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We study the problem of reconstructing a simple polygon from angles measured at the
vertices of the polygon. We assume that at each vertex v a sensing device returns a list
of angles α1,α2, . . . , where αi is the angle between the i-th and the (i + 1)-th vertices
visible to v in counterclockwise (ccw) order starting with the ccw neighbor of v along
the boundary. We prove that the angle measurements at all vertices of a simple polygon
together with the order of the vertices along the boundary uniquely determine the polygon
(up to similarity). In addition, we give an algorithm for reconstructing the polygon from
this information in polynomial time.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

The reconstruction of geometric objects from measurement data has attracted considerable attention over the last decade
[11,15,16]. In particular, many variants of the problem of reconstructing a polygon have been studied. We study the recon-
struction problem induced by sensors that measure angles in a simple polygon. Our interest for this problem comes from
settings in which mobile agents with limited sensing capabilities have to perform tasks such as meeting and exploration
[3,8,17]. Our primary focus lies in understanding whether the available data is sufficient to uniquely reconstruct the polygon;
considerations like the computational efficiency of reconstruction algorithms are secondary in this context.

We consider the reconstruction of a simple polygon from the data measured by an angle sensor at every vertex. More
precisely, we assume that at each vertex v of a simple polygon, the sequence of vertices visible from v is perceived in
counterclockwise (ccw) order as seen around v , starting on the polygon boundary. As usual, we call two vertices (mutually)
visible if the straight line segment connecting them lies in the polygon (which we consider to be a closed region). Note that
the segment connecting two mutually visible vertices may contain further collinear vertices without them blocking the line
of sight. In addition to seeing visible vertices, the angle sensor at a vertex v measures the angles between adjacent rays
from v to the vertices v sees, and it returns the ccw sequence of these angles (cf. Fig. 1). Note that from such an angle
measurement it is easy to compute the angles between any pair of rays from v to vertices v sees, not only between adjacent
pairs. Also, as rays are perceived in ccw order starting with the ray towards the ccw neighbor along the boundary, an angle
measurement distinguishes the interior and the exterior of the polygon. The polygon reconstruction problem takes as input
a sequence of angle measurements ordered along the boundary, one measurement at each vertex of a simple polygon, and
asks for a simple polygon that fits the measured angles; we call this problem the polygon reconstruction problem from angles
(cf. Fig. 2). Note that the order of the vertices along the boundary is assumed to be known through the order in which
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Fig. 1. Illustration of an angle measurement: the sensor returns the vector (32◦,66◦,34◦).

Fig. 2. Given a sequence of angle measurements in ccw order as they appear along the boundary (left), the goal is to find a polygon that fits these angles
(right).

the measurements are given. Knowing the order of the vertices, for example, implies that the angle measurements can be
oriented with respect to a common reference direction (see “Greedy Approach” in Section 3).

The key difficulty of the reconstruction problem lies in the fact that vertices in our setting have no recognizable labels,
i.e. an angle measurement at a vertex returns angles between distant vertices but does not identify these vertices globally.

1.1. Our contribution

The main result of this paper is that no two different polygons can yield the same sequence of angle measure-
ments, i.e. the ordered sequence of angle measurements uniquely determines a polygon (up to similarity). We propose
a polynomial-time algorithm that solves the reconstruction problem. Our approach focuses on the reconstruction of the
visibility graph of a polygon, i.e. the graph with a node for every vertex of the polygon and an edge between two nodes
if the corresponding vertices see each other. It is sufficient to reconstruct the visibility graph, as from the visibility graph
and the angle data the shape of the polygon can be inferred in linear time by first computing a triangulation, and then an
embedding in the plane by fixing one edge – the geometry of all other edges can subsequently be determined in linear
time. We distinguish between the visibility graph as a purely combinatorial object and embeddings of it in the plane which
incorporate geometry. In these terms, we show that the only visibility graph compatible with the information contained in
the angle data measured in a simple polygon P is the visibility graph of P . Our algorithm finds this unique visibility graph
(in polynomial time) and thus reconstructs the original polygon up to similarity.

While we assume that the measured angles come from a simple polygon, our algorithm is also capable of detecting false
inputs, i.e. measurements that do not fit any simple polygon.

1.2. Related work

For our purposes, the combinatorial nature of a polygon is encoded in its visibility graph. While we show that the
visibility graph can be computed from the angle data, the full characterization of visibility graphs has been an open problem
for many years and has attracted considerable attention [9,10].

A question closely related to the reconstruction of the visibility graph of a polygon appears in the area of robotic explo-
ration, namely the question of what sensory and motion capabilities enable simple robots inside a polygon to reconstruct
the visibility graph [2,17]. The idea to reconstruct it from angle data was first discussed in this context [2], but was also
mentioned earlier [12]. In [2], the problem was solved for simple robots that can measure angles and additionally are
equipped with a compass. In the case of robots that can only distinguish between angles smaller and larger than π , it was
shown in the same study that adding the capability of retracing their movements empowers the robots to reconstruct the
visibility graph. In both cases a polynomial-time algorithm was given. Recently, it was shown that the ability to retrace their
movements alone already enables simple robots to reconstruct the visibility graph in polynomial time if an upper bound on
the number of vertices is given [3,4]. Our result implies that if the number of vertices n is given, measuring angles alone
is also already sufficient, even if the robot is restricted to moving along the boundary only. On the other hand, it is known
that the boundary angles of the polygon (i.e. the angles formed by the boundary at every vertex) do not contain sufficient
information to uniquely reconstruct the visibility graph, even when combined with certain combinatorial information that
encodes whether two visible vertices form a boundary edge of the polygon [2].
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Fig. 3. Illustration of the approximation �↑
v (vi , v j) = �v (vi′ , v j′ ) of the angle �v (vi , v j).

The general problem of reconstructing polygons from measurement data can be approached from different perspectives.
One possible approach is to concentrate on the question of how to efficiently construct some polygon P � that is consistent
with the data measured in the original polygon P . For example, it was studied how a polygon P � compatible with the
information obtained from “stabbing” P or compatible with the set of intersection points of P with given lines can be
constructed [11,15]. While the first of the two studies assumes the number of vertices and their order to be known, the
latter does not. We approach the reconstruction problem differently and ask whether it is possible to uniquely reconstruct
the original polygon P from certain data measured in P . The primary challenge here is to decide whether the information
contained in the data suffices to reconstruct the original polygon, rather than the analysis of the computational complexity
of finding a consistent polygon. A previous study shows, for instance, that the boundary angles of P together with the
cross-ratios of its triangulation and the order of the vertices uniquely determine P [16]. Another study considers orthogonal
polygons without assuming the order of the vertices to be known [13]. The study shows that the set of coordinates of the
vertices uniquely determines the polygon.

For different sets of data and without knowledge about the order of the vertices, the polygon reconstruction problem has
been shown to be NP-hard [6,7,14]. Recently, data from rather novel sensing devices like range-finding scanners has been
considered, and most of the reconstruction problems that such devices naturally induce have been shown to be NP-hard as
well, while a few others are polynomial time solvable without even knowing the number of vertices beforehand [1]. We
show that the polygon reconstruction problem from angles can be solved in polynomial time if the order of the vertices is
known.

The polygon reconstruction problem we consider belongs to the general field of computational geometry. While other
areas like computer vision and pattern recognition are also concerned with the general challenge of reconstructing shapes
from measurement data, the concrete problems that are formulated in these fields are not related to our setting.

1.3. Outline

We introduce the visibility graph reconstruction problem in detail in Section 2. In Section 3 we show that the problem
always has a unique solution. We do so by proposing a polynomial-time algorithm. Section 4 gives a brief discussion and
shows that the ccw ordering of the angle data cannot be relaxed.

2. The visibility graph reconstruction problem

Let P be a simple polygon with visibility graph Gvis = (V , Evis), where V denotes the set of vertices of P and n = |V |. We
fix a vertex v0 ∈ V and denote the other vertices of P by v1, v2, . . . , vn−1 in ccw order along the boundary starting at v0’s
ccw neighbor. The degree of a vertex vi ∈ V in Gvis is denoted by d(vi) and the sequence vis(vi) = (vi, u1, u2, . . . , ud(vi)) is
defined to enumerate the vertices visible to vi ordered in ccw order along the boundary starting with vi itself. We write
vis0(vi) to denote vi itself and visk(vi), 1 � k � d(vi), to denote uk . Note that knowing vis(vi) for every vi ∈ V is equivalent
to knowing Evis. For two distinct vertices vi, v j ∈ V , chain(vi, v j) denotes the sequence (vi, vi+1, . . . , v j) of the vertices
between vi and v j along the boundary in ccw order. Similarly, chainv(vi, v j) denotes the subsequence of chain(vi, v j)

that contains only the vertices that are visible to v . Note that here and in the following all indices are understood to be
modulo n.

We define the visibility segments of v to be the segments vu1, vu2, . . . , vud(v) in this order, where ui = visi(v) for all
1 � i � d(v). Similarly, we define the visibility angles of v to be the ordered sequence of angles between successive visibility
segments such that the i-th visibility angle is the angle between vui and vui+1, for all 1 � i < d(v).

Let v, vi, v j ∈ V . We write �v(vi, v j) to denote the angle between the lines v vi and v v j (in that order) even if v, vi, v j
do not mutually see each other. Similarly, for 1 � l < r � d(v) we write ϕv(l, r) to denote �v(visl(v),visr(v)). We will need
the notion of the approximation �↑

v (vi, v j) of the angle �v(vi, v j), which is defined as follows (cf. Fig. 3): Let vi′ be the last

vertex in chainv(vi+1, vi) and v j′ be the first vertex in chainv(v j, v j−1). We then define �↑
v (vi, v j) = �v(vi′ , v j′ ). Observe

that if {v, vi}, {v, v j} ∈ Evis, we have �↑
v (vi, v j) = �v (vi, v j). Also note that knowing the visibility angles of a vertex v is

equivalent to knowing ϕv(lv , rv) for all 1 � lv < rv � d(v).
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Fig. 4. Illustration of the idea behind the greedy pairing algorithm for a single angle α and starting vertex v0. If we map angles to the range [0,2π), we
allow v0 and v1 to be paired which is obviously impossible.

Fig. 5. An example in which only one visibility graph can correctly be reconstructed by any greedy pairing algorithm.

In terms of the above definitions, the goal of the visibility graph reconstruction problem is to find vis(vi) for all vi ∈ V ,
and thus Evis, when we are given n, V , d(v) for all v ∈ V , and ϕv(lv , uv) for all v ∈ V and all 1 � lv < uv � d(v), as well as
the (ccw) order in which the vertices appear along the boundary.

3. Uniqueness

The key question when trying to reconstruct the visibility graph of a polygon is how to identify a vertex u visible
to some known vertex v . Knowing all angles at every vertex may seem to be more information than necessary and the
reconstruction problem may thus seem easily solvable by some greedy algorithm. Before we actually present an algorithm
that solves the reconstruction problem, we show that some natural greedy algorithms do not work in general.

3.1. Greedy approach

It is a natural idea to first orient all angles w.r.t. a single, global orientation (e.g., the line vn−1 v0) by summing angles
around the polygon boundary. Then, if a vertex v sees some other vertex u under a certain global angle α, u must see v
under the inverse angle α + π , as the line uv has a fixed orientation. A simple greedy approach to identify the vertex u in
the view from v would be to walk from v along the boundary and find the first vertex that sees some other vertex under
the global angle α + π . The example in Fig. 4 however shows that this approach does not work in general.

A similar but somewhat stronger approach is to allow global angles to go beyond [0,2π) while summing around the
polygon boundary, cf. Fig. 4. This prevents pairing vertex v0 with vertex v1 in that example. Nevertheless, there are still
examples where this strategy fails, and in fact it is not possible at all to greedily match angles: Inspect Fig. 5 for an example
of two polygons for which no matter how a greedy algorithm chooses to pair vertices, it has to fail for one of the two.

3.2. Triangle witness algorithm

We now give an algorithm for the reconstruction of the visibility graph from the visibility angles of all vertices. Note
that from now on we map all angles to the range [0,2π). Our algorithm considers all vertices at once and incrementally
identifies edges connecting vertices that lie further and further apart along the boundary. In step k of the algorithm we
know which vertices in {vi+1, vi+2, . . . , vk−1} are visible to a vertex vi and we need to decide whether or not vi sees vk .
Intuitively, the decision boils down to the question whether the next unidentified vertex of vis(vi) is vk . Our algorithm
only needs to make decisions of this type. The key ingredient here is the use of a triangle witness vertex that indicates
whether two other vertices see each other. Because any polygon can be triangulated, we know that for every two vertices
{vi, v j} ∈ Evis with v j �= vi+1, there is a “witness” vertex vl ∈ chain(vi+1, v j−1) that they both see such that vi, vl , and v j
form a triangle with an angle sum of π . We now extend this notion to the case where {vi, v j} /∈ Evis.
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Fig. 6. Illustration of the generalized angle-sum condition of Definition 1. On the left {vi , v j} ∈ Evis and the angles αi , α j and αl of the condition sum up
to π – hence vl is a triangle witness of (vi , v j). On the right, {vi , v j} /∈ Evis and the sum of the angles is strictly less than π – hence vl is no triangle
witness of (vi , v j).

Definition 1. Let vi, v j ∈ V be two different vertices and v j �= vi+1. Let further vl ∈ chain(vi+1, v j−1) with {vi, vl}, {v j, vl} ∈
Evis. We say vl is a triangle witness of (vi, v j) if it fulfills the generalized angle-sum condition (see Fig. 6)

�↑
vi

(vl, v j) + �↑
v j

(vi, vl) + �vl (v j, vi) = π.

We will show later that two vertices vi, v j ∈ V , |chain(vi, v j)| > 2, see each other if and only if there is a triangle witness
of (vi, v j). Note that if v j = vi+1, the ordered pair (vi, v j) does not have a triangle witness even though {vi, v j} ∈ Evis. Let
us briefly motivate the generalized angle-sum condition. As before, we know that if two vertices vi, v j ∈ V , v j �= vi+1, see
each other, there must be a vertex vl ∈ chain(vi+1, v j−1) which sees both of them. For any such choice of vl , the condition
�vi (vl, v j) + �v j (vi, vl) + �vl (v j, vi) = π is trivially fulfilled. In the case that vi does not see v j , the only difference from
vi ’s perspective is that for any choice of vl , the angle between vi vl and vi v j does not appear in vi ’s visibility angles
ϕvi (although its value might still appear in ϕvi ). In order to capture this difference we replace v j in �vi (vl, v j) by an
expression that evaluates to v j if and only if vi sees v j . We choose the expression “the first vertex in chainvi (v j, v j−1)”,
which is v j exactly if vi sees v j . If, similarly, we also replace vi in �v j (vi, vl) by “the last vertex in chainv j (vi+1, vi)”, we
obtain the generalized angle-sum condition of Definition 1.

We can now describe the triangle witness algorithm. It iterates over an increasing number of steps k along the boundary,
focusing at step k on all edges of the form {vi, vi+k}. Throughout, it maintains two maps F , B that store for every vertex all
the edges identified so far that go at most k steps forward or backward along the boundary, respectively. Both F [vi][v j] = s
and B[vi][v j] = s denote that {vi, v j} is the s-th edge incident to vi in ccw order. The difference between F [vi] and B[vi] is
that B[vi] is filled in clockwise order by the algorithm, i.e. its first entry will be B[vi][vi−1] = d(vi). Whenever convenient,
we use F [vi] and B[vi] like a set, e.g. we write vl ∈ F [vi] to denote that there is an entry vl in F [vi] and write |F [vi]| to
denote the number of entries in F [vi]. It is clear that once we computed the maps for k up to � n

2 	, we essentially have
computed Evis.

The initialization of the maps for k = 1 is simple as every vertex sees its neighbors on the boundary. In later iterations,
for every vertex vi there is always exactly one candidate vertex for vi+k , namely the (|F [vi]|+ 1)-th vertex visible to vi . We
decide whether vi and vi+k see each other by going over all vertices between vi and vi+k in ccw order along the boundary
and checking whether there is a triangle witness vl ∈ chain(vi+1, vi+k−1) of (vi, vi+k). If and only if this is the case, we
update Evis, F , and B with the edge {vi, vi+k}. For a listing of the triangle witness algorithm see Algorithm 1.

In the following we prove the correctness of the triangle witness algorithm. For this we mainly have to show that having
a triangle witness is necessary and sufficient for a pair of vertices to see each other. To show this, we will need the notion
of blockers and shortest paths in polygons.

Definition 2. Let vi, v j ∈ V . We say vb ∈ chain(vi+1, v j−1) is a blocker of (vi, v j) if for all u ∈ chain(vi, vb−1), v ∈
chain(vb+1, v j) we have {u, v} /∈ Evis.

Note that if vb is a blocker of (vi, v j), vb also is a blocker of (u, v) for all u ∈ chain(vi, vb−1), v ∈ chain(vb+1, v j).
A path between two vertices a,b ∈ V of a polygon P is defined as a curve that lies entirely in P and has a and b as its

endpoints. A shortest path between a and b is a path of minimum (Euclidean) length among all the paths between a and b.

Lemma 3. Let vi, v j ∈ V . The shortest path in P between vi and v j is unique and is a chain of straight line segments that connect at
vertices of P (cf. Lemmas 3.2.3 and 3.2.5 in [9]).

We can therefore write (a, u0, u1, . . . ,b) to denote a shortest path, where no three subsequent vertices are collinear.
The points ui are the locations at which the path bends and we refer to them as the path’s interior vertices. The following
statements motivate the term ‘blocker’.
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Input: n, d(·), ϕ·(·, ·)
Output: Evis

1. F ← [array of n empty maps], B ← [array of n empty maps], Evis ← ∅
2. for i ← 0, . . . ,n − 1
3. Evis ← Evis ∪ {vi , vi+1}
4. F [vi ][vi+1] ← 1
5. B[vi+1][vi ] ← d(vi)

6. for k ← 2, . . . , � n
2 	

7. for i ← 0, . . . ,n − 1
8. j ← i + k
9. for l ← i + 1, . . . , j − 1

10. if vl ∈ F [vi ] ∧ vl ∈ B[v j ]
11. αi ← ϕvi (F [vi ][vl], |F [vi ]| + 1) (= �↑

vi
(vl, v j), cf. Theorem 8)

12. α j ← ϕv j (d(v j) − |B[v j ]|, B[v j ][vl]) (= �↑
v j

(vi , vl), cf. Theorem 8)
13. αl ← ϕvl (F [vl][v j ], B[vl][vi ]) (= �vl (v j , vi), cf. Theorem 8)
14. if αi + α j + αl = π
15. Evis ← Evis ∪ {vi , v j}
16. F [vi ][v j ] = |F [vi ]| + 1
17. B[v j ][vi ] = d( j) − |B[v j ]|
18. abort innermost loop

Algorithm 1. Triangle witness algorithm.

Fig. 7. Illustration of the objects in the proof of Lemma 4. Left: a path that crosses or touches uw four times and can thus be shortened (dashed line).
Right: vb lies on a segment of the boundary of P ′ , therefore we can shorten any path that lies in P ′ and bends at vb .

Lemma 4. Let vi, v j ∈ V with {vi, v j} /∈ Evis . Every interior vertex of the shortest path from vi to v j is a blocker of either (vi, v j) or
(v j, vi).

Proof. Let pij be the shortest path from vi to v j . We start by observing that, for each {u, w} ∈ Evis, pij cannot cross (or
touch) the segment uw more than once (cf. Fig. 7 (left)). Otherwise, we could find a shorter path by replacing the part of
pij from the first to last point of its intersection with uw by a straight line segment. For the sake of contradiction assume
that vb ∈ V is an interior vertex of the shortest path pij from vi to v j which is not a blocker of either (vi, v j) or (v j, vi).
W.l.o.g. assume vb ∈ chain(vi+1, v j−1). As vb is not a blocker of (vi, v j), there are two vertices u ∈ chain(vi+1, vb−1), w ∈
chain(vb+1, v j−1) with {u, w} ∈ Evis. Let P ′ be the subpolygon induced by the vertices in chain(w, u) (cf. Fig. 7 (right)).
Because pij cannot cross (or touch) the segment uw more than once, it must lie in P ′ completely. Hence, vb must lie in
P ′ and be collinear with u and w . Because P ′ is a simple polygon, there is an ε > 0 such that no part of the boundary of
P ′ , except for uw , lies closer to vb than ε. Let x, y be the intersection points of pij with a ball of radius ε around vb . If we
replace the part of pij from x to y via vb by a straight line segment, we obtain a shorter path, which is a contradiction to
pij being the shortest path. Note that x and y cannot both lie on uw , as vb is an interior vertex of pij . �
Corollary 5. Let vi, v j ∈ V . If {vi, v j} /∈ Evis , there is either a blocker of (vi, v j) or of (v j, vi).

We now relate the definition of a blocker to the geometry of the polygon.

Lemma 6. Let vi, v j ∈ V with i = j + 2, {vi, v j} /∈ Evis . If w := v j+1 = vi−1 is convex (inner angle � π ), then v j′ =
arg minvb∈chainvi (vi+1,v j−1) �vi (vb, w) and vi′ = arg minvb∈chainv j (vi+1,v j−1) �v j (w, vb) are blockers of (vi, v j) that lie in the interior

of the triangle defined by vi, vi+1 , and v j .

Proof. As w is convex, the shortest path pij from vi to v j only contains vertices of chain(vi, v j). As pij only makes right
turns (i.e. any three consecutive vertices on pij form a ccw triangle), all interior vertices of pij lie strictly left of the oriented
line vi v j and hence in the interior of the triangle defined by vi, vi+1, and v j . Furthermore v j′ and vi′ are the first and the
last interior vertices of pij respectively. By Lemma 4 we thus know that both v j′ and vi′ are blockers of (vi, v j). �
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Fig. 8. Sketch of the definitions in the proof of Lemma 7.

We now get to the central lemma that essentially states that the existence of a triangle witness is necessary and sufficient
for a pair of vertices to see each other.

Lemma 7. Let vi, v j ∈ V with |chain(vi, v j)| > 2. There is a triangle witness vl of (vi, v j) if and only if {vi, v j} ∈ Evis .

Proof. If {vi, v j} ∈ Evis, because there exists a triangulation of the polygon containing the edge {vi, v j}, there must be a

vertex vl ∈ chain(vi+1, v j−1) for which both edges {vi, vl} and {vl, v j} are in Evis. For this vertex we have �↑
vi

(vl, v j) +
�↑

v j
(vi, vl)+�vl (v j, vi) = �vi (vl, v j)+�v j (vi, vl)+�vl (v j, vi) = π as all three relevant edges are in Evis and the sum over

the angles of any triangle is π .
For the converse implication assume there is a triangle witness vl of (vi, v j). For the sake of contradiction, assume

{vi, v j} /∈ Evis.
Consider the polygon P ′ induced by the vertices vi, vl, v j, chain(v j+1, vi−1), cf. Fig. 8. As {vi, vl}, {vl, v j} ∈ Evis, P ′

is simple and well defined. In P ′ , vl is a convex vertex, as it fulfills the generalized angle-sum condition of Defi-
nition 1 and thus �vl (v j, vi) � π , because all angles are non-negative. We can therefore apply Lemma 6 (on v j, vi )
w.r.t. P ′ and conclude that both v j′ and vi′ block (v j, vi), where v j′ = arg minvb∈chainvi (v j+1,vi−1) �vi (vl, vb) and vi′ =
arg minvb∈chainv j (v j+1,vi−1) �v j (vb, vl). This is then also true in our original polygon P and thus vi′ ∈ chain(v j, v j′ ) as other-

wise v j′ would block (v j, vi′ ) and vi′ would block (v j′ , vi) contradicting the definition of v j′ and vi′ , respectively. Observe
that vi′ is the last vertex in chain(vi+1, vi) visible to v j and v j′ is the first vertex in chain(v j, v j−1) visible to vi .

By applying Lemma 6 to P ′ , we know that both v j′ and vi′ lie inside the triangle defined by vi, vl , and v j . This

means �↑
vi

(vl, v j) = �vi (vl, v j′ ) < �vi (vl, v j) and �↑
v j

(vi, vl) = �v j (vi′ , vl) < �v j (vi, vl) and thus �↑
vi

(vl, v j)+�↑
v j

(vi, vl)+
�vl (v j, vi) < �vi (vl, v j) + �v j (vi, vl) + �vl (v j, vi) = π , which is a contradiction with our assumption that vl is a triangle
witness of (vi, v j). �
Theorem 8. The triangle witness algorithm is correct and computes a unique solution.

Proof. As the edges in Evis are the same as the edges stored in F and the same as the edges stored in B throughout
the algorithm, it is sufficient to show that after step k of the iteration both F and B contain exactly the edges be-
tween vertices that are at most k steps apart along the boundary. As no two vertices can be further apart than � n

2 	
steps along the boundary, this immediately implies that Evis eventually contains exactly the edges of the visibility graph.
More precisely, we inductively show that after step k of the iteration, F [vi] contains the vertices of chainvi (vi+1, vi+k) and
B[vi] contains the vertices of chainvi (vi−k, vi−1) for all vi ∈ V . For the sake of simplicity we abuse notation and write
F [vi] = chainvi (vi+1, vi+k) and B[vi] = chainvi (vi−k, vi−1).

The discussion for k = 1 is trivial as every vertex has an edge to both its neighbors. The algorithm initializes F and
B to consist of these edges. It remains to show for all 0 � i < n that assuming F [vi] = chainvi (vi+1, vi+k−1) and B[vi] =
chainvi (vi−k+1, vi−1) after step k − 1, we have F [vi] = chainvi (vi+1, vi+k) and B[vi] = chainvi (vi−k, vi−1) after step k.

The algorithm adds an edge between two vertices vi and vi+k if and only if there is a vertex vl ∈ chain(vi+1, vi+k−1)

with vl ∈ F [vi] and vl ∈ B[vi+k] for which αi +α j +αl = π , where αi,α j,αl are defined as in Algorithm 1. As vi and vl are
less than k steps apart on the boundary, the induction assumption implies that F [vi] = chainvi (vi+1, vi+k−1) and B[vi+k] =
chainvi+k (vi+1, vi+k−1). Thus, vl ∈ F [vi] and vl ∈ B[vi+k] is equivalent to {vi, vl}, {vi+k, vl} ∈ Evis and by Lemma 7 it suffices

to show that αi = �↑
vi

(vl, vi+k),α j = �↑
vi+k

(vi, vl) and αl = �vl (vi+k, vi) for all vl ∈ F [vi] ∩ B[vi+k]. Again, by induction, we
have F [vi] = chainvi (vi+1, vi+k−1), and thus visF [vi ][vl](vi) = vl and vis|F [vi ]|+1(vi) = arg minvb∈chainvi (vi+k,vi−1) �vi (vi+1, vb)

and, consequently, we obtain that αi = ϕvi (F [vi][vl], |F [vi]| + 1) = �↑
vi

(vl, vi+k). Similarly, as vl and vi+k are less than k

steps apart on the boundary, we get α j = �↑
vi+k

(vi, vl). By the induction assumption we also have visF [vl][vi+k](vl) = vi+k
and visB[v ][vi ](vl) = vi and thus αl = ϕv (F [vl][v j], B[vl][vi]) = �v (vi+k, vi).
l l l
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Fig. 9. Sketch of how to construct two polygons of arbitrary size and different shape which have the same (exact) angles except for two. The vertex v in
the figure could be located anywhere on the dotted line as long as v does not see other vertices than u and w .

Fig. 10. Two polygons of different shape with the same angle measurements (A–H). The angle measurements appear in different orders along the boundary.

The uniqueness of the algorithm’s solution follows immediately from the fact that the existence of a triangle witness is
necessary and sufficient for two vertices to see each other. �
3.3. Geometry reconstruction

So far we have developed an algorithm for reconstructing the visibility graph of a polygon from its visibility angles given
in ccw order. The geometry of the polygon (up to similarity) can easily be obtained from the visibility graph together with
the visibility angles as follows. First we triangulate the polygon. This is possible since every polygon admits a triangulation,
and it is easy to see that such a triangulation can be found in linear time from the visibility graph. The visibility angles fix
the shape of every triangle in the triangulation, and the shapes of the individual triangles can be combined into the shape
of the polygon. It remains to argue that independent of the choice of triangulation, the resulting polygon is the same. This
is due to the fact that every possible triangulation uniquely leads to a polygon, and this polygon in turn admits every single
one of the possible triangulations.

4. Discussion

While our main focus in the above has been to show that it is at all possible to uniquely reconstruct a polygon from its
angles, it is worth mentioning that the triangle witness algorithm we provide runs in polynomial time. A straightforward
implementation using self-balancing trees for F and B achieves a running time of O (n3 log n). Also, as the triangle witness
algorithm computes a unique solution, it provides an immediate way of identifying inconsistent input, i.e. angle data that
does not belong to any polygon. If upon termination of the algorithm |F [vi] ∪ B[vi]| �= d(vi) for some vertex vi , the input
must be inconsistent. Otherwise, we can compute a triangulation of the visibility graph and infer the shape of the polygon
from it. Because of the uniqueness of the algorithm’s solution, the input was consistent if and only if this shape is valid
(i.e. has no self-intersections).

We have established that the information contained in the angles of a polygon uniquely determines its shape. A natural
follow-up question is whether we actually need all of this information or whether we can do with less. Recall that we
assume to be given a list of angle measurements for every vertex, where both the list of measurements as well as each
individual measurement are in ccw order. There are different ways how we might try to weaken the available data. First,
we might not be given every angle value (exactly). It is evident, that we can still infer the shape of the polygon if we only
miss a single (exact) angle value. We can compute the missing value, as the angles of a polygon need to sum to (n − 2)π .
Fig. 9 shows that as soon as we do not know the (exact) value of two or more angles, we cannot uniquely infer the shape
any more.

Another way of weakening the data is to relax the ordering in which the angles are given. On the one hand, we might
not be given the list of measurements in ccw order. Fig. 10 gives two polygons with the same sets of measurements and
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Fig. 11. Two polygons of different shape with the same sets of angles at corresponding vertices. Compared to the first polygon, all angles at a vertex of
type u or v in the second polygon appear in reverse order.

different shape, proving that without an order on the list of measurements the shape is not uniquely determined. On the
other hand, the individual measurements might not be ordered. In that case, we again cannot uniquely infer the shape of
the polygon as Fig. 11 proves.

While it might be possible to reconstruct the shape of a polygon from weaker data, we have shown that reconstruction
from angle measurements is impossible if the angles are unordered or incomplete. In Section 3 we have shown that an
ordered and complete list of angle measurements on the other hand allows the unique reconstruction of the polygon shape.
In that sense our results are tight.

5. Conclusion

In this paper we have considered the problem of reconstructing a simple polygon from an ordered list of angle measure-
ments at every vertex along the boundary. We have shown that the visibility graph of the original polygon can uniquely be
reconstructed from this data, and we proposed a polynomial-time algorithm for the reconstruction. From the visibility graph
and the angle data, the geometry of the polygon can be inferred up to similarity. Our results thus imply that the ordered
list of angle measurements is sufficient to uniquely reconstruct a polygon. In terms of reconstructing a polygon from angles,
we have seen that essentially all angles are needed and that they must be given in cyclic order for unique reconstruction to
be possible.
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