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ABSTRACT 

If a linear map between central simple algebras preserves reduced norms, it is an 
isomorphism or antiisomorphism followed by multiplication by an element of reduced 
norm 1. 

Let K be a field, and suppose for the moment that char(K)#2. For 
nonzero a, b in K one can define the (generalized) quatemion algebra 
A = K[i, j] with i2 = a and i2 = b and ii = - ii, The (reduced) norm of an 
element x0 + x,i + x2i + x,ij in A is xi - ax: - bx; + abxz, and in this way a 
quadratic form is associated with the algebra A. It is a well-known theorem in 
the theory of quadratic forms [5, p. 1461 that these forms distinguish the 
quatemion algebras: that is, two such forms are equivalent only when the 
algebras are isomorphic. What I want to show is that one can extend this 
theorem from quatemion algebras to central simple algebras of arbitrary 
dimension. 

Recall that if A is a central simple algebra of dimension n2 over a field K, 

then the norm function N(a) (the determinant of the left multiplication map 
x ct ax) always satisfies the formal identity N(a)= [RN(a)]” for a suitable 
function RN called the reduced norm. On n X n matrix algebras RN(a) is of 
course simply det(a), and in general RN can be defined by choosing a Galois 
extension L of K so that A@k L 2 M,(L) and proving that det,(a@ 1) lies in 
K and is independent of the choice of L. The fact that determinants are 
unchanged by taking transposes implies that RN is unchanged if we reverse 
the order of multiplication; that is, RN is the same on A and on the opposite 
algebra A’*. But apart from this we will see that the reduced norm dis- 
tinguishes the algebra. 

*Work on this paper was supported in part by the National Science Foundation. 

LlNEAR ALGEBRA AND ITS APPLICATIONS 43:197-200 (1982) 197 

(c Elsevier Science Publishing Co., Inc., 1982 

52 Vanderbilt Ave., New York, NY 10017 0024.3795/82/020197+4$02.75 



198 WILLIAM C. WATERHOUSE 

It turns out that what we need for the proof, besides this general 
information on central simple algebras [l], is just one result from linear 
algebra, one which in fact will be a particular case of our theorem: it is the 
characterization of those linear maps on matrices that preserve the determi- 
nant. This result, proved in various versions by Frobenius [3], Dieudonne [2], 
Marcus and Moyls [4], and others, says that if K is a field and ‘p: M,(K)- 
M,(K) is a K-linear map satisfying det cp(X)=det X for all X in M,(K), then 
rp has the form cp( X) = PXQ or cp( X) = PX’Q, where Xt denotes the transpose 
of X, and P and Q are matrices with det( PQ) = 1. 

THEOREM. Let A and B be central simple algebras of the same dimension 
over a field K, and let RN denote reduced norm. Let ‘p : A + B be a K-linear 
map with 

for all X in A. Then (p(X) can be written uniquely in the form b$( X) where b 
is an element with RN,,,(b)= 1 and ‘p: A - B is an &morphism or an 
antiisomorphism of algebras. 

Proof. Look first at the case A = B = M,(K), in which case the reduced 
norm is simply the determinant. We know then v(X) is PXQ or PXtQ. 
Rewriting this as (PQ)(Q-‘XQ) or (PQ)(Q-‘X”Q), we see that cp has the 
form required in the theorem. Furthermore, all automorphisms of M,(K) are 
inner, and PXQ E P,XQ, only when P, = CP and Qi = c-‘Q for some scalar 
c, so the element b = PQ and the (anti)isomorphism 4 are uniquely de- 
termined. The uniqueness that we thus get by rewriting the result for matrix 
algebras is the crucial fact needed to derive the general theorem. What 
follows is a straightforward descent argument, fortunately one simple enough 
that it can be understood without any previous knowledge of descent theory. 

Recall first that all finite division algebras are commutative, so for finite K 
the algebras A and B are in fact matrix algebras, and no further argument is 
needed. Thus we may assume K is infinite. Now the reduced norm is a 
polynomial function-more concretely, if {ai} is a K-basis of A, then 
RN,,,(Zxiai) is a polynomial in the xi. Similarly RN,,,(cp(Zxiai)) is a 
polynomial. These two polynomials agree for all values of the xi in the infinite 
field K. Hence they must be identically the same, and consequently they will 
still agree when we allow the xi to take values in some extension field L of K. 
Thus if (pL is the L&near extension of ‘p to A@x L, we will have 

WWL,LO'PL =W,,L,L. 



LINEAR MAPS PRESERVING REDUCED NORMS 199 

Central simple algebras always have separable splitting fields. Hence we 
can find a finite Galois extension L of K splitting our two algebras, so that 
A@ L N M,(L) = B@ L. Each element g in Gal( L/K) acts on A@ L and B@ L 
by acting on the second factor; these actions are ring isomorphisms, though 
not L-algebra maps. Writing everything in terms of bases over K, one sees 
that an element b in B@L is actually in B (= B@K) iff g(b)= b for all g. 
Similarly, an Llinear map #L: A@L + B@L is the extension of a K-linear 
#:A+Biff g\cILgP1= &, for all g. (Concretely, this just says that when we 
write out the matrix of $,_ in terms of K-bases of A and B, the matrix entries 
are in K.) Now we know that our (pL still preserves reduced norms, and we 
have chosen L so that the reduced norms are simply determinants. Hence we 
know that vL( X) = blCIL( X) for a uniquely determined b in B@ L and a 
unique Lalgebra isomorphism or antiisomorphism qL: A@L + B@L. We 
have however (pL = gcp,g -’ for each g in Gal(L/K), and hence 

The map &_K’ is again Llinear, and is still a ring isomorphism or 
antiisomorphism. The uniqueness therefore gives b = g(b) and GL = g#Lg-‘. 
As this is true for all g, we know b lies in B and qL is the extension of some 
K-linear map $: A + B. It remains only to show that ‘p = bq, that b has 
reduced norm 1, that 4 is an algebra isomorphism or antiisomorphism, and 
that the expression is unique; and all of these statements follow trivially from 
the truth of the corresponding statements over L. n 

COROLLARY. The reduced norm form determines a central simple algebra 
up to &morphism or antiisonwrphism. 

Quaternion algebras are isomorphic to their own opposite algebras, so for 
them we have recovered the theorem mentioned at the beginning of the 
paper. 

ADDENDUM 

After submitting this paper, I found that the corollary and (in essence) the 
theorem were derived earlier by Nathan Jacobson. Specifically, the corollary 
for char( K)#2,3 is Theorem 12 in his “Generic norm of an algebra,” Osaka 
J. Math. 15:25-50 (1953), and for all infinite K it appears as Theorem 10 in 
“Structure groups and Lie algebras of Jordan algebras of symmetric elements 
of associative algebras with involution,” Adv. in Math. 20:106150 (1976). 
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But his arguments depend on reducing the result to theorems on structure 

groups and isotopy of Jordan algebras, so I think my proof is still of some 

interest. 
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