On the Existence of *p*-Blocks of Defect 0 in *p*-Nilpotent Groups

Hiroshi Fukushima

ed by Elsevier - Publisher Connector

Communicated by Walter Feit

Received February 19, 1998

1. INTRODUCTION

Let G be a finite group of order g. Let p be a prime and $g = p^a g'$ with (p, g') = 1. An irreducible ordinary character of G is called p-defect 0 if and only if its degree is divisible by p^a . By [1, Theorem 4.18], G has a character of p-defect 0 if and only if G has a p-block of defect 0.

An important question in the modular representation theory of finite groups is to find the group-theoretic conditions for the existence of characters of *p*-defect 0 in a finite group. If a finite group *G* has a character of *p*-defect 0, then $O_p(G) = 1$ [1, Corollary 6.9]. But the converse is not true. In this paper, we shall give sufficient conditions for a *p*-nilpotent group to have a character of *p*-defect 0.

Before describing the next examples we need to define the following notation. Let $F = GF(q^n)$ be a finite field of q^n elements. Let V be the additive group of F. Then let $T(q^n)$ (the semi-linear group) be the set of semi-linear transformations of the form $v \to av^{\sigma}$ with $v \in V$, $0 \neq a \in F$, and σ a field automorphism (see [8, p. 229]). Then we can consider the semidirect product $V \rtimes T(q^n)$ (the affine semi-linear group) of V by $T(q^n)$. Now the following examples show that the converse is not true (as mentioned above).

EXAMPLE 1. Suppose p and q are two distinct primes. Let V be an elementary abelian q-group of order q^n such that p divides $q^n - 1$. Consider V the additive group of the field $GF(q^n)$ of q^n elements. Let $N = \{v \rightarrow av \mid 0 \neq a \in GF(q^n)\}$. Thus $V \rtimes N \subseteq V \rtimes T(q^n)$. Let $\langle x \rangle$ be a cyclic group of order p and let $(V \rtimes N) \wr \langle x \rangle$ be the wreath product. Set $V_0 = V \times X$

 $V^x \times \cdots \times V^{x^{p-1}}$ and $N_0 = N \times N^x \times \cdots \times N^{x^{p-1}}$. Then we set $F(p, q, n) = V_0 \rtimes ((\Omega_1(O_p(N_0))[N_0, x]) \rtimes \langle x \rangle) \subseteq (V \rtimes N) \wr \langle x \rangle$, where $\Omega_1(O_p(N_0)) = \langle y \in O_p(N_0) | y^p = 1 \rangle$.

EXAMPLE 2. Suppose p and q are two distinct prime numbers. Let V be an elementary abelian q-group of order q^{pn} such that p divides $q^n - 1$. Consider V the additive group of the field $GF(q^{pn})$ of q^{pn} elements. Let x be an element of the Galois group $Gal(GF(q^{pn})/GF(q))$ of order p, and F_0 a subgroup of the multiplicative group $GF(q^{pn})^{\#}$ of order $(q^{pn} - 1)/(q^n - 1)$. Let $N = \{v \to av \mid a \in F_0\}$. Then p divides |N|. Set $E(p, q, n) = V \rtimes (N \rtimes \langle x \rangle) \subseteq V \rtimes T(q^n)$. Then E(p, q, n) is determined uniquely by the three parameters p, q, and n. It is easily seen that E(p, q, n) is p-nilpotent and $O_p(E(p, q, n)) = 1$.

EXAMPLE 3. Let V be an elementary abelian group of order 7². Then Aut(V) contains a subgroup H that is isomorphic to $SL(2, 3) \times Z_3$, where Z_3 is a cyclic group of order 3. Indeed, let $L = \left\langle \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \begin{pmatrix} 3 & 2 \\ 2 & -3 \end{pmatrix} \right\rangle \rtimes \left\langle \begin{pmatrix} 4 & 0 \\ 1 & 2 \end{pmatrix} \right\rangle \simeq SL(2, 3)$ and let $Z = \left\langle \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} \right\rangle \simeq Z_3$. Then $L \times Z \subseteq GL(2, 7)$. Thus $L \times Z$ acts naturally on V. We let J be the semi-direct product $V \rtimes H$. In Lemma 2.5, we can conclude that J is unique up to isomorphism.

In Example 1, we set $G = (V \rtimes N) \wr \langle x \rangle$. Let $H = N_0 \langle x \rangle$ and $V_0 \ni v = v_1 \cdots v_p$ with $v_i \in V^{x^{i-1}}$, $1 \le i \le p$. If $v_i = 1$ for some *i*, then $1 \ne O_p(N^{x^{i-1}}) \subseteq C_{O_p(N_0)}(v) \subseteq O_p(C_H(v))$. If $v_i \ne 1$ for any *i*, then $v = v_1 \cdots v_p$ is conjugate to $v_1 v_1^x \cdots v_1^{x^{p-1}}$ in N_0 since N acts transitively on $V^{\#}$. Since $C_H(v_1 v_1^x \cdots v_1^{x^{p-1}}) = \langle x \rangle$, $C_H(v)$ is of order *p*. In each case, $O_p(C_H(v)) \ne 1$. Set $\overline{G} = G/V_0[N_0, x]$. Then $\overline{G} = \overline{N} \times \langle \overline{x} \rangle$ and $\overline{N} \simeq N$. Let y be an

element of G of order p. Since N is cyclic, $\bar{y} \in \Omega_1(O_p(\bar{N})) \times \langle \bar{x} \rangle$. Let L be the inverse image of $\Omega_1(O_p(\bar{N})) \times \langle \bar{x} \rangle$. Then L = F(p, q, n). Hence $1 \neq \Omega_1(O_p(C_H(v))) \subseteq L$ for $v \in V_0$ and so $1 \neq O_p(C_{H \cap L}(v))$.

Since $(|H \cap L|, |V_0|) = 1$, $O_p(I_{H \cap L}(\varphi)) \neq 1$ for any $\varphi \in Irr(V_0)$ by Lemma 2.2. Since $I_{H \cap L}(\varphi)$ has no characters of *p*-defect 0, *L* has no characters of *p*-defect 0 by Lemma 2.1.

In Example 2, we set $L = N \rtimes \langle x \rangle$. By [9, Prop. 1.4], L has no regular orbits on V. Hence $1 \neq C_L(v)$ for $\forall v \in V$. For $1 \neq v \in V$, $C_L(v)$ is of order p since $C_N(v) = 1$. Since $O_p(L) \neq 1$, $O_p(C_L(v)) \neq 1$ for $\forall v \in V$. By Lemmas 2.1 and 2.2, $E(p, q, n) = V \rtimes L$ has no characters of p-defect 0.

In Example 3, let Q be a subgroup of H which is isomorphic to quaternion of order 8. Then $|Q \times Z| = 24$ and $Q \times Z$ acts regularly on $V^{\#}$. Since $|V^{\#}| = 48$, $Q \times Z$ has two orbits on $V^{\#}$. Let x be an element of SL(2, 3) of order 3. Then x stabilizes each $Q \times Z$ -orbit. Since $O_3(H) \neq 1$, $O_3(C_H(v)) \neq 1$ for all $v \in V$. By Lemmas 2.1 and 2.2, $J = V \rtimes L$ has no characters of 3-defect 0.

Now, in this paper we shall prove the following result.

THEOREM. Let G be a solvable p-nilpotent group for some prime p. Suppose that $O_p(G) = 1$ and G is E(p, q, n), F(p, q, n)-free for all possible q and n. Furthermore, if p = 3, assume that G is J-free. Then G has a character of p-defect 0. In particular, there exists an element $x \in O_{p'}(G)$ such that $C_G(x)$ is a p'-subgroup.

2. PRELIMINARIES

In this section we shall prove some lemmas which will be used to prove the theorem.

Let $G \triangleright V$. We let Irr(V) be the set of ordinary irreducible characters of V and let $I_G(\varphi)$ be the inertia group of $\varphi \in Irr(V)$.

LEMMA 2.1. Let $G = HV \triangleright V$, where V is an abelian p'-group with $H \cap V = 1$. Let $\varphi \in Irr(V)$. Then the following are equivalent.

(i) There exists $\chi \in Irr(G)$ such that $\varphi \mid \chi_V$ and χ is a character of *p*-defect 0.

(ii) Let $I = I_H(\varphi) = \{h \in H | \varphi^h = \varphi\}$. Then I has a character of *p*-defect 0.

Proof. Set $V_1 = \text{Ker } \varphi$. Then V/V_1 is cyclic since V is abelian. Let $\overline{I_G(\varphi)} = I_G(\varphi)/V_1$. Then $\overline{I_G(\varphi)} = \overline{V} \times \overline{I}$ since $I_G(\varphi) = VI$ and there is a bijection from $Irr(IV | \varphi)$ onto $Irr(G | \varphi)$. For $\alpha \in Irr(IV)$, $|IV|_p$ divides $\alpha(1)$ if and only if $|G|_p$ divides $\alpha^G(1)$. Also φ extends to θ in Irr(IV) and so $Irr(IV | \varphi) = \{\beta \theta | \beta \in Irr(IV/V)\}$. Now $(\beta \theta)^G$ has p-defect 0 if and only if β is a p-defect 0 character of $IV/V \simeq I$.

LEMMA 2.2 [3, p. 231, Theorem 13.24]. Let S act on G with S solvable and (|G|, |S|) = 1. Then S permutes Irr(G) and S permutes the set cl(G)of conjugate class of G. Then the actions of S on Irr(G) and cl(G) are permutation isomorphic.

LEMMA 2.3. Let $\langle x \rangle$ be a cyclic group of order r and V a $\langle x \rangle$ -module of order q^s , where q is a prime. Suppose that every irreducible constituent of V is a faithful $\langle x \rangle$ -module. Then the following hold.

(i) $\langle v^{x^i} | i = 0, ..., r - 1 \rangle$ is an irreducible $\langle x \rangle$ -module for all $v \in V^{\#}$.

(ii) If U is a subgroup of V with |V/U| = q, then $V/\bigcap_{i=0}^{r-1} U^{x^i}$ is an irreducible $\langle x \rangle$ -module.

Proof. Since (|V|, r) = 1, V is a completely reducible $\langle x \rangle$ -module. Let $V = V_1 \oplus \cdots \oplus V_n$, where V_i are faithful irreducible $\langle x \rangle$ -modules, $1 \le i \le n$. Then we can identify V_i with the additive group of $GF(q^m)$ in such a way that $\langle x \rangle$ is contained in the set of linear transformations. Hence $V_i, 1 \le i \le n$, are isomorphic $\langle x \rangle$ -modules, and so we may assume that $v_i^x = \alpha v_i$ with fixed $\alpha \in GF(q^m)$ and $\forall v_i \in V_i$. Then every non-zero vector v is contained in an irreducible $\langle x \rangle$ -module W, which must be generated as stated. Likewise every maximal subspace U of V contains an $\langle x \rangle$ -invariant W such that V/W is irreducible.

LEMMA 2.4. Let P be an extra-special p-group of order p^{2r+1} , p a prime, and let $H = \{\sigma \in Aut(P) \mid \sigma \text{ centralizes } Z(P)\}$. We may identify Z(P)with the field of p-elements. Since P/Z(P) is an elementary abelian p-group, the commutator map [x, y] is a non-singular, alternating bilinear form on $\overline{P} = P/Z(P)$. Any automorphism of P that centralizes Z(P) must preserve this form. Then there exist hyperbolic pairs $\{u_1, v_1\} \cdots \{u_r, v_r\}$ with $(u_i, v_j) = \delta_{ij}$ and $(u_i, u_j) = (v_i, v_j) = 0$, where δ_{ij} is the Kronecker δ . Let $A = \begin{pmatrix} 0 & I \\ -I & 0 \end{pmatrix}$ be the structure matrix with respect to this basis $\{u_1, \ldots, u_r, v_1, \ldots, v_r\}$ of \overline{P} , where I and 0 are the unit matrix and zero matrix of degree r, respectively. If $\sigma \in H$ centralizes $\langle u_1, \ldots, u_r \rangle$, then σ^p centralizes \overline{P} .

Proof. Let *S* be the matrix of σ with respect to the basis $\{u_1, \ldots, u_r, v_1, \ldots, v_r\}$. Then $SAS^T = A$, where S^T is the transpose matrix of *S*. Let $S = \begin{pmatrix} I & 0 \\ K & L \end{pmatrix}$, where *I* and 0 are the unit matrix and zero matrix of degree *r*, respectively, and *K*, *L* are matrices of degree *r*.

Then

$$\begin{pmatrix} I & 0 \\ K & L \end{pmatrix} \begin{pmatrix} 0 & I \\ -I & 0 \end{pmatrix} \begin{pmatrix} I & K^T \\ 0 & L^T \end{pmatrix}$$

$$= \begin{pmatrix} 0 & I \\ -L & K \end{pmatrix} \begin{pmatrix} I & K^T \\ 0 & L^T \end{pmatrix}$$

$$= \begin{pmatrix} 0 & L^T \\ -L & -LK^T + KL^T \end{pmatrix} = \begin{pmatrix} 0 & I \\ -I & 0 \end{pmatrix}.$$

Hence L = I and $-K^T + K = 0$. Therefore $S = \begin{pmatrix} I & 0 \\ K & I \end{pmatrix}$. Thus $S^p = \begin{pmatrix} I & 0 \\ pK & I \end{pmatrix} = \begin{pmatrix} I & 0 \\ 0 & I \end{pmatrix}$, and hence σ^p centralizes \bar{P} .

LEMMA 2.5. Let H_1 and H_2 be subgroups of GL(2,7) and Z_3 a cyclic group of order 3. If $H_1 \simeq H_2 \simeq SL(2,3) \times Z_3$, then H_1 and H_2 are conjugate in GL(2,7).

Proof. Let Q_i be a Sylow 2-subgroup of H_i (i = 1, 2). Then $Q_i \simeq Q_8$, where Q_8 is a quaternion of order 8. Let S be a Sylow 2-subgroup of

GL(2, 7). Then *S* is semi-dihedral of order 32 and *S* has three maximal subgroups, that is, generalized quaternion, dihedral, and cyclic. Let S_0 be a generalized quaternion subgroup of *S*. By conjugation, we may assume that Q_1 and Q_2 are subgroups of S_0 . Set $\overline{S} = S/Z(S)$. Then $\overline{S}, \overline{S}_0$ are dihedral groups of order 16, 8, respectively. Since \overline{Q}_1 and \overline{Q}_2 are conjugate in *S*. Thus we may assume that Q_1 and Q_2 are conjugate in *S*. Thus we may assume that $Q_1 = Q_2$. Therefore H_1 and H_2 are subgroups of $N_L(Q_1) \simeq GL(2,3) \times Z_3$, where L = GL(2,7). Since $O^2(H_i) = H_i$ (i = 1, 2) and $O^2(N_L(Q_1)) \simeq SL(2,3) \times Z_3$, $H_1 = H_2 = O^2(N_L(Q_1))$.

3. PROOF OF THE THEOREM

In this section we shall prove the theorem stated in the Introduction. If G has a p-block of defect 0, then there exists a p'-element x such that $C_G(x)$ is a p'-subgroup by the definition of the defect. Then $x \in O_{p'}(G)$ since G is p-nilpotent. It therefore suffices to show that G has a character of p-defect 0 under the hypotheses of the theorem. Let G be a minimal counterexample of the theorem.

LEMMA 3.1. The following conditions hold.

(i)
$$O^{p'}(G) = G$$
.

(ii) $p \mid |C_G(x)|$ for $\forall x \in O_{p'}(G)$.

(iii) If V is a p'-subgroup of G with $1 \neq V \triangleleft G$, then $O_p(G/V) \neq 1$.

Proof. (i) Let $\chi \in Irr(G)$ and let $\zeta \in Irr(O^{p'}(G))$ be a constituent of $\chi_{O^{p'}(G)}$. Then $\chi(1)/\zeta(1)$ divides $|G: O^{p'}(G)|$ by [3, Corollary 11.29]. Hence χ is a character of *p*-defect 0 if and only if ζ is a character of *p*-defect 0.

(ii) follows immediately from [5, Lemma 1].

(iii) Set $\overline{G} = G/V$. If $O_p(\overline{G}) = 1$, then \overline{G} has a character of *p*-defect 0 by the minimality of G, and so has G.

Let $\Phi(G)$ be the Frattini subgroup (the intersection of all maximal subgroups of G). By [6, Theorem 1.12], if G is solvable, then $F(G/\Phi(G)) = F(G)/\Phi(G)$ is a completely reducible and faithful G/F(G)-module (possibly of mixed characteristic). Furthermore, $G/\Phi(G)$ splits over $F(G)/\Phi(G)$.

LEMMA 3.2. $\Phi(G) = 1$. In particular, G splits over F(G).

Proof. Since $O_p(G) = 1$, F(G) is a p'-subgroup of G, and hence $F(G/\Phi(G)) = F(G)/\Phi(G)$ is a p'-group. Set $\overline{G} = G/\Phi(G)$. Then

 $O_p(\bar{G}) = 1$. If $\Phi(G) \neq 1$, then \bar{G} has a character of *p*-defect 0 by the minimality of *G*, and so has *G*, a contradiction.

Let H be a complement of F(G) in G. Then $G = F(G) \rtimes H$. We set V = F(G).

LEMMA 3.3. *V* is an irreducible *H*-module.

Proof. From the statement above, V is a completely reducible and faithful H-module. If V is not an irreducible H-module, then there exist V_i (i = 1, 2) such that $V = V_1 \times V_2$ and $1 \neq V_i \triangleleft G$. Set $\overline{G} = G/V_2$ and $\widetilde{G} = G/V_1$. If $O_p(\overline{G}) = 1$, then \overline{G} has a character of p-defect 0, and so has G, a contradiction. Hence $1 \neq O_p(\overline{G}) = \overline{P}_1$, where P_1 is a p-subgroup of G. In the same way, we have $1 \neq O_p(\widetilde{G}) = \widetilde{P}_2$, where P_2 is a p-subgroup of G. Since P_2 centralizes V_2 , P_2 acts faithfully on V_1 . Hence $P_2 \cap VP_1 = C_{P_2}(V_1) = 1$ since $[V_1, P_1] = 1$.

Next we reset $\overline{G} = G/VP_1$ and $\widetilde{G} = G/V_2P_1$. Then

$$1 \neq \bar{P}_2 \subseteq O_p(\bar{G}). \tag{1}$$

Since $O_p(\tilde{G}) = 1$, \tilde{G} has a character χ of *p*-defect 0 by induction. By (1), \bar{G} has no characters of *p*-defect 0, and so Ker $\chi \not\supseteq V_1$. Hence there exists a $1 \neq \varphi \in Irr(V_1)$ with $\varphi \mid \chi$. Since $\tilde{G} = \tilde{V} \rtimes \tilde{H}$, $I_{\tilde{H}}(\varphi)$ has a character of *p*-defect 0 by Lemma 2.1. Hence $O_p(I_{\tilde{H}}(\varphi)) = 1$. We set $T = I_G(\varphi) = \{g \in G \mid \varphi^g = \varphi\}$. Then

$$O_p(T/VP_1) = 1.$$
 (2)

Hence $O_p(T/V_1) \subseteq VP_1/V_1$. Since P_1 acts faithfully on V_2 , $O_p(T/V_1) = 1$, and hence T/V_1 has a character η of *p*-defect 0. Since $1 \neq P_1V/V \subseteq O_p(T/V)$, T/V have no characters of *p*-defect 0. Therefore Ker $\eta \not\supseteq V_2$. So there exists $1 \neq \zeta \in Irr(V_2)$ with $\zeta \mid \eta_{V_2}$. Now, since $T = (T \cap H)V$,

$$O_p(I_{T \cap H}(\zeta)) = 1 \tag{3}$$

by Lemma 2.1. Then $I_H(\varphi\zeta) = I_H(\varphi) \cap I_H(\zeta) = I_{T \cap H}(\zeta)$, and hence $O_p(I_H(\varphi\zeta)) = 1$. By induction, $I_H(\varphi\zeta)$ has a character of *p*-defect 0. Hence *G* has a character of *p*-defect 0 by Lemma 2.1, a contradiction.

By Lemma 3.3, V is an elementary abelian q-group for some prime $q \neq p$.

Let $W \rtimes L$ such that W, L are elementary abelian q-group and q'-group, q a prime, respectively. Furthermore, let $\varphi \in Irr(W)$ and let U_1, U_2 be subgroups of W such that $U_2 \subseteq U_1 \subseteq W$. Then we set $I_L(\varphi) = \{g \in L \mid \varphi^g = \varphi\}$ and $I_L(U_1/U_2) = \{g \in L \mid [U_1, g] \subseteq U_2\}$.

LEMMA 3.4. Let H_1 be a subgroup of H and set $G_1 = VH_1$. Let $\varphi \in Irr(V)$. Then the following are equivalent.

(i) There exists $\chi \in Irr(G_1)$ such that $\varphi \mid \chi_V$ and χ is a character of *p*-defect 0.

(ii) $O_p(I_{H_1}(\varphi)) = 1.$

Proof. By Lemma 2.1, (i) $\Leftrightarrow I_{H_1}(\varphi)$ has a character of *p*-defect $0 \Leftrightarrow O_p(I_{H_1}(\varphi)) = 1$ (by induction).

An irreducible *H*-module *V* is called quasi-primitive if V_N is homogeneous for all $N \triangleleft H$. Then we shall first consider the following case.

Case I

V is not a quasi-primitive H-module.

LEMMA 3.5. There exists a subgroup H_0 of H with $|H:H_0| = p$, $H_0 \triangleleft H$, and $V_{H_0} = V_1 \times \cdots \times V_p$, where $V_i, 1 \leq i \leq p$, are the homogeneous components of V with respect to H_0 .

Proof. Choose $N \triangleleft H$ maximal such that V_N is not homogeneous. Write $V_N = V_1 \times \cdots \times V_k$, where V_i are the homogeneous components of V_N .

Let M/N be a chief factor of H. Since V_M is homogeneous, M transitively permutes the V_i (see [11, Lemma 1.6]). Since M/N is an abelian chief factor of G, M acts regularly on the V_i and |M/N| = k. Let $I = N_H(V_1)$, so that MI = H and $M \cap I = N$. Let $C/N = C_{H/N}(M/N) \supseteq M/N$ and B = $C \cap I \triangleleft MI = H$. Then B fixes each V_i and V_B is not homogeneous. Thus B = N and C = M. Hence M/N is the unique minimal normal subgroup of H/N. Set $\overline{H} = H/N$.

Suppose that $\overline{M} = M/N$ is a *p*-group. Since \overline{H} is *p*-nilpotent, it has a normal Hall *p'*-subgroup. Hence \overline{H} must be a *p*-group. Then $\overline{M} \subseteq Z(\overline{H})$ and so M = H. If we set $N = H_0$, then this lemma holds.

Next suppose that \overline{M} is a p'-group. We set $I_1 = O_p(C_I(V_1))$. Since $\overline{M} \supseteq [\overline{I}_1, \overline{M}] \triangleleft \overline{H}, [\overline{I}_1, \overline{M}] = \overline{M}$ or 1.

If $[\bar{I}_1, \bar{M}] = 1$, then I_1 centralizes $O_{p'}(M)/O_{p'}(N)$. Since I_1 centralizes $O_{p'}(N)$, I_1 centralizes $O_{p'}(M)$. On the other hand, for $i, 1 \le i \le p$, there exists $x_i \in O_{p'}(M)$ with $V_1^{x_i} = V_i$. Hence $I_1 = I_1^{x_i} = O_p(C_{I^{x_i}}(V_i)) \subseteq C_{I_1}(V_i)$. Therefore $I_1 \subseteq C_{I_1}(V)$, which implies that $O_p(C_I(V_1)) = I_1 = 1$. Then $O_p(V_1I) = 1$. Therefore V_1I has a character ζ of *p*-defect 0. By Lemma 3.1(iii), $O_p(H) \ne 1$. If $O_p(H) \nsubseteq N$, then $\bar{M} \subseteq \overline{O_p(H)}$ by the minimality of \bar{M} . This contradicts that \bar{M} is a p'-group. Hence $O_p(H) \subseteq N \subseteq I$, and so $1 \ne O_p(H) \subseteq O_p(I)$. Thus $1 \ne O_p(I)$. Therefore V_1I/V_1 has no characters of *p*-defect 0. Hence $V_1 \nsubseteq Ker \zeta$, and so there exists $1 \ne \varphi \in Irr(V_1)$ with $\varphi \mid \zeta_{V_1}$. Since $IV/V_2 \times \cdots \times V_p \simeq IV_1$, ζ can be regarded as a character of *IV*. Hence there exists a $\chi \in Irr(I_{IV}(\varphi))$ such that $\varphi \mid \chi_{V_1}$ and $\chi^{IV} = \zeta$. On the other hand, $I_G(\varphi) = I_{IV}(\varphi)$, and hence $\chi^G \in Irr(G)$. Then $\chi^G = \zeta^G$ is a character of *p*-defect 0, a contradiction.

Next suppose that $[\bar{I}_1, \bar{M}] = \bar{M}$. Then $[\bar{I}_1, \overline{O_{p'}(M)}] = \bar{M}$. Since $[I_1, O_{p'}(N)] \subseteq I_1 \cap O_{p'}(N) = 1, I_1 \subseteq C_H(O_{p'}(N)) \triangleleft H$. We set $M_1 = [I_1, O_{p'}(M)] \subseteq C_H(O_{p'}(N))$. Let P_0 be a Sylow *p*-subgroup of *N*. Then $[M_1, P_0] \subseteq M_1 \cap N$ since P_0 normalizes M_1 . Thus P_0 centralizes $M_1/M_1 \cap N$. Since M_1 is a *p'*-group, $M_1 = C_{M_1}(P_0)(M_1 \cap N)$. Then $\bar{M} = \bar{M}_1 = \overline{C_{M_1}(P_0)}$ and $[C_{M_1}(P_0), N] = 1$ since $N = O_{p'}(N)P_0$. Hence V_i^x is isomorphic to V_i as an *N*-module, and so $V_i^x = V_i, 1 \leq i \leq k$, for $\forall x \in C_{M_1}(P_0)$. This contradicts the fact that *M* transitively permutes the V_i .

LEMMA 3.6.
$$O_p(C_{H_0}(V_2 \times \cdots \times V_p)) \neq 1.$$

Proof. Since $O_p(H) \neq 1$, $Z(P) \cap O_p(H) \neq 1$, where P is a Sylow psubgroup of H. Let $z \in Z(P) \cap O_p(H)$ with |z| = p. Then $z \in Z(H)$ since H is p-nilpotent. Thus z acts regularly on $V^{\#}$. Since z fixes all homogeneous components of H_0 , $z \in H_0$, in particular, $1 \neq z \in O_p(H) \cap H_0 \subseteq O_p(H_0)$.

We set $\overline{H_0(V_2 \times \cdots \times V_p)} = H_0(V_2 \times \cdots \times V_p)/C_{H_0}(V_2 \times \cdots \times V_p) \simeq H_0V/V_1C_{H_0}(V_2 \times \cdots \times V_p)$. By induction, $\overline{H_0(V_2 \times \cdots \times V_p)}$ has a character χ of *p*-defect 0 since $O_p(\overline{H_0(V_2 \times \cdots \times V_p)}) = 1$. Since $1 \neq \overline{z} \in \overline{O_p(H_0)}$, $\overline{H_0}$ has no characters of *p*-defect 0. Therefore $V_2 \times \cdots \times V_p \nsubseteq Ker \chi$, and so there exists $\varphi \in Irr(V_2 \times \cdots \times V_p)$ with $1 \neq \varphi \mid \chi_{V_2 \times \cdots \times V_p}$. By Lemma 2.1, $O_p(\overline{H_0}(\varphi)) = 1$. Let $U_1 = Ker \varphi$. Then $|V_2 \times \cdots \times V_p/U_1| = q$ and

$$\begin{split} I_{\overline{H}_0}(\varphi) &= I_{\overline{H}_0}\big((V_2 \times \cdots \times V_p)/U_1\big) \\ &= \big\{\bar{h} \in \overline{H}_0 \mid h \in H_0, [h, V_2 \times \cdots \times V_p] \subseteq U_1\big\}. \end{split}$$

Set $P_1 = O_p(I_{H_0}((V_2 \times \cdots \times V_p)/U_1))$. Since $\bar{P}_1 \subseteq O_p(I_{\bar{H}_0}((V_2 \times \cdots \times V_p)/U_1)) = 1$, $P_1 \subseteq C_{H_0}(V_2 \times \cdots \times V_p)$, and hence $P_1 \subseteq O_p(C_{H_0}(V_2 \times \cdots \times V_p))$. Therefore, if $O_p(C_{H_0}(V_2 \times \cdots \times V_p)) = 1$, then $P_1 = 1$. Let $g \in I_H$ $(V/(V_1 \times U_1))$. If $g \notin H_0$, then $\langle g \rangle$ transitively permutes the V_i . This implies that $V_i \subseteq V_1 \times U_1$, $1 \le i \le p$, and hence $V \subseteq V_1 \times U_1$, which is a contradiction. Thus $I_H(V/(V_1 \times U_1)) = I_{H_0}(V/(V_1 \times U_1)) = I_{H_0}((V_2 \times \cdots \times V_p)/U_1)$. Let ζ be a linear character of V with Ker $\zeta = V_1 \times U_1$. Then $O_p(I_H(\zeta)) = O_p(I_H(V/(V_1 \times U_1))) = O_p(I_{H_0}((V_2 \times \cdots \times V_p)/U_1)) = 1$. By induction, $I_H(\zeta)$ has a character of p-defect 0, and so has G by Lemma 2.1. This contradicts our choice of G.

LEMMA 3.7. V has a subgroup U_0 which satisfies the following conditions.

(i)
$$|V:U_0| = q$$
.

(ii) $O_p(I_{H_0}(V/U_0)) = 1$ and $O_p(I_H(V/U_0)) = \langle x \rangle$ for some $x \in H$ of order p.

Proof. Since $H_0V \subsetneq G$, H_0V has a character ξ of *p*-defect 0 by induction. By the first paragraph of the proof of Lemma 3.6, $1 \neq O_p(H_0)$. Hence H_0 has no characters of *p*-defect 0, and so $V \nsubseteq \text{Ker } \xi$. Therefore there exists $1 \neq \lambda \in Irr(V)$ with $\lambda \mid \xi_V$. Let $U_0 = \text{Ker } \lambda$. Then $|V : U_0| = q$. By Lemma 3.4, $1 = O_p(I_{H_0}(\lambda)) = O_p(I_{H_0}(V/U_0))$. On the other hand, *G* has no characters of *p*-defect 0, and hence $1 \neq O_p(I_H(\lambda)) = O_p(I_H(V/U_0))$. Since $|H : H_0| = p$, $|O_p(I_H(V/U_0))| = p$, and hence $O_p(I_H(V/U_0)) = \langle x \rangle$ for some $x \in H$ of order *p*. Then $I_H(V/U_0) = \langle x \rangle I_{H_0}(V/U_0)$. If $V_i \subseteq U_0$ for some *i*, then $V = V_i \times V_i^x \times \cdots \times V_i^{x^{p-1}} \subseteq U_0$, a contradiction.

LEMMA 3.8. $I_{H_0}(V/U_0) = \bigcap_{i=1}^p I_{H_0}(V_i/W_i)$, where $W_i = U_0 \cap V_i$.

Proof. Let $h \in I_{H_0}(V/U_0)$. Then $[V, h] \subseteq U_0$, and hence $[V_i, h] \subseteq U_0 \cap V_i = W_i$. Thus $h \in I_{H_0}(V_i/W_i)$, $1 \le i \le p$. Conversely, let $h \in \bigcap_{i=1}^p I_{H_0}(V_i/W_i)$. Then $[V, h] = \prod_{i=1}^p [V_i, h] \subseteq \prod_{i=1}^p W_i \subseteq U_0$.

Let $z \in Z(P) \cap O_p(H)$ with |z| = p, where P is a Sylow p-subgroup of H. Then $z \in Z(H)$ and $z \in H_0$ (see the proof of Lemma 3.6). We set $W_0 = \bigcap_{i=0}^{p-1} W_1^{z^i}$.

LEMMA 3.9. Let W^* be a subgroup of V_1 such that $V_1 \supseteq W^* \supseteq W_0$ and $|V_1:W^*| = q$. Then $\bigcap_{i=0}^{p-1} W^{*z^i} = W_0$ and $I_{H_0}(V_1/W^*) = I_{H_0}(V_1/W_0)$.

Proof. Since $z \in Z(H)$, V_1 is a homogeneous $\langle z \rangle$ -module. By Lemma 2.3, V_1/W_0 is an irreducible $\langle z \rangle$ -module. Since $V_1 \supseteq \bigcap_{i=0}^{p-1} W^{*z^i} \supseteq W_0$, $\bigcap_{i=0}^{p-1} W^{*z^i} = W_0$. Next

$$\begin{split} I_{H_0}(V_1/W^*) &= \left(I_{H_0}(V_1/W^*)\right)^{z^i}, \qquad i = 0, \dots, p-1 \\ &= I_{H_0}(V_1/W^{*z^i}), \\ &= \bigcap_{i=0}^{p-1} I_{H_0}(V_1/W^{*z^i}) \\ &= I_{H_0}(V_1/W_0). \end{split}$$

LEMMA 3.10. $I_{H_0}(V_1/U_0) = \bigcap_{i=1}^p I_{H_0}(V_i/W_0^{x^{i-1}})$, where $V_1^{x^{i-1}} = V_i$.

Proof. By Lemmas 3.8 and 3.9, $I_{H_0}(V/U_0) \subseteq I_{H_0}(V_1/W_1) = I_{H_0}(V_1/W_0)$. Since $x \in I_H(V/U_0)$, $I_{H_0}(V/U_0) = I_{H_0}(V/U_0)^{x^{i-1}} \subseteq I_{H_0}(V_1^{x^{i-1}}/W_0^{x^{i-1}}) = I_{H_0}(V_i/W_0^{x^{i-1}})$. Thus $I_{H_0}(V/U_0) \subseteq \bigcap_{i=1}^p I_{H_0}(V_i/W_0^{x^{i-1}})$. On the other hand, since $\prod_{i=1}^p W_0^{x^{i-1}} \subseteq U_0$, $\bigcap_{i=1}^p I_{H_0}(V_i/W_0^{x^{i-1}}) = I_{H_0}(V/\Pi_{i=1}^p W_0^{x^{i-1}}) \subseteq I_{H_0}(V_1/U_0)$. Therefore $I_{H_0}(V_1/U_0) = \bigcap_{i=1}^p I_{H_0}(V_i/W_0^{x^{i-1}})$. LEMMA 3.11. Let U be a subgroup of V which satisfies the following conditions.

- (i) |V/U| = q.
- (ii) $W_0 \times W_0^x \times \cdots \times W_0^{x^{p-1}} \subseteq U.$
- (iii) $V_i \not\subseteq U, \ 1 \le i \le p$.

Then
$$I_H(V/U) \subseteq N_H(W_0 \times W_0^x \times \cdots \times W_0^{x^{p-1}})$$
.

Proof. Let $y \in I_H(V/U)$. If $V_i^y = V_j$, then $(U \cap V_i)^y = U \cap V_j \supseteq W_0^a$, where $a = x^{j-1}$. Hence $V_1 \supseteq (U \cap V_i)^{ya^{-1}} \supseteq W_0$. By Lemma 3.9,

$$W_0 = \bigcap_{k=0}^{p-1} \left\{ (U \cap V_i)^{ya^{-1}} \right\}^{z^k} = \left\{ \bigcap_{k=0}^{p-1} (U \cap V_i)^{z^k} \right\}^{ya^{-1}}.$$
 (1)

On the other hand, $W_0^{x^{i-1}} \subseteq U \cap V_i$. Setting $b = x^{i-1}$, $W_0 \subseteq (U \cap V_i)^{b^{-1}} \subseteq V_1$. By Lemma 3.9, $\bigcap_{k=0}^{p-1} \{(U \cap V_i)^{b^{-1}}\}^{z^k} = W_0$. Hence $\{\bigcap_{k=0}^{p-1} (U \cap V_i)^{z^k}\}^{b^{-1}} = W_0$, and so $\bigcap_{k=0}^{p-1} (U \cap V_i)^{z^k} = W_0^b$. By (1), $W_0 = (W_0^b)^{y^{a^{-1}}}$, and hence $W_0^{x^{i-1}} = (W_0^{x^{i-1}})^y$. This implies that $y \in N_H(W_0 \times W_0^x \times \cdots \times W_0^{x^{p-1}})$.

We set $N = VN_H(W_0 \times W_0^x \times \cdots \times W_0^{x^{p-1}})$ and $\bar{N} = N/(W_0 \times W_0^x \times \cdots \times W_0^{x^{p-1}})$. Then $\bar{N} \rhd \bar{V} = \bar{V}_1 \times \cdots \times \bar{V}_p$.

LEMMA 3.12. $O_p(\bar{N}) = 1.$

Proof. Suppose that $O_p(\bar{N}) \neq 1$. Let P_0 be a *p*-subgroup of $N \cap H$ with $\bar{P}_0 = O_p(\bar{N})$. For $\forall a \in P_0, \bar{V}_1^{\bar{a}} = \bar{V}_1$, and hence $a \in H_0$. This implies that $P_0 \subseteq H_0$. Furthermore, since $[\bar{P}_0, \bar{V}] = 1$, $[P_0, V] \subseteq W_0 \times W_0^x \times \cdots \times W_0^{x^{p-1}}$. Thus $P_0 \subseteq I_{H_0}(V/U_0) \subseteq N \cap H$ by Lemmas 3.7 and 3.11. Since $P_0 \triangleleft N \cap H$, $1 \neq P_0 \subseteq O_p(I_{H_0}(V/U_0)) = 1$, which is a contradiction. ■

Let P_0 be a Sylow *p*-subgroup of H_0 . By Lemma 3.6, $P_0 \triangleright O_p(C_{H_0}(V_2 \times \cdots \times V_p)) \neq 1$. Therefore $Z(P_0) \cap O_p(C_{H_0}(V_2 \times \cdots \times V_p))$ contains an element z_1 of order *p*.

Lemma 3.13. $z_1 \in N$.

Proof. Since H_0 is *p*-nilpotent, $z_1 \in Z(H_0)$. If $z_1^x = z_1$, then $z_1 \in (C_{H_0}(V_2 \times \cdots \times V_p))^x = C_{H_0}(V_1 \times V_3 \times \cdots \times V_p)$, and hence $z_1 \in C_{H_0}(V_2 \times \cdots \times V_p) \cap C_{H_0}(V_1 \times V_3 \times \cdots \times V_p) = C_{H_0}(V) = 1$, which is a contradiction. Thus $z_1 \notin Z(H) \supseteq \langle z \rangle$. Therefore $\langle z_1 \rangle \times \langle z \rangle \subseteq Z(H_0)$. Since V_1 is a homogeneous H_0 -module, V_1 is a homogeneous $\langle z_1 \rangle \times \langle z \rangle$ -module. Setting $\overline{\langle z_1 \rangle \times \langle z \rangle} = \langle z_1 \rangle \times \langle z \rangle / C_{\langle z_1 \rangle \times \langle z \rangle}(V_1)$, then $\langle \overline{z_1} \rangle = \langle \overline{z} \rangle$. Hence

$$W_0 = \bigcap_{i=0}^{p-1} W_1^{z^i} = \bigcap_{i=0}^{p-1} W_1^{z_1^i}.$$

This implies that $z_1 \in N_H(W_0) \cap C_{H_0}(V_2 \times \cdots \times V_p) \subseteq N$.

LEMMA 3.14. $G = \overline{N}$. Moreover, let W^* be a subgroup of V_i with $|V_i : W^*| = q$ for some $i, 1 \le i \le p$. Then $I_{H_0}(V_i/W^*) = I_{H_0}(V_i)$.

Proof. Let $\chi \in Irr(\bar{N})$ and let $\zeta \in Irr(\bar{V})$ with $\zeta \mid \chi_{\bar{V}}$. Suppose that Ker $\zeta \supseteq \bar{V}_i$ for some $i, 1 \le i \le p$. By considering $\zeta^{\chi^{1-i}}$, we may assume that Ker $\zeta \supseteq \bar{V}_1$. Then z_1 centralizes $\bar{V}/\text{Ker }\zeta$, and hence $\bar{z}_1 \in I_{\bar{N}}(\zeta)$. By Lemma 3.13, $z_1 \in O_p(H) \cap N \subseteq O_p(N)$. Therefore $\bar{z}_1 \in O_p(I_{\overline{N\cap H}}(\zeta))$, in particular, $O_p(I_{\overline{N\cap H}}(\zeta)) \ne 1$. By Lemma 3.4, χ is not a character of *p*-defect 0.

Next suppose that Ker $\zeta \not\supseteq \bar{V}_i$ (i = 1, 2, ..., p). Let $\bar{U} = \text{Ker } \zeta$ and let U be an inverse image of \bar{U} . By Lemma 3.11, $I_H(V/U) \subseteq N$ since $U \supseteq W_0 \times W_0^x \times \cdots \times W_0^{x^{p-1}}$. Thus $I_H(V/U) = I_{N \cap H}(V/U)$. ζ is regarded as a character of V. Then $I_H(\zeta) = I_H(V/U) = I_{N \cap H}(V/U) = I_{N \cap H}(\zeta)$. Since G has no characters of p-defect 0, $O_p(I_H(\zeta)) \neq 1$ by Lemma 3.4. Hence $O_p(I_{N \cap H}(\zeta)) \neq 1$. Thus $O_p(I_{\overline{N \cap H}}(\zeta)) \neq 1$, and hence χ is not a character of p-defect 0. Therefore \bar{N} has no characters of p-defect 0. By Lemma 3.12, $O_p(\bar{N}) = 1$, and hence $G = \bar{N}$ by the minimality of G. In particular, $W_0 = 1$. Next $I_{H_0}(V_i/W^*) = I_{H_0}(V_1^{x^{i-1}}/W^*) = I_{H_0}(V_1/(W^*)^{x^{1-i}})^{x^{i-1}} = I_{H_0}(V_1)^{x^{i-1}} = I_{H_0}(V_1)^{x^{i-1}}$

 $I_{H_0}(V_i)$ by Lemma 3.9. LEMMA 3.15. For $\varphi, \lambda \in Irr(V_1)$ with $\varphi \neq \underline{1 \neq} \lambda$, there exists $h_1 \in$

LEMMA 3.15. For $\varphi, \lambda \in Irr(V_1)$ with $\varphi \neq 1 \neq \lambda$, there exists $h_1 \in C_{H_0}(V_2 \times \cdots \times V_{p-1})$ such that $\varphi_1^{h_1} = \lambda$ and $\overline{h_1^x} = \overline{h_1^{-1}}$ in $\overline{H}_0 = H_0/C_{H_0}(V_1)$.

Proof. We set $W^* = \text{Ker } \varphi$ and $W_1 = \text{Ker } \lambda$. Then $|V_1 : W^*| = |V_1 : W_1| = q$. Let α be a primitive qth root of unity. Then there exist $v_1, w_1 \in V_1$ with $\varphi(v_1) = \alpha = \lambda(w_1)$. Setting $w_{i+1} = w_1^{\chi^i}$ $(i = 0, \dots, p-1)$, $w_{i+1} \in W_1^{\chi^i} = W_{i+1}$. Let $\bar{V} = V/(W^* \times W_2 \times \cdots \times W_p)$. Then $\bar{V} \simeq V_1/W^* \times \cdots \times V_p/W_p = \langle \bar{v}_1 \rangle \times \langle \bar{w}_2 \rangle \times \cdots \times \langle \bar{w}_p \rangle$, where $\bar{v}_1 \in V_1/W^*$ and $\bar{w}_i \in V_i/W_i$, $2 \leq i \leq p$. Thus we identify \bar{V} with $V_1/W^* \times \cdots \times V_p/W_p$. Let $\bar{U} = \langle \bar{v}_1^{-1} \bar{w}_2 \rangle \times \langle \bar{w}_2^{-1} \bar{w}_3 \rangle \times \cdots \times \langle \bar{w}_{p-1}^{-1} \bar{w}_p \rangle \subseteq \langle \bar{v}_1 \rangle \times \langle \bar{w}_2 \rangle \times \cdots \times \langle \bar{w}_p \rangle$ and let U be the inverse image of \bar{U} in V. Then |V/U| = q. Furthermore,

$$I_{H_0}(V/U) = I_{H_0}(V_1/W^*) \cap I_{H_0}(V_2/W_2) \cap \dots \cap I_{H_0}(V_p/W_p)$$

= $C_{H_0}(V_1) \cap C_{H_0}(V_2) \cap \dots \cap C_{H_0}(V_p) = C_{H_0}(V) = 1$

by Lemma 3.14. This implies that $|I_H(V/U)| = p$. Let $x^i h \in I_H(V/U)$ with $h \in H_0$. By considering the powers of $x^i h$, we may assume that i = 1. Then $\widetilde{v_1^{xh}} = \widetilde{v}_1$ in $\widetilde{V} = V/U$, and hence $v_1^{-1}v_1^{xh} \in U$. Thus $\overline{v_1^{-1}v_1^{xh}} \in \overline{U} \cap (\langle \overline{v}_1 \rangle \times \langle \overline{w}_2 \rangle) = \langle \overline{v}^{-1}\overline{w}_2 \rangle$. Hence $\overline{v_1^{-1}v_1^{xh}} = \overline{v}^{-1}\overline{w}_2$, and so $\overline{v_1^{xh}} = \overline{w}_2 = \overline{w_1^x}$. Thus $\overline{v_1^{xhx^{-1}}} = \overline{w}_1$ and $xhx^{-1} \in H_0$. (1)

By a similar argument, we have $w_2^{-1}w_2^{xh} \in U$, and hence $\bar{w}_2^{-1}\overline{w_2^{xh}} = \bar{w}_2^{-1}\bar{w}_3$. This implies that $\overline{w_2^{xh}} = \bar{w}_3 = \overline{w_2^x}$, and so $\overline{w_2^{xhx^{-1}}} = \bar{w}_2$ and $xhx^{-1} \in \bar{w}_3$. $I_{H_0}(V_2/W_2) = C_{H_0}(V_2)$ by Lemma 3.14. Similarly, we have $\overline{w_i^{xhx^{-1}}} = \overline{w_i}$ for all $i, 3 \le i \le p-1$. Hence

$$xhx^{-1} \in \bigcap_{i=2}^{p-1} I_{H_0}(V_i/W_i) = \bigcap_{i=2}^{p-1} C_{H_0}(V_i) = C_{H_0}(V_2 \times \cdots \times V_{p-1})$$

by Lemma 3.14. Furthermore, $\widetilde{w_p^{xh}} = \widetilde{w}_p$ in \widetilde{V} , and hence $w_p^{-1}w_p^{xh} \in U$. If

$$\begin{split} \bar{w}_p^{-1} \overline{w}_p^{xh} &= \left(\bar{v}_1^{-1} \bar{w}_2 \right)^{i_1} \left(\bar{w}_2^{-1} \bar{w}_3 \right)^{i_2} \cdots \left(\bar{w}_{p-1}^{-1} \bar{w}_p \right)^{i_{p-1}} \\ &= \bar{v}_1^{-i_1} \bar{w}_2^{(i_1 - i_2)} \cdots \bar{w}_{p-1}^{(i_{p-2} - i_{p-1})} \bar{w}_p^{i_{p-1}}, \end{split}$$

then $i_1 \equiv i_2 \equiv \cdots \equiv i_{p-1} \equiv -1 \mod(q)$ and

$$\bar{v}_1 = \overline{w_p^{xh}} = \overline{w_1^h}.$$
(2)

Since $U^{xh} = U$, $(U \cap V_1)^{xh} = U \cap V_2$, and hence $(W^*)^{xh} = W_2 = W_1^x$. Let $h_1 = xhx^{-1}$. Then $(W^*)^{h_1} = (W^*)^{xhx^{-1}} = W_1$. Since $\varphi^{h_1}(w_1) = \varphi(v_1) = \alpha$ by (1), this implies that $\varphi^{h_1} = \lambda$. By (1) and (2), $\overline{v_1^{h_1}} = \overline{w_1}$ and $\overline{v_1} = \overline{w_1^{h_1}}$. Hence $\overline{v_1} = \overline{v_1^{h_1h}}$ in $\overline{V_1} = V_1/W^*$. Since $(U \cap V_p)^{xh} = U \cap V_1$, $W_p^{xh} = W^*$, and so $W_1^h = W^*$.

This implies that $(W^*)^{h_1h} = W_1^h = W^*$. Thus $h_1h \in I_{H_0}(V_1/W^*) = C_{H_0}(V_1)$ by Lemma 3.14. Hence $\overline{h_1^*} = \overline{h} = \overline{h_1}^{-1}$ in $\overline{H_0} = H_0/C_{H_0}(V_1)$.

LEMMA 3.16. Consider V_1 as the additive group of the finite field $GF(q^n)$. Let $\bar{H}_0 = H_0/C_{H_0}(V_1)$. Then $\overline{C_{H_0}(V_1 \times \cdots \times V_{p-1})} = \bar{H}_0$ and \bar{H}_0 is a cyclic group of order $q^n - 1$. Furthermore, \bar{H}_0 consists of all non-zero linear transformations.

Proof. By Lemma 3.15, $C_{H_0}(V_2 \times \cdots \times V_{p-1})$ acts transitively on $Irr(V_1) - \{1_{V_1}\}$. Hence $C_{H_0}(V_2 \times \cdots \times V_{p-1})$ has two orbits on $Irr(V_1)$. By Brauer's permutation lemma, $C_{H_0}(V_2 \times \cdots \times V_{p-1})$ has two orbits on V_1 by conjugation. Thus $C_{H_0}(V_2 \times \cdots \times V_{p-1})$ acts transitively on $V_1^{\#}$.

By Lemmas 2.3(ii) and 3.9, $\langle z \rangle$ acts irreducibly on $V_1/W_0 \simeq V_1$ since $W_0 = 1$ (see Lemma 3.14). Since $z \in Z(H_0)$, \bar{H}_0 acts as scalar multiplications on V_1 by [8, Theorem 19.8], and hence \bar{H}_0 acts regularly on $V_1^{\#}$. By the transitivity of $C_{H_0}(V_2 \times \cdots \times V_{p-1})$ on $V_1^{\#}$, $\overline{C_{H_0}(V_1 \times \cdots \times V_{p-1})} = \bar{H}_0$ and \bar{H}_0 consists of all non-zero linear transformations. Thus $|H_0| = |V_1^{\#}| = q^n - 1$.

LEMMA 3.17. F(p, q, n) is isomorphic to a subgroup of G.

Proof. Let $\langle y \rangle$ be a cyclic group of order p and let $N = H_0/C_{H_0}(V_1) \times \cdots \times H_0/C_{H_0}(V_p)$ be the (outer) direct product. Next we define $(\bar{h}_1, \ldots, \bar{h}_p)^y = (\overline{h_p^x}, \overline{h_1^x}, \cdots, \overline{h_{p-1}^x}) \in H_0/C_{H_0}(V_1) \times \cdots \times H_0/C_{H_0}(V_p)$, and $(\bar{h}_1, \ldots, \bar{h}_p)^{y^i} = ((\bar{h}_1, \ldots, \bar{h}_p)^{y^{i-1}})^y$ inductively, where $h_j \in H_0, 1 \le j \le p$. Then $\langle y \rangle$ acts on $H_0/C_{H_0}(V_1) \times \cdots \times H_0/C_{H_0}(V_p)$. Since $V_1^{x^i} = V_{i+1}$ $(i = 0, \cdots, p - 1)$, this definition is well defined. Let $(H_0/C_{H_0}(V_1) \times \cdots \times H_0/C_{H_0}(V_p)) \rtimes \langle y \rangle$ be the semi-direct product. Let f be a map of $H = H_0 \rtimes \langle x \rangle$ into $(H_0/C_{H_0}(V_1) \times \cdots \times H_0/C_{H_0}(V_p)) \rtimes \langle y \rangle$ which is defined by the rule $f(hx^i) = (\bar{h}, \ldots, \bar{h})y^i$, where $h \in H_0$. Then

$$f(hx^{i}kx^{j}) = f(hx^{i}kx^{-i}x^{i+j})$$
$$= (\overline{hk^{x^{-i}}}, \dots, \overline{hk^{x^{-i}}})y^{i+j}.$$

On the other hand,

$$f(hx^{i})f(kx^{j}) = (\bar{h}, \dots, \bar{h})y^{i}(\bar{k}, \dots, \bar{k})y^{j}$$
$$= (\bar{h}, \dots, \bar{h})(\bar{k}, \dots, \bar{k})^{y^{-i}}y^{i+j}$$
$$= (\overline{hk^{x^{-i}}}, \dots, \overline{hk^{x^{-i}}})y^{i+j}.$$

Thus $f(hx^i kx^j) = f(hx^i)f(kx^j)$, which implies that f is a homomorphism. Let Ker $f \ni hx^i$ with $h \in H_0$. Then $(\bar{h}, \ldots, \bar{h}) = (\bar{1}, \ldots, \bar{1}) \in H_0/C_{H_0}(V_1) \times \ldots \times H_0/C_{H_0}(V_p)$ and $y^i = 1$, and hence $h \in C_{H_0}(V) = 1$ and $x^i = 1$. This implies that Ker f = 1.

By Lemma 3.16, there exists $h \in C_{H_0}(V_2 \times \ldots \times V_{p-1})$ with $\langle \bar{h} \rangle = \bar{H}_0 = H_0/C_{H_0}(V_1)$. Let $1 \neq \varphi \in Irr(V_1)$ and set $\lambda = \varphi^h$. By Lemma 3.15, there exists $h_1 \in C_{H_0}(V_2 \times \cdots \times V_{p-1})$ such that $\varphi^{h_1} = \varphi^h$ and $\bar{h}_1^x = \bar{h}_1^{-1}$ in $\bar{H}_0 = H_0/C_{H_0}(V_1)$. Setting $W^* = \text{Ker }\varphi$, $h_1h^{-1} \in I_{H_0}(\varphi) = I_{H_0}(V_1/W^*) = C_{H_0}(V_1)$ by Lemma 3.14. Thus $\bar{h} = \bar{h}_1$ in \bar{H}_0 . Now

$$f(h_1) = (\bar{h}_1, \bar{h}_1, \dots, \bar{h}_1)$$

= $(\bar{h}_1, \bar{1}, \dots, \bar{1}, \bar{h}_1)$ (since $h_1 \in C_{H_0}(V_2 \times \dots \times V_{p-1})$)
= $(\overline{(h_1^{-1})}^x, \bar{1}, \dots, \bar{1}, \bar{h}_1)$
= $(\bar{1}, \dots, \bar{1}, \bar{h}_1)(\overline{(h_1^{-1})}^x, \bar{1}, \dots, \bar{1})$
= $(\bar{1}, \dots, \bar{1}, \bar{h}_1)(\bar{1}, \dots, \bar{1}, \bar{h}_1^{-1})^y \in [N, y].$

Since $\bar{h} = \bar{h}_1$ in $\bar{H}_0 = H_0/C_{H_0}(V_1)$, $|\bar{h}_1| = |\bar{h}| = q^n - 1$, and hence $|f(h_1)| = q^n - 1$. Next we set $h_i = h_1^{\chi^{i-1}}$ $(i = 1, \dots, p-1)$. Then $h_i \in C_{H_0}(V_1 \times \dots \times V_{i-2} \times V_{i+1} \times \dots \times V_p)$, and by the same argument as above $|\bar{h}_i| = q^n - 1$ in $H_0/C_{H_0}(V_i)$, $f(h_i) \in [N, y]$, and $|f(h_i)| = q^n - 1$. Furthermore, since $\bar{h}_2 = q^n - 1$.

 $\overline{h_1^x} = \overline{h_1}^{-1}$ in $H_0/C_{H_0}(V_1)$, $\overline{h_{i+1}} = \overline{h_i}^{-1}$ in $H_0/C_{H_0}(V_i)$ (i = 1, ..., p-2). If $f(h_1)^{i_1} \cdots f(h_{p-1})^{i_{p-1}} = 1$, then

$$(\bar{h}_1^{i_1}, \bar{1}, \dots, \bar{1}, \bar{h}_1^{i_1})(\bar{h}_2^{i_2}, \bar{h}_2^{i_2}, \bar{1}, \dots, \bar{1}) \cdots (\bar{1}, \dots, \overline{h_{p-1}}^{i_{p-1}}, \overline{h_{p-1}}^{i_{p-1}}, \bar{1}) = 1.$$

Hence

$$(\bar{h}_1^{i_1}\bar{h}_2^{i_2}, \bar{h}_2^{i_2}\bar{h}_3^{i_3}, \dots, \overline{h_{p-2}}^{i_{p-2}}\overline{h_{p-1}}^{i_{p-1}}, \bar{h}_1^{i_1}) = (\bar{1}, \dots, \bar{1}).$$

Thus $\bar{h}_{1}^{i_{1}} = \bar{1}$ in $H_{0}/C_{H_{0}}(V_{p})$. Therefore $\bar{1} = (\overline{h_{1}^{i_{1}}})^{x} = (\overline{h_{1}^{x}})^{i_{1}} = \bar{h}_{2}^{i_{1}} = \bar{h}_{1}^{-i_{1}}$ in $H_{0}/C_{H_{0}}(V_{1})$ since $V_{p}^{x} = V_{1}$, which implies that $q^{n} - 1 | i_{1}$. Next, since $\bar{h}_{1}^{i_{1}} = \bar{1}$ in $H_{0}/C_{H_{0}}(V_{1})$, $\bar{h}_{2}^{i_{2}} = \bar{1}$ in $H_{0}/C_{H_{0}}(V_{1})$. Therefore $\bar{1} = (\overline{h_{2}^{i_{2}}})^{x} = (\bar{h}_{2}^{x})^{i_{2}} = \bar{h}_{3}^{i_{2}} = \bar{h}_{2}^{-i_{2}}$ in $H_{0}/C_{H_{0}}(V_{2})$, which implies that $q^{n} - 1 | i_{2}$. Similarly, we have $q^{n} - 1 | i_{k}$ (k = 1, ..., p - 1). Thus $\langle f(h_{1}), ..., f(h_{p-1}) \rangle = \langle f(h_{1}) \rangle \times \cdots \times \langle f(h_{p-1}) \rangle = (q^{n} - 1)^{p-1} = |N|/|C_{N}(y)| = |[N, y]|$, and hence $\langle f(h_{1}) \rangle \times \cdots \times \langle f(h_{p-1}) \rangle = [N, y]$.

Now, $z_1 \in O_p(C_{H_0}(V_2 \times \cdots \times V_p))$ with $|z_1| = p$ (see Lemma 3.6). Then $f(z_1) = (\bar{z_1}, \dots, \bar{z_1}) = (\bar{z_1}, \bar{1}, \dots, \bar{1})$, and hence $f(H) \supseteq \langle f(z_1) \rangle \times \langle f(z_1^x) \rangle \times \cdots \times \langle f(z_1^{x^{p-1}}) \rangle = \Omega_1(O_p(N))$. Therefore $f(H) \supseteq ([N, y]\Omega_1(O_p(N))) \rtimes \langle y \rangle$.

Let $V \ni v = v_1 \cdots v_p$, where $v_i \in V_i$, $1 \le i \le p$. For $(\bar{h}_1, \ldots, \bar{h}_p)y^i \in N \rtimes \langle y \rangle$ with $h_j \in H_0$ $(j = 1, \ldots, p)$, we define

$$v^{(\bar{h}_1,\ldots,\bar{h}_p)y^i} = v_1^{h_1x^i}\cdots v_p^{h_px^i}.$$

Then $N \rtimes \langle y \rangle$ acts on V. Furthermore, $v^{f(hx^i)} = v^{(\bar{h},...,\bar{h})y^i} = v_1^{hx^i} \cdots v_p^{hx^i} = v^{hx^i}$, where $h \in H_0$. Let $V \rtimes (N \rtimes \langle y \rangle)$ be the semi-direct product. Let \tilde{f} be a map of $G = V \rtimes (H_0 \rtimes \langle x \rangle)$ into $V \rtimes (N \rtimes \langle y \rangle)$ which is defined by the rule

$$\tilde{f}(vhx^i) = v(\bar{h}, \dots, \bar{h})y^i (= vf(hx^i)), \quad \text{where } v \in V \text{ and } h \in H_0.$$

Then it is easily checked that \tilde{f} is an injective homomorphism. Hence

$$\tilde{f}(G) = \tilde{f}(V \rtimes H) = V \rtimes f(H) \supseteq V \rtimes \left(([N, y]\Omega_1(O_p(N))) \rtimes \langle y \rangle\right)$$
$$\simeq F(p, q, n).$$

Case II

V is a quasi-primitive H-module.

In this case, if N is a normal abelian subgroup of H, then V_N is a faithful, completely reducible, and homogeneous module. Hence N is cyclic. Thus every normal subgroup of H is cyclic.

LEMMA 3.18. Let F = F(H) and let Z be the socle of the cyclic group Z(F). Then F is a q'-group and there exist $E, T \triangleleft H$ with

(i) $F = ET, Z = E \cap T$, and $T = C_F(E)$.

(ii) $E/Z = E_1/Z \times \cdots \times E_r/Z$ for chief factors E_i/Z of H with $E_i \subseteq C_H(E_j)$ for $i \neq j$.

(iii) For each *i*, $Z(E_i) = Z$, $|E_i/Z| = p_i^{2n_i}$ for a prime p_i and an integer n_i , and $E_i = O_{p'_i}(Z)F_i$ for an extra-special group $F_i = O_{p_i}(E_i) \triangleleft H$ of order $p_i^{2n_i+1}$.

(iv) There exists $U \subseteq T$ of index at most 2 with U cyclic, $U \triangleleft H$, and $C_T(U) = U$.

(v) $T = C_H(E)$.

Proof. Since V is a quasi-primitive H-module, $V_{O_q(H)}$ is homogeneous, and hence $[V, O_a(H)] = 1$, which implies that $O_a(H) = 1$.

(i) \sim (v) follows from [6, Corollary 1.10].

LEMMA 3.19. $O_{p'}(F_1 \cdots F_r) = 1$ or $O_{p'}(F_1 \cdots F_r) \simeq Q_8$, where Q_8 is a quaternion group of order 8.

Proof. Suppose Lemma 3.19 is false. Therefore $O_{p'}(F_1 \cdots F_r) \neq 1$ and $O_{p'}(F_1 \cdots F_r) \neq Q_8$. By re-numbering, we may assume that $O_{p'}(F_1 \cdots F_r) = F_1 \cdots F_k$ $(k \leq r)$. Set $\overline{F}_t = F_t/Z(F_t)$, $1 \leq t \leq k$. Then there exist hyperbolic pairs $\{u_1, v_1\} \cdots \{u_{n_t}, v_{n_t}\}$ with $(u_i, v_j) = \delta_{ij}$ and $(u_i, u_j) = (v_i, v_j) = 0$ (see Lemma 2.4). Let R_t be the inverse image of $\langle u_i, \ldots, u_{n_t} \rangle$ in F_t . Then R_t is an abelian subgroup of F_t of order $p_t^{n_t+1}$. Let $R = R_1 \cdots R_k$. Then R is a non-cyclic abelian subgroup of $F_1 \cdots F_k$. So, there exists a subgroup $1 \neq R_0$ of R such that R/R_0 is cyclic and $C_V(R_0) \neq 1$. Setting $V_0 = C_V(R_0)$, $N_H(R_0)$ acts on V_0 by conjugation.

We set $H_0 = N_H(R_0)$ and $\overline{H_0V_0} = H_0V_0/C_{H_0}(V_0)$. Since $O_p(\overline{H_0V_0}) = 1$ and $1 \neq R_0 \subseteq C_{H_0}(V_0)$, $\overline{H_0V_0}$ has a character χ of *p*-defect 0 by induction. Since $1 \neq \overline{O_p(H)} \subseteq O_p(\overline{H_0})$, Ker $\chi \not\supseteq \overline{V_0}$. Therefore there exists $1 \neq \varphi \in Irr(\overline{V_0})$ with $\varphi \mid \chi_{\overline{V_0}}$. By Lemma 2.1(ii), $I_{\overline{H_0}}(\varphi)$ has a character of *p*-defect 0, and hence $O_p(I_{\overline{H_0}}(\varphi)) = 1$. Let $\overline{V_1} = \text{Ker }\varphi$ with $V_1 \subseteq V_0$. Setting $I_0 = I_{H_0}(V_0/V_1)$, $\overline{I_0} = I_{\overline{H_0}}(\varphi)$. Thus $O_p(\overline{I_0}) = 1$.

By Lemma 3.18, R_0 is a q'-group, and so $V = V_0 \times [V, R_0]$. We set $I = I_H(V/(V_1 \times [V, R_0]))$. Let $\zeta \in Irr(V)$ with Ker $\zeta = V_1 \times [V, R_0]$. Then I =

 $I_H(\zeta)$. If $O_p(I) = 1$, then there exists $\eta \in Irr(VI)$ such that $\zeta \mid \eta_V$ and η is a character of *p*-defect 0 by Lemma 3.4. Since $I_G(\zeta) = VI$, η^G is a character of *p*-defect 0. Thus $O_p(I) \neq 1$. Let $x \in O_p(I)$ with |x| = p. Then $[x, R_0] \subseteq O_p(I) \cap O_{p'}(H) = 1$. Thus $x \in C_H(R_0) \subseteq H_0$. On the other hand, since $I_0 \subseteq I$ and $O_p(\bar{I}_0) = 1$, $x \in O_p(I) \cap I_0 \subseteq O_p(I_0) \subseteq C_{H_0}(V_0) \subseteq I_0$. Thus $x \in O_p(C_{H_0}(V_0))$.

Since *R* normalizes $C_{H_0}(V_0)$, $[x, R] \subseteq O_p(C_{H_0}(V_0)) \cap O_{p'}(H) = 1$. Since $R = R_1 \cdots R_k$, $[x, R_i] = 1$, $1 \le i \le k$. Furthermore, since $R_i \supseteq Z(F_i)$ and $p_i \ne p$, $[x, F_i] = 1$ by Lemma 2.4. Thus $[x, O_{p'}(F_1 \cdots F_r)] = 1$.

Setting $M = O_p(F_1 \cdots F_r)$, M is an extra-special p-group by Lemma 3.18(iii). Since $[M, O_{p'}(H)] \subseteq O_p(H) \cap O_{p'}(H) = 1$ and H is p-nilpotent, $H/C_H(M)$ is a p-group. By Lemma 3.18(ii), M/Z(M) is a completely reducible H-module, and hence H centralizes M/Z(M). Let P be a Sylow p-subgroup of H with $x \in P$. By [2, Lemma 4.6, p. 195], x = yz with $y \in C_P(M)$ and $z \in M$. Since $[x, O_{p'}(F_1 \cdots F_r)] = [z, O_{p'}(F_1 \cdots F_r)] = 1$, $[y, O_{p'}(F_1 \cdots F_r)] = 1$. Set Z = Z(F(H)). Since Z normalizes $C_{H_0}(V_0)$ and Z acts regularly on $V^{\#}$, $[x, Z] \subseteq C_{H_0}(V_0) \cap Z = C_Z(V_0) = 1$. Thus [x, Z] = [z, Z] = 1, and hence [y, Z] = 1. This implies that $[y, F_1 \cdots F_rZ] = [y, E] = 1$, where E is as in Lemma 3.18. By Lemma 3.18(v), $y \in C_H(E) = T \subseteq F(H)$. Since $z \in M \subseteq F(H)$, $x = yz \in F(H)$.

Since $V_{O_p(H)}$ is a faithful, completely reducible, and homogeneous module and $O_p(H) \subseteq C_H(R_0) \subseteq H_0$, V_0 is a faithful $O_p(H)$ -module. Thus $C_{O_p(H)}(V_0) = 1$. On the other hand, $1 \neq x \in C_{O_p(H)}(V_0)$, which is a contradiction.

LEMMA 3.20. If $O_{p'}(F_1 \cdots F_r) \simeq Q_8$, then $G \simeq J$.

Proof. We divide the proof of Lemma 3.20 into several steps.

STEP 1. (i) p = 3 and H/F(H) is a p-group.

(ii) $F(H) \simeq Q \times Z_0$, where $Q \simeq Q_8$ and Z_0 is a cyclic group of odd order.

Proof. Setting $Q = O_{p'}(F_1 \cdots F_r)$, $Q \simeq Q_8$. The hypotheses imply that $p \neq 2$. Since $H = O^{p'}(H) \subseteq O^2(H)$, $H = O^2(H)$. Since $Aut(Q) \simeq S_4$ (the symmetric group of degree 4) and Q/Z(Q) is isomorphic to a subgroup of $H/C_H(Q)$, $H/C_H(Q) \simeq A_4$ (the alternating group of degree 4). In particular, p = 3.

Let T, U and Z(F) be as in Lemma 3.18. If $T \neq U$, then $2 ||H/C_H(U)|$ since $C_T(U) = U$. Since U is cyclic, $H/C_H(U)$ is abelian, and hence $O^2(H) \subsetneq H$, which is a contradiction. Thus T = U. This implies that T = Z(F).

Let *K* be a Hall *p*'-subgroup of *H* and *P* a Sylow *p*-subgroup of *H*. Since *H* is *p*-nilpotent, H = PK. Since Z(F) is cyclic, $H/C_H(Z(F))$ is abelian.

Since $O^{p'}(H) = H$, $H/C_H(Z(F))$ is a *p*-group. Hence

$$K \subseteq C_H(Z(F)). \tag{1}$$

Since F(K)char $K \triangleleft H$, $F(K) \subseteq F(H)$, and hence $F(K) \subseteq O_{p'}(F(H)) = QZ(F)$. Let *L* be a Hall 2'-subgroup of *K*. Since [L, Q] = 1,

$$L \subseteq C_K(F(K)) \subseteq F(K).$$
⁽²⁾

Let *S* be a Sylow 2-subgroup of *K*. Since $H/C_H(Q) \simeq A_4$, $S \subseteq QC_H(Q)$. On the other hand, $Q \subseteq S$, and hence $S = QC_S(Q)$. By (1), $C_S(Q) \subseteq C_K(F(K)) \subseteq F(K)$. Thus

$$S = QC_S(Q) \subseteq F(K). \tag{3}$$

By (2) and (3), $K = F(K) \subseteq QZ(F)$. Then H/F(H) is a *p*-group since $K = F(K) \subseteq F(H)$.

Next assume that $O_p(H)$ is non-abelian. By re-numbering, we may assume that F_1 (see Lemma 3.18) is a non-abelian *p*-group. By Lemma 3.18(ii), $F_1/Z(F_1)$ is an irreducible *H*-module. Since $[K, F_1] = 1$, $F_1/Z(F_1)$ is an irreducible *P*-module. Then, by [2, Lemma 4.6, p. 195], $P = C_P(F_1)F_1$. By [6, Corollary 1.3], F_1 has a non-cyclic normal abelian subgroup P_0 since p = 3. Then $P_0 \triangleleft H$, which is a contradiction. Thus $O_p(H) \subseteq Z(F)$, and hence F(H) = QZ(F).

Let $Z(F) = \overline{Z}_0 \times Z_1$, where Z_0 is a group of odd order and Z_1 is a 2-group. Since $H/C_H(Z_1)$ is a 2-group and $O^2(H) = H$, $H = C_H(Z_1)$. Let $\overline{H} = H/QZ_0$. Then $\overline{H} = \overline{P} \times \overline{Z}_1$. Since $O^2(H) = H$, $\overline{Z}_1 = \overline{1}$, and hence $F(H) = QZ_0Z_1 = QZ_0 = Q \times Z_0$.

STEP 2. The actions of H on Irr(V) and V are permutation isomorphic.

Proof. By Lemma 3.18, (q, |F(H)|) = 1. Since H/F(H) are a *p*-group, (q, |H|) = 1. Then Step 2 follows from Lemma 2.2.

STEP 3. If $H_1 \subsetneq H$ and $1 \neq O_p(H_1)$, then there exists $v \in V$ with $C_{H_1}(v) = 1$.

Proof. By induction, VH_1 has a character χ of *p*-defect 0 since $O_p(VH_1) = 1$. Since $1 \neq O_p(H_1)$, H_1 has no characters of *p*-defect 0, and hence $V \not\subseteq \text{Ker } \chi$. So, there exists $1 \neq \varphi \in Irr(V)$ with $\varphi \mid \chi$. On the other hand, since F(H) acts regularly on $V^{\#}$, $C_H(v)$ is a *p*-group for $\forall v \in V^{\#}$. Hence $I_H(\varphi)$ is a *p*-group by Step 2, and so is $I_{H_1}(\varphi)$. By Lemma 3.4, $I_{H_1}(\varphi) = 1$, and hence there exists $v \in V$ with $C_{H_1}(v) = 1$ by Step 2.

STEP 4. $H = H_0 \times Z_0$, where $H_0 \simeq SL(2, 3)$ and $|Z_0| = 3$.

Proof. Set $H_1 = C_H(Z_0)$ and suppose that $H_1 \subsetneq H$. Since $1 \neq O_p(H) \subseteq O_p(H_1)$, there exists $v \in V$ with $C_{H_1}(v) = 1$ by Step 3. Setting $V_0 = \langle v^{Z_0} \rangle$, V_0 is an irreducible Z_0 -module by Lemma 2.3. Since $[C_H(V_0), Z_0] \subseteq C_H(V_0) \cap Z_0 = C_{Z_0}(V_0) = 1$, $C_H(V_0) \subseteq C_H(Z_0) = H_1$. Therefore $C_H(V_0) = C_{H_1}(V_0) \subseteq C_{H_1}(v) = 1$. Thus $O_p(V_0N_H(V_0)) = 1$. Suppose that $V_0 \subsetneq V$. By induction, $V_0N_H(V_0)$ has a character of *p*-defect 0. Since $1 \neq O_p(H) \subseteq Z_0 \subseteq N_H(V_0)$, $N_H(V_0)$ has no characters of *p*-defect 0. Setting $N = N_H(V_0)$, there exists $v_0 \in V_0^{\#}$ with $C_N(v_0) = 1$ by a similar argument to that in the proof of Step 3. By Step 1, $C_H(v_0)$ is a *p*-group. Hence there exists $x \in C_H(v_0)$ with |x| = p by Lemma 3.4. Since V_0 is an irreducible Z_0 -module, $\langle v_0^{Z_0} \rangle = V_0$. Since *x* normalizes $\langle v_0^{Z_0} \rangle$, $x \in N$, and hence $x \in C_N(v_0) = 1$, which is a contradiction. Hence $V (= V_0)$ is an irreducible Z_0 -module. By [8, Prop. 19.8], $H \subseteq T(q^m)$ (defined in the Introduction). Since $A_4 (\simeq H/C_H(Q))$ is involved in H, H is not metacyclic. On the other hand, $T(q^m)$ is metacyclic and so is H, which is a contradiction. Thus $C_H(Z_0) = H$.

Now $O^{3'}(H) = H$ since p = 3, and so Z_0 is a cyclic 3-group. Furthermore, since $C_H(Q) = C_H(F(H)) \subseteq F(H)$, |H/F(H)| = 3. If a Sylow 3-subgroup of H is cyclic, then H acts regularly on $V^{\#}$. This contradicts Lemma 3.1(ii). Let $x \in H$ with $x \notin Z_0$ and |x| = 3. Setting $H_0 = Q\langle x \rangle$, $H = H_0 \times Z_0$ and $H_0 \simeq SL(2, 3)$. Let $\langle z \rangle = Z_0$ and set $L = H_0 \times \langle z^3 \rangle$. Assume that $\langle z^3 \rangle \neq 1$. Since $L \subsetneq H$ and $1 \neq \langle z^3 \rangle \subseteq O_3(H)$, $C_L(v) = 1$ for some $v \in V^{\#}$ by Step 3. By Lemma 3.1(ii), $C_H(v) = \langle y \rangle$ with |y| = 3. Let y = hu with $h \in H_0$ and $u \in Z_0$. Then $1 = y^3 = h^3 u^3 = u^3$. Hence $u \in \Omega_1(Z_0) \subseteq \langle z^3 \rangle \subseteq L$, and so $y \in C_L(v) = 1$, which is a contradiction. Thus $z^3 = 1$. Since $O_3(H) \neq 1$ by Lemma 3.1(ii), $|Z_0| = 3$.

STEP 5. $|V| = q^2$ and V is an irreducible Q-module.

Proof. Let $V_0 \subseteq V$ be an irreducible *Q*-module. Let *k* be the field of *q*-elements and let kQ be a group ring. Since kQ is semisimple, $kQ \simeq \bigoplus_i M_{n_i}(D_i)$, where $M_{n_i}(D_i)$ is the ring of $n_i \times n_i$ matrices over the division ring D_i . Since $8 = \dim_k kQ = \sum_i \dim_k M_{n_i}(D_i) = 1 + 1 + 1 + 1 + 2^2$, the degree of every irreducible representation of *Q* over *k* is 1 or 2. Since $Q' = Z(Q) \notin C_Q(V_0)$, $\dim_k V_0 = 2$ and so $|V_0| = q^2$. Setting $N = N_H(V_0) \supseteq Q$, N = Q, $Q \times Z_0$, *H*, or $N \simeq SL(2, 3)$. If N = H, then $V_0 = V$ since *V* is an irreducible *H*-module. Hence we may assume that $N \neq H$.

Next we shall prove that there exists a $v_0 \in V_0$ with $C_N(v_0) = 1$. Assume that N = Q or $Q \times Z_0$. Then, since N acts regularly on $V_0^{\#}$, the assertion stated above holds. Next assume that $N \simeq SL(2, 3)$. Let $x \in N$

with |x| = 3. If $C_{V_0}(x) = 1$, then $N = H_0 = Q\langle x \rangle$ acts regularly on $V_0^{\#}$. Hence we may assume that $C_{V_0}(x) \neq 1$. If $C_{V_0}(x) = V_0$, then $[Q, x] \subseteq Q \cap C_{H_0}(V_0) = C_Q(V_0) = 1$, which contradicts the fact that $H_0 \simeq SL(2, 3)$. Thus $|C_{V_0}(x)| = q$.

Let $v, w \in C_{V_0}(x)^{\#}$. Assume that v and w are conjugate in N. Let $w = v^y$ with $y \in Q$. Then $\langle x, x^y \rangle \subseteq C_N(w)$. Since Q acts regularly on $V_0^{\#}$, $\langle x, x^y \rangle = \langle x \rangle$, and hence $y \in Z(Q)$. Thus $w = v^{-1}$. Since $|C_N(u)| = 3$ for $\forall u \in V_0^{\#}$ and $C_N(u)$ is conjugate to $\langle x \rangle$ in $N, u^g \in C_{V_0}(x)$ for some $g \in N$. Thus each N-orbit of $V_0^{\#}$ contains an element of $C_{V_0}(x)$. Therefore N has exactly $\frac{q-1}{2}$ orbits on $V_0^{\#}$. Since each orbit contains exactly eight elements, $\frac{q-1}{2} \cdot 8 = q^2 - 1$. Hence 4 = q + 1, and so q = 3, which is a contradiction since p = 3. Thus there exists a $v_0 \in V_0$ with $C_N(v_0) = 1$. By Lemma 3.1(ii), $C_H(v_0) \neq 1$. Let $1 \neq a \in C_H(v_0)$. Then a normalizes $\langle v_0^Q \rangle = V_0$ since V_0 is an irreducible Q-module. Thus $a \in C_N(v_0) = 1$, which is a contradiction.

Step 6. $G \simeq J$.

Proof. Let $x \in H_0$ with |x| = 3 and $\langle z \rangle = Z_0$. Then $\langle x \rangle \times \langle z \rangle$ is a Sylow 3-subgroup of $H = H_0 \times Z_0$. Now, $\langle x \rangle \times \langle z \rangle$ has four distinct subgroups of order 3. Let $\langle a \rangle$, $\langle b \rangle$, $\langle c \rangle$, and $\langle z \rangle$ be subgroups of $\langle x \rangle \times \langle z \rangle$ of order 3. Since $C_V(z) = 1$, $V = \langle C_V(a), C_V(b), C_V(c) \rangle$. Since V is a faithful H-module, $[V, a] \neq 1$, and hence $|C_V(a)|$ is 1 or q. Similarly, we have that $|C_V(b)|$ and $|C_V(c)|$ are 1 or q. Hence we may assume that $V = C_V(a) \times C_V(b)$. Then, if $C_V(c) = C_V(a), C_V(a) = C_V(\langle c \rangle \times \langle a \rangle) = C_V(\langle x \rangle \times \langle z \rangle) \subseteq C_V(z) = 1$, which is a contradiction. Hence $C_V(c) \cap C_V(a) = 1$. Similarly, we have that $C_V(b)^{\#}$, and so c acts regularly on $V^{\#}$. Thus $C_V(c) = 1$.

Next we shall prove that two elements of $C_V(a)$ conjugate in H are already conjugate in $Z(Q) \times Z_0$. Let $v, w \in C_V(a)^{\#}$ and let $v^h = w$ with $h \in H$. Since $v^a = v$ and $v^{ha} = v^h$, $\langle a, hah^{-1} \rangle \subseteq C_H(v)$. Since $|C_H(v)| = 3$, $\langle a \rangle = \langle hah^{-1} \rangle$, and hence $h \in N_H(\langle a \rangle) = \langle a \rangle(Z(Q) \times Z_0)$. This proves the above assertion.

Let $v \in C_V(a)^{\#}$ and $w \in C_V(b)^{\#}$. Suppose that v is conjugate to w in H. Let $v^h = w$ with $h \in H$. Since $v^h \in C_V(b)$, $v \in C_V(b^{h^{-1}})$. Thus $\langle a, b^{h^{-1}} \rangle \subseteq C_H(v)$. Since $|C_H(v)| = 3$, $\langle a \rangle = \langle b \rangle^{h^{-1}}$. Then $[a, h] \in (\langle a \rangle \times \langle b \rangle) \cap H' = (\langle a \rangle \times \langle b \rangle) \cap Q = 1$. Thus $\langle a \rangle = \langle b \rangle$, contrary to our choice of $\langle a \rangle, \langle b \rangle$. So any element of $C_V(a)^{\#}$ can not be conjugate to an element of $C_V(b)^{\#}$ in H.

By Lemma 3.1(ii), each orbit on $V^{\#}$ contains an element of $C_V(a)^{\#}$ or $C_V(b)^{\#}$ since $C_V(c) = C_V(z) = 1$. By the previous argument, *H* has $\frac{q-1}{6} + \frac{q-1}{6} = \frac{q-1}{3}$ orbits on $V^{\#}$. Since each *H*-orbit contains exactly $8 \cdot 3$

elements, $\frac{q-1}{3} \cdot 8 \cdot 3 = q^2 - 1$. Hence 8 = q + 1. This implies that q = 7. Since V is an elementary abelian, we may assume that $H \subseteq GL(2, 7)$. By Lemma 2.5, $G = VH \simeq J$.

LEMMA 3.21. If $O_{p'}(F_1 \cdots F_r) = 1$, then E(p, q, n) is isomorphic to a subgroup of G.

Proof. We divide the proof of Lemma 3.21 into three steps.

STEP 1. $O_{p'}(F(H))$ is cyclic and $H/O_{p'}(F(H))$ is a p-group.

Proof. Let T, U be as in Lemma 3.18. Since $O_{p'}(F_1 \cdots F_r) = 1$, $O_{p'}(F(H)) = O_{p'}(T)$. If $T \neq U$, then $2 \mid |H/C_H(U)|$ since $C_T(U) = U$. Since U is cyclic, $H/C_H(U)$ is abelian. By Lemma 3.1(i), $O^{p'}(H) = H$, and hence p = 2. So, in this case, $O_{p'}(F(H))$ is cyclic. If T = U, then it is obvious that $O_{p'}(F(H))$ is cyclic. Thus, in each case, $O_{p'}(F(H))$ is cyclic.

Let K be a Hall p'-subgroup of H. Then $F(K) = O_{p'}(F(H))$ is cyclic. Setting $Z = O_{p'}(F(H))$, $H/C_H(Z)$ is abelian. Since $O^{p'}(H) = H$, $H/C_H(Z)$ is a p-group. Hence $K \subseteq C_K(Z) = C_K(F(K)) \subseteq F(K) = Z$. Thus K = Z and Step 1 follows.

STEP 2. *H* is isomorphic to a subgroup of $T(q^m)$, where $|V| = q^m$.

Proof. Let $Z = O_{p'}(F(H))$. By a similar argument to that in the proof of Step 3 of Lemma 3.20, the same assertion as Step 3 holds since Z is cyclic and H/Z is a p-group. Furthermore, in the proof of Step 4 of Lemma 3.20, if we reset Z instead of Z_0 , then we can prove that $H \subseteq T(q^m)$ if $C_H(Z) \subsetneq H$.

Next we assume that $C_H(Z) = H$. Then, by Step 1, $H = P \times Z$, where P is a Sylow p-subgroup of H. Since $O^{p'}(H) = H$, Z = 1, and hence H is a p-group. Since every normal subgroup of H is cyclic, H is cyclic, generalized quaternion, dihedral, or semi-dihedral by [6, Corollary 1.3]. If H is cyclic or generalized quaternion, then H acts regularly on $V^{\#}$, which contradicts Lemma 3.1(ii). If H is dihedral or semi-dihedral, then there exists a normal cyclic subgroup U of H with |H : U| = 2 and $C_H(U) = U$. Then V_U is homogeneous. Let $1 \neq v \in V$. Then $C_H(v) \neq 1$ by Lemma 3.1(ii). Let $t \in C_H(v)$ with |t| = 2. Since U acts regularly on $V^{\#}$, $t \notin U$. By Lemma 2.3, $\langle v^U \rangle$ is an irreducible U-module. Since $v \in C_V(t), \langle v^U \rangle$ is $U\langle t \rangle = H$ -module. Hence $V = \langle v^U \rangle$ is an irreducible U-module. By [8, Prop. 19.8], $H \subseteq T(q^m)$. This completes the proof of Step 2.

STEP 3. E(p, q, n) is isomorphic to a subgroup of G.

Proof. By Step 2, we may assume that $H \subseteq T(q^m)$. Let $M = \{x \to \alpha x \mid \alpha \in GF(q^m)^{\#}\} \triangleleft T(q^m)$. Then $T(q^m)/M$ and M are cyclic. By Lemma 3.1(ii), H is non-cyclic, and hence $H \nsubseteq M$ and $H \cap M \neq 1$. Setting $\overline{T(q^m)} = T(q^m)/M$, $1 \neq \overline{H} \subseteq \overline{T(q^m)}$. Since $O^{p'}(H) = H$, \overline{H} is a cyclic

p-group. Let *f* be the natural isomorphism from $H/(H \cap M)$ to \overline{H} , and let H_0 be the inverse image of $\Omega_1(\overline{H})$. Setting $G_0 = VH_0 \subseteq G = VH$, G/G_0 is a *p*-group, and hence $O_{p'}(G_0) = O_{p'}(G)$. For $\forall x \in O_{p'}(G)$, there exists $y \in C_G(x)$ with |y| = p by Lemma 3.1(ii). Since G_0 contains all elements in *G* of order *p*, $C_{G_0}(x) \ni y$. By the definition of the defect, G_0 has no *p*-blocks of defect 0 since G_0 is a *p*-nilpotent. By the minimality of *G*, $G = G_0$, and hence $H_0 = H$. Thus we have $|\overline{H}| = p$. Let $\langle \sigma \rangle = Gal(GF(q^{np})/GF(q^n))$, where m = np. Then $H \subseteq M \langle \sigma \rangle$.

If $p * q^n - 1$, then $q^n \equiv a \pmod{p}$, where $2 \le a \le p - 1$. Hence $q^{np} \equiv a^p \equiv a \pmod{p}$. Thus $p * q^{np} - 1$. Then |H| = ps with (p, s) = 1. Since $O^{p'}(H) = H$, H is a Frobenius group with kernel $O_{p'}(H)$ or |H| = p. If H is a Frobenius group, then H has a p-block of defect 0, and so has G, which is a contradiction. If |H| = p, then H acts regularly on $V^{\#}$, which contradicts Lemma 3.1(ii). Thus $p \mid q^n - 1$. Let $\langle v \rangle$ be a subgroup of the multiplicative group $GF(q^{np})^{\#}$ of order $(q^{np} - 1)/(q^n - 1)$. Set $N = \{x \to \alpha x \mid \alpha \in \langle v \rangle^{\#}\} \subseteq M$. By Lemma 3.1(ii), H has no regular orbits on V, and hence $N \langle \sigma \rangle \subseteq H \subseteq T(q^m)$ by [10, Prop. 1.4]. Hence $E(p, q, n) \simeq VN \langle \sigma \rangle \subseteq VH = G$.

LEMMA 3.22. We have a final contradiction.

Proof. If V is not a quasi-primitive H-module, then G involves F(p, q, n) by Lemma 3.17, which contradicts the hypotheses of the theorem.

Next suppose that V is a quasi-primitive H-module. By Lemma 3.19, $O_{p'}(F_1 \cdots F_r) = 1$ or $O_{p'}(F_1 \cdots F_r) \simeq Q_8$. By Lemmas 3.20 and 3.21, $G \simeq J$ or G involves E(p, q, n), which contradicts the hypotheses of the theorem. Thus, in each case, we have a contradiction, and this completes the proof of the theorem.

REFERENCES

- 1. W. Feit, "The Representation Theory of Finite Groups," North-Holland, Amsterdam, 1982.
- 2. D. Gorenstein, "Finite Groups," Harper & Row, New York, 1968.
- 3. I. M. Issacs, "Character Theory of Finite Groups," Academic Press, New York, 1976.
- 4. N. Ito, Some studies on group characters, Nagoya Math. J. 2 (1951), 17-28.
- 5. N. Ito, On the characters of solvable groups, Nagoya Math. J. 3 (1951), 31-48.
- O. Manz and T. R. Wolf, "Representations of Solvable Groups," Cambridge Univ. Press, Cambridge, UK, 1993.
- 7. H. Nagao, "Groups and Designs" (in Japanese), Iwanami, Tokyo, 1974.
- 8. D. S. Passman, "Permutation Groups," Benjamin, New York, 1968.
- 9. Y. Tsushima, On the existence of characters of defect zero, Osaka J. Math. 11 (1974), 417–423.

HIROSHI FUKUSHIMA

- 10. A. Turull, Supersolvable automorphism groups of solvable groups, *Math. Z.* 183 (1983), 47–73.
- 11. T. R. Wolf, Defect groups and character heights in blocks of solvable groups, J. Algebra 72 (1981), 183–209.
- 12. J. R. Zhang, *p*-Regular orbits and *p*-blocks of defect zero, *Comm. Algebra* **21** (1993), 299–307.