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A dynamical cosmological term from the Verlinde’s maps
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Abstract

In this Letter it is proposed another generalization of the Verlinde’s maps for the case Λ �= 0. Thermodynamical arguments combined with this
proposal conduce to a inverse square-law cosmological term behavior.
© 2006 Published by Elsevier B.V.
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Since the original introduction of the cosmological cons-
tant Λ by Einstein, aiming to keep his universe static, “the
genie has been let out of the bottle and it is no longer easy to
force it back in”, paraphrasing Zel’dovich [1]. The cosmologi-
cal constant has been an elusive problem during all these years
of research. Meanwhile, its interpretation as a measure of the
energy density of the vacuum has been an important issue that
particle theorists have realized.

Usually on textbooks and also in some subareas within cos-
mology research Λ is considered as a constant parameter. How-
ever, recent developments in particle physics and inflationary
theory have indicated that the cosmological term should be
treated as a dynamical quantity [2].

On the other hand during the recent years many studies have
been done about the Verlinde’s maps [3]. These very interesting
maps establish a relation between the Friedmann–Robertson–
Walker (FRW) equations that control the cosmological expan-
sion and the formulas that relate the energy and the entropy of
a conformal field theory (CFT). In particular three amazing re-
lations mapping the D-dimensional Friedmann equation
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into the Cardy’s entropy formula [5]
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well known in two-dimensional CFT, have been set up. Those
are
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where L0 is the zero-mode Virasoro operator, c the central
charge, R the scale factor and H = Ṙ/R the Hubble parame-
ter with the dot representing the time derivative.

The scenario considered in [3] was that of a closed radia-
tion dominated FRW universe with a vanishing cosmological
constant. Within this context Verlinde proposed that the Cardy
formula for 2D CFT can be generalized to arbitrary spacetime
dimensions. Such a generalized entropy formula is known as
the Cardy–Verlinde formula.

Later soon, this result was studied and understood in several
set ups [6–9]. Specifically in Ref. [7] the maps were general-
ized to two different classes of universes including cosmolog-
ical constant: the de Sitter (dS) closed and the anti-de Sitter
(AdS) flat. Both occupied by a universe-sized black hole. In
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the same way, working in the branes context, the CFT domi-
nated universe has been described as a co-dimension one brane
in the background of various kinds of (A)dS black holes. In
such cases, when the brane crosses the black hole horizon, the
entropy and temperature are expressed in terms of the Hubble
constant and its time derivative. Such relations hold precisely
when the holographic entropy bound is saturated.

Verlinde’s proposal has inspired a considerable activity
shedding further light on the various aspects of the Cardy–
Verlinde formula. Nevertheless there is still no answer to the
question about whether the merging of the CFT and FRW equa-
tions is a mere formal coincidence or, quoting Verlinde, whether
this fact “strongly indicates that both sets of these equations
arise from a single underlying fundamental theory”.

Returning to the Verlinde’s maps (3), we would like to stress
that they are valid, without restrictions, for all times, at least
formally. Nevertheless up to now the study of these maps has
been restricted to the use of the machinery of entropy bounds,
black holes, branes and the holographic principle [4]. Therefore
our aim is to follow the spirit of the Verlinde’s concern about
the amazing relation between these two equations and what is
behind. This direction was followed in [10], where some mathe-
matical properties of the Friedmann’s equation (1) that justified,
at least in principle, the relation with the Cardy’s formula (2)
were explored. In this Letter we will show how it is possible to
obtain a generalization of the Verlinde’s maps for the case of
the cosmological term different from zero just expressing Λ in
terms of the vacuum energy density and this will lead us to find
a dynamical behavior of the cosmological term.

In the presence of the cosmological term the Friedmann
equation takes the form,

(4)H 2 = 16πG
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Now, in order to obtain the generalization of Verlinde’s maps
we will just deal with the first relationship, i.e.,

(5)2πL0 ⇒ 2π

D − 1
ER.

Our proposal is to shift the value of the energy E adding the
vacuum energy Evac. In this manner, the energy E will be ex-
pressed as

(6)E = E + Evac,

where

(7)Evac = ρvacV = (D − 2)Λ

16πG
V,

with ρvac representing the vacuum energy density. Therefore
while the two last conditions of the Verlinde’s maps (3) are pre-
served, the Virasoro operator L0 is redefined now in terms of E .
Thus, the Verlinde’s maps will take the form
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and can be easily checked that the D-dimensional Friedmann
(4) equation turns into the Cardy formula.

At this point it is important to stress that we considered the
maps (8) valid for all times. Particularly we will think c as a
c-function. This choice is based on some arguments given by
Strominger in [11] where was conjectured that the cosmolog-
ical evolution of an (n + 1)-dimensional universe has a dual
representation as the renormalization group (RG) flow between
two conformal fixed points of a n-dimensional Euclidean field
theory. The RG flow begins at a UV (ultraviolet) conformally
invariant fixed point and ends at an IR (infrared) conformally
invariant fixed point. Since late (early) times correspond to the
UV (IR) fixed point then the RG flow corresponds to evolu-
tion back in time from the future to the past [11]. The proposed
c-function was

(9)c ∼ 1

GN | ȧ
a
|n−1

.

Using the Einstein equations can be showed that ∂t (ȧ/a) < 0,
provided that any matter in the spacetime satisfies the null
energy condition. In other words, this guarantees that the
c-function will always decrease in a contracting phase of the
evolution or increase in an expanding phase [12]. Also, if the
c-function can be evaluated on each slice of some foliation of
the spacetime and the slice can be embedded in some de Sitter
space the c-function (9) takes the form

(10)c ∼ 1

GNΛ(n−1)/2
.

In the original papers were considered spatially flat cosmolog-
ical models with k = 0 but their c-function was subsequently
generalized [12,13] so as to apply to k �= 0 models as well.

Returning to our main line we remember that in [3] was also
obtained a universal Cardy entropy formula in terms of the en-
ergy E and the Casimir energy EC. It should be also noted that
in a CFT with large central charge the entropy and energy are
not purely extensive. Being the volume finite, the energy of
a CFT contains a non-extensive Casimir contribution propor-
tional to the central charge c. Therefore, taking into account
this fact, the total energy can be decomposed as,

(11)E(S,V ) = EE(S,V ) + 1

2
EC(S,V ),

where the first term is related to the purely extensive part of the
energy and the second term represents the Casimir energy.

On the other hand it is known that conformal invariance im-
plies that the product ER is independent of the volume and is
only a function of the entropy S. Considering this fact and the
behavior of the extensive and sub-extensive parts of the energy
can be found that

EE = a

4πR
S1+1/(D−1),

(12)EC = b

2πR
S1−1/(D−1),

where a and b are a priori arbitrary positive coefficients. Using
these expressions the entropy S takes the form

(13)S = 2πR√ √
EC(2E − EC).
ab
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Obviously formula (2) can be recovered, ignoring the normal-
ization, if we insert ER = L0 and ECR = c/12.

Extending the above mentioned reasoning to the case Λ > 0
it can be realized that it is much more natural to apply here
the decomposition of the energy (11) since the Casimir energy
is often invoked, via vacuum energy, as a decisive factor for
explaining the cosmological term. So,

(14)E = E + 1

2
EC.

Therefore we arrive at the following relations

(15)EE = E, EC = 2Evac.

Writing the last expression explicitly we get,

(16)
c

12R
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16πG
V.

Next we found, with the help of the second relation of the
Verlinde’s maps, that the cosmological term behaves as

(17)Λ = 1

R2
,

a decay law for Λ! (or vacuum energy density decay!). That is
a remarkable result since among the decay laws of the cosmo-
logical term in function of the scale factor (Λ = αR−m with
α being a constant parameter), proposed in the literature, this
case (m = 2) has been the one that has received most of the
attention [2]. The inverse-square law dependence is supported
by dimensional [14] and phenomenological arguments [15]. In
our scenario this behavior has appeared (1) as a consequence
of identifying the vacuum energy with half the Casimir energy
and (2) as a consequence of the use of the relations between the
cosmological quantities and conformal quantities through the
Verlinde’s maps. Here it is worth to note that if we introduce
(17) in the second map of (8) the c-function (10) is obtained.
In other words, the behavior found for the cosmological term is
compatible with the c-function proposed in [12,13].

On the other hand on the basics of a rich body of astronom-
ical observations [16,17] there is now convincing evidence that
the recent Universe is dominated by an exotic dark energy den-
sity with negative pressure, responsible for the cosmic accelera-
tion. The simplest candidate for dark energy is the cosmological
constant. But, if general relativity is correct, cosmic acceler-
ation implies that there must be a dark energy density which
diminishes relatively slowly as the universe expands [18]. In
this context it has been studied the possibility that the dark en-
ergy may decay [18–20]. Therefore the result obtained is also
in agreement with the expectations from the dark energy side.

Thus, here we have gone one step ahead. Although we still
do not know how to calculate Λ from first principles in this
approach we have generated a genuinely R−2 varying Λ law.
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