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1. INTRODUCTION

Let G be a finite group of order g. Let p be a prime and g = pag′ with
�p; g′� = 1. An irreducible ordinary character of G is called p-defect 0 if
and only if its degree is divisible by pa. By [1, Theorem 4.18], G has a
character of p-defect 0 if and only if G has a p-block of defect 0.

An important question in the modular representation theory of finite
groups is to find the group-theoretic conditions for the existence of charac-
ters of p-defect 0 in a finite group. If a finite group G has a character of
p-defect 0, then Op�G� = 1 [1, Corollary 6.9]. But the converse is not true.
In this paper, we shall give sufficient conditions for a p-nilpotent group to
have a character of p-defect 0.

Before describing the next examples we need to define the following
notation. Let F = GF�qn� be a finite field of qn elements. Let V be the
additive group of F . Then let T �qn� (the semi-linear group) be the set of
semi-linear transformations of the form v→ avσ with v ∈ V; 0 6= a ∈ F , and
σ a field automorphism (see [8, p. 229]). Then we can consider the semi-
direct product V oT �qn� (the affine semi-linear group) of V by T �qn�. Now
the following examples show that the converse is not true (as mentioned
above).

Example 1. Suppose p and q are two distinct primes. Let V be an
elementary abelian q-group of order qn such that p divides qn− 1. Consider
V the additive group of the field GF�qn� of qn elements. Let N = �v →
av � 0 6= a ∈ GF�qn��. Thus V oN ⊆ V o T �qn�. Let �x� be a cyclic group
of order p and let �V o N� o �x� be the wreath product. Set V0 = V ×
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V x × · · · × V xp−1
and N0 = N ×Nx × · · · ×Nxp−1

. Then we set F�p; q; n� =
V0 o ���1�Op�N0���N0; x�� o �x�� ⊆ �V o N� o �x�, where �1�Op�N0�� =
�y ∈ Op�N0� � yp = 1�.

Example 2. Suppose p and q are two distinct prime numbers. Let
V be an elementary abelian q-group of order qpn such that p divides
qn − 1. Consider V the additive group of the field GF�qpn� of qpn ele-
ments. Let x be an element of the Galois group Gal�GF�qpn�/GF�q�� of
order p, and F0 a subgroup of the multiplicative group GF�qpn�# of or-
der �qpn − 1�/�qn − 1�. Let N = �v → av � a ∈ F0�. Then p divides �N�.
Set E�p; q; n� = V o �N o �x�� ⊆ V o T �qn�. Then E�p; q; n� is deter-
mined uniquely by the three parameters p; q, and n. It is easily seen that
E�p; q; n� is p-nilpotent and Op�E�p; q; n�� = 1.

Example 3. Let V be an elementary abelian group of order 72. Then
Aut�V � contains a subgroup H that is isomorphic to SL�2; 3� ×Z3, where
Z3 is a cyclic group of order 3. Indeed, let L =

〈(
0 1
−1 0

)
;

(
3 2
2 −3

)〉
o

〈(
4 0
1 2

)〉
'

SL�2; 3� and let Z =
〈(

2 0
0 2

)〉
' Z3. Then L × Z ⊆ GL�2; 7�. Thus L × Z

acts naturally on V . We let J be the semi-direct product V o H. In
Lemma 2.5, we can conclude that J is unique up to isomorphism.

In Example 1, we set G = �V o N� o �x�. Let H = N0�x� and V0 3
v = v1 · · · vp with vi ∈ V xi−1

; 1 ≤ i ≤ p. If vi = 1 for some i, then 1 6=
Op�Nxi−1� ⊆ COp�N0��v� ⊆ Op�CH�v��. If vi 6= 1 for any i, then v = v1 · · · vp
is conjugate to v1v

x
1 · · · vx

p−1

1 in N0 since N acts transitively on V #. Since
CH�v1v

x
1 · · · vx

p−1

1 � = �x�, CH�v� is of order p. In each case, Op�CH�v�� 6= 1.
Set Ḡ = G/V0�N0; x�. Then Ḡ = N̄ × �x̄� and N̄ ' N . Let y be an

element of G of order p. Since N is cyclic, ȳ ∈ �1�Op�N̄�� × �x̄�. Let L
be the inverse image of �1�Op�N̄�� × �x̄�. Then L = F�p; q; n�. Hence
1 6= �1�Op�CH�v��� ⊆ L for v ∈ V0 and so 1 6= Op�CH∩L�v��.

Since ��H ∩ L�; �V0�� = 1, Op�IH∩L�ϕ�� 6= 1 for any ϕ ∈ Irr�V0� by
Lemma 2.2. Since IH∩L�ϕ� has no characters of p-defect 0, L has no
characters of p-defect 0 by Lemma 2.1.

In Example 2, we set L = N o �x�. By [9, Prop. 1.4], L has no regular
orbits on V . Hence 1 6= CL�v� for ∀v ∈ V . For 1 6= v ∈ V , CL�v� is of
order p since CN�v� = 1. Since Op�L� 6= 1; Op�CL�v�� 6= 1 for ∀v ∈ V . By
Lemmas 2.1 and 2.2, E�p; q; n� = V o L has no characters of p-defect 0.

In Example 3, let Q be a subgroup of H which is isomorphic to quater-
nion of order 8. Then �Q×Z� = 24 and Q×Z acts regularly on V #. Since
�V #� = 48;Q×Z has two orbits on V #. Let x be an element of SL�2; 3� of
order 3. Then x stabilizes each Q×Z-orbit. Since O3�H� 6= 1; O3�CH�v�� 6=
1 for all v ∈ V . By Lemmas 2.1 and 2.2, J = V o L has no characters of
3-defect 0.
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Now, in this paper we shall prove the following result.

Theorem. Let G be a solvable p-nilpotent group for some prime p. Sup-
pose that Op�G� = 1 and G is E�p; q; n�; F�p; q; n�-free for all possible q
and n. Furthermore, if p = 3, assume that G is J-free. Then G has a charac-
ter of p-defect 0. In particular, there exists an element x ∈ Op′ �G� such that
CG�x� is a p′-subgroup.

2. PRELIMINARIES

In this section we shall prove some lemmas which will be used to prove
the theorem.

Let G Â V . We let Irr�V � be the set of ordinary irreducible characters
of V and let IG�ϕ� be the inertia group of ϕ ∈ Irr�V �.

Lemma 2.1. Let G = HV Â V , where V is an abelian p′-group with H ∩
V = 1. Let ϕ ∈ Irr�V �. Then the following are equivalent.

(i) There exists χ ∈ Irr�G� such that ϕ � χV and χ is a character of
p-defect 0.

(ii) Let I = IH�ϕ� = �h ∈ H�ϕh = ϕ�. Then I has a character of
p-defect 0.

Proof. Set V1 = Kerϕ. Then V/V1 is cyclic since V is abelian. Let
IG�ϕ� = IG�ϕ�/V1. Then IG�ϕ� = V̄ × Ī since IG�ϕ� = VI and there is a
bijection from Irr�IV � ϕ� onto Irr�G � ϕ�. For α ∈ Irr�IV �; �IV �p divides
α�1� if and only if �G�p divides αG�1�. Also ϕ extends to θ in Irr�IV � and
so Irr�IV � ϕ� = �βθ � β ∈ Irr�IV/V ��. Now �βθ�G has p-defect 0 if and
only if β is a p-defect 0 character of IV/V ' I.

Lemma 2.2 [3, p. 231, Theorem 13.24]. Let S act on G with S solvable
and ��G�; �S�� = 1. Then S permutes Irr�G� and S permutes the set cl�G�
of conjugate class of G. Then the actions of S on Irr�G� and cl�G� are
permutation isomorphic.

Lemma 2.3. Let �x� be a cyclic group of order r and V a �x�-module of
order qs, where q is a prime. Suppose that every irreducible constituent of V
is a faithful �x�-module. Then the following hold.

(i) �vxi � i = 0; : : : ; r − 1� is an irreducible �x�-module for all v ∈ V #.

(ii) If U is a subgroup of V with �V/U � = q, then V/
⋂ r−1
i=0 U

xi is an
irreducible �x�-module.
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Proof. Since ��V �; r� = 1; V is a completely reducible �x�-module. Let
V = V1 ⊕ · · · ⊕ Vn, where Vi are faithful irreducible �x�-modules, 1 ≤ i ≤
n. Then we can identify Vi with the additive group of GF�qm� in such
a way that �x� is contained in the set of linear transformations. Hence
Vi; 1 ≤ i ≤ n, are isomorphic �x�-modules, and so we may assume that
vxi = αvi with fixed α ∈ GF�qm� and ∀vi ∈ Vi. Then every non-zero vector
v is contained in an irreducible �x�-module W , which must be generated as
stated. Likewise every maximal subspace U of V contains an �x�-invariant
W such that V/W is irreducible.

Lemma 2.4. Let P be an extra-special p-group of order p2r+1; p a prime,
and let H = �σ ∈ Aut�P� � σ centralizes Z�P��. We may identify Z�P�
with the field of p-elements. Since P/Z�P� is an elementary abelian p-group,
the commutator map �x; y� is a non-singular, alternating bilinear form on
P̄ = P/Z�P�. Any automorphism of P that centralizes Z�P� must preserve this
form. Then there exist hyperbolic pairs �u1; v1� · · · �ur; vr� with �ui; vj� = δij
and �ui; uj� = �vi; vj� = 0, where δij is the Kronecker δ. Let A =

(
0 I

−I 0

)
be the structure matrix with respect to this basis �u1; : : : ; ur; v1; : : : ; vr� of P̄ ,
where I and 0 are the unit matrix and zero matrix of degree r, respectively. If
σ ∈ H centralizes �u1; : : : ; ur�, then σp centralizes P̄ .

Proof. Let S be the matrix of σ with respect to the basis �u1; : : : ; ur;
v1; : : : ; vr�. Then SAST = A, where ST is the transpose matrix of S. Let
S =

(
I 0
K L

)
, where I and 0 are the unit matrix and zero matrix of degree r,

respectively, and K;L are matrices of degree r.
Then (

I 0
K L

)(
0 I
−I 0

)(
I KT

0 LT

)
=
(

0 I
−L K

)(
I KT

0 LT

)
=
(

0 LT

−L −LKT +KLT
)
=
(

0 I
−I 0

)
:

Hence L = I and −KT + K = 0. Therefore S =
(
I 0
K I

)
. Thus Sp =(

I 0
pK I

)
=

(
I 0
0 I

)
, and hence σp centralizes P̄ .

Lemma 2.5. Let H1 and H2 be subgroups of GL�2; 7� and Z3 a cyclic
group of order 3. If H1 ' H2 ' SL�2; 3� ×Z3, then H1 and H2 are conjugate
in GL�2; 7�.

Proof. Let Qi be a Sylow 2-subgroup of Hi �i = 1; 2�. Then Qi ' Q8,
where Q8 is a quaternion of order 8. Let S be a Sylow 2-subgroup of
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GL�2; 7�. Then S is semi-dihedral of order 32 and S has three maximal
subgroups, that is, generalized quaternion, dihedral, and cyclic. Let S0 be a
generalized quaternion subgroup of S. By conjugation, we may assume that
Q1 and Q2 are subgroups of S0. Set S̄ = S/Z�S�. Then S̄; S̄0 are dihedral
groups of order 16; 8, respectively. Since Q̄1 and Q̄2 are conjugate in S̄,
Q1 and Q2 are conjugate in S. Thus we may assume that Q1 = Q2. There-
fore H1 and H2 are subgroups of NL�Q1� ' GL�2; 3� × Z3, where L =
GL�2; 7�. Since O2�Hi� = Hi �i = 1; 2� and O2�NL�Q1�� ' SL�2; 3� × Z3,
H1 = H2 = O2�NL�Q1��.

3. PROOF OF THE THEOREM

In this section we shall prove the theorem stated in the Introduction. If
G has a p-block of defect 0, then there exists a p′-element x such that
CG�x� is a p′-subgroup by the definition of the defect. Then x ∈ Op′ �G�
since G is p-nilpotent. It therefore suffices to show that G has a character
of p-defect 0 under the hypotheses of the theorem. Let G be a minimal
counterexample of the theorem.

Lemma 3.1. The following conditions hold.

(i) Op
′ �G� = G.

(ii) p � �CG�x�� for ∀x ∈ Op′ �G�.
(iii) If V is a p′-subgroup of G with 1 6= V ÃG, then Op�G/V � 6= 1.

Proof. (i) Let χ ∈ Irr�G� and let ζ ∈ Irr�Op′ �G�� be a constituent of
χOp′ �G�. Then χ�1�/ζ�1� divides �G x Op′ �G�� by [3, Corollary 11.29]. Hence
χ is a character of p-defect 0 if and only if ζ is a character of p-defect 0.

(ii) follows immediately from [5, Lemma 1].

(iii) Set Ḡ = G/V . If Op�Ḡ� = 1, then Ḡ has a character of p-defect
0 by the minimality of G, and so has G.

Let 8�G� be the Frattini subgroup (the intersection of all maximal sub-
groups of G). By [6, Theorem 1.12], if G is solvable, then F�G/8�G�� =
F�G�/8�G� is a completely reducible and faithful G/F�G�-module (possi-
bly of mixed characteristic). Furthermore, G/8�G� splits over F�G�/8�G�.

Lemma 3.2. 8�G� = 1. In particular, G splits over F�G�.

Proof. Since Op�G� = 1, F�G� is a p′-subgroup of G, and hence
F�G/8�G�� = F�G�/8�G� is a p′-group. Set Ḡ = G/8�G�. Then
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Op�Ḡ� = 1. If 8�G� 6= 1, then Ḡ has a character of p-defect 0 by the
minimality of G, and so has G, a contradiction.

Let H be a complement of F�G� in G. Then G = F�G� oH. We set
V = F�G�.

Lemma 3.3. V is an irreducible H-module.

Proof. From the statement above, V is a completely reducible and faith-
ful H-module. If V is not an irreducible H-module, then there exist Vi
�i = 1; 2� such that V = V1 × V2 and 1 6= Vi Ã G. Set Ḡ = G/V2 and
G̃ = G/V1. If Op�Ḡ� = 1, then Ḡ has a character of p-defect 0, and so has
G, a contradiction. Hence 1 6= Op�Ḡ� = P̄1, where P1 is a p-subgroup
of G. In the same way, we have 1 6= Op�G̃� = P̃2, where P2 is a p-
subgroup of G. Since P2 centralizes V2, P2 acts faithfully on V1. Hence
P2 ∩ VP1 = CP2

�V1� = 1 since �V1; P1� = 1.
Next we reset Ḡ = G/VP1 and G̃ = G/V2P1. Then

1 6= P̄2 ⊆ Op�Ḡ�: (1)

Since Op�G̃� = 1, G̃ has a character χ of p-defect 0 by induction. By (1),
Ḡ has no characters of p-defect 0, and so Kerχ+ V1. Hence there exists
a 1 6= ϕ ∈ Irr�V1� with ϕ � χ. Since G̃ = Ṽ o H̃; IH̃�ϕ� has a character
of p-defect 0 by Lemma 2.1. Hence Op�IH̃�ϕ�� = 1. We set T = IG�ϕ� =
�g ∈ G � ϕg = ϕ�. Then

Op�T/VP1� = 1: (2)

Hence Op�T/V1� ⊆ VP1/V1. Since P1 acts faithfully on V2, Op�T/V1� =
1, and hence T/V1 has a character η of p-defect 0. Since 1 6= P1V/V ⊆
Op�T/V �, T/V have no characters of p-defect 0. Therefore Kerη+ V2. So
there exists 1 6= ζ ∈ Irr�V2� with ζ � ηV2

. Now, since T = �T ∩H�V ,

Op�IT∩H�ζ�� = 1 (3)

by Lemma 2.1. Then IH�ϕζ� = IH�ϕ� ∩ IH�ζ� = IT∩H�ζ�, and hence
Op�IH�ϕζ�� = 1. By induction, IH�ϕζ� has a character of p-defect 0.
Hence G has a character of p-defect 0 by Lemma 2.1, a contradiction.

By Lemma 3.3, V is an elementary abelian q-group for some prime
q 6= p.

Let W oL such that W;L are elementary abelian q-group and q′-group,
q a prime, respectively. Furthermore, let ϕ ∈ Irr�W � and let U1;U2 be
subgroups of W such that U2 ⊆ U1 ⊆ W . Then we set IL�ϕ� = �g ∈ L �
ϕg = ϕ� and IL�U1/U2� = �g ∈ L � �U1; g� ⊆ U2�.

Lemma 3.4. Let H1 be a subgroup of H and set G1 = VH1. Let ϕ ∈
Irr�V �. Then the following are equivalent.
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(i) There exists χ ∈ Irr�G1� such that ϕ � χV and χ is a character of
p-defect 0.

(ii) Op�IH1
�ϕ�� = 1.

Proof. By Lemma 2.1, (i) ⇔ IH1
�ϕ� has a character of p-defect 0 ⇔

Op�IH1
�ϕ�� = 1 (by induction).

An irreducible H-module V is called quasi-primitive if VN is homoge-
neous for all N ÃH. Then we shall first consider the following case.

Case I

V is not a quasi-primitive H-module.

Lemma 3.5. There exists a subgroup H0 of H with �H xH0� = p; H0 Ã
H, and VH0

= V1 × · · · × Vp, where Vi; 1 ≤ i ≤ p, are the homogeneous
components of V with respect to H0.

Proof. Choose N ÃH maximal such that VN is not homogeneous. Write
VN = V1 × · · · × Vk, where Vi are the homogeneous components of VN .

Let M/N be a chief factor of H. Since VM is homogeneous, M transitively
permutes the Vi (see [11, Lemma 1.6]). Since M/N is an abelian chief
factor of G;M acts regularly on the Vi and �M/N� = k. Let I = NH�V1�, so
that MI = H and M ∩ I = N . Let C/N = CH/N�M/N� ⊇ M/N and B =
C ∩ I ÃMI = H. Then B fixes each Vi and VB is not homogeneous. Thus
B = N and C = M . Hence M/N is the unique minimal normal subgroup
of H/N . Set H̄ = H/N .

Suppose that M̄ = M/N is a p-group. Since H̄ is p-nilpotent, it has a
normal Hall p′-subgroup. Hence H̄ must be a p-group. Then M̄ ⊆ Z�H̄�
and so M = H. If we set N = H0, then this lemma holds.

Next suppose that M̄ is a p′-group. We set I1 = Op�CI�V1��. Since M̄ ⊇
�Ī1; M̄�Ã H̄, �Ī1; M̄� = M̄ or 1.

If �Ī1; M̄� = 1, then I1 centralizes Op′ �M�/Op′ �N�. Since I1 central-
izes Op′ �N�; I1 centralizes Op′ �M�. On the other hand, for i; 1 ≤ i ≤ p,
there exists xi ∈ Op′ �M� with V xi1 = Vi. Hence I1 = Ixi1 = Op�CIxi �Vi�� ⊆
CI1
�Vi�. Therefore I1 ⊆ CI1

�V �, which implies that Op�CI�V1�� = I1 = 1.
Then Op�V1I� = 1. Therefore V1I has a character ζ of p-defect 0. By
Lemma 3.1(iii), Op�H� 6= 1. If Op�H�*N , then M̄ ⊆ Op�H� by the mini-
mality of M̄ . This contradicts that M̄ is a p′-group. Hence Op�H� ⊆ N ⊆ I,
and so 1 6= Op�H� ⊆ Op�I�. Thus 1 6= Op�I�. Therefore V1I/V1 has no char-
acters of p-defect 0. Hence V1 *Ker ζ, and so there exists 1 6= ϕ ∈ Irr�V1�
with ϕ � ζV1

. Since IV/V2 × · · · × Vp ' IV1; ζ can be regarded as a char-
acter of IV . Hence there exists a χ ∈ Irr�IIV �ϕ�� such that ϕ � χV1

and
χIV = ζ. On the other hand, IG�ϕ� = IIV �ϕ�, and hence χG ∈ Irr�G�.
Then χG = ζG is a character of p-defect 0, a contradiction.
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Next suppose that �Ī1; M̄� = M̄ . Then �Ī1; Op′ �M�� = M̄ . Since
�I1; Op′ �N�� ⊆ I1 ∩ Op′ �N� = 1; I1 ⊆ CH�Op′ �N�� Ã H. We set M1 =
�I1; Op′ �M�� ⊆ CH�Op′ �N��. Let P0 be a Sylow p-subgroup of N .
Then �M1; P0� ⊆ M1 ∩ N since P0 normalizes M1. Thus P0 centralizes
M1/M1 ∩ N . Since M1 is a p′-group, M1 = CM1

�P0��M1 ∩ N�. Then
M̄ = M̄1 = CM1

�P0� and �CM1
�P0�;N� = 1 since N = Op′ �N�P0. Hence

V xi is isomorphic to Vi as an N-module, and so V xi = Vi; 1 ≤ i ≤ k,
for ∀x ∈ CM1

�P0�. This contradicts the fact that M transitively permutes
the Vi.

Lemma 3.6. Op�CH0
�V2 × · · · × Vp�� 6= 1.

Proof. Since Op�H� 6= 1, Z�P� ∩ Op�H� 6= 1, where P is a Sylow p-
subgroup of H. Let z ∈ Z�P� ∩ Op�H� with �z� = p. Then z ∈ Z�H� since
H is p-nilpotent. Thus z acts regularly on V #. Since z fixes all homogeneous
components of H0, z ∈ H0, in particular, 1 6= z ∈ Op�H� ∩H0 ⊆ Op�H0�.

We set H0�V2 × · · · × Vp� = H0�V2 × · · · × Vp�/CH0
�V2 × · · · × Vp� '

H0V/V1CH0
�V2 × · · · × Vp�. By induction, H0�V2 × · · · × Vp� has a character

χ of p-defect 0 since Op�H0�V2 × · · · × Vp�� = 1. Since 1 6= z̄ ∈ Op�H0�,
H0 has no characters of p-defect 0. Therefore V2 × · · · × Vp * Kerχ, and
so there exists ϕ ∈ Irr�V2 × · · · × Vp� with 1 6= ϕ � χV2×···×Vp . By Lemma 2.1,
Op�IH0

�ϕ�� = 1. Let U1 = Kerϕ. Then �V2 × · · · × Vp/U1� = q and

IH0
�ϕ� = IH0

(�V2 × · · · × Vp�/U1
)

= {h̄ ∈ H0 � h ∈ H0; �h; V2 × · · · × Vp� ⊆ U1
}
:

Set P1 = Op�IH0
��V2 × · · · × Vp�/U1��. Since P̄1 ⊆ Op�IH̄0

��V2 × · · · ×
Vp�/U1�� = 1, P1 ⊆ CH0

�V2 × · · · × Vp�, and hence P1 ⊆ Op�CH0
�V2 × · · · ×

Vp��. Therefore, if Op�CH0
�V2 × · · · × Vp�� = 1, then P1 = 1. Let g ∈ IH

�V/�V1 ×U1��. If g /∈ H0, then �g� transitively permutes the Vi. This implies
that Vi ⊆ V1 ×U1; 1 ≤ i ≤ p, and hence V ⊆ V1 ×U1, which is a contradic-
tion. Thus IH�V/�V1 ×U1�� = IH0

�V/�V1 ×U1�� = IH0
��V2 × · · · × Vp�/U1�.

Let ζ be a linear character of V with Ker ζ = V1 ×U1. Then Op�IH�ζ�� =
Op�IH�V/�V1 × U1��� = Op�IH0

��V2 × · · · × Vp�/U1�� = 1. By induction,
IH�ζ� has a character of p-defect 0, and so has G by Lemma 2.1. This
contradicts our choice of G.

Lemma 3.7. V has a subgroup U0 which satisfies the following conditions.

(i) �V x U0� = q.

(ii) Op�IH0
�V/U0�� = 1 and Op�IH�V/U0�� = �x� for some x ∈ H of

order p.
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(iii) IH�V/U0� = �x�IH0
�V/U0�, where x is the element in (ii).

(iv) Vi *U0; 1 ≤ i ≤ p.

Proof. Since H0V (G, H0V has a character ξ of p-defect 0 by induc-
tion. By the first paragraph of the proof of Lemma 3.6, 1 6= Op�H0�. Hence
H0 has no characters of p-defect 0, and so V * Ker ξ. Therefore there ex-
ists 1 6= λ ∈ Irr�V � with λ � ξV . Let U0 = Ker λ. Then �V x U0� = q. By
Lemma 3.4, 1 = Op�IH0

�λ�� = Op�IH0
�V/U0��. On the other hand, G has

no characters of p-defect 0, and hence 1 6= Op�IH�λ�� = Op�IH�V/U0��.
Since �H x H0� = p; �Op�IH�V/U0��� = p, and hence Op�IH�V/U0�� = �x�
for some x ∈ H of order p. Then IH�V/U0� = �x�IH0

�V/U0�. If Vi ⊆ U0 for
some i, then V = Vi × V xi × · · · × V x

p−1

i ⊆ U0, a contradiction.

Lemma 3.8. IH0
�V/U0� =

⋂p
i=1 IH0

�Vi/Wi�, where Wi = U0 ∩ Vi.
Proof. Let h ∈ IH0

�V/U0�. Then �V; h� ⊆ U0, and hence �Vi; h� ⊆
U0 ∩ Vi = Wi. Thus h ∈ IH0

�Vi/Wi�; 1 ≤ i ≤ p. Conversely, let h ∈⋂p
i=1 IH0

�Vi/Wi�. Then �V; h� = 5pi=1�Vi; h� ⊆ 5pi=1Wi ⊆ U0.

Let z ∈ Z�P� ∩ Op�H� with �z� = p, where P is a Sylow p-subgroup
of H. Then z ∈ Z�H� and z ∈ H0 (see the proof of Lemma 3.6). We set
W0 =

⋂p−1
i=0 W

zi

1 .

Lemma 3.9. Let W ∗ be a subgroup of V1 such that V1 ⊇ W ∗ ⊇ W0 and
�V1 x W ∗� = q. Then

⋂p−1
i=0 W

∗zi = W0 and IH0
�V1/W

∗� = IH0
�V1/W0�.

Proof. Since z ∈ Z�H�, V1 is a homogeneous �z�-module. By Lemma
2.3, V1/W0 is an irreducible �z�-module. Since V1 ⊇

⋂p−1
i=0 W

∗zi ⊇ W0;⋂p−1
i=0 W

∗zi = W0. Next

IH0
�V1/W

∗� = (IH0
�V1/W

∗�)zi ; i = 0; : : : ; p− 1

= IH0
�V1/W

∗zi�;

=
p−1⋂
i=0

IH0
�V1/W

∗zi�

= IH0
�V1/W0�:

Lemma 3.10. IH0
�V1/U0� =

⋂p
i=1 IH0

�Vi/W xi−1

0 �, where V x
i−1

1 = Vi.
Proof. By Lemmas 3.8 and 3.9, IH0

�V/U0� ⊆ IH0
�V1/W1� = IH0

�V1/W0�.
Since x ∈ IH�V/U0�; IH0

�V/U0� = IH0
�V/U0�xi−1 ⊆ IH0

�V xi−1

1 /W xi−1

0 � =
IH0
�Vi/W xi−1

0 �. Thus IH0
�V/U0� ⊆

⋂p
i=1IH0

�Vi/W xi−1

0 �. On the other
hand, since 5

p
i=1W

xi−1

0 ⊆ U0;
⋂p
i=1 IH0

�Vi/W xi−1

0 � = IH0
�V/5pi=1W

xi−1

0 � ⊆
IH0
�V1/U0�. Therefore IH0

�V1/U0� =
⋂p
i=1 IH0

�Vi/W xi−1

0 �.
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Lemma 3.11. Let U be a subgroup of V which satisfies the following con-
ditions.

(i) �V/U � = q.
(ii) W0 ×W x

0 × · · · ×W xp−1

0 ⊆ U .
(iii) Vi *U; 1 ≤ i ≤ p.

Then IH�V/U� ⊆ NH�W0 ×W x
0 × · · · ×W xp−1

0 �.
Proof. Let y ∈ IH�V/U�. If V yi = Vj , then �U ∩ Vi�y = U ∩ Vj ⊇ W a

0 ,
where a = xj−1. Hence V1 ⊇ �U ∩ Vi�ya−1 ⊇ W0. By Lemma 3.9,

W0 =
p−1⋂
k=0

{�U ∩ Vi�ya−1}zk = {p−1⋂
k=0

�U ∩ Vi�z
k

}ya−1

: (1)

On the other hand, W xi−1

0 ⊆ U ∩ Vi. Setting b = xi−1, W0 ⊆ �U ∩ Vi�b−1 ⊆ V1.
By Lemma 3.9,

⋂p−1
k=0 ��U ∩ Vi�b

−1�zk = W0. Hence �⋂p−1
k=0�U ∩ Vi�z

k�b−1 =
W0, and so

⋂p−1
k=0 �U ∩ Vi�z

k = W b
0 . By (1), W0 = �W b

0 �ya
−1

, and hence
W xj−1

0 = �W xi−1

0 �y . This implies that y ∈ NH�W0 ×W x
0 × · · · ×W xp−1

0 �.
We set N = VNH�W0 ×W x

0 × · · · ×W xp−1

0 � and N̄ = N/�W0 ×W x
0 × · · · ×

W xp−1

0 �. Then N̄ Â V̄ = V̄1 × · · · × V̄p.

Lemma 3.12. Op�N̄� = 1.

Proof. Suppose that Op�N̄� 6= 1. Let P0 be a p-subgroup of N ∩H with
P̄0 = Op�N̄�. For ∀a ∈ P0; V̄

ā
1 = V̄1, and hence a ∈ H0. This implies that

P0 ⊆ H0. Furthermore, since �P̄0; V̄ � = 1; �P0; V � ⊆ W0×W x
0 × · · · ×W xp−1

0 .
Thus P0 ⊆ IH0

�V/U0� ⊆ N ∩H by Lemmas 3.7 and 3.11. Since P0 ÃN ∩H;
1 6= P0 ⊆ Op�IH0

�V/U0�� = 1, which is a contradiction.

Let P0 be a Sylow p-subgroup of H0. By Lemma 3.6, P0 Â Op�CH0
�V2 ×

· · · × Vp�� 6= 1. Therefore Z�P0� ∩Op�CH0
�V2 × · · · × Vp�� contains an ele-

ment z1 of order p.

Lemma 3.13. z1 ∈ N .

Proof. Since H0 is p-nilpotent, z1 ∈ Z�H0�. If zx1 = z1, then z1 ∈
�CH0
�V2 × · · · × Vp��x = CH0

�V1 × V3 × · · · × Vp�, and hence z1 ∈
CH0
�V2 × · · · × Vp� ∩ CH0

�V1 × V3 × · · · × Vp� = CH0
�V � = 1, which is

a contradiction. Thus z1 /∈ Z�H� ⊇ �z�. Therefore �z1� × �z� ⊆ Z�H0�.
Since V1 is a homogeneous H0-module, V1 is a homogeneous �z1� × �z�-
module. Setting �z1� × �z� = �z1� × �z�/C�z1�×�z��V1�, then �z̄1� = �z̄�.
Hence

W0 =
p−1⋂
i=0

W zi

1 =
p−1⋂
i=0

W
zi1

1 :

This implies that z1 ∈ NH�W0� ∩ CH0
�V2 × · · · × Vp� ⊆ N .
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Lemma 3.14. G = N̄ . Moreover, let W ∗ be a subgroup of Vi with �Vi x
W ∗� = q for some i, 1 ≤ i ≤ p. Then IH0

�Vi/W ∗� = IH0
�Vi�.

Proof. Let χ ∈ Irr�N̄� and let ζ ∈ Irr�V̄ � with ζ � χV̄ . Suppose that
Ker ζ ⊇ V̄i for some i, 1 ≤ i ≤ p. By considering ζx

1−i
, we may assume

that Ker ζ ⊇ V̄1. Then z1 centralizes V̄ /Ker ζ, and hence z̄1 ∈ IN̄�ζ� . By
Lemma 3.13, z1 ∈ Op�H� ∩ N ⊆ Op�N�. Therefore z̄1 ∈ Op�IN∩H�ζ��, in
particular, Op�IN∩H�ζ�� 6= 1. By Lemma 3.4, χ is not a character of p-
defect 0.

Next suppose that Ker ζ + V̄i �i = 1; 2; : : : ; p�. Let Ū = Ker ζ and let
U be an inverse image of Ū . By Lemma 3.11, IH�V/U� ⊆ N since U ⊇
W0 × W x

0 × · · · × W xp−1

0 . Thus IH�V/U� = IN∩H�V/U�. ζ is regarded as a
character of V . Then IH�ζ� = IH�V/U� = IN∩H�V/U� = IN∩H�ζ�. Since
G has no characters of p-defect 0, Op�IH�ζ�� 6= 1 by Lemma 3.4. Hence
Op�IN∩H�ζ�� 6= 1. Thus Op�IN∩H�ζ�� 6= 1, and hence χ is not a character of
p-defect 0. Therefore N̄ has no characters of p-defect 0. By Lemma 3.12,
Op�N̄� = 1, and henceG = N̄ by the minimality ofG. In particular, W0 = 1.

Next IH0
�Vi/W ∗� = IH0

�V xi−1

1 /W ∗� = IH0
�V1/�W ∗�x1−i�xi−1 = IH0

�V1�xi−1 =
IH0
�Vi� by Lemma 3.9.

Lemma 3.15. For ϕ;λ ∈ Irr�V1� with ϕ 6= 1 6= λ, there exists h1 ∈
CH0
�V2 × · · · × Vp−1� such that ϕh1

1 = λ and hx1 = h−1
1 in H̄0 = H0/CH0

�V1�.
Proof. We set W ∗ = Kerϕ and W1 = Ker λ. Then �V1 x W ∗� = �V1 x

W1� = q. Let α be a primitive qth root of unity. Then there exist v1; w1 ∈ V1
with ϕ�v1� = α = λ�w1�. Setting wi+1 = wx

i

1 �i = 0; : : : ; p − 1�; wi+1 ∈
W xi

1 = Wi+1. Let V̄ = V/�W ∗ ×W2 × · · · ×Wp�. Then V̄ ' V1/W
∗ × · · · ×

Vp/Wp = �v̄1� × �w̄2� × · · · × �w̄p�, where v̄1 ∈ V1/W
∗ and w̄i ∈ Vi/Wi; 2 ≤

i ≤ p. Thus we identify V̄ with V1/W
∗ × · · · × Vp/Wp. Let Ū = �v̄−1

1 w̄2� ×
�w̄−1

2 w̄3� × · · · × �w̄−1
p−1w̄p� ⊆ �v̄1� × �w̄2� × · · · × �w̄p� and let U be the

inverse image of Ū in V . Then �V/U � = q. Furthermore,

IH0
�V/U� = IH0

�V1/W
∗� ∩ IH0

�V2/W2� ∩ · · · ∩ IH0
�Vp/Wp�

= CH0
�V1� ∩ CH0

�V2� ∩ · · · ∩ CH0
�Vp� = CH0

�V � = 1

by Lemma 3.14. This implies that �IH�V/U�� = p. Let xih ∈ IH�V/U� with
h ∈ H0. By considering the powers of xih, we may assume that i = 1. Then
ṽxh1 = ṽ1 in Ṽ = V/U , and hence v−1

1 vxh1 ∈ U . Thus v̄−1
1 v

xh
1 ∈ Ū ∩ ��v̄1� ×

�w̄2�� = �v̄−1w̄2�. Hence v̄−1
1 vxh1 = v̄−1w̄2, and so vxh1 = w̄2 = wx1 . Thus

vxhx
−1

1 = w̄1 and xhx−1 ∈ H0: �1�
By a similar argument, we have w−1

2 wxh2 ∈ U , and hence w̄−1
2 wxh2 = w̄−1

2 w̄3.

This implies that wxh2 = w̄3 = wx2 , and so wxhx
−1

2 = w̄2 and xhx−1 ∈
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IH0
�V2/W2� = CH0

�V2� by Lemma 3.14. Similarly, we have wxhx
−1

i = w̄i for
all i, 3 ≤ i ≤ p− 1. Hence

xhx−1 ∈
p−1⋂
i=2

IH0
�Vi/Wi� =

p−1⋂
i=2

CH0
�Vi� = CH0

�V2 × · · · × Vp−1�

by Lemma 3.14. Furthermore, w̃xhp = w̃p in Ṽ , and hence w−1
p w

xh
p ∈ U . If

w̄−1
p w

xh
p =

(
v̄−1

1 w̄2
)i1(w̄−1

2 w̄3
)i2 · · · (w̄−1

p−1w̄p
)ip−1

= v̄−i11 w̄
�i1−i2�
2 · · · w̄�ip−2−ip−1�

p−1 w̄
ip−1
p ;

then i1 ≡ i2 ≡ · · · ≡ ip−1 ≡ −1 mod�q� and

v̄1 = wxhp = wh1 : �2�

Since Uxh = U , �U ∩ V1�xh = U ∩ V2, and hence �W ∗�xh = W2 = W x
1 . Let

h1 = xhx−1. Then �W ∗�h1 = �W ∗�xhx−1 = W1. Since ϕh1�w1� = ϕ�v1� = α
by (1), this implies that ϕh1 = λ. By (1) and (2), vh1

1 = w̄1 and v̄1 = wh1 .

Hence v1 = vh1h
1 in V̄1 = V1/W

∗. Since �U ∩ Vp�xh = U ∩ V1; W
xh
p = W ∗,

and so W h
1 = W ∗.

This implies that �W ∗�h1h = W h
1 = W ∗. Thus h1h ∈ IH0

�V1/W
∗� =

CH0
�V1� by Lemma 3.14. Hence hx1 = h̄ = h̄−1

1 in H̄0 = H0/CH0
�V1�.

Lemma 3.16. Consider V1 as the additive group of the finite field GF�qn�.
Let H̄0 = H0/CH0

�V1�. Then CH0
�V1 × · · · × Vp−1� = H̄0 and H̄0 is a cyclic

group of order qn − 1. Furthermore, H̄0 consists of all non-zero linear trans-
formations.

Proof. By Lemma 3.15, CH0
�V2 × · · · × Vp−1� acts transitively on

Irr�V1� − �1V1
�. Hence CH0

�V2 × · · · × Vp−1� has two orbits on Irr�V1�. By
Brauer’s permutation lemma, CH0

�V2 × · · · × Vp−1� has two orbits on V1 by
conjugation. Thus CH0

�V2 × · · · × Vp−1� acts transitively on V #
1 .

By Lemmas 2.3(ii) and 3.9, �z� acts irreducibly on V1/W0 ' V1 since W0 =
1 (see Lemma 3.14). Since z ∈ Z�H0�, H̄0 acts as scalar multiplications
on V1 by [8, Theorem 19.8], and hence H̄0 acts regularly on V #

1 . By the
transitivity of CH0

�V2 × · · · × Vp−1� on V #
1 , CH0

�V1 × · · · × Vp−1� = H̄0 and
H̄0 consists of all non-zero linear transformations. Thus �H0� = �V #

1 � =
qn − 1.

Lemma 3.17. F�p; q; n� is isomorphic to a subgroup of G.
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Proof. Let �y� be a cyclic group of order p and let N = H0/CH0
�V1� ×

· · · × H0/CH0
�Vp� be the (outer) direct product. Next we define �h̄1;

: : : ; h̄p�y = �hxp; hx1; · · · ; hxp−1� ∈ H0/CH0
�V1� × · · · × H0/CH0

�Vp�, and
�h̄1; : : : ; h̄p�yi = ��h̄1; : : : ; h̄p�yi−1�y inductively, where hj ∈ H0; 1 ≤ j ≤ p.
Then �y� acts on H0/CH0

�V1� × · · · × H0/CH0
�Vp�. Since V x

i

1 = Vi+1
�i = 0; · · · ; p − 1�, this definition is well defined. Let �H0/CH0

�V1� ×
· · · × H0/CH0

�Vp�� o �y� be the semi-direct product. Let f be a map
of H = H0 o �x� into �H0/CH0

�V1� × · · · × H0/CH0
�Vp�� o �y� which is

defined by the rule f �hxi� = �h̄; : : : ; h̄�yi, where h ∈ H0. Then

f �hxikxj� = f �hxikx−ixi+j�
= (hkx−i ; : : : ; hkx−i)yi+j :

On the other hand,

f �hxi�f �kxj� = �h̄; : : : ; h̄�yi�k̄; : : : ; k̄�yj

= �h̄; : : : ; h̄��k̄; : : : ; k̄�y−i yi+j

= (hkx−i ; : : : ; hkx−i)yi+j :
Thus f �hxikxj� = f �hxi�f �kxj�, which implies that f is a homomorphism.
Let Ker f 3 hxi with h ∈ H0. Then �h̄; : : : ; h̄� = �1̄; : : : ; 1̄� ∈ H0/CH0

�V1�×
: : :×H0/CH0

�Vp� and yi = 1, and hence h ∈ CH0
�V � = 1 and xi = 1. This

implies that Ker f = 1.
By Lemma 3.16, there exists h ∈ CH0

�V2 × : : :× Vp−1� with �h̄� = H̄0 =
H0/CH0

�V1�. Let 1 6= ϕ ∈ Irr�V1� and set λ = ϕh. By Lemma 3.15, there
exists h1 ∈ CH0

�V2 × · · · × Vp−1� such that ϕh1 = ϕh and hx1 = h̄−1
1 in

H̄0 = H0/CH0
�V1�. Setting W ∗ = Kerϕ;h1h

−1 ∈ IH0
�ϕ� = IH0

�V1/W
∗� =

CH0
�V1� by Lemma 3.14. Thus h̄ = h̄1 in H̄0. Now

f �h1� = �h̄1; h̄1; : : : ; h̄1�
= �h̄1; 1̄; : : : ; 1̄; h̄1�

(
since h1 ∈ CH0

�V2 × · · · × Vp−1�
)

= (�h−1
1 �

x
; 1̄; : : : ; 1̄; h̄1

)
= (1̄; : : : ; 1̄; h̄1

)(�h−1
1 �

x
; 1̄; : : : ; 1̄

)
= (1̄; : : : ; 1̄; h̄1

)(
1̄; : : : ; 1̄; h̄−1

1

)y ∈ �N; y�:
Since h̄ = h̄1 in H̄0 = H0/CH0

�V1�; �h̄1� = �h̄� = qn− 1, and hence �f �h1�� =
qn − 1. Next we set hi = hx

i−1

1 �i = 1; · · · ; p− 1�. Then hi ∈ CH0
�V1 × · · · ×

Vi−2 × Vi+1 × · · · × Vp�, and by the same argument as above �h̄i� = qn − 1 in
H0/CH0

�Vi�; f �hi� ∈ �N; y�, and �f �hi�� = qn − 1. Furthermore, since h̄2 =
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hx1 = h̄−1
1 in H0/CH0

�V1�; h̄i+1 = h̄i−1
in H0/CH0

�Vi� �i = 1; : : : ; p− 2�. If
f �h1�i1 · · · f �hp−1�ip−1 = 1, then

(
h̄
i1
1 ; 1̄; : : : ; 1̄; h̄i11

)(
h̄
i2
2 ; h̄

i2
2 ; 1̄; : : : ; 1̄

) · · · (1̄; : : : ; hp−1
ip−1
; hp−1

ip−1
; 1̄
) = 1:

Hence (
h̄
i1
1 h̄

i2
2 ; h̄

i2
2 h̄

i3
3 ; : : : ; hp−2

ip−2
hp−1

ip−1
; h̄

i1
1

) = (1̄; : : : ; 1̄
)
:

Thus h̄i11 = 1̄ in H0/CH0
�Vp�. Therefore 1̄ = �hi11 �x = �hx1�

i1 = h̄i12 = h̄−i11 in
H0/CH0

�V1� since V xp = V1, which implies that qn− 1 � i1. Next, since h̄i11 = 1̄

in H0/CH0
�V1�, h̄i22 = 1̄ in H0/CH0

�V1�. Therefore 1̄ = �hi22 �x = ¯�hx2�
i2 =

h̄
i2
3 = h̄−i22 in H0/CH0

�V2�, which implies that qn − 1 � i2. Similarly, we have
qn− 1 � ik �k = 1; : : : ; p− 1�. Thus �f �h1�; : : : ; f �hp−1�� = �f �h1��× · · · ×
�f �hp−1�� ⊆ �N; y�. On the other hand, ��f �h1�� × · · · × �f �hp−1��� = �qn−
1�p−1 = �N�/�CN�y�� = ��N; y��, and hence �f �h1�� × · · · × �f �hp−1�� =
�N; y�.

Now, z1 ∈ Op�CH0
�V2 × · · · × Vp�� with �z1� = p (see Lemma 3.6).

Then f �z1� = �z̄1; : : : ; z̄1� = �z̄1; 1̄; : : : ; 1̄�, and hence f �H� ⊇ �f �z1�� ×
�f �zx1 �� × · · · × �f �zx

p−1

1 �� = �1�Op�N��. Therefore f �H� ⊇ ��N; y��1
�Op�N���o �y�.

Let V 3 v = v1 · · · vp, where vi ∈ Vi; 1 ≤ i ≤ p. For �h̄1; : : : ; h̄p�yi ∈
N o �y� with hj ∈ H0 �j = 1; : : : ; p�, we define

v�h̄1;:::;h̄p�yi = vh1x
i

1 · · · vhpx
i

p :

Then N o �y� acts on V . Furthermore, vf �hx
i� = v�h̄;:::;h̄�yi = vhxi1 · · · vhx

i

p =
vhx

i
, where h ∈ H0. Let V o �N o �y�� be the semi-direct product. Let f̃

be a map of G = V o �H0 o �x�� into V o �N o �y�� which is defined by
the rule

f̃ �vhxi� = v�h̄; : : : ; h̄�yi (= vf �hxi�); where v ∈ V and h ∈ H0.

Then it is easily checked that f̃ is an injective homomorphism. Hence

f̃ �G� = f̃ �V oH� = V o f �H� ⊇ V o (��N; y��1�Op�N���o �y�
)

' F�p; q; n�:
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Case II

V is a quasi-primitive H-module.
In this case, if N is a normal abelian subgroup of H, then VN is a faithful,

completely reducible, and homogeneous module. Hence N is cyclic. Thus
every normal subgroup of H is cyclic.

Lemma 3.18. Let F = F�H� and let Z be the socle of the cyclic group
Z�F�. Then F is a q′-group and there exist E;T ÃH with

(i) F = ET;Z = E ∩ T , and T = CF�E�.
(ii) E/Z = E1/Z × · · · × Er/Z for chief factors Ei/Z of H with Ei ⊆

CH�Ej� for i 6= j.
(iii) For each i, Z�Ei� = Z; �Ei/Z� = p2ni

i for a prime pi and an integer
ni, and Ei = Op′i�Z�Fi for an extra-special group Fi = Opi�Ei�ÃH of order
p

2ni+1
i .

(iv) There exists U ⊆ T of index at most 2 with U cyclic, U ÃH, and
CT �U� = U .

(v) T = CH�E�.
Proof. Since V is a quasi-primitive H-module, VOq�H� is homogeneous,

and hence �V;Oq�H�� = 1, which implies that Oq�H� = 1.

(i) ∼ (v) follows from [6, Corollary 1.10].

Lemma 3.19. Op′ �F1 · · ·Fr� = 1 or Op′ �F1 · · ·Fr� ' Q8, where Q8 is a
quaternion group of order 8.

Proof. Suppose Lemma 3.19 is false. Therefore Op′ �F1 · · ·Fr� 6= 1 and
Op′ �F1 · · ·Fr�ñQ8. By re-numbering, we may assume that Op′ �F1 · · ·Fr� =
F1 · · ·Fk �k ≤ r�. Set F̄t = Ft/Z�Ft�; 1 ≤ t ≤ k. Then there exist hyperbolic
pairs �u1; v1� · · · �unt ; vnt� with �ui; vj� = δij and �ui; uj� = �vi; vj� = 0 (see
Lemma 2.4). Let Rt be the inverse image of �ui; : : : ; unt � in Ft . Then Rt
is an abelian subgroup of Ft of order pnt+1

t . Let R = R1 · · ·Rk. Then R
is a non-cyclic abelian subgroup of F1 · · ·Fk. So, there exists a subgroup
1 6= R0 of R such that R/R0 is cyclic and CV �R0� 6= 1. Setting V0 = CV �R0�;
NH�R0� acts on V0 by conjugation.

We set H0 = NH�R0� and H0V0 = H0V0/CH0
�V0�. Since Op�H0V0� = 1

and 1 6= R0 ⊆ CH0
�V0�, H0V0 has a character χ of p-defect 0 by induction.

Since 1 6= Op�H� ⊆ Op�H̄0�, Kerχ + V̄0. Therefore there exists 1 6= ϕ ∈
Irr�V̄0� with ϕ � χV̄0

. By Lemma 2.1(ii), IH̄0
�ϕ� has a character of p-defect

0, and hence Op�IH̄0
�ϕ�� = 1. Let V̄1 = Kerϕ with V1 ⊆ V0. Setting I0 =

IH0
�V0/V1�; Ī0 = IH̄0

�ϕ�. Thus Op�Ī0� = 1.
By Lemma 3.18, R0 is a q′-group, and so V = V0 × �V;R0�. We set I =

IH�V/�V1 × �V;R0���. Let ζ ∈ Irr�V � with Ker ζ = V1 × �V;R0�. Then I =



762 hiroshi fukushima

IH�ζ�. If Op�I� = 1, then there exists η ∈ Irr�VI� such that ζ � ηV and
η is a character of p-defect 0 by Lemma 3.4. Since IG�ζ� = VI; ηG is a
character of p-defect 0. Thus Op�I� 6= 1. Let x ∈ Op�I� with �x� = p. Then
�x;R0� ⊆ Op�I� ∩Op′ �H� = 1. Thus x ∈ CH�R0� ⊆ H0. On the other hand,
since I0 ⊆ I and Op�Ī0� = 1, x ∈ Op�I� ∩ I0 ⊆ Op�I0� ⊆ CH0

�V0� ⊆ I0.
Thus x ∈ Op�CH0

�V0��.
Since R normalizes CH0

�V0�; �x;R� ⊆ Op�CH0
�V0�� ∩ Op′ �H� = 1. Since

R = R1 · · ·Rk; �x;Ri� = 1; 1 ≤ i ≤ k. Furthermore, since Ri ⊇ Z�Fi� and
pi 6= p; �x; Fi� = 1 by Lemma 2.4. Thus �x;Op′ �F1 · · ·Fr�� = 1.

Setting M = Op�F1 · · ·Fr�, M is an extra-special p-group by Lemma
3.18(iii). Since �M;Op′ �H�� ⊆ Op�H� ∩ Op′ �H� = 1 and H is p-nilpotent,
H/CH�M� is a p-group. By Lemma 3.18(ii), M/Z�M� is a completely re-
ducible H-module, and hence H centralizes M/Z�M�. Let P be a Sylow
p-subgroup of H with x ∈ P . By [2, Lemma 4.6, p. 195], x = yz with
y ∈ CP�M� and z ∈ M . Since �x;Op′ �F1 · · ·Fr�� = �z;Op′ �F1 · · ·Fr�� = 1;
�y;Op′ �F1 · · ·Fr�� = 1. Set Z = Z�F�H��. Since Z normalizes CH0

�V0�
and Z acts regularly on V #, �x;Z� ⊆ CH0

�V0� ∩ Z = CZ�V0� = 1. Thus
�x;Z� = �z;Z� = 1, and hence �y;Z� = 1. This implies that �y; F1 · · ·FrZ� =
�y; E� = 1, where E is as in Lemma 3.18. By Lemma 3.18(v), y ∈ CH�E� =
T ⊆ F�H�. Since z ∈M ⊆ F�H�; x = yz ∈ F�H�.

Since VOp�H� is a faithful, completely reducible, and homogeneous mod-
ule and Op�H� ⊆ CH�R0� ⊆ H0, V0 is a faithful Op�H�-module. Thus
COp�H��V0� = 1. On the other hand, 1 6= x ∈ COp�H��V0�, which is a con-
tradiction.

Lemma 3.20. If Op′ �F1 · · ·Fr� ' Q8, then G ' J.

Proof. We divide the proof of Lemma 3.20 into several steps.

Step 1. (i) p = 3 and H/F�H� is a p-group.

(ii) F�H� ' Q × Z0, where Q ' Q8 and Z0 is a cyclic group of odd
order.

Proof. Setting Q = Op′ �F1 · · ·Fr�, Q ' Q8. The hypotheses imply that
p 6= 2. Since H = Op′ �H� ⊆ O2�H�, H = O2�H�. Since Aut�Q� ' S4 (the
symmetric group of degree 4) and Q/Z�Q� is isomorphic to a subgroup of
H/CH�Q�, H/CH�Q� ' A4 (the alternating group of degree 4). In particu-
lar, p = 3.

Let T;U and Z�F� be as in Lemma 3.18. If T 6= U , then 2 � �H/CH�U��
since CT �U� = U . Since U is cyclic, H/CH�U� is abelian, and hence
O2�H� ( H, which is a contradiction. Thus T = U . This implies that
T = Z�F�.

Let K be a Hall p′-subgroup of H and P a Sylow p-subgroup of H. Since
H is p-nilpotent, H = PK. Since Z�F� is cyclic, H/CH�Z�F�� is abelian.
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Since Op
′ �H� = H; H/CH�Z�F�� is a p-group. Hence

K ⊆ CH�Z�F��: �1�

Since F�K�charK ÃH; F�K� ⊆ F�H�, and hence F�K� ⊆ Op′ �F�H�� =
QZ�F�. Let L be a Hall 2′-subgroup of K. Since �L;Q� = 1,

L ⊆ CK�F�K�� ⊆ F�K�: �2�

Let S be a Sylow 2-subgroup of K. Since H/CH�Q� ' A4, S ⊆ QCH�Q�.
On the other hand, Q ⊆ S, and hence S = QCS�Q�. By (1), CS�Q� ⊆
CK�F�K�� ⊆ F�K�. Thus

S = QCS�Q� ⊆ F�K�: �3�

By (2) and (3), K = F�K� ⊆ QZ�F�. Then H/F�H� is a p-group since
K = F�K� ⊆ F�H�.

Next assume that Op�H� is non-abelian. By re-numbering, we may as-
sume that F1 (see Lemma 3.18) is a non-abelian p-group. By Lemma
3.18(ii), F1/Z�F1� is an irreducible H-module. Since �K;F1� = 1; F1/Z�F1�
is an irreducible P-module. Then, by [2, Lemma 4.6, p. 195], P = CP�F1�F1.
By [6, Corollary 1.3], F1 has a non-cyclic normal abelian subgroup P0 since
p = 3. Then P0 ÃH, which is a contradiction. Thus Op�H� ⊆ Z�F�, and
hence F�H� = QZ�F�.

Let Z�F� = Z0 × Z1, where Z0 is a group of odd order and Z1 is a 2-
group. Since H/CH�Z1� is a 2-group and O2�H� = H; H = CH�Z1�. Let
H̄ = H/QZ0. Then H̄ = P̄ × Z̄1. Since O2�H� = H; Z̄1 = 1̄, and hence
F�H� = QZ0Z1 = QZ0 = Q× Z0.

Step 2. The actions of H on Irr�V � and V are permutation isomorphic.

Proof. By Lemma 3.18, �q; �F�H��� = 1. Since H/F�H� are a p-group,
�q; �H�� = 1. Then Step 2 follows from Lemma 2.2.

Step 3. If H1 (H and 1 6= Op�H1�, then there exists v ∈ V with CH1
�v�

= 1.

Proof. By induction, VH1 has a character χ of p-defect 0 since
Op�VH1� = 1. Since 1 6= Op�H1�, H1 has no characters of p-defect 0, and
hence V * Kerχ. So, there exists 1 6= ϕ ∈ Irr�V � with ϕ � χ. On the other
hand, since F�H� acts regularly on V #, CH�v� is a p-group for ∀v ∈ V #.
Hence IH�ϕ� is a p-group by Step 2, and so is IH1

�ϕ�. By Lemma 3.4,
IH1
�ϕ� = 1, and hence there exists v ∈ V with CH1

�v� = 1 by Step 2.
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Step 4. H = H0 × Z0, where H0 ' SL�2; 3� and �Z0� = 3.

Proof. Set H1 = CH�Z0� and suppose that H1 ( H. Since 1 6=
Op�H� ⊆ Op�H1�, there exists v ∈ V with CH1

�v� = 1 by Step 3. Set-
ting V0 = �vZ0�, V0 is an irreducible Z0-module by Lemma 2.3. Since
�CH�V0�; Z0� ⊆ CH�V0� ∩ Z0 = CZ0

�V0� = 1; CH�V0� ⊆ CH�Z0� = H1.
Therefore CH�V0� = CH1

�V0� ⊆ CH1
�v� = 1. Thus Op�V0NH�V0�� = 1. Sup-

pose that V0 ( V . By induction, V0NH�V0� has a character of p-defect 0.
Since 1 6= Op�H� ⊆ Z0 ⊆ NH�V0�, NH�V0� has no characters of p-defect
0. Setting N = NH�V0�, there exists v0 ∈ V #

0 with CN�v0� = 1 by a similar
argument to that in the proof of Step 3. By Step 1, CH�v0� is a p-group.
Hence there exists x ∈ CH�v0� with �x� = p by Lemma 3.4. Since V0 is
an irreducible Z0-module, �vZ0

0 � = V0. Since x normalizes �vZ0
0 �, x ∈ N ,

and hence x ∈ CN�v0� = 1, which is a contradiction. Hence V �= V0� is
an irreducible Z0-module. By [8, Prop. 19.8], H ⊆ T �qm� (defined in the
Introduction). Since A4 �' H/CH�Q�� is involved in H, H is not meta-
cyclic. On the other hand, T �qm� is metacyclic and so is H, which is a
contradiction. Thus CH�Z0� = H.

Now O3′ �H� = H since p = 3, and so Z0 is a cyclic 3-group. Furthermore,
since CH�Q� = CH�F�H�� ⊆ F�H�; �H/F�H�� = 3. If a Sylow 3-subgroup
of H is cyclic, then H acts regularly on V #. This contradicts Lemma 3.1(ii).
Let x ∈ H with x 6∈ Z0 and �x� = 3. Setting H0 = Q�x�; H = H0 × Z0 and
H0 ' SL�2; 3�. Let �z� = Z0 and set L = H0 × �z3�. Assume that �z3� 6= 1.
Since L(H and 1 6= �z3� ⊆ O3�H�; CL�v� = 1 for some v ∈ V # by Step 3.
By Lemma 3.1(ii), CH�v� = �y� with �y� = 3. Let y = hu with h ∈ H0 and
u ∈ Z0. Then 1 = y3 = h3u3 = u3. Hence u ∈ �1�Z0� ⊆ �z3� ⊆ L, and so
y ∈ CL�v� = 1, which is a contradiction. Thus z3 = 1. Since O3�H� 6= 1 by
Lemma 3.1(iii), �Z0� = 3.

Step 5. �V � = q2 and V is an irreducible Q-module.

Proof. Let V0 ⊆ V be an irreducible Q-module. Let k be the field of
q-elements and let kQ be a group ring. Since kQ is semisimple, kQ '
⊕iMni

�Di�, where Mni
�Di� is the ring of ni × ni matrices over the division

ring Di. Since 8 = dimk kQ =
∑
i dimk Mni

�Di� = 1 + 1 + 1 + 1 + 22, the
degree of every irreducible representation of Q over k is 1 or 2. Since Q′ =
Z�Q� * CQ�V0�; dimkV0 = 2 and so �V0� = q2. Setting N = NH�V0� ⊇ Q;
N = Q; Q×Z0; H, or N ' SL�2; 3�. If N = H, then V0 = V since V is an
irreducible H-module. Hence we may assume that N 6= H.

Next we shall prove that there exists a v0 ∈ V0 with CN�v0� = 1. As-
sume that N = Q or Q × Z0. Then, since N acts regularly on V #

0 , the
assertion stated above holds. Next assume that N ' SL�2; 3�. Let x ∈ N
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with �x� = 3. If CV0
�x� = 1, then N = H0 = Q�x� acts regularly on V #

0 .
Hence we may assume that CV0

�x� 6= 1. If CV0
�x� = V0, then �Q;x� ⊆ Q ∩

CH0
�V0� = CQ�V0� = 1, which contradicts the fact that H0 ' SL�2; 3�. Thus

�CV0
�x�� = q.

Let v;w ∈ CV0
�x�#. Assume that v and w are conjugate in N . Let w = vy

with y ∈ Q. Then �x; xy� ⊆ CN�w�. Since Q acts regularly on V #
0 , �x; xy� =

�x�, and hence y ∈ Z�Q�. Thus w = v−1. Since �CN�u�� = 3 for ∀u ∈ V #
0

and CN�u� is conjugate to �x� in N , ug ∈ CV0
�x� for some g ∈ N . Thus each

N-orbit of V #
0 contains an element of CV0

�x�. Therefore N has exactly q−1
2

orbits on V #
0 . Since each orbit contains exactly eight elements, q−1

2 · 8 =
q2 − 1. Hence 4 = q + 1, and so q = 3, which is a contradiction since
p = 3. Thus there exists a v0 ∈ V0 with CN�v0� = 1. By Lemma 3.1(ii),
CH�v0� 6= 1. Let 1 6= a ∈ CH�v0�. Then a normalizes �vQ0 � = V0 since V0 is
an irreducible Q-module. Thus a ∈ CN�v0� = 1, which is a contradiction.

Step 6. G ' J.

Proof. Let x ∈ H0 with �x� = 3 and �z� = Z0. Then �x� × �z� is a Sylow
3-subgroup of H = H0 ×Z0. Now, �x� × �z� has four distinct subgroups of
order 3. Let �a�; �b�; �c�, and �z� be subgroups of �x� × �z� of order 3.
Since CV �z� = 1; V = �CV �a�; CV �b�; CV �c��. Since V is a faithful H-
module, �V; a� 6= 1, and hence �CV �a�� is 1 or q. Similarly, we have that
�CV �b�� and �CV �c�� are 1 or q. Hence we may assume that V = CV �a� ×
CV �b�. Then, if CV �c� = CV �a�, CV �a� = CV ��c� × �a�� = CV ��x� × �z�� ⊆
CV �z� = 1, which is a contradiction. Hence CV �c� ∩ CV �a� = 1. Similarly,
we have that CV �c� ∩ CV �b� = 1. Hence c acts regularly on CV �a�# and
CV �b�#, and so c acts regularly on V #. Thus CV �c� = 1.

Next we shall prove that two elements of CV �a� conjugate in H are
already conjugate in Z�Q� × Z0. Let v; w ∈ CV �a�# and let vh = w with
h ∈ H. Since va = v and vha = vh, �a; hah−1� ⊆ CH�v�. Since �CH�v�� = 3;
�a� = �hah−1�, and hence h ∈ NH��a�� = �a��Z�Q� ×Z0�. This proves the
above assertion.

Let v ∈ CV �a�# and w ∈ CV �b�#. Suppose that v is conjugate to w in H.
Let vh = w with h ∈ H. Since vh ∈ CV �b�; v ∈ CV �bh−1�. Thus �a; bh−1� ⊆
CH�v�. Since �CH�v�� = 3; �a� = �b�h−1

. Then �a; h� ∈ ��a� × �b�� ∩H ′ =
��a� × �b�� ∩ Q = 1. Thus �a� = �b�, contrary to our choice of �a�; �b�.
So any element of CV �a�# can not be conjugate to an element of CV �b�#
in H.

By Lemma 3.1(ii), each orbit on V # contains an element of CV �a�#
or CV �b�# since CV �c� = CV �z� = 1. By the previous argument, H has
q−1

6 + q−1
6 = q−1

3 orbits on V #. Since each H-orbit contains exactly 8 · 3
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elements, q−1
3 · 8 · 3 = q2 − 1. Hence 8 = q + 1. This implies that q = 7.

Since V is an elementary abelian, we may assume that H ⊆ GL�2; 7�. By
Lemma 2.5, G = VH ' J.

Lemma 3.21. If Op′ �F1 · · ·Fr� = 1, then E�p; q; n� is isomorphic to a
subgroup of G.

Proof. We divide the proof of Lemma 3.21 into three steps.

Step 1. Op′ �F�H�� is cyclic and H/Op′ �F�H�� is a p-group.

Proof. Let T;U be as in Lemma 3.18. Since Op′ �F1 · · ·Fr� = 1; Op′
�F�H�� = Op′ �T �. If T 6= U , then 2 � �H/CH�U�� since CT �U� = U . Since
U is cyclic, H/CH�U� is abelian. By Lemma 3.1(i), Op

′ �H� = H, and hence
p = 2. So, in this case, Op′ �F�H�� is cyclic. If T = U , then it is obvious
that Op′ �F�H�� is cyclic. Thus, in each case, Op′ �F�H�� is cyclic.

Let K be a Hall p′-subgroup of H. Then F�K� = Op′ �F�H�� is
cyclic. Setting Z = Op′ �F�H��; H/CH�Z� is abelian. Since Op

′ �H� = H,
H/CH�Z� is a p-group. Hence K ⊆ CK�Z� = CK�F�K�� ⊆ F�K� = Z.
Thus K = Z and Step 1 follows.

Step 2. H is isomorphic to a subgroup of T �qm�, where �V � = qm.

Proof. Let Z = Op′ �F�H��. By a similar argument to that in the proof
of Step 3 of Lemma 3.20, the same assertion as Step 3 holds since Z is cyclic
and H/Z is a p-group. Furthermore, in the proof of Step 4 of Lemma 3.20,
if we reset Z instead of Z0, then we can prove that H ⊆ T �qm� if
CH�Z�(H.

Next we assume that CH�Z� = H. Then, by Step 1, H = P × Z, where
P is a Sylow p-subgroup of H. Since Op

′ �H� = H; Z = 1, and hence H is
a p-group. Since every normal subgroup of H is cyclic, H is cyclic, gener-
alized quaternion, dihedral, or semi-dihedral by [6, Corollary 1.3]. If H is
cyclic or generalized quaternion, then H acts regularly on V #, which con-
tradicts Lemma 3.1(ii). If H is dihedral or semi-dihedral, then there exists
a normal cyclic subgroup U of H with �H x U � = 2 and CH�U� = U . Then
VU is homogeneous. Let 1 6= v ∈ V . Then CH�v� 6= 1 by Lemma 3.1(ii).
Let t ∈ CH�v� with �t� = 2. Since U acts regularly on V #, t /∈ U . By
Lemma 2.3, �vU� is an irreducible U-module. Since v ∈ CV �t�; �vU� is
U�t� = H-module. Hence V = �vU� is an irreducible U-module. By [8,
Prop. 19.8], H ⊆ T �qm�. This completes the proof of Step 2.

Step 3. E�p; q; n� is isomorphic to a subgroup of G.

Proof. By Step 2, we may assume that H ⊆ T �qm�. Let M = �x →
αx � α ∈ GF�qm�#� Ã T �qm�. Then T �qm�/M and M are cyclic. By
Lemma 3.1(ii), H is non-cyclic, and hence H *M and H ∩M 6= 1. Set-
ting T �qm� = T �qm�/M; 1 6= H̄ ⊆ T �qm�. Since Op

′ �H� = H; H̄ is a cyclic
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p-group. Let f be the natural isomorphism from H/�H ∩M� to H̄, and
let H0 be the inverse image of �1�H̄�. Setting G0 = VH0 ⊆ G = VH;
G/G0 is a p-group, and hence Op′ �G0� = Op′ �G�. For ∀x ∈ Op′ �G�, there
exists y ∈ CG�x� with �y� = p by Lemma 3.1(ii). Since G0 contains all
elements in G of order p, CG0

�x� 3 y. By the definition of the defect,
G0 has no p-blocks of defect 0 since G0 is a p-nilpotent. By the mini-
mality of G; G = G0, and hence H0 = H. Thus we have �H̄� = p. Let
�σ� = Gal�GF�qnp�/GF�qn��, where m = np. Then H ⊆M�σ�.

If p . qn − 1, then qn ≡ a�modp�, where 2 ≤ a ≤ p − 1. Hence qnp ≡
ap ≡ a�modp�. Thus p . qnp − 1. Then �H� = ps with �p; s� = 1. Since
Op

′ �H� = H;H is a Frobenius group with kernel Op′ �H� or �H� = p. If
H is a Frobenius group, then H has a p-block of defect 0, and so has G,
which is a contradiction. If �H� = p, then H acts regularly on V #, which
contradicts Lemma 3.1(ii). Thus p � qn − 1. Let �ν� be a subgroup of the
multiplicative group GF�qnp�# of order �qnp − 1�/�qn − 1�. Set N = �x→
αx � α ∈ �ν�#� ⊆M . By Lemma 3.1(ii), H has no regular orbits on V , and
hence N�σ� ⊆ H ⊆ T �qm� by [10, Prop. 1.4]. Hence E�p; q; n� ' VN�σ� ⊆
VH = G.

Lemma 3.22. We have a final contradiction.

Proof. If V is not a quasi-primitive H-module, then G involves
F�p; q; n� by Lemma 3.17, which contradicts the hypotheses of the
theorem.

Next suppose that V is a quasi-primitive H-module. By Lemma 3.19,
Op′ �F1 · · ·Fr� = 1 or Op′ �F1 · · ·Fr� ' Q8. By Lemmas 3.20 and 3.21, G ' J
or G involves E�p; q; n�, which contradicts the hypotheses of the theorem.
Thus, in each case, we have a contradiction, and this completes the proof
of the theorem.
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