=C_{M_{1}}\left(P_{0}\right)\left(M_{1} \cap N\right)$. Then $\bar{M}=\bar{M}_{1}=\overline{C_{M_{1}}\left(P_{0}\right)}$ and $\left[C_{M_{1}}\left(P_{0}\right), N\right]=1$ since $N=O_{p^{\prime}}(N) P_{0}$. Hence V_{i}^{x} is isomorphic to V_{i} as an N-module, and so $V_{i}^{x}=V_{i}, 1 \leq i \leq k$, for $\forall x \in C_{M_{1}}\left(P_{0}\right)$. This contradicts the fact that M transitively permutes the V_{i}.

Lemma 3.6. $\quad O_{p}\left(C_{H_{0}}\left(V_{2} \times \cdots \times V_{p}\right)\right) \neq 1$.
Proof. Since $O_{p}(H) \neq 1, Z(P) \cap O_{p}(H) \neq 1$, where P is a Sylow p subgroup of H. Let $z \in Z(P) \cap O_{p}(H)$ with $|z|=p$. Then $z \in Z(H)$ since H is p-nilpotent. Thus z acts regularly on $V^{\#}$. Since z fixes all homogeneous components of $H_{0}, z \in H_{0}$, in particular, $1 \neq z \in O_{p}(H) \cap H_{0} \subseteq O_{p}\left(H_{0}\right)$.

We set $\overline{H_{0}\left(V_{2} \times \cdots \times V_{p}\right)}=H_{0}\left(V_{2} \times \cdots \times V_{p}\right) / C_{H_{0}}\left(V_{2} \times \cdots \times V_{p}\right) \simeq$ $H_{0} V / V_{1} C_{H_{0}}\left(V_{2} \times \cdots \times V_{p}\right)$. By induction, $\overline{H_{0}\left(V_{2} \times \cdots \times V_{p}\right)}$ has a character $\underline{\chi}$ of p-defect 0 since $O_{p}\left(\overline{H_{0}\left(V_{2} \times \cdots \times V_{p}\right)}\right)=1$. Since $1 \neq \bar{z} \in \overline{O_{p}\left(H_{0}\right)}$, \bar{H}_{0} has no characters of p-defect 0 . Therefore $V_{2} \times \cdots \times V_{p} \nsubseteq \operatorname{Ker} \chi$, and so there exists $\varphi \in \operatorname{Irr}\left(V_{2} \times \cdots \times V_{p}\right)$ with $1 \neq \varphi \mid \chi_{V_{2} \times \cdots \times V_{p}}$. By Lemma 2.1, $O_{p}\left(I_{\bar{H}_{0}}(\varphi)\right)=1$. Let $U_{1}=\operatorname{Ker} \varphi$. Then $\left|V_{2} \times \cdots \times V_{p} / U_{1}\right|=q$ and

$$
\begin{aligned}
I_{\bar{H}_{0}}(\varphi) & =I_{\bar{H}_{0}}\left(\left(V_{2} \times \cdots \times V_{p}\right) / U_{1}\right) \\
& =\left\{\bar{h} \in \bar{H}_{0} \mid h \in H_{0},\left[h, V_{2} \times \cdots \times V_{p}\right] \subseteq U_{1}\right\} .
\end{aligned}
$$

Set $P_{1}=O_{p}\left(I_{H_{0}}\left(\left(V_{2} \times \cdots \times V_{p}\right) / U_{1}\right)\right)$. Since $\bar{P}_{1} \subseteq O_{p}\left(I_{\bar{H}_{0}}\left(\left(V_{2} \times \cdots \times\right.\right.\right.$ $\left.\left.\left.V_{p}\right) / U_{1}\right)\right)=1, P_{1} \subseteq C_{H_{0}}\left(V_{2} \times \cdots \times V_{p}\right)$, and hence $P_{1} \subseteq O_{p}\left(C_{H_{0}}\left(V_{2} \times \cdots \times\right.\right.$ $\left.V_{p}\right)$). Therefore, if $O_{p}\left(C_{H_{0}}\left(V_{2} \times \cdots \times V_{p}\right)\right)=1$, then $P_{1}=1$. Let $g \in I_{H}$ $\left(V /\left(V_{1} \times U_{1}\right)\right)$. If $g \notin H_{0}$, then $\langle g\rangle$ transitively permutes the V_{i}. This implies that $V_{i} \subseteq V_{1} \times U_{1}, 1 \leq i \leq p$, and hence $V \subseteq V_{1} \times U_{1}$, which is a contradiction. Thus $I_{H}\left(V /\left(V_{1} \times U_{1}\right)\right)=I_{H_{0}}\left(V /\left(V_{1} \times U_{1}\right)\right)=I_{H_{0}}\left(\left(V_{2} \times \cdots \times V_{p}\right) / U_{1}\right)$. Let ζ be a linear character of V with $\operatorname{Ker} \zeta=V_{1} \times U_{1}$. Then $O_{p}\left(I_{H}(\zeta)\right)=$ $O_{p}\left(I_{H}\left(V /\left(V_{1} \times U_{1}\right)\right)\right)=O_{p}\left(I_{H_{0}}\left(\left(V_{2} \times \cdots \times V_{p}\right) / U_{1}\right)\right)=1$. By induction, $I_{H}(\zeta)$ has a character of p-defect 0 , and so has G by Lemma 2.1. This contradicts our choice of G.

Lemma 3.7. V has a subgroup U_{0} which satisfies the following conditions.

$$
\begin{equation*}
\left|V: U_{0}\right|=q . \tag{i}
\end{equation*}
$$

(ii) $O_{p}\left(I_{H_{0}}\left(V / U_{0}\right)\right)=1$ and $O_{p}\left(I_{H}\left(V / U_{0}\right)\right)=\langle x\rangle$ for some $x \in H$ of order p.
(iii) $I_{H}\left(V / U_{0}\right)=\langle x\rangle I_{H_{0}}\left(V / U_{0}\right)$, where x is the element in (ii).
(iv) $V_{i} \nsubseteq U_{0}, 1 \leq i \leq p$.

Proof. Since $H_{0} V \subsetneq G, H_{0} V$ has a character ξ of p-defect 0 by induction. By the first paragraph of the proof of Lemma 3.6, $1 \neq O_{p}\left(H_{0}\right)$. Hence H_{0} has no characters of p-defect 0 , and so $V \nsubseteq \operatorname{Ker} \xi$. Therefore there exists $1 \neq \lambda \in \operatorname{Irr}(V)$ with $\lambda \mid \xi_{V}$. Let $U_{0}=\operatorname{Ker} \lambda$. Then $\left|V: U_{0}\right|=q$. By Lemma 3.4, $1=O_{p}\left(I_{H_{0}}(\lambda)\right)=O_{p}\left(I_{H_{0}}\left(V / U_{0}\right)\right)$. On the other hand, G has no characters of p-defect 0 , and hence $1 \neq O_{p}\left(I_{H}(\lambda)\right)=O_{p}\left(I_{H}\left(V / U_{0}\right)\right)$. Since $\left|H: H_{0}\right|=p,\left|O_{p}\left(I_{H}\left(V / U_{0}\right)\right)\right|=p$, and hence $O_{p}\left(I_{H}\left(V / U_{0}\right)\right)=\langle x\rangle$ for some $x \in H$ of order p. Then $I_{H}\left(V / U_{0}\right)=\langle x\rangle I_{H_{0}}\left(V / U_{0}\right)$. If $V_{i} \subseteq U_{0}$ for some i, then $V=V_{i} \times V_{i}^{x} \times \cdots \times V_{i}^{x^{p-1}} \subseteq U_{0}$, a contradiction.

Lemma 3.8. $\quad I_{H_{0}}\left(V / U_{0}\right)=\bigcap_{i=1}^{p} I_{H_{0}}\left(V_{i} / W_{i}\right)$, where $W_{i}=U_{0} \cap V_{i}$.
Proof. Let $h \in I_{H_{0}}\left(V / U_{0}\right)$. Then $[V, h] \subseteq U_{0}$, and hence $\left[V_{i}, h\right] \subseteq$ $U_{0} \cap V_{i}=W_{i}$. Thus $h \in I_{H_{0}}\left(V_{i} / W_{i}\right), 1 \leq i \leq p$. Conversely, let $h \in$ $\bigcap_{i=1}^{p} I_{H_{0}}\left(V_{i} / W_{i}\right)$. Then $[V, h]=\Pi_{i=1}^{p}\left[V_{i}, h\right] \subseteq \Pi_{i=1}^{p} W_{i} \subseteq U_{0}$.

Let $z \in Z(P) \cap O_{p}(H)$ with $|z|=p$, where P is a Sylow p-subgroup of H. Then $z \in Z(H)$ and $z \in H_{0}$ (see the proof of Lemma 3.6). We set $W_{0}=\bigcap_{i=0}^{p-1} W_{1}^{z^{i}}$.

Lemma 3.9. Let W^{*} be a subgroup of V_{1} such that $V_{1} \supseteq W^{*} \supseteq W_{0}$ and $\left|V_{1}: W^{*}\right|=q$. Then $\bigcap_{i=0}^{p-1} W^{* z^{i}}=W_{0}$ and $I_{H_{0}}\left(V_{1} / W^{*}\right)=I_{H_{0}}\left(V_{1} / W_{0}\right)$.
Proof. Since $z \in Z(H), V_{1}$ is a homogeneous $\langle z\rangle$-module. By Lemma 2.3, V_{1} / W_{0} is an irreducible $\langle z\rangle$-module. Since $V_{1} \supseteq \bigcap_{i=0}^{p-1} W^{* z^{i}} \supseteq W_{0}$, $\bigcap_{i=0}^{p-1} W^{* z^{i}}=W_{0}$. Next

$$
\begin{aligned}
I_{H_{0}}\left(V_{1} / W^{*}\right) & =\left(I_{H_{0}}\left(V_{1} / W^{*}\right)\right)^{z^{i}}, \quad i=0, \ldots, p-1 \\
& =I_{H_{0}}\left(V_{1} / W^{* z^{i}}\right), \\
& =\bigcap_{i=0}^{p-1} I_{H_{0}}\left(V_{1} / W^{* z^{i}}\right) \\
& =I_{H_{0}}\left(V_{1} / W_{0}\right) .
\end{aligned}
$$

Lemma 3.10. $\quad I_{H_{0}}\left(V_{1} / U_{0}\right)=\bigcap_{i=1}^{p} I_{H_{0}}\left(V_{i} / W_{0}^{i-1}\right)$, where $V_{1}^{x^{i-1}}=V_{i}$.
Proof. By Lemmas 3.8 and 3.9, $I_{H_{0}}\left(V / U_{0}\right) \subseteq I_{H_{0}}\left(V_{1} / W_{1}\right)=I_{H_{0}}\left(V_{1} / W_{0}\right)$. Since $x \in I_{H}\left(V / U_{0}\right), I_{H_{0}}\left(V / U_{0}\right)=I_{H_{0}}\left(V / U_{0}\right)^{x^{i-1}} \subseteq I_{H_{0}}\left(V_{1}^{x^{i-1}} / W_{0}^{x^{i-1}}\right)=$ $I_{H_{0}}\left(V_{i} / W_{0}^{x^{i-1}}\right)$. Thus $I_{H_{0}}\left(V / U_{0}\right) \subseteq \bigcap_{i=1}^{p} I_{H_{0}}\left(V_{i} / W_{0}^{x^{i-1}}\right)$. On the other hand, since $\Pi_{i=1}^{p} W_{0}^{x^{i-1}} \subseteq U_{0}, \bigcap_{i=1}^{p} I_{H_{0}}\left(V_{i} / W_{0}^{x^{i-1}}\right)=I_{H_{0}}\left(V / \Pi_{i=1}^{p} W_{0}^{x^{i-1}}\right) \subseteq$ $I_{H_{0}}\left(V_{1} / U_{0}\right)$. Therefore $I_{H_{0}}\left(V_{1} / U_{0}\right)=\bigcap_{i=1}^{p} I_{H_{0}}\left(V_{i} / W_{0}^{i i-1}\right)$.

Lemma 3.11. Let U be a subgroup of V which satisfies the following conditions.
(i) $|V / U|=q$.
(ii) $W_{0} \times W_{0}^{x} \times \cdots \times W_{0}^{x^{p-1}} \subseteq U$.
(iii) $V_{i} \nsubseteq U, 1 \leq i \leq p$.

Then $I_{H}(V / U) \subseteq N_{H}\left(W_{0} \times W_{0}^{x} \times \cdots \times W_{0}^{x^{p-1}}\right)$.
Proof. Let $y \in I_{H}(V / U)$. If $V_{i}^{y}=V_{j}$, then $\left(U \cap V_{i}\right)^{y}=U \cap V_{j} \supseteq W_{0}^{a}$, where $a=x^{j-1}$. Hence $V_{1} \supseteq\left(U \cap V_{i}\right)^{y a a^{-1}} \supseteq W_{0}$. By Lemma 3.9,

$$
\begin{equation*}
W_{0}=\bigcap_{k=0}^{p-1}\left\{\left(U \cap V_{i}\right)^{y a^{-1}}\right\}^{z^{k}}=\left\{\bigcap_{k=0}^{p-1}\left(U \cap V_{i}\right)^{z^{k}}\right\}^{y a^{-1}} . \tag{1}
\end{equation*}
$$

On the other hand, $W_{0}^{x^{i-1}} \subseteq U \cap V_{i}$. Setting $b=x^{i-1}, W_{0} \subseteq\left(U \cap V_{i}\right)^{b^{-1}} \subseteq V_{1}$. By Lemma 3.9, $\cap_{k=0}^{p-1}\left\{\left(U \cap V_{i}\right)^{b^{-1}}\right\}^{z^{k}}=W_{0}$. Hence $\left\{\bigcap_{k=0}^{p-1}\left(U \cap V_{i}\right)^{z^{k}}\right\}^{b^{-1}}=$ W_{0}, and so $\bigcap_{k=0}^{p-1}\left(U \cap V_{i}\right)^{z^{k}}=W_{0}^{b}$. By (1), $W_{0}=\left(W_{0}^{b}\right)^{y a^{-1}}$, and hence $W_{0}^{x^{j-1}}=\left(W_{0}^{x^{i-1}}\right)^{y}$. This implies that $y \in N_{H}\left(W_{0} \times W_{0}^{x} \times \cdots \times W_{0}^{x^{p-1}}\right)$.

We set $N=V N_{H}\left(W_{0} \times W_{0}^{x} \times \cdots \times W_{0}^{x^{p-1}}\right)$ and $\bar{N}=N /\left(W_{0} \times W_{0}^{x} \times \cdots \times\right.$ $\left.W_{0}^{x^{p-1}}\right)$. Then $\bar{N} \triangleright \bar{V}=\bar{V}_{1} \times \cdots \times \bar{V}_{p}$.

Lemma 3.12. $\quad O_{p}(\bar{N})=1$.

Proof. Suppose that $O_{p}(\bar{N}) \neq 1$. Let P_{0} be a p-subgroup of $N \cap H$ with $\bar{P}_{0}=O_{p}(\bar{N})$. For $\forall a \in P_{0}, \bar{V}_{1}^{\bar{a}}=\bar{V}_{1}$, and hence $a \in H_{0}$. This implies that $P_{0} \subseteq H_{0}$. Furthermore, since $\left[\bar{P}_{0}, \bar{V}\right]=1,\left[P_{0}, V\right] \subseteq W_{0} \times W_{0}^{x} \times \cdots \times W_{0}^{x^{p-1}}$. Thus $P_{0} \subseteq I_{H_{0}}\left(V / U_{0}\right) \subseteq N \cap H$ by Lemmas 3.7 and 3.11. Since $P_{0} \triangleleft N \cap H$, $1 \neq P_{0} \subseteq O_{p}\left(I_{H_{0}}\left(V / U_{0}\right)\right)=1$, which is a contradiction.

Let P_{0} be a Sylow p-subgroup of H_{0}. By Lemma 3.6, $P_{0} \triangleright O_{p}\left(C_{H_{0}}\left(V_{2} \times\right.\right.$ $\left.\left.\cdots \times V_{p}\right)\right) \neq 1$. Therefore $Z\left(P_{0}\right) \cap O_{p}\left(C_{H_{0}}\left(V_{2} \times \cdots \times V_{p}\right)\right)$ contains an element z_{1} of order p.
Lemma 3.13. $z_{1} \in N$.
Proof. Since H_{0} is p-nilpotent, $z_{1} \in Z\left(H_{0}\right)$. If $z_{1}^{x}=z_{1}$, then $z_{1} \in$ $\left(C_{H_{0}}\left(V_{2} \times \cdots \times V_{p}\right)\right)^{x}=C_{H_{0}}\left(V_{1} \times V_{3} \times \cdots \times V_{p}\right)$, and hence $z_{1} \in$ $C_{H_{0}}\left(V_{2} \times \cdots \times V_{p}\right) \cap C_{H_{0}}\left(V_{1} \times V_{3} \times \cdots \times V_{p}\right)=C_{H_{0}}(V)=1$, which is a contradiction. Thus $z_{1} \notin Z(H) \supseteq\langle z\rangle$. Therefore $\left\langle z_{1}\right\rangle \times\langle z\rangle \subseteq Z\left(H_{0}\right)$. Since V_{1} is a homogeneous H_{0}-module, V_{1} is a homogeneous $\left\langle z_{1}\right\rangle \times\langle z\rangle$ module. Setting $\overline{\left\langle z_{1}\right\rangle \times\langle z\rangle}=\left\langle z_{1}\right\rangle \times\langle z\rangle / C_{\left\langle z_{1}\right\rangle \times\langle z\rangle}\left(V_{1}\right)$, then $\left\langle\bar{z}_{1}\right\rangle=\langle\bar{z}\rangle$. Hence

$$
W_{0}=\bigcap_{i=0}^{p-1} W_{1}^{z^{i}}=\bigcap_{i=0}^{p-1} W_{1}^{z_{1}^{i}} .
$$

This implies that $z_{1} \in N_{H}\left(W_{0}\right) \cap C_{H_{0}}\left(V_{2} \times \cdots \times V_{p}\right) \subseteq N$.

Lemma 3.14. $G=\bar{N}$. Moreover, let W^{*} be a subgroup of V_{i} with $\mid V_{i}$: $W^{*} \mid=q$ for some $i, 1 \leq i \leq p$. Then $I_{H_{0}}\left(V_{i} / W^{*}\right)=I_{H_{0}}\left(V_{i}\right)$.
Proof. Let $\chi \in \operatorname{Irr}(\bar{N})$ and let $\zeta \in \operatorname{Irr}(\bar{V})$ with $\zeta \mid \chi_{\bar{V}}$. Suppose that $\operatorname{Ker} \zeta \supseteq \bar{V}_{i}$ for some $i, 1 \leq i \leq p$. By considering $\zeta^{x^{1-i}}$, we may assume that $\operatorname{Ker} \zeta \supseteq \bar{V}_{1}$. Then z_{1} centralizes $\bar{V} / \operatorname{Ker} \zeta$, and hence $\bar{z}_{1} \in I_{\bar{N}}(\zeta)$. By Lemma 3.13, $z_{1} \in O_{p}(H) \cap N \subseteq O_{p}(N)$. Therefore $\bar{z}_{1} \in O_{p}\left(I_{\overline{N \cap H}}(\zeta)\right)$, in particular, $O_{p}\left(I_{\overline{N \cap H}}(\zeta)\right) \neq 1$. By Lemma 3.4, χ is not a character of p defect 0 .
Next suppose that $\operatorname{Ker} \zeta \nsupseteq \bar{V}_{i}(i=1,2, \ldots, p)$. Let $\bar{U}=\operatorname{Ker} \zeta$ and let U be an inverse image of \bar{U}. By Lemma 3.11, $I_{H}(V / U) \subseteq N$ since $U \supseteq$ $W_{0} \times W_{0}^{x} \times \cdots \times W_{0}^{x^{p-1}}$. Thus $I_{H}(V / U)=I_{N \cap H}(V / U) . \zeta$ is regarded as a character of V. Then $I_{H}(\zeta)=I_{H}(V / U)=I_{N \cap H}(V / U)=I_{N \cap H}(\zeta)$. Since G has no characters of p-defect $0, O_{p}\left(I_{H}(\zeta)\right) \neq 1$ by Lemma 3.4. Hence $O_{p}\left(I_{N \cap H}(\zeta)\right) \neq 1$. Thus $O_{p}\left(I_{\overline{N \cap H}}(\zeta)\right) \neq 1$, and hence χ is not a character of p-defect 0 . Therefore \bar{N} has no characters of p-defect 0 . By Lemma 3.12, $O_{p}(\bar{N})=1$, and hence $G=\bar{N}$ by the minimality of G. In particular, $W_{0}=1$.
Next $I_{H_{0}}\left(V_{i} / W^{*}\right)=I_{H_{0}}\left(V_{1}^{x^{i-1}} / W^{*}\right)=I_{H_{0}}\left(V_{1} /\left(W^{*}\right)^{x^{1-i}}\right)^{x^{i-1}}=I_{H_{0}}\left(V_{1}\right)^{x^{i-1}}=$ $I_{H_{0}}\left(V_{i}\right)$ by Lemma 3.9.

Lemma 3.15. For $\varphi, \lambda \in \operatorname{Irr}\left(V_{1}\right)$ with $\varphi \neq 1 \neq \lambda$, there exists $h_{1} \in$ $C_{H_{0}}\left(V_{2} \times \cdots \times V_{p-1}\right)$ such that $\varphi_{1}^{h_{1}}=\lambda$ and $\overline{h_{1}^{x}}=\overline{h_{1}^{-1}}$ in $\bar{H}_{0}=H_{0} / C_{H_{0}}\left(V_{1}\right)$.
Proof. We set $W^{*}=\operatorname{Ker} \varphi$ and $W_{1}=\operatorname{Ker} \lambda$. Then $\left|V_{1}: W^{*}\right|=\mid V_{1}:$ $W_{1} \mid=q$. Let α be a primitive q th root of unity. Then there exist $v_{1}, w_{1} \in V_{1}$ with $\varphi\left(v_{1}\right)=\alpha=\lambda\left(w_{1}\right)$. Setting $w_{i+1}=w_{1}^{x^{i}}(i=0, \ldots, p-1), w_{i+1} \in$ $W_{1}^{x^{i}}=W_{i+1}$. Let $\bar{V}=V /\left(W^{*} \times W_{2} \times \cdots \times W_{p}\right)$. Then $\bar{V} \simeq V_{1} / W^{*} \times \cdots \times$ $V_{p} / W_{p}=\left\langle\bar{v}_{1}\right\rangle \times\left\langle\bar{w}_{2}\right\rangle \times \cdots \times\left\langle\bar{w}_{p}\right\rangle$, where $\bar{v}_{1} \in V_{1} / W^{*}$ and $\bar{w}_{i} \in V_{i} / W_{i}, 2 \leq$ $i \leq p$. Thus we identify \bar{V} with $V_{1} / W^{*} \times \cdots \times V_{p} / W_{p}$. Let $\bar{U}=\left\langle\bar{v}_{1}^{-1} \bar{w}_{2}\right\rangle \times$ $\left\langle\bar{w}_{2}^{-1} \bar{w}_{3}\right\rangle \times \cdots \times\left\langle\bar{w}_{p-1}^{-1} \bar{w}_{p}\right\rangle \subseteq\left\langle\bar{v}_{1}\right\rangle \times\left\langle\bar{w}_{2}\right\rangle \times \cdots \times\left\langle\bar{w}_{p}\right\rangle$ and let U be the inverse image of \bar{U} in V. Then $|V / U|=q$. Furthermore,

$$
\begin{aligned}
I_{H_{0}}(V / U) & =I_{H_{0}}\left(V_{1} / W^{*}\right) \cap I_{H_{0}}\left(V_{2} / W_{2}\right) \cap \cdots \cap I_{H_{0}}\left(V_{p} / W_{p}\right) \\
& =C_{H_{0}}\left(V_{1}\right) \cap C_{H_{0}}\left(V_{2}\right) \cap \cdots \cap C_{H_{0}}\left(V_{p}\right)=C_{H_{0}}(V)=1
\end{aligned}
$$

by Lemma 3.14. This implies that $\left|I_{H}(V / U)\right|=p$. Let $x^{i} h \in I_{H}(V / U)$ with $\underset{\sim}{h} \in H_{0}$. By considering the powers of $x^{i} h$, we may assume that $i=1$. Then $\widetilde{v_{1}^{x h}}=\tilde{v}_{1}$ in $\tilde{V}=V / U$, and hence $v_{1}^{-1} v_{1}^{x h} \in U$. Thus $\bar{v}_{1}^{-1} \overline{v_{1}^{x h}} \in \bar{U} \cap\left(\left\langle\bar{v}_{1}\right\rangle \times\right.$ $\left.\left\langle\bar{w}_{2}\right\rangle\right)=\left\langle\bar{v}^{-1} \bar{w}_{2}\right\rangle$. Hence $\bar{v}_{1}^{-1} \overline{v_{1}^{x h}}=\bar{v}^{-1} \bar{w}_{2}$, and so $\overline{v_{1}^{x h}}=\bar{w}_{2}=\overline{w_{1}^{x}}$. Thus

$$
\begin{equation*}
\overline{v_{1}^{x h x^{-1}}}=\bar{w}_{1} \quad \text { and } \quad x h x^{-1} \in H_{0} \tag{1}
\end{equation*}
$$

By a similar argument, we have $w_{2}^{-1} w_{2}^{\chi h} \in U$, and hence $\bar{w}_{2}^{-1} \overline{w_{2}^{x h}}=\bar{w}_{2}^{-1} \bar{w}_{3}$. This implies that $\overline{w_{2}^{x h}}=\bar{w}_{3}=\overline{w_{2}^{x}}$, and so $\overline{w_{2}^{x h x^{-1}}}=\bar{w}_{2}$ and $x h x^{-1} \in$
$I_{H_{0}}\left(V_{2} / W_{2}\right)=C_{H_{0}}\left(V_{2}\right)$ by Lemma 3.14. Similarly, we have $\overline{w_{i}^{x h x^{-1}}}=\bar{w}_{i}$ for all $i, 3 \leq i \leq p-1$. Hence

$$
x h x^{-1} \in \bigcap_{i=2}^{p-1} I_{H_{0}}\left(V_{i} / W_{i}\right)=\bigcap_{i=2}^{p-1} C_{H_{0}}\left(V_{i}\right)=C_{H_{0}}\left(V_{2} \times \cdots \times V_{p-1}\right)
$$

by Lemma 3.14. Furthermore, $\widetilde{w_{p}^{x h}}=\tilde{w}_{p}$ in \tilde{V}, and hence $w_{p}^{-1} w_{p}^{x h} \in U$. If

$$
\begin{aligned}
\bar{w}_{p}^{-1} \overline{w_{p}^{x h}} & =\left(\bar{v}_{1}^{-1} \bar{w}_{2}\right)^{i_{1}}\left(\bar{w}_{2}^{-1} \bar{w}_{3}\right)^{i_{2}} \cdots\left(\bar{w}_{p-1}^{-1} \bar{w}_{p}\right)^{i_{p-1}} \\
& =\bar{v}_{1}^{-i_{1}} \bar{w}_{2}^{\left(i_{1}-i_{2}\right)} \cdots \bar{w}_{p-1}^{\left(i_{p-2}-i_{p-1}\right)} \bar{w}_{p}^{i_{p-1}}
\end{aligned}
$$

then $i_{1} \equiv i_{2} \equiv \cdots \equiv i_{p-1} \equiv-1 \bmod (q)$ and

$$
\begin{equation*}
\bar{v}_{1}=\overline{w_{p}^{x h}}=\overline{w_{1}^{h}} . \tag{2}
\end{equation*}
$$

Since $U^{x h}=U,\left(U \cap V_{1}\right)^{x h}=U \cap V_{2}$, and hence $\left(W^{*}\right)^{x h}=W_{2}=W_{1}^{x}$. Let $h_{1}=x h x^{-1}$. Then $\left(W^{*}\right)^{h_{1}}=\left(W^{*}\right)^{x h x^{-1}}=W_{1}$. Since $\varphi^{h_{1}}\left(w_{1}\right)=\varphi\left(v_{1}\right)=\alpha$ by (1), this implies that $\varphi^{h_{1}}=\lambda$. By (1) and (2), $\overline{v_{1}^{h_{1}}}=\bar{w}_{1}$ and $\bar{v}_{1}=\overline{w_{1}^{h}}$. Hence $\overline{v_{1}}=\overline{v_{1}^{h_{1} h}}$ in $\bar{V}_{1}=V_{1} / W^{*}$. Since $\left(U \cap V_{p}\right)^{x h}=U \cap V_{1}, W_{p}^{x h}=W^{*}$, and so $W_{1}^{h}=W^{*}$.
This implies that $\left(W^{*}\right)^{h_{1} h}=W_{1}^{h}=W^{*}$. Thus $h_{1} h \in I_{H_{0}}\left(V_{1} / W^{*}\right)=$ $C_{H_{0}}\left(V_{1}\right)$ by Lemma 3.14. Hence $\overline{h_{1}^{x}}=\bar{h}=\bar{h}_{1}^{-1}$ in $\bar{H}_{0}=H_{0} / C_{H_{0}}\left(V_{1}\right)$.

Lemma 3.16. Consider V_{1} as the additive group of the finite field $G F\left(q^{n}\right)$. Let $\bar{H}_{0}=H_{0} / C_{H_{0}}\left(V_{1}\right)$. Then $\overline{C_{H_{0}}\left(V_{1} \times \cdots \times V_{p-1}\right)}=\bar{H}_{0}$ and \bar{H}_{0} is a cyclic group of order $q^{n}-1$. Furthermore, \bar{H}_{0} consists of all non-zero linear transformations.

Proof. By Lemma 3.15, $C_{H_{0}}\left(V_{2} \times \cdots \times V_{p-1}\right)$ acts transitively on $\operatorname{Irr}\left(V_{1}\right)-\left\{1_{V_{1}}\right\}$. Hence $C_{H_{0}}\left(V_{2} \times \cdots \times V_{p-1}\right)$ has two orbits on $\operatorname{Irr}\left(V_{1}\right)$. By Brauer's permutation lemma, $C_{H_{0}}\left(V_{2} \times \cdots \times V_{p-1}\right)$ has two orbits on V_{1} by conjugation. Thus $C_{H_{0}}\left(V_{2} \times \cdots \times V_{p-1}\right)$ acts transitively on $V_{1}^{\#}$.

By Lemmas 2.3(ii) and 3.9, $\langle z\rangle$ acts irreducibly on $V_{1} / W_{0} \simeq V_{1}$ since $W_{0}=$ 1 (see Lemma 3.14). Since $z \in Z\left(H_{0}\right), \bar{H}_{0}$ acts as scalar multiplications on V_{1} by [8 , Theorem 19.8], and hence \bar{H}_{0} acts regularly on $V_{1}^{\#}$. By the transitivity of $C_{H_{0}}\left(V_{2} \times \cdots \times V_{p-1}\right)$ on $V_{1}^{\#}, \overline{C_{H_{0}}\left(V_{1} \times \cdots \times V_{p-1}\right)}=\bar{H}_{0}$ and \bar{H}_{0} consists of all non-zero linear transformations. Thus $\left|H_{0}\right|=\left|V_{1}^{\#}\right|=$ $q^{n}-1$.

Lemma 3.17. $F(p, q, n)$ is isomorphic to a subgroup of G.

Proof. Let $\langle y\rangle$ be a cyclic group of order p and let $N=H_{0} / C_{H_{0}}\left(V_{1}\right) \times$ $\cdots \times H_{0} / C_{H_{0}}\left(V_{p}\right)$ be the (outer) direct product. Next we define $\left(\bar{h}_{1}\right.$, $\left.\ldots, \bar{h}_{p}\right)^{y}=\left(\overline{h_{p}^{x}}, \overline{h_{1}^{x}}, \cdots, \overline{h_{p-1}^{x}}\right) \in H_{0} / C_{H_{0}}\left(V_{1}\right) \times \cdots \times H_{0} / C_{H_{0}}\left(V_{p}\right)$, and $\left(\bar{h}_{1}, \ldots, \bar{h}_{p}\right)^{y^{i}}=\left(\left(\bar{h}_{1}, \ldots, \bar{h}_{p}\right)^{y^{i-1}}\right)^{y}$ inductively, where $h_{j} \in H_{0}, 1 \leq j \leq p$. Then $\langle y\rangle$ acts on $H_{0} / C_{H_{0}}\left(V_{1}\right) \times \cdots \times H_{0} / C_{H_{0}}\left(V_{p}\right)$. Since $V_{1}^{x^{i}}=V_{i+1}$ $(i=0, \cdots, p-1)$, this definition is well defined. Let $\left(H_{0} / C_{H_{0}}\left(V_{1}\right) \times\right.$ $\left.\cdots \times H_{0} / C_{H_{0}}\left(V_{p}\right)\right) \rtimes\langle y\rangle$ be the semi-direct product. Let f be a map of $H=H_{0} \rtimes\langle x\rangle$ into $\left(H_{0} / C_{H_{0}}\left(V_{1}\right) \times \cdots \times H_{0} / C_{H_{0}}\left(V_{p}\right)\right) \rtimes\langle y\rangle$ which is defined by the rule $f\left(h x^{i}\right)=(\bar{h}, \ldots, \bar{h}) y^{i}$, where $h \in H_{0}$. Then

$$
\begin{aligned}
f\left(h x^{i} k x^{j}\right) & =f\left(h x^{i} k x^{-i} x^{i+j}\right) \\
& =\left(\overline{h k^{x^{-i}}}, \ldots, \overline{h k^{x^{-i}}}\right) y^{i+j} .
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
f\left(h x^{i}\right) f\left(k x^{j}\right) & =(\bar{h}, \ldots, \bar{h}) y^{i}(\bar{k}, \ldots, \bar{k}) y^{j} \\
& =(\bar{h}, \ldots, \bar{h})(\bar{k}, \ldots, \bar{k})^{y^{-i}} y^{i+j} \\
& =\left(\overline{h k^{x^{-i}}}, \ldots, \overline{h k^{x^{-i}}}\right) y^{i+j} .
\end{aligned}
$$

Thus $f\left(h x^{i} k x^{j}\right)=f\left(h x^{i}\right) f\left(k x^{j}\right)$, which implies that f is a homomorphism. Let $\operatorname{Ker} f \ni h x^{i}$ with $h \in H_{0}$. Then $(\bar{h}, \ldots, \bar{h})=(\overline{1}, \ldots, \overline{1}) \in H_{0} / C_{H_{0}}\left(V_{1}\right) \times$ $\ldots \times H_{0} / C_{H_{0}}\left(V_{p}\right)$ and $y^{i}=1$, and hence $h \in C_{H_{0}}(V)=1$ and $x^{i}=1$. This implies that $\operatorname{Ker} f=1$.

By Lemma 3.16, there exists $h \in C_{H_{0}}\left(V_{2} \times \ldots \times V_{p-1}\right)$ with $\langle\bar{h}\rangle=\bar{H}_{0}=$ $H_{0} / C_{H_{0}}\left(V_{1}\right)$. Let $1 \neq \varphi \in \operatorname{Irr}\left(V_{1}\right)$ and set $\lambda=\varphi^{h}$. By Lemma 3.15, there exists $h_{1} \in C_{H_{0}}\left(V_{2} \times \cdots \times V_{p-1}\right)$ such that $\varphi^{h_{1}}=\varphi^{h}$ and $\overline{h_{1}^{x}}=\bar{h}_{1}^{-1}$ in $\bar{H}_{0}=H_{0} / C_{H_{0}}\left(V_{1}\right)$. Setting $W^{*}=\operatorname{Ker} \varphi, h_{1} h^{-1} \in I_{H_{0}}(\varphi)=I_{H_{0}}\left(V_{1} / W^{*}\right)=$ $C_{H_{0}}\left(V_{1}\right)$ by Lemma 3.14. Thus $\bar{h}=\bar{h}_{1}$ in \bar{H}_{0}. Now

$$
\begin{aligned}
f\left(h_{1}\right) & =\left(\bar{h}_{1}, \bar{h}_{1}, \ldots, \bar{h}_{1}\right) \\
& =\left(\bar{h}_{1}, \overline{1}, \ldots, \overline{1}, \bar{h}_{1}\right) \quad\left(\text { since } h_{1} \in C_{H_{0}}\left(V_{2} \times \cdots \times V_{p-1}\right)\right) \\
& =\left({\left.\overline{\left(h_{1}^{-1}\right.}\right)}^{x}, \overline{1}, \ldots, \overline{1}, \bar{h}_{1}\right) \\
& =\left(\overline{1}, \ldots, \overline{1}, \bar{h}_{1}\right)\left({\overline{\left(h_{1}^{-1}\right)}}^{x}, \overline{1}, \ldots, \overline{1}\right) \\
& =\left(\overline{1}, \ldots, \overline{1}, \bar{h}_{1}\right)\left(\overline{1}, \ldots, \overline{1}, \bar{h}_{1}^{-1}\right)^{y} \in[N, y] .
\end{aligned}
$$

Since $\bar{h}=\bar{h}_{1}$ in $\bar{H}_{0}=H_{0} / C_{H_{0}}\left(V_{1}\right),\left|\bar{h}_{1}\right|=|\bar{h}|=q^{n}-1$, and hence $\left|f\left(h_{1}\right)\right|=$ $q^{n}-1$. Next we set $h_{i}=h_{1}^{x-1}(i=1, \cdots, p-1)$. Then $h_{i} \in C_{H_{0}}\left(V_{1} \times \cdots \times\right.$ $V_{i-2} \times V_{i+1} \times \cdots \times V_{p}$), and by the same argument as above $\left|\bar{h}_{i}\right|=q^{n}-1$ in $H_{0} / C_{H_{0}}\left(V_{i}\right), f\left(h_{i}\right) \in[N, y]$, and $\left|f\left(h_{i}\right)\right|=q^{n}-1$. Furthermore, since $\bar{h}_{2}=$
$\overline{h_{1}^{x}}=\bar{h}_{1}^{-1}$ in $H_{0} / C_{H_{0}}\left(V_{1}\right), \bar{h}_{i+1}=\bar{h}_{i}^{-1}$ in $H_{0} / C_{H_{0}}\left(V_{i}\right)(i=1, \ldots, p-2)$. If $f\left(h_{1}\right)^{i_{1}} \cdots f\left(h_{p-1}\right)^{i_{p-1}}=1$, then

$$
\left(\bar{h}_{1}^{i_{1}}, \overline{1}, \ldots, \overline{1}, \bar{h}_{1}^{i_{1}}\right)\left(\bar{h}_{2}^{i_{2}}, \bar{h}_{2}^{i_{2}}, \overline{1}, \ldots, \overline{1}\right) \cdots\left(\overline{1}, \ldots,{\overline{h_{p-1}}}^{i_{p-1}},{\overline{h_{p-1}}}^{i}{ }_{p-1}, \overline{1}\right)=1 .
$$

Hence

$$
\left(\bar{h}_{1}^{i_{1}} \bar{h}_{2}^{i_{2}}, \bar{h}_{2}^{i_{2}} \bar{h}_{3}^{i_{3}}, \ldots,{\overline{h_{p-2}}}^{i_{p-2}}{\overline{h_{p-1}}}^{i}{ }_{p-1}, \bar{h}_{1}^{i_{1}}\right)=(\overline{1}, \ldots, \overline{1})
$$

Thus $\bar{h}_{1}^{i_{1}}=\overline{1}$ in $H_{0} / C_{H_{0}}\left(V_{p}\right)$. Therefore $\overline{1}=\overline{\left(h_{1}^{i_{1}}\right)^{x}}={\overline{\left(h_{1}^{x}\right)}}^{i_{1}}=\bar{h}_{2}^{i_{1}}=\bar{h}_{1}^{-i_{1}}$ in $H_{0} / C_{H_{0}}\left(V_{1}\right)$ since $V_{p}^{x}=V_{1}$, which implies that $q^{n}-1 \mid i_{1}$. Next, since $\bar{h}_{1}^{i_{1}}=\overline{1}$ in $H_{0} / C_{H_{0}}\left(V_{1}\right), \bar{h}_{2}^{i_{2}}=\overline{1}$ in $H_{0} / C_{H_{0}}\left(V_{1}\right)$. Therefore $\overline{1}=\overline{\left(h_{2}^{i_{2}}\right)^{x}}=\left(\bar{h}_{2}^{x}\right)^{i_{2}}=$ $\bar{h}_{3}^{i_{2}}=\bar{h}_{2}^{-i_{2}}$ in $H_{0} / C_{H_{0}}\left(V_{2}\right)$, which implies that $q^{n}-1 \mid i_{2}$. Similarly, we have $q^{n}-1 \mid i_{k}(k=1, \ldots, p-1)$. Thus $\left\langle f\left(h_{1}\right), \ldots, f\left(h_{p-1}\right)\right\rangle=\left\langle f\left(h_{1}\right)\right\rangle \times \cdots \times$ $\left\langle f\left(h_{p-1}\right)\right\rangle \subseteq[N, y]$. On the other hand, $\left|\left\langle f\left(h_{1}\right)\right\rangle \times \cdots \times\left\langle f\left(h_{p-1}\right)\right\rangle\right|=\left(q^{n}-\right.$ 1) ${ }^{p-1}=|N| /\left|C_{N}(y)\right|=|[N, y]|$, and hence $\left\langle f\left(h_{1}\right)\right\rangle \times \cdots \times\left\langle f\left(h_{p-1}\right)\right\rangle=$ [N, y].
Now, $z_{1} \in O_{p}\left(C_{H_{0}}\left(V_{2} \times \cdots \times V_{p}\right)\right)$ with $\left|z_{1}\right|=p$ (see Lemma 3.6). Then $f\left(z_{1}\right)=\left(\bar{z}_{1}, \ldots, \bar{z}_{1}\right)=\left(\bar{z}_{1}, \overline{1}, \ldots, \overline{1}\right)$, and hence $f(H) \supseteq\left\langle f\left(z_{1}\right)\right\rangle \times$ $\left\langle f\left(z_{1}^{x}\right)\right\rangle \times \cdots \times\left\langle f\left(z_{1}^{x^{p-1}}\right)\right\rangle=\Omega_{1}\left(O_{p}(N)\right)$. Therefore $f(H) \supseteq\left([N, y] \Omega_{1}\right.$ $\left.\left(O_{p}(N)\right)\right) \rtimes\langle y\rangle$.

Let $V \ni v=v_{1} \cdots v_{p}$, where $v_{i} \in V_{i}, 1 \leq i \leq p$. For $\left(\bar{h}_{1}, \ldots, \bar{h}_{p}\right) y^{i} \in$ $N \rtimes\langle y\rangle$ with $h_{j} \in H_{0}(j=1, \ldots, p)$, we define

$$
v^{\left(\bar{h}_{1}, \ldots, \bar{h}_{p}\right) y^{i}}=v_{1}^{h_{1} x^{i}} \cdots v_{p}^{h_{p} x^{i}} .
$$

Then $N \rtimes\langle y\rangle$ acts on V. Furthermore, $v^{f\left(h x^{i}\right)}=v^{(\bar{h}, \ldots, \bar{h}) y^{i}}=v_{1}^{h x^{i}} \cdots v_{p}^{h x^{i}}=$ $v^{h x^{i}}$, where $h \in H_{0}$. Let $V \rtimes(N \rtimes\langle y\rangle)$ be the semi-direct product. Let \tilde{f} be a map of $G=V \rtimes\left(H_{0} \rtimes\langle x\rangle\right)$ into $V \rtimes(N \rtimes\langle y\rangle)$ which is defined by the rule

$$
\tilde{f}\left(v h x^{i}\right)=v(\bar{h}, \ldots, \bar{h}) y^{i}\left(=v f\left(h x^{i}\right)\right), \quad \text { where } v \in V \text { and } h \in H_{0} .
$$

Then it is easily checked that \tilde{f} is an injective homomorphism. Hence

$$
\begin{aligned}
\tilde{f}(G) & =\tilde{f}(V \rtimes H)=V \rtimes f(H) \supseteq V \rtimes\left(\left([N, y] \Omega_{1}\left(O_{p}(N)\right)\right) \rtimes\langle y\rangle\right) \\
& \simeq F(p, q, n) .
\end{aligned}
$$

Case II

V is a quasi-primitive H-module.
In this case, if N is a normal abelian subgroup of H, then V_{N} is a faithful, completely reducible, and homogeneous module. Hence N is cyclic. Thus every normal subgroup of H is cyclic.
Lemma 3.18. Let $F=F(H)$ and let Z be the socle of the cyclic group $Z(F)$. Then F is a q^{\prime}-group and there exist $E, T \triangleleft H$ with
(i) $F=E T, Z=E \cap T$, and $T=C_{F}(E)$.
(ii) $E / Z=E_{1} / Z \times \cdots \times E_{r} / Z$ for chief factors E_{i} / Z of H with $E_{i} \subseteq$ $C_{H}\left(E_{j}\right)$ for $i \neq j$.
(iii) For each $i, Z\left(E_{i}\right)=Z,\left|E_{i} / Z\right|=p_{i}^{2 n_{i}}$ for a prime p_{i} and an integer n_{i}, and $E_{i}=O_{p_{i}^{\prime}}(Z) F_{i}$ for an extra-special group $F_{i}=O_{p_{i}}\left(E_{i}\right) \triangleleft H$ of order $p_{i}^{2 n_{i}+1}$.
(iv) There exists $U \subseteq T$ of index at most 2 with U cyclic, $U \triangleleft H$, and $C_{T}(U)=U$.
(v) $T=C_{H}(E)$.

Proof. Since V is a quasi-primitive H-module, $V_{O_{q}(H)}$ is homogeneous, and hence $\left[V, O_{q}(H)\right]=1$, which implies that $O_{q}(H)=1$.
(i) $\sim(\mathrm{v})$ follows from [6, Corollary 1.10].

Lemma 3.19. $O_{p^{\prime}}\left(F_{1} \cdots F_{r}\right)=1$ or $O_{p^{\prime}}\left(F_{1} \cdots F_{r}\right) \simeq Q_{8}$, where Q_{8} is a quaternion group of order 8.
Proof. Suppose Lemma 3.19 is false. Therefore $O_{p^{\prime}}\left(F_{1} \cdots F_{r}\right) \neq 1$ and $O_{p^{\prime}}\left(F_{1} \cdots F_{r}\right) \neq Q_{8}$. By re-numbering, we may assume that $O_{p^{\prime}}\left(F_{1} \cdots F_{r}\right)=$ $F_{1} \cdots F_{k}(k \leq r)$. Set $\bar{F}_{t}=F_{t} / Z\left(F_{t}\right), 1 \leq t \leq k$. Then there exist hyperbolic pairs $\left\{u_{1}, v_{1}\right\} \cdots\left\{u_{n_{t}}, v_{n_{t}}\right\}$ with $\left(u_{i}, v_{j}\right)=\delta_{i j}$ and $\left(u_{i}, u_{j}\right)=\left(v_{i}, v_{j}\right)=0$ (see Lemma 2.4). Let R_{t} be the inverse image of $\left\langle u_{i}, \ldots, u_{n_{t}}\right\rangle$ in F_{t}. Then R_{t} is an abelian subgroup of F_{t} of order $p_{t}^{n_{t}+1}$. Let $R=R_{1} \cdots R_{k}$. Then R is a non-cyclic abelian subgroup of $F_{1} \cdots F_{k}$. So, there exists a subgroup $1 \neq R_{0}$ of R such that R / R_{0} is cyclic and $C_{V}\left(R_{0}\right) \neq 1$. Setting $V_{0}=C_{V}\left(R_{0}\right)$, $N_{H}\left(R_{0}\right)$ acts on V_{0} by conjugation.

We set $H_{0}=N_{H}\left(R_{0}\right)$ and $\overline{H_{0} V_{0}}=H_{0} V_{0} / C_{H_{0}}\left(V_{0}\right)$. Since $O_{p}\left(\overline{H_{0} V_{0}}\right)=1$ and $1 \neq R_{0} \subseteq C_{H_{0}}\left(V_{0}\right), \overline{H_{0} V_{0}}$ has a character χ of p-defect 0 by induction. Since $1 \neq \overline{O_{p}(H)} \subseteq O_{p}\left(\bar{H}_{0}\right)$, $\operatorname{Ker} \chi \nsupseteq \bar{V}_{0}$. Therefore there exists $1 \neq \varphi \in$ $\operatorname{Irr}\left(\bar{V}_{0}\right)$ with $\varphi \mid \chi_{\bar{V}_{0}}$. By Lemma 2.1(ii), $I_{\bar{H}_{0}}(\varphi)$ has a character of p-defect 0 , and hence $O_{p}\left(I_{\bar{H}_{0}}(\varphi)\right)=1$. Let $\bar{V}_{1}=\operatorname{Ker} \varphi$ with $V_{1} \subseteq V_{0}$. Setting $I_{0}=$ $I_{H_{0}}\left(V_{0} / V_{1}\right), \bar{I}_{0}=I_{\bar{H}_{0}}(\varphi)$. Thus $O_{p}\left(\bar{I}_{0}\right)=1$.

By Lemma 3.18, R_{0} is a q^{\prime}-group, and so $V=V_{0} \times\left[V, R_{0}\right]$. We set $I=$ $I_{H}\left(V /\left(V_{1} \times\left[V, R_{0}\right]\right)\right)$. Let $\zeta \in \operatorname{Irr}(V)$ with $\operatorname{Ker} \zeta=V_{1} \times\left[V, R_{0}\right]$. Then $I=$
$I_{H}(\zeta)$. If $O_{p}(I)=1$, then there exists $\eta \in \operatorname{Irr}(V I)$ such that $\zeta \mid \eta_{V}$ and η is a character of p-defect 0 by Lemma 3.4. Since $I_{G}(\zeta)=V I, \eta^{G}$ is a character of p-defect 0 . Thus $O_{p}(I) \neq 1$. Let $x \in O_{p}(I)$ with $|x|=p$. Then $\left[x, R_{0}\right] \subseteq O_{p}(I) \cap O_{p^{\prime}}(H)=1$. Thus $x \in C_{H}\left(R_{0}\right) \subseteq H_{0}$. On the other hand, since $I_{0} \subseteq I$ and $O_{p}\left(\bar{I}_{0}\right)=1, x \in O_{p}(I) \cap I_{0} \subseteq O_{p}\left(I_{0}\right) \subseteq C_{H_{0}}\left(V_{0}\right) \subseteq I_{0}$. Thus $x \in O_{p}\left(C_{H_{0}}\left(V_{0}\right)\right)$.

Since R normalizes $C_{H_{0}}\left(V_{0}\right),[x, R] \subseteq O_{p}\left(C_{H_{0}}\left(V_{0}\right)\right) \cap O_{p^{\prime}}(H)=1$. Since $R=R_{1} \cdots R_{k},\left[x, R_{i}\right]=1,1 \leq i \leq k$. Furthermore, since $R_{i} \supseteq Z\left(F_{i}\right)$ and $p_{i} \neq p,\left[x, F_{i}\right]=1$ by Lemma 2.4. Thus $\left[x, O_{p^{\prime}}\left(F_{1} \cdots F_{r}\right)\right]=1$.

Setting $M=O_{p}\left(F_{1} \cdots F_{r}\right), M$ is an extra-special p-group by Lemma 3.18(iii). Since $\left[M, O_{p^{\prime}}(H)\right] \subseteq O_{p}(H) \cap O_{p^{\prime}}(H)=1$ and H is p-nilpotent, $H / C_{H}(M)$ is a p-group. By Lemma $3.18(\mathrm{ii}), M / Z(M)$ is a completely reducible H-module, and hence H centralizes $M / Z(M)$. Let P be a Sylow p-subgroup of H with $x \in P$. By [2, Lemma 4.6, p. 195], $x=y z$ with $y \in C_{P}(M)$ and $z \in M$. Since $\left[x, O_{p^{\prime}}\left(F_{1} \cdots F_{r}\right)\right]=\left[z, O_{p^{\prime}}\left(F_{1} \cdots F_{r}\right)\right]=1$, $\left[y, O_{p^{\prime}}\left(F_{1} \cdots F_{r}\right)\right]=1$. Set $Z=Z(F(H))$. Since Z normalizes $C_{H_{0}}\left(V_{0}\right)$ and Z acts regularly on $V^{\#},[x, Z] \subseteq C_{H_{0}}\left(V_{0}\right) \cap Z=C_{Z}\left(V_{0}\right)=1$. Thus $[x, Z]=[z, Z]=1$, and hence $[y, Z]=1$. This implies that $\left[y, F_{1} \cdots F_{r} Z\right]=$ $[y, E]=1$, where E is as in Lemma 3.18. By Lemma 3.18(v), $y \in C_{H}(E)=$ $T \subseteq F(H)$. Since $z \in M \subseteq F(H), x=y z \in F(H)$.

Since $V_{O_{p}(H)}$ is a faithful, completely reducible, and homogeneous module and $O_{p}(H) \subseteq C_{H}\left(R_{0}\right) \subseteq H_{0}, V_{0}$ is a faithful $O_{p}(H)$-module. Thus $C_{O_{p}(H)}\left(V_{0}\right)=1$. On the other hand, $1 \neq x \in C_{O_{p}(H)}\left(V_{0}\right)$, which is a contradiction.

Lemma 3.20. If $O_{p^{\prime}}\left(F_{1} \cdots F_{r}\right) \simeq Q_{8}$, then $G \simeq J$.
Proof. We divide the proof of Lemma 3.20 into several steps.
Step 1. (i) $p=3$ and $H / F(H)$ is a p-group.
(ii) $F(H) \simeq Q \times Z_{0}$, where $Q \simeq Q_{8}$ and Z_{0} is a cyclic group of odd order.

Proof. Setting $Q=O_{p^{\prime}}\left(F_{1} \cdots F_{r}\right), Q \simeq Q_{8}$. The hypotheses imply that $p \neq 2$. Since $H=O^{p^{\prime}}(H) \subseteq O^{2}(H), H=O^{2}(H)$. Since $\operatorname{Aut}(Q) \simeq S_{4}$ (the symmetric group of degree 4) and $Q / Z(Q)$ is isomorphic to a subgroup of $H / C_{H}(Q), H / C_{H}(Q) \simeq A_{4}$ (the alternating group of degree 4). In particular, $p=3$.

Let T, U and $Z(F)$ be as in Lemma 3.18. If $T \neq U$, then $2\left|\left|H / C_{H}(U)\right|\right.$ since $C_{T}(U)=U$. Since U is cyclic, $H / C_{H}(U)$ is abelian, and hence $O^{2}(H) \subsetneq H$, which is a contradiction. Thus $T=U$. This implies that $T=Z(F)$.

Let K be a Hall p^{\prime}-subgroup of H and P a Sylow p-subgroup of H. Since H is p-nilpotent, $H=P K$. Since $Z(F)$ is cyclic, $H / C_{H}(Z(F))$ is abelian.

Since $O^{p^{\prime}}(H)=H, H / C_{H}(Z(F))$ is a p-group. Hence

$$
\begin{equation*}
K \subseteq C_{H}(Z(F)) \tag{1}
\end{equation*}
$$

Since $F(K)$ char $K \triangleleft H, F(K) \subseteq F(H)$, and hence $F(K) \subseteq O_{p^{\prime}}(F(H))=$ $Q Z(F)$. Let L be a Hall 2^{\prime}-subgroup of K. Since $[L, Q]=1$,

$$
\begin{equation*}
L \subseteq C_{K}(F(K)) \subseteq F(K) \tag{2}
\end{equation*}
$$

Let S be a Sylow 2-subgroup of K. Since $H / C_{H}(Q) \simeq A_{4}, S \subseteq Q C_{H}(Q)$. On the other hand, $Q \subseteq S$, and hence $S=Q C_{S}(Q)$. By (1), $C_{S}(Q) \subseteq$ $C_{K}(F(K)) \subseteq F(K)$. Thus

$$
\begin{equation*}
S=Q C_{S}(Q) \subseteq F(K) \tag{3}
\end{equation*}
$$

By (2) and (3), $K=F(K) \subseteq Q Z(F)$. Then $H / F(H)$ is a p-group since $K=F(K) \subseteq F(H)$.

Next assume that $O_{p}(H)$ is non-abelian. By re-numbering, we may assume that F_{1} (see Lemma 3.18) is a non-abelian p-group. By Lemma 3.18(ii), $F_{1} / Z\left(F_{1}\right)$ is an irreducible H-module. Since $\left[K, F_{1}\right]=1, F_{1} / Z\left(F_{1}\right)$ is an irreducible P-module. Then, by [2, Lemma 4.6, p. 195], $P=C_{P}\left(F_{1}\right) F_{1}$. By [6, Corollary 1.3], F_{1} has a non-cyclic normal abelian subgroup P_{0} since $p=3$. Then $P_{0} \triangleleft H$, which is a contradiction. Thus $O_{p}(H) \subseteq Z(F)$, and hence $F(H)=Q Z(F)$.

Let $Z(F)=Z_{0} \times Z_{1}$, where Z_{0} is a group of odd order and Z_{1} is a 2group. Since $H / C_{H}\left(Z_{1}\right)$ is a 2-group and $O^{2}(H)=H, H=C_{H}\left(Z_{1}\right)$. Let $\bar{H}=H / Q Z_{0}$. Then $\bar{H}=\bar{P} \times \bar{Z}_{1}$. Since $O^{2}(H)=H, \bar{Z}_{1}=\overline{1}$, and hence $F(H)=Q Z_{0} Z_{1}=Q Z_{0}=Q \times Z_{0}$.

Step 2. The actions of H on $\operatorname{Irr}(V)$ and V are permutation isomorphic.
Proof. By Lemma 3.18, $(q,|F(H)|)=1$. Since $H / F(H)$ are a p-group, $(q,|H|)=1$. Then Step 2 follows from Lemma 2.2.

STEP 3. If $H_{1} \subsetneq H$ and $1 \neq O_{p}\left(H_{1}\right)$, then there exists $v \in V$ with $C_{H_{1}}(v)$ $=1$.

Proof. By induction, $V H_{1}$ has a character χ of p-defect 0 since $O_{p}\left(V H_{1}\right)=1$. Since $1 \neq O_{p}\left(H_{1}\right), H_{1}$ has no characters of p-defect 0 , and hence $V \nsubseteq \operatorname{Ker} \chi$. So, there exists $1 \neq \varphi \in \operatorname{Irr}(V)$ with $\varphi \mid \chi$. On the other hand, since $F(H)$ acts regularly on $V^{\#}, C_{H}(v)$ is a p-group for $\forall v \in V^{\#}$. Hence $I_{H}(\varphi)$ is a p-group by Step 2, and so is $I_{H_{1}}(\varphi)$. By Lemma 3.4, $I_{H_{1}}(\varphi)=1$, and hence there exists $v \in V$ with $C_{H_{1}}(v)=1$ by Step 2 .

Step 4. $H=H_{0} \times Z_{0}$, where $H_{0} \simeq \operatorname{SL}(2,3)$ and $\left|Z_{0}\right|=3$.
Proof. Set $H_{1}=C_{H}\left(Z_{0}\right)$ and suppose that $H_{1} \subsetneq H$. Since $1 \neq$ $O_{p}(H) \subseteq O_{p}\left(H_{1}\right)$, there exists $v \in V$ with $C_{H_{1}}(v)=1$ by Step 3. Setting $V_{0}=\left\langle v^{Z_{0}}\right\rangle, V_{0}$ is an irreducible Z_{0}-module by Lemma 2.3. Since $\left[C_{H}\left(V_{0}\right), Z_{0}\right] \subseteq C_{H}\left(V_{0}\right) \cap Z_{0}=C_{Z_{0}}\left(V_{0}\right)=1, C_{H}\left(V_{0}\right) \subseteq C_{H}\left(Z_{0}\right)=H_{1}$. Therefore $C_{H}\left(V_{0}\right)=C_{H_{1}}\left(V_{0}\right) \subseteq C_{H_{1}}(v)=1$. Thus $O_{p}\left(V_{0} N_{H}\left(V_{0}\right)\right)=1$. Suppose that $V_{0} \subsetneq V$. By induction, $V_{0} N_{H}\left(V_{0}\right)$ has a character of p-defect 0 . Since $1 \neq O_{p}(H) \subseteq Z_{0} \subseteq N_{H}\left(V_{0}\right), N_{H}\left(V_{0}\right)$ has no characters of p-defect 0 . Setting $N=N_{H}\left(V_{0}\right)$, there exists $v_{0} \in V_{0}^{\#}$ with $C_{N}\left(v_{0}\right)=1$ by a similar argument to that in the proof of Step 3. By Step $1, C_{H}\left(v_{0}\right)$ is a p-group. Hence there exists $x \in C_{H}\left(v_{0}\right)$ with $|x|=p$ by Lemma 3.4. Since V_{0} is an irreducible Z_{0}-module, $\left\langle v_{0}^{Z_{0}}\right\rangle=V_{0}$. Since x normalizes $\left\langle v_{0}^{Z_{0}}\right\rangle, x \in N$, and hence $x \in C_{N}\left(v_{0}\right)=1$, which is a contradiction. Hence $V\left(=V_{0}\right)$ is an irreducible Z_{0}-module. By [8, Prop. 19.8], $H \subseteq T\left(q^{m}\right)$ (defined in the Introduction). Since $A_{4}\left(\simeq H / C_{H}(Q)\right)$ is involved in H, H is not metacyclic. On the other hand, $T\left(q^{m}\right)$ is metacyclic and so is H, which is a contradiction. Thus $C_{H}\left(Z_{0}\right)=H$.

Now $O^{3^{\prime}}(H)=H$ since $p=3$, and so Z_{0} is a cyclic 3-group. Furthermore, since $C_{H}(Q)=C_{H}(F(H)) \subseteq F(H),|H / F(H)|=3$. If a Sylow 3-subgroup of H is cyclic, then H acts regularly on $V^{\#}$. This contradicts Lemma 3.1(ii). Let $x \in H$ with $x \notin Z_{0}$ and $|x|=3$. Setting $H_{0}=Q\langle x\rangle, H=H_{0} \times Z_{0}$ and $H_{0} \simeq S L(2,3)$. Let $\langle z\rangle=Z_{0}$ and set $L=H_{0} \times\left\langle z^{3}\right\rangle$. Assume that $\left\langle z^{3}\right\rangle \neq 1$. Since $L \subsetneq H$ and $1 \neq\left\langle z^{3}\right\rangle \subseteq O_{3}(H), C_{L}(v)=1$ for some $v \in V^{\#}$ by Step 3 . By Lemma 3.1(ii), $C_{H}(v)=\langle y\rangle$ with $|y|=3$. Let $y=h u$ with $h \in H_{0}$ and $u \in Z_{0}$. Then $1=y^{3}=h^{3} u^{3}=u^{3}$. Hence $u \in \Omega_{1}\left(Z_{0}\right) \subseteq\left\langle z^{3}\right\rangle \subseteq L$, and so $y \in C_{L}(v)=1$, which is a contradiction. Thus $z^{3}=1$. Since $O_{3}(H) \neq 1$ by Lemma 3.1(iii), $\left|Z_{0}\right|=3$.

STEP 5. $|V|=q^{2}$ and V is an irreducible Q-module.

Proof. Let $V_{0} \subseteq V$ be an irreducible Q-module. Let k be the field of q-elements and let $k Q$ be a group ring. Since $k Q$ is semisimple, $k Q \simeq$ $\oplus_{i} M_{n_{i}}\left(D_{i}\right)$, where $M_{n_{i}}\left(D_{i}\right)$ is the ring of $n_{i} \times n_{i}$ matrices over the division ring D_{i}. Since $8=\operatorname{dim}_{k} k Q=\sum_{i} \operatorname{dim}_{k} M_{n_{i}}\left(D_{i}\right)=1+1+1+1+2^{2}$, the degree of every irreducible representation of Q over k is 1 or 2 . Since $Q^{\prime}=$ $Z(Q) \nsubseteq C_{Q}\left(V_{0}\right), \operatorname{dim}_{k} V_{0}=2$ and so $\left|V_{0}\right|=q^{2}$. Setting $N=N_{H}\left(V_{0}\right) \supseteq Q$, $N=Q, Q \times Z_{0}, H$, or $N \simeq S L(2,3)$. If $N=H$, then $V_{0}=V$ since V is an irreducible H-module. Hence we may assume that $N \neq H$.

Next we shall prove that there exists a $v_{0} \in V_{0}$ with $C_{N}\left(v_{0}\right)=1$. Assume that $N=Q$ or $Q \times Z_{0}$. Then, since N acts regularly on $V_{0}^{\#}$, the assertion stated above holds. Next assume that $N \simeq \operatorname{SL}(2,3)$. Let $x \in N$
with $|x|=3$. If $C_{V_{0}}(x)=1$, then $N=H_{0}=Q\langle x\rangle$ acts regularly on $V_{0}^{\#}$. Hence we may assume that $C_{V_{0}}(x) \neq 1$. If $C_{V_{0}}(x)=V_{0}$, then $[Q, x] \subseteq Q \cap$ $C_{H_{0}}\left(V_{0}\right)=C_{Q}\left(V_{0}\right)=1$, which contradicts the fact that $H_{0} \simeq \operatorname{SL}(2,3)$. Thus $\left|C_{V_{0}}(x)\right|=q$.

Let $v, w \in C_{V_{0}}(x)^{\#}$. Assume that v and w are conjugate in N. Let $w=v^{y}$ with $y \in Q$. Then $\left\langle x, x^{y}\right\rangle \subseteq C_{N}(w)$. Since Q acts regularly on $V_{0}^{\#},\left\langle x, x^{y}\right\rangle=$ $\langle x\rangle$, and hence $y \in Z(Q)$. Thus $w=v^{-1}$. Since $\left|C_{N}(u)\right|=3$ for $\forall u \in V_{0}^{\#}$ and $C_{N}(u)$ is conjugate to $\langle x\rangle$ in $N, u^{g} \in C_{V_{0}}(x)$ for some $g \in N$. Thus each N-orbit of $V_{0}^{\#}$ contains an element of $C_{V_{0}}(x)$. Therefore N has exactly $\frac{q-1}{2}$ orbits on $V_{0}^{\#}$. Since each orbit contains exactly eight elements, $\frac{q-1}{2} \cdot 8=$ $q^{2}-1$. Hence $4=q+1$, and so $q=3$, which is a contradiction since $p=3$. Thus there exists a $v_{0} \in V_{0}$ with $C_{N}\left(v_{0}\right)=1$. By Lemma 3.1(ii), $C_{H}\left(v_{0}\right) \neq 1$. Let $1 \neq a \in C_{H}\left(v_{0}\right)$. Then a normalizes $\left\langle v_{0}^{Q}\right\rangle=V_{0}$ since V_{0} is an irreducible Q-module. Thus $a \in C_{N}\left(v_{0}\right)=1$, which is a contradiction.

STEP 6. $G \simeq J$.

Proof. Let $x \in H_{0}$ with $|x|=3$ and $\langle z\rangle=Z_{0}$. Then $\langle x\rangle \times\langle z\rangle$ is a Sylow 3-subgroup of $H=H_{0} \times Z_{0}$. Now, $\langle x\rangle \times\langle z\rangle$ has four distinct subgroups of order 3. Let $\langle a\rangle,\langle b\rangle,\langle c\rangle$, and $\langle z\rangle$ be subgroups of $\langle x\rangle \times\langle z\rangle$ of order 3. Since $C_{V}(z)=1, V=\left\langle C_{V}(a), C_{V}(b), C_{V}(c)\right\rangle$. Since V is a faithful H module, $[V, a] \neq 1$, and hence $\left|C_{V}(a)\right|$ is 1 or q. Similarly, we have that $\left|C_{V}(b)\right|$ and $\left|C_{V}(c)\right|$ are 1 or q. Hence we may assume that $V=C_{V}(a) \times$ $C_{V}(b)$. Then, if $C_{V}(c)=C_{V}(a), C_{V}(a)=C_{V}(\langle c\rangle \times\langle a\rangle)=C_{V}(\langle x\rangle \times\langle z\rangle) \subseteq$ $C_{V}(z)=1$, which is a contradiction. Hence $C_{V}(c) \cap C_{V}(a)=1$. Similarly, we have that $C_{V}(c) \cap C_{V}(b)=1$. Hence c acts regularly on $C_{V}(a)^{\#}$ and $C_{V}(b)^{\#}$, and so c acts regularly on $V^{\#}$. Thus $C_{V}(c)=1$.

Next we shall prove that two elements of $C_{V}(a)$ conjugate in H are already conjugate in $Z(Q) \times Z_{0}$. Let $v, w \in C_{V}(a)^{\#}$ and let $v^{h}=w$ with $h \in H$. Since $v^{a}=v$ and $v^{h a}=v^{h},\left\langle a, h a h^{-1}\right\rangle \subseteq C_{H}(v)$. Since $\left|C_{H}(v)\right|=3$, $\langle a\rangle=\left\langle h a h^{-1}\right\rangle$, and hence $h \in N_{H}(\langle a\rangle)=\langle a\rangle\left(Z(Q) \times Z_{0}\right)$. This proves the above assertion.

Let $v \in C_{V}(a)^{\#}$ and $w \in C_{V}(b)^{\#}$. Suppose that v is conjugate to w in H. Let $v^{h}=w$ with $h \in H$. Since $v^{h} \in C_{V}(b), v \in C_{V}\left(b^{h^{-1}}\right)$. Thus $\left\langle a, b^{h^{-1}}\right\rangle \subseteq$ $C_{H}(v)$. Since $\left|C_{H}(v)\right|=3,\langle a\rangle=\langle b\rangle^{h^{-1}}$. Then $[a, h] \in(\langle a\rangle \times\langle b\rangle) \cap H^{\prime}=$ $(\langle a\rangle \times\langle b\rangle) \cap Q=1$. Thus $\langle a\rangle=\langle b\rangle$, contrary to our choice of $\langle a\rangle,\langle b\rangle$. So any element of $C_{V}(a)^{\#}$ can not be conjugate to an element of $C_{V}(b)^{\#}$ in H.

By Lemma 3.1(ii), each orbit on $V^{\#}$ contains an element of $C_{V}(a)^{\#}$ or $C_{V}(b)^{\#}$ since $C_{V}(c)=C_{V}(z)=1$. By the previous argument, H has $\frac{q-1}{6}+\frac{q-1}{6}=\frac{q-1}{3}$ orbits on $V^{\#}$. Since each H-orbit contains exactly $8 \cdot 3$
elements, $\frac{q-1}{3} \cdot 8 \cdot 3=q^{2}-1$. Hence $8=q+1$. This implies that $q=7$. Since V is an elementary abelian, we may assume that $H \subseteq G L(2,7)$. By Lemma $2.5, G=V H \simeq J$.

LEMMA 3.21. If $O_{p^{\prime}}\left(F_{1} \cdots F_{r}\right)=1$, then $E(p, q, n)$ is isomorphic to a subgroup of G.

Proof. We divide the proof of Lemma 3.21 into three steps.
Step 1. $\quad O_{p^{\prime}}(F(H))$ is cyclic and $H / O_{p^{\prime}}(F(H))$ is a p-group.
Proof. Let T, U be as in Lemma 3.18. Since $O_{p^{\prime}}\left(F_{1} \cdots F_{r}\right)=1, O_{p^{\prime}}$ $(F(H))=O_{p^{\prime}}(T)$. If $T \neq U$, then $2\left|\left|H / C_{H}(U)\right|\right.$ since $C_{T}(U)=U$. Since U is cyclic, $H / C_{H}(U)$ is abelian. By Lemma 3.1(i), $O^{p^{\prime}}(H)=H$, and hence $p=2$. So, in this case, $O_{p^{\prime}}(F(H))$ is cyclic. If $T=U$, then it is obvious that $O_{p^{\prime}}(F(H))$ is cyclic. Thus, in each case, $O_{p^{\prime}}(F(H))$ is cyclic.

Let K be a Hall p^{\prime}-subgroup of H. Then $F(K)=O_{p^{\prime}}(F(H))$ is cyclic. Setting $Z=O_{p^{\prime}}(F(H)), H / C_{H}(Z)$ is abelian. Since $O^{p^{\prime}}(H)=H$, $H / C_{H}(Z)$ is a p-group. Hence $K \subseteq C_{K}(Z)=C_{K}(F(K)) \subseteq F(K)=Z$. Thus $K=Z$ and Step 1 follows.

Step 2. H is isomorphic to a subgroup of $T\left(q^{m}\right)$, where $|V|=q^{m}$.
Proof. Let $Z=O_{p^{\prime}}(F(H))$. By a similar argument to that in the proof of Step 3 of Lemma 3.20, the same assertion as Step 3 holds since Z is cyclic and H / Z is a p-group. Furthermore, in the proof of Step 4 of Lemma 3.20, if we reset Z instead of Z_{0}, then we can prove that $H \subseteq T\left(q^{m}\right)$ if $C_{H}(Z) \subsetneq H$.

Next we assume that $C_{H}(Z)=H$. Then, by Step $1, H=P \times Z$, where P is a Sylow p-subgroup of H. Since $O^{p^{\prime}}(H)=H, Z=1$, and hence H is a p-group. Since every normal subgroup of H is cyclic, H is cyclic, generalized quaternion, dihedral, or semi-dihedral by [6, Corollary 1.3]. If H is cyclic or generalized quaternion, then H acts regularly on $V^{\#}$, which contradicts Lemma 3.1(ii). If H is dihedral or semi-dihedral, then there exists a normal cyclic subgroup U of H with $|H: U|=2$ and $C_{H}(U)=U$. Then V_{U} is homogeneous. Let $1 \neq v \in V$. Then $C_{H}(v) \neq 1$ by Lemma 3.1(ii). Let $t \in C_{H}(v)$ with $|t|=2$. Since U acts regularly on $V^{\#}, t \notin U$. By Lemma 2.3, $\left\langle v^{U}\right\rangle$ is an irreducible U-module. Since $v \in C_{V}(t),\left\langle v^{U}\right\rangle$ is $U\langle t\rangle=H$-module. Hence $V=\left\langle v^{U}\right\rangle$ is an irreducible U-module. By [8, Prop. 19.8], $H \subseteq T\left(q^{m}\right)$. This completes the proof of Step 2.

Step 3. $E(p, q, n)$ is isomorphic to a subgroup of G.
Proof. By Step 2, we may assume that $H \subseteq T\left(q^{m}\right)$. Let $M=\{x \rightarrow$ $\left.\alpha x \mid \alpha \in G F\left(q^{m}\right)^{\#}\right\} \triangleleft T\left(q^{m}\right)$. Then $T\left(q^{m}\right) / M$ and M are cyclic. By Lemma 3.1(ii), H is non-cyclic, and hence $H \nsubseteq M$ and $H \cap M \neq 1$. Setting $\overline{T\left(q^{m}\right)}=T\left(q^{m}\right) / M, 1 \neq \bar{H} \subseteq \overline{T\left(q^{m}\right)}$. Since $O^{p^{\prime}}(H)=H, \bar{H}$ is a cyclic
p-group. Let f be the natural isomorphism from $H /(H \cap M)$ to \bar{H}, and let H_{0} be the inverse image of $\Omega_{1}(\bar{H})$. Setting $G_{0}=V H_{0} \subseteq G=V H$, G / G_{0} is a p-group, and hence $O_{p^{\prime}}\left(G_{0}\right)=O_{p^{\prime}}(G)$. For $\forall x \in O_{p^{\prime}}(G)$, there exists $y \in C_{G}(x)$ with $|y|=p$ by Lemma 3.1(ii). Since G_{0} contains all elements in G of order $p, C_{G_{0}}(x) \ni y$. By the definition of the defect, G_{0} has no p-blocks of defect 0 since G_{0} is a p-nilpotent. By the minimality of $G, G=G_{0}$, and hence $H_{0}=H$. Thus we have $|\bar{H}|=p$. Let $\langle\sigma\rangle=\operatorname{Gal}\left(G F\left(q^{n p}\right) / G F\left(q^{n}\right)\right)$, where $m=n p$. Then $H \subseteq M\langle\sigma\rangle$.
If $p \times q^{n}-1$, then $q^{n} \equiv a(\bmod p)$, where $2 \leq a \leq p-1$. Hence $q^{n p} \equiv$ $a^{p} \equiv a(\bmod p)$. Thus $p \times q^{n p}-1$. Then $|H|=p s$ with $(p, s)=1$. Since $O^{p^{\prime}}(H)=H, H$ is a Frobenius group with kernel $O_{p^{\prime}}(H)$ or $|H|=p$. If H is a Frobenius group, then H has a p-block of defect 0 , and so has G, which is a contradiction. If $|H|=p$, then H acts regularly on $V^{\#}$, which contradicts Lemma 3.1(ii). Thus $p \mid q^{n}-1$. Let $\langle\nu\rangle$ be a subgroup of the multiplicative group $G F\left(q^{n p}\right)^{\#}$ of order $\left(q^{n p}-1\right) /\left(q^{n}-1\right)$. Set $N=\{x \rightarrow$ $\left.\alpha x \mid \alpha \in\langle\nu\rangle^{\#}\right\} \subseteq M$. By Lemma 3.1(ii), H has no regular orbits on V, and hence $N\langle\sigma\rangle \subseteq H \subseteq T\left(q^{m}\right)$ by [10, Prop. 1.4]. Hence $E(p, q, n) \simeq V N\langle\sigma\rangle \subseteq$ $V H=G$.

Lemma 3.22. We have a final contradiction.
Proof. If V is not a quasi-primitive H-module, then G involves $F(p, q, n)$ by Lemma 3.17, which contradicts the hypotheses of the theorem.

Next suppose that V is a quasi-primitive H-module. By Lemma 3.19, $O_{p^{\prime}}\left(F_{1} \cdots F_{r}\right)=1$ or $O_{p^{\prime}}\left(F_{1} \cdots F_{r}\right) \simeq Q_{8}$. By Lemmas 3.20 and $3.21, G \simeq J$ or G involves $E(p, q, n)$, which contradicts the hypotheses of the theorem. Thus, in each case, we have a contradiction, and this completes the proof of the theorem.

REFERENCES

1. W. Feit, "The Representation Theory of Finite Groups," North-Holland, Amsterdam, 1982.
2. D. Gorenstein, "Finite Groups," Harper \& Row, New York, 1968.
3. I. M. Issacs, "Character Theory of Finite Groups," Academic Press, New York, 1976.
4. N. Ito, Some studies on group characters, Nagoya Math. J. 2 (1951), 17-28.
5. N. Ito, On the characters of solvable groups, Nagoya Math. J. 3 (1951), 31-48.
6. O. Manz and T. R. Wolf, "Representations of Solvable Groups," Cambridge Univ. Press, Cambridge, UK, 1993.
7. H. Nagao, "Groups and Designs" (in Japanese), Iwanami, Tokyo, 1974.
8. D. S. Passman, "Permutation Groups," Benjamin, New York, 1968.
9. Y. Tsushima, On the existence of characters of defect zero, Osaka J. Math. 11 (1974), 417-423.
10. A. Turull, Supersolvable automorphism groups of solvable groups, Math. Z. 183 (1983), 47-73.
11. T. R. Wolf, Defect groups and character heights in blocks of solvable groups, J. Algebra 72 (1981), 183-209.
12. J. R. Zhang, p-Regular orbits and p-blocks of defect zero, Comm. Algebra 21 (1993), 299-307.
