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Abstract

It is shown that all important features of a C∗-algebraic quantum group (A,Δ) defined by a modular
multiplicative W depend only on the pair (A,Δ) rather than the multiplicative unitary operator W . The
proof is based on thorough study of representations of quantum groups. As an application we present a con-
struction and study properties of the universal dual of a quantum group defined by a modular multiplicative
unitary—without assuming existence of Haar weights.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Building on the pioneering work of Baaj and Skandalis [1], S.L. Woronowicz introduced
in [20] the class of manageable multiplicative unitary operators. Such multiplicative unitaries
were shown to give rise to very interesting objects. Every such operator W acting on H ⊗ H
(where H is some separable Hilbert space) gives rise to a C∗-algebra A ⊂ B(H) with comulti-
plication Δ and a lot of additional structure [20, Theorem 1.5]. This extra structure comes in the
form of the reduced dual Â, the position of W ∈ M(Â⊗A), the coinverse κ , unitary coinverse R

and the scaling group (τt )t∈R. Moreover A comes naturally with an embedding into B(H), so it
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inherits the ultraweak topology from the latter space. All this structure is defined with direct use
of W .

The importance of manageability was emphasized with appearance the famous paper [8] in
which Kustermans and Vaes gave a very satisfactory definition of a locally compact quantum
group. They showed that every such object gives rise to a manageable multiplicative unitary. In
a more recent paper [2] it is shown that the conditions of regularity and semi-regularity are not
satisfied by multiplicative unitaries related to quantum groups.

Meanwhile, in [21,23] (and later in [12]) new examples of quantum groups were constructed
using the theory developed in [20]. Only later, in [14] it was shown that they fitted into the
scheme of locally compact quantum groups. Moreover the multiplicative unitaries used to define
them were not manageable, but only modular. The difference between the latter notions is super-
fluous as was later explained in [13]. Still the possibility that two different multiplicative unitary
operators gave rise to quantum groups described by isomorphic C∗-algebras with comultiplica-
tion (preserved by the isomorphism) remained unexplored until S.L. Woronowicz noticed in [22]
that a formula for a right invariant weight on a quantum group defined by a modular multiplica-
tive unitary could be expressed by one of the operators involved in the definition of modularity
(cf. Definition 1). This formula might give a weight which is infinite on all non-zero positive
elements, but if we choose the multiplicative unitary correctly we may find the Haar measure for
our quantum group.

This development prompted the following question: if we can use different multiplicative
unitaries to give rise to the same pair (A,Δ), does the additional structure on A depend on the
choice of the multiplicative unitary? In this paper we give an answer to this question. The rich
structure consisting of the coinverse, unitary coinverse, scaling group, reduced dual, the reduced
bicharacter and the ultraweak topology on A are determined uniquely by the pair (A,Δ) in the
sense that they do not depend on the choice of the multiplicative unitary giving rise to (A,Δ).

Let us briefly describe the contents of the paper. In the next section we will recall the definition
of a modular multiplicative unitary and state the most important consequences of the definition.
We will define what we mean by a quantum group and give a precise formulation of our main
result together with its classical interpretation.

Section 3 is devoted to developing the representation theory of quantum groups. This is the
main tool in the proof of our main result. We will define and study strongly continuous repre-
sentations of a quantum group. Constructions of direct sums, tensor products and contragradient
representations will be presented. The crucial notions of intertwining operators, equivalence,
quasi equivalence and algebras generated by representations will be discussed. Section 4 con-
tains the proof of our main theorem. The reasoning is based very firmly on the facts explained in
Section 3.

As one application of Theorem 5 we will give, in Section 5, a detailed account of the con-
struction of the universal dual of a given quantum group. We will reproduce some of the results
of Kustermans ([7]) in the more general setting of quantum groups arising from multiplicative
unitaries. Again the main tool will be the theory of representations of quantum groups devel-
oped in Section 3. The notion of a universal quantum group C∗-algebra will be introduced and
properties of this object will be studied.

Throughout the paper we will freely use the language of C∗-algebras developed for use in
the theory of quantum groups. We refer the reader to papers [9,18,19] for notions of multiplier
algebras, morphisms of C∗-algebras, C∗-algebras generated by quantum families of multipliers,
etc.
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2. Definitions and results

Let us recall the definition of a modular multiplicative unitary. We shall use the complex con-
jugate Hilbert space H of a given Hilbert space H. Its precise definition is given in Section 3.3.

Definition 1. (See [13, Definition 2.1].) Let H be a Hilbert space. A unitary operator W ∈
B(H ⊗ H) is a modular multiplicative unitary if it is a multiplicative unitary and there exist
two positive self-adjoint operators Q̂ and Q on H with zero kernels and a unitary operator
W̃ ∈ B(H⊗H) such that

W(Q̂ ⊗ Q)W ∗ = Q̂ ⊗ Q

and

(x ⊗ u|W |z ⊗ y) = (
z ⊗ Qu|W̃ |x ⊗ Q−1y

)
for all x, z ∈ H, u ∈ D(Q) and y ∈ D(Q̂ ).

Theorem 2. ([13,20]) Let H be a separable Hilbert space and let W ∈ B(H⊗H) be a modular
multiplicative unitary. Let

A = {
(ω ⊗ id)W : ω ∈ B(H)∗

}‖·‖-closure
, (2.1)

Â = {
(id ⊗ ω)(W ∗): ω ∈ B(H)∗

}‖·‖-closure
. (2.2)

Then

(1) A and Â are non-degenerate C∗-subalgebras of B(H);
(2) W ∈ M(Â ⊗ A);
(3) there exists a unique Δ ∈ Mor(A,A ⊗ A) such that

(id ⊗ Δ)W = W12W13;
moreover Δ is coassociative and the sets{

(a ⊗ I )Δ(b): a, b ∈ A
}

and
{
Δ(a)(I ⊗ b): a, b ∈ A

}
are linearly dense subsets of A ⊗ A;

(4) there exists a unique closed linear operator κ on the Banach space A such that the set
{(ω ⊗ id)W : ω ∈ B(H)∗} is a core for κ and

κ
(
(ω ⊗ id)W

) = (ω ⊗ id)(W ∗);
furthermore for any a, b ∈ Dom(κ) the product ab ∈ Dom(κ) and κ(ab) = κ(b)κ(a), the
image of κ coincides with Dom(κ)∗ and κ(κ(a)∗)∗ = a for any a ∈ Dom(κ);

(5) there exists a unique one parameter group (τt )t∈R of ∗-automorphisms of A and a unique
ultraweakly continuous involutive ∗-anti-automorphism R of A such that R ◦ τt = τt ◦ R for
all t ∈ R and κ = R ◦ τi/2.
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The objects κ , (τt ) and R appearing in statement (5) of Theorem 2 are referred to as the
coinverse, scaling group and unitary coinverse.

All results of the fundamental paper [20] have been formulated for multiplicative unitaries
acting on separable Hilbert spaces. For this reason we shall restrict our attention solely to such
spaces. In other words, from now on all Hilbert spaces are assumed to be separable. Moreover if
existence of a certain Hilbert space is a part of statement of a theorem (see e.g. Proposition 13)
then it can be shown that this Hilbert space is (or can be chosen) separable. Still, many of our
results are also true if the Hilbert spaces are of arbitrary dimension.

We shall consider pairs (A,Δ) consisting of a C∗-algebra A and a morphism Δ ∈ Mor(A,

A ⊗ A). We say that two such pairs (A,ΔA) and (B,ΔB) are isomorphic if there is an isomor-
phism Φ ∈ Mor(A,B) such that

ΔB ◦ Φ = (Φ ⊗ Φ) ◦ ΔA. (2.3)

Definition 3. Let A be a C∗-algebra and Δ ∈ Mor(A,A ⊗ A). We say that a the pair G = (A,Δ)

is a quantum group if there exists a modular multiplicative unitary such that (A,Δ) is isomorphic
to the C∗-algebra with comultiplication associated to W in the way described in Theorem 2. In
such a case we shall say that W is a modular multiplicative unitary giving rise to the quantum
group G.

The following definition has been proposed e.g. in [11, p. 237].

Remark 4. Let us note that the results of [13] guarantee that G = (A,Δ) is a quantum group if
and only if there exists a manageable multiplicative unitary [20, Definition 1.2] giving rise to G.

The aim of this paper is to provide justification for Definition 3.
A modular multiplicative unitary W on a Hilbert space H gives rise to a quantum group G =

(A,Δ) as described in Theorem 2, but it also produces another quantum group called the reduced

dual of G. This is the quantum group Ĝ = (Â, Δ̂ ), where Â is the C∗-subalgebra of B(H)

described in Theorem 2 and Δ̂ is given by

Δ̂(x) = σ
(
W ∗(I ⊗ x)W

)
, (2.4)

where σ is the flip on the tensor product Â ⊗ Â. One possible modular multiplicative unitary
giving rise to Ĝ is Ŵ = ΣW ∗Σ , where Σ is the flip on H ⊗ H. It is clear that the reduced
dual of Ĝ is isomorphic to G. Note that Eq. (2.4) and Theorem 2(3) show that the element
W ∈ M(Â ⊗ A) is a bicharacter, i.e. it satisfies

(id ⊗ Δ)W = W12W13 and (Δ̂ ⊗ id)W = W23W13. (2.5)

The quantum group Ĝ and the bicharacter W ∈ M(Â ⊗ A) are a priori defined in terms of the
modular multiplicative unitary which gives rise to G, rather than G itself.

The elements of the polar decomposition of the coinverse κ are also determined a priori by
the multiplicative unitary. For example the scaling group (τt ) is given by

τt (a) = Q2it aQ−2it ,
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where Q is one of the operators involved in the definition of modularity. In addition any mod-
ular multiplicative unitary W ∈ B(H ⊗ H) giving rise to G provides a topology on A, namely
the restriction of the ultraweak topology from B(H) to A. The anti-automorphism R and the
automorphisms (τt )t∈R (also defined through W ) are continuous for this topology.

We shall prove that all necessary data of a quantum group G are independent of the choice of
modular multiplicative unitary giving rise to G.

Theorem 5. Let G = (A,Δ) be a quantum group. Choose a Hilbert space H and a modular
multiplicative unitary W ∈ B(H ⊗ H) giving rise to G and use Theorem 2 to construct the
embedding A ⊂ B(H) and the objects Â, κ , R and (τt )t∈R. Let Δ̂ be the comultiplication on Â

given by (2.4). Then

(1) The ultraweak topology on A inherited from B(H) is independent of the choice of H and W .
(2) The coinverse κ , its domain and all elements of polar decomposition are independent of the

choice of H and W .
(3) Ĝ = (Â, Δ̂ ) and the bicharacter W ∈ M(Â ⊗ A) are defined uniquely (up to isomorphism)

by G. They do not depend on the choice of H and W ∈ B(H⊗H).

The proof of Theorem 5 will be given in Section 4.
Note that one way to interpret Theorem 5 is to say that a quantum group G = (A,Δ) is

naturally endowed with an analog of the class of the Haar measure. This is because the ultraweak
topology on A (determined uniquely by G) fixes the von Neumann algebra A′′ which is the non-
commutative analog of L∞(G). Also the set of all ultraweakly continuous functionals on A plays
the role of L1(G).

3. Representations of quantum groups

Throughout this section let us fix a quantum group G = (A,Δ).

Definition 6. A strongly continuous unitary representation U of G acting on a Hilbert space H

is a unitary element U ∈ M(K(H)⊗A) such that (id ⊗Δ)U = U12U13. The class of all strongly
continuous unitary representations of G will be denoted by Rep(G).

We shall use the symbol HU for the Hilbert space on which the representation U acts: U ∈
M(K(HU) ⊗ A).

Recall that G is defined as the pair (A,Δ) arising from some modular multiplicative unitary
W ∈ B(H ⊗H) for some Hilbert space H (cf. Section 2). It follows from statements (1) and (2)
of Theorem 2 that W ∈ M(K(H)⊗A) and so by the first part of (2.5) W is a strongly continuous
unitary representation of G on H.

If H is a Hilbert space then the element IH = IH ⊗ IA ∈ M(K(H) ⊗ A) clearly is a strongly
continuous unitary representation of G. Such representations are called trivial.

In what follows we shall most of the time omit the words “strongly continuous unitary” and
speak simply about representations of G.
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3.1. Intertwining operators

Let U,V ∈ Rep(G) and let t ∈ B(HU ,HV ). We say that t intertwines U and V if

(t ⊗ I )U = V (t ⊗ I ). (3.1)

The above equation may be understood in several contexts. If the C∗-algebra A is faithfully
represented on a Hilbert space H then U and V become elements of B(HU ⊗H) and B(HV ⊗H),
respectively. In this situation (3.1) means that

(t ⊗ IH)U = V (t ⊗ IH).

Equivalently t ∈ B(HU ,HV ) intertwines U and V if and only if for any ω ∈ A∗ we have

t (id ⊗ ω)(U) = (id ⊗ ω)(V )t.

Finally we can identify of M(K(HU)⊗A) and M(K(HU)⊗A) with the C∗-algebras L(HU ⊗A)

and L(UV ⊗A) of adjointable maps of the Hilbert A-modules HU ⊗A and HV ⊗A, respectively
[9, pp. 10, 37]. Then t ∈ B(HU ,HV ) intertwines U and V if and only if

(t ⊗ IA)U = V (t ⊗ IA)

as elements of L(HU ⊗ A,HV ⊗ A).
Let U,V ∈ Rep(G). The set of operators intertwining U and V will be denoted by

Hom(U,V ).
The following properties follow immediately from the definition of Hom(U,V ):

(1) Hom(U,V ) is a subspace of B(HU,HV ) closed in the weak operator topology;
(2) for any t ∈ Hom(U,V ) we have t∗ ∈ Hom(V ,U);
(3) IHU

∈ Hom(U,U);
(4) if T is another representation of G then for any t ∈ Hom(U,V ) and s ∈ Hom(V ,T ) we have

st ∈ Hom(U,T ) and composition of intertwining operators is bilinear for the vector space
structures on Hom(U,V ) and Hom(V ,T ), in particular Hom(U,U) is a ∗-algebra with unit;

(5) for any t ∈ Hom(U,V ) the composition t∗t is a positive element of the ∗-algebra
Hom(U,U), i.e. there exists x ∈ Hom(U,U) such that t∗t = x∗x.

All this shows that the class Rep(G) of strongly continuous unitary representations of G with in-
tertwining operators as morphisms forms a concrete W∗-category as defined in [6, Definitions 1.1
and 2.1].

3.2. Equivalence and quasi-equivalence

Definition 7. Let U and V be representations of G.

(1) U is a subrepresentation of V if Hom(U,V ) contains an isometry;
(2) U and V are equivalent if Hom(U,V ) contains an invertible operator;
(3) U and V are disjoint if Hom(U,V ) = {0};
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(4) U and V are quasi-equivalent if no subrepresentation of U is disjoint from V and no sub-
representation of V is disjoint from U .

Let U,V ∈ Rep(G). We write U ≈ V if U and V are equivalent. Clearly “≈” is an equivalence
relation. One can show that quasi-equivalence is also an equivalence relation (cf. e.g. Proposi-
tion 13).

Remark 8. Let U,V ∈ Rep(G). By [6, Corollary 2.7] U and V are equivalent if and only if
Hom(U,V ) contains a unitary operator. Similarly U and V are equivalent if Hom(U,V ) con-
tains an operator with trivial kernel and dense range. Moreover equivalence is the same thing as
isomorphism in the W∗-category Rep(G).

3.3. Operations on representations

3.3.1. Direct sums
Let (Uα) be a family of representations of G. The C∗-algebra

⊕
α

(
K(HUα ) ⊗ A

)

is contained in

K

(⊕
α

HUα

)
⊗ A.

Moreover the inclusion is a morphism of C∗-algebras ([15]). Therefore we have

M

(⊕
α

(
K(HUα ) ⊗ A

)) ⊂ M

(
K

(⊕
α

HUα

)
⊗ A

)
.

The C∗-algebra on the left hand side consists of norm bounded families (Tα) of multipli-
ers of the C∗-algebras K(HUα ) ⊗ A. Therefore the family U = (Uα) is a unitary element of
M(K(

⊕
α HUα) ⊗ A). It is not difficult to see that it is a strongly continuous unitary repre-

sentation of G. So defined U is called the direct sum of the representations (Uα). Of course
HU = ⊕

α HUα . Moreover for any α the canonical injection Hα ↪→ H and projection H → Hα

belong to Hom(Uα,U) and Hom(U,Uα), respectively. In particular each Uα is a subrepresenta-
tion of U .

Remark 9. Let (Uα) be a family representations of G and let U be the direct sum of (Uα). Then
for any ω ∈ A∗ and any α we have

∥∥(id ⊗ ω)U
∥∥ �

∥∥(id ⊗ ω)Uα

∥∥.

In what follows we shall restrict attention to countable direct sums, so that our Hilbert spaces
remain separable.
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3.3.2. Tensor products
Let U,V ∈ Rep(G). Then the element

U � V = U13V23 ∈ M
(
K(HU) ⊗ K(HV ) ⊗ A

) = M
(
K(HU ⊗ HV ) ⊗ A

)
is a representation of G. The representation U � V is the tensor product of representations U

and V .
If T is another representation of G then we have (U � V ) � T ≈ U � (V � T ), so the

tensor product of any finite number of representations of G is associative up to equivalence.
Note that the operation of taking tensor product is not, in general, commutative. In the worst case
U � V is not equivalent to V � U . However, even if U � V ≈ V � U , then in general, the flip
Σ : HU ⊗HV → HV ⊗HU does not intertwine U � V with V � U : Σ /∈ Hom(U � V,V � U).

The operation of taking tensor products endows Rep(G) with the structure of a monoidal
W∗-category [17, p. 39].

3.3.3. Contragradient representations
Let H be a Hilbert space. The complex conjugate space H is defined as the set of elements x,

where x ∈ H . The vector space structure on H is given by x + y = x + y and ζx = ζx for
x, y ∈ H and ζ ∈ C. The Hilbert space structure on H is obtained by setting

(x | y) = (y | x),

where on the right-hand side we use the scalar product in H . We have the natural operation
of transposition taking operators on H to operators on H . This operation will be denoted by
m → m�: for any closed operator m on K the operator m� is defined by((

x

y

)
∈ Graphm�

)
⇐⇒

((
x

y

)
∈ Graphm∗

)
.

When restricted to bounded operators, the transposition becomes an anti-isomorphism of C∗-
algebras B(H) → B(H).

In what follows we shall denote by R the unitary coinverse of the quantum group G. This is
the “unitary” part of the polar decomposition of the coinverse κ (cf. Section 2, [13,20]).

Proposition 10. Let U ∈ Rep(G). Then the element

U c = U�⊗R ∈ M
(
K(HU) ⊗ A

)
is a strongly continuous unitary representation of G acting on HU c = HU .

Proof. Denote by σ the flip map on A ⊗ A. Using [13, Theorem 2.3(5)] and remembering that
� and R are anti-isomorphisms we obtain

(id ⊗ Δ)U c = (id ⊗ Δ)(� ⊗ R)U = (� ⊗ Δ ◦ R)U

= (� ⊗ [σ ◦ (R ⊗ R) ◦ Δ])U
= (� ⊗ [σ ◦ (R ⊗ R)])(id ⊗ Δ)U
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= (id ⊗ σ)(� ⊗ R ⊗ R)(id ⊗ Δ)U

= (id ⊗ σ)(� ⊗ R ⊗ R)(U12U13)

= (id ⊗ σ)
([

(� ⊗ R)U
]

13

[
(� ⊗ R)U

]
12

)
= (id ⊗ σ)

(
U c

13U
c
12

) = U c
12U

c
13. �

Definition 11. Let U be a strongly continuous unitary representation of G. The contragradient
representation of U is the strongly continuous unitary representation U c of G defined in Propo-
sition 10.

Remark 12. In contrast to existing definitions of contragradient representations in literature (e.g.
[16, Section 3]) we have (U c)c = U for any strongly continuous unitary representation U of G.

The operation of taking contragradient representation is well compatible with tensor products.
In fact if U and V are representations of G then identifying HU ⊗ HV with HV ⊗ HU via the
unitary map

HV ⊗ HU � y ⊗ x −→ x ⊗ y ∈ HU ⊗ HV

we have

(U � V )c = V c � U c. (3.7)

3.4. Quasi-equivalence and tensor products

Proposition 13. Let U and V be representations of G. Then the following conditions are equiv-
alent:

(1) U and V are quasi-equivalent;
(2) There exists a Hilbert space Z such that IZ � U and IZ � V are equivalent.

Note that this result can be formulated without the notion of tensor product of representa-
tions. This is because tensor product with a trivial representation is expressible as a direct sum.
We omit the proof of this proposition as it follows the lines of proofs of analogous results for rep-
resentations of C∗-algebras ([5]). Moreover, in this paper we shall exclusively use condition (2)
of Proposition 13 as the definition of quasi-equivalence. Equivalence of (1) and (2) will not be
used.

3.5. Algebras generated by representations

In this subsection we shall describe the algebras generated by representations of G. We shall
use the notion of a C∗-algebra generated by a quantum family of affiliated elements [19, Defini-
tion 4.1].

Let U ∈ Rep(G). Then there exists a unique C∗-algebra BU acting non-degenerately on HU

such that U ∈ M(BU ⊗ A) and BU is generated by U . Indeed, by Remark 4 there is a Hilbert
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space H and a manageable multiplicative unitary W ∈ B(H⊗H) giving rise to G. Then cf. [20,
Theorems 1.6 and 1.7] one may take

BU = {
(id ⊗ ω)(U∗): ω ∈ B(H)∗

}‖·‖-closure
. (3.8)

Uniqueness of BU follows from the remark after [19, Definition 4.1]. In particular BU is in-
dependent of the multiplicative unitary W and Hilbert space H entering (3.8). Note that BU is
unique not only as a C∗-algebra, but also as a subset of B(HU).

The next proposition states some basic facts about C∗-algebras generated by representations.
We omit the simple proof.

Proposition 14. Let G be a quantum group and let U,V ∈ Rep(G). Then

(1) if U is a subrepresentation of V then there exists a Φ ∈ Mor(BV ,BU) such that (Φ ⊗
id)V = U . This morphism maps BV onto BU and is continuous for the ultraweak topologies
inherited by BV and BU from B(HV ) and B(HU), respectively;

(2) if U ≈ V then there is a spatial isomorphism Φ ∈ Mor(BU ,BV ) such that (Φ ⊗ id)U = V ;
(3) if Z is a Hilbert space and V = IZ � U then there is an isomorphism Φ ∈ Mor(BU ,BV )

such that (Φ ⊗ id)U = V . Moreover Φ is a homeomorphism for the ultraweak topologies
inherited by BU and BV from B(HU) and B(HV ), respectively.

From Proposition 14(2), (3) and Proposition 13 we immediately get

Corollary 15. Let G be a quantum group and let U , V be representations of G. Assume that U

and V are quasi equivalent. Then there is an isomorphism Φ ∈ Mor(BU ,BV ) such that

(Φ ⊗ id)U = V.

Moreover Φ is a homeomorphism for the ultraweak topologies inherited by BU and BV from
B(HU) and B(HV ), respectively.

At the end of this section let us mention an important result about matrix elements of rep-
resentations. In it we shall use the strict closure of the operator κ defined on the strictly dense
subset Dom(κ) of M(A) (cf. [20, p. 133]).

Proposition 16. Let U be a representation of G. Then for any η ∈ B(HU)∗ the element (η⊗ id)U

belongs to the domain of κ and we have

κ
(
(η ⊗ id)U

) = (η ⊗ id)(U∗).

This proposition is a direct consequence of [20, Theorems 1.7 and 1.6(4)] and the fact that for
any quantum group G there is a manageable multiplicative unitary giving rise to G (cf. [13]).

3.6. Absorbing representations

Definition 17. Let G be a quantum group and let U be a representation of G.
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(1) U is called right absorbing if for any representation V of G we have

V � U ≈ IHV � U.

(2) U is called left absorbing if for any representation V of G we have

U � V ≈ U � IHV
.

Remark 18. Let G be a quantum group. By (3.7) a representation U of G is right absorbing if
and only if U c is left absorbing.

Proposition 19. Let G = (A,Δ) be a quantum group and let U ∈ Rep(G). Let π be a represen-
tation of A on the Hilbert space HU which is covariant in the sense that for any a ∈ A

U
(
π(a) ⊗ I

)
U∗ = (π ⊗ id)Δ(a). (3.9)

Then U is right absorbing.

Proof. Let V be a representation of V . Applying (id ⊗ π ⊗ id) to both sides of the equation
(id ⊗ Δ)V = V12V13 we obtain

U23
[
(id ⊗ π)V

]
12U

∗
23 = [

(id ⊗ π)V
]

12V13.

Therefore

[
(id ⊗ π)V

]∗
12U23

[
(id ⊗ π)V

]
12 = V13U23. (3.10)

The right-hand side of (3.10) is by definition equal to V � U while the left hand side is equivalent
to U23 = IHV � U . This means that U is right absorbing. �

Note that if H is a Hilbert space and W ∈ B(H ⊗ H) is a modular multiplicative unitary
giving rise to G then W , viewed as an element of M(K(H) ⊗ A), is a representation of G and
the embedding of A into B(H) given by W is a covariant representation of A. In particular we
have

Corollary 20. Let H be a Hilbert space and let W ∈ B(H⊗H) be a modular multiplicative uni-
tary giving rise to G. Then the representation W ∈ M(K(H) ⊗ A) of G on H is right absorbing.

Proposition 21. Let G be a quantum group. Then any two right absorbing representations are
quasi-equivalent.

Proof. Let U and V be right absorbing representations of G and let T be a left absorbing repre-
sentation of G (one can take e.g. T = U c, cf. Remark 18). We have

IHT � V ≈ T � V ≈ T � IHV

and
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T � IHU
≈ T � U ≈ IHT � U.

Clearly T � IHU
and T � IHV

are quasi equivalent. �
4. Proof of the main theorem

Let G = (A,Δ) be a quantum group. Let U be a right absorbing representation of G. Then
There is a unique comultiplication Δ̂U on BU such that

(Δ̂U ⊗ id)U = U23U13. (4.11)

To see this let H be a Hilbert space and let W ∈ B(H ⊗H) be a modular multiplicative unitary
giving rise to G. the second part of (2.5) tells us that

(Δ̂ ⊗ id)W = W23W13.

Now both U and W ∈ M(K(H) ⊗ A) are right absorbing representations of G (by Corollary 20)
and by Proposition 21 and Corollary 15 there is an isomorphism Φ ∈ Mor(BU , Â ) which is a
homeomorphism for the ultraweak topologies on BU ⊂ B(HU) and Â ⊂ B(H) and

(Φ ⊗ id)U = W. (4.12)

Therefore setting Δ̂U = (Φ ⊗Φ)−1 ◦Δ̂◦Φ we obtain a comultiplication on BU satisfying (4.11).
From what we have seen so far it is clear that (BU , Δ̂U ) is a quantum group isomorphic to

Ĝ = (Â, Δ̂ ), i.e. the reduced dual of G defined by W .
Now U could have been any other modular multiplicative unitary giving rise to G. It fol-

lows that the reduced dual (Â, Δ̂ ) is independent of the multiplicative unitary giving rise to G.
Moreover, the ultraweak topology on Â is independent of W .

Repeating the above reasoning for the quantum group Ĝ we see that the ultraweak topology
on A (which is ̂̂A) is independent of the modular multiplicative unitary giving rise to G. This
proves statement (1) of Theorem 5.

We have already shown that the reduced dual Ĝ is independent of the choice of modular
multiplicative unitary giving rise to G. The position of W in M(Â ⊗ A) is also fixed uniquely.
Indeed, for any right absorbing representation U we have the isomorphism Φ ∈ Mor(BU , Â )

satisfying (4.12). This proves statement (3) of Theorem 5.
Statement (2) of Theorem 5 follows from statements (1) and (3). To see this notice that given

a modular multiplicative unitary W ∈ B(H ⊗ H), the core of κ is determined by the ultraweak
topology inherited by Â from B(H). Now this topology is independent of W while the action of κ

on this core depends only on the position of W in M(Â⊗A) (cf. Theorem 2(4)). The uniqueness
of the polar decomposition of κ guarantees that R and (τt )t∈R are independent of the choice of
modular multiplicative unitary giving rise to G.

From now on we shall write A∗ for the space of functionals on A continuous for the ultraweak
topology on A coming from representation of A defined by any modular multiplicative unitary.
The image of any right absorbing representation in M(Â ⊗ A) will be called the reduced bichar-
acter for (G, Ĝ). In what follows the reduced bicharacter will be denoted by the letter W . By a
realization of W on a Hilbert space H we shall mean any modular multiplicative unitary acting
on H⊗H giving rise to G.
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5. Universal dual of a quantum group

The aim of this section is to define and analyze the universal dual object of a given quantum
group G = (A,Δ). Such objects were already considered in [15, Section 3] under the name
“Pontryagin dual.”

5.1. Maximal representations and universal C∗-algebra

Proposition 22. There exists a strongly continuous representation W of G such that for any
U ∈ Rep(G) and any ω ∈ A∗ we have∥∥(id ⊗ ω)W

∥∥ �
∥∥(id ⊗ ω)U

∥∥. (5.13)

Proof. Let (ωn)n∈N be a sequence of elements of A∗ which is dense in A∗ and each element is
repeated infinitely many times. For any n ∈ N there exists a representation Un of G such that

∥∥(id ⊗ ωn)Un

∥∥ � sup
U

∥∥(id ⊗ ωn)U
∥∥ − 1

n

where the supremum is taken over all strongly continuous unitary representations of G.
We define W to be the direct sum of (Un)n∈N. Formula (5.13) follows immediately from the

definition of W. Indeed, given a representation U of G, ω ∈ A∗ and ε > 0 we can find n such
that ‖ω − ωn‖ < ε

3 and n > 3
ε

. Then

∥∥(id ⊗ ωn)Un

∥∥ �
∥∥(id ⊗ ωn)U

∥∥ − ε

3

and

∣∣∥∥(id ⊗ ω)W
∥∥ − ∥∥(id ⊗ ωn)W

∥∥∣∣ �
∥∥(id ⊗ ω)W − (id ⊗ ωn)W

∥∥ <
ε

3
,

∣∣∥∥(id ⊗ ω)U
∥∥ − ∥∥(id ⊗ ωn)U

∥∥∣∣ �
∥∥(id ⊗ ωn)U − (id ⊗ ω)U

∥∥ <
ε

3
.

Therefore

∥∥(id ⊗ ω)W
∥∥ �

∥∥(id ⊗ ωn)W
∥∥ − ε

3
�

∥∥(id ⊗ ωn)Un

∥∥ − ε

3

�
∥∥(id ⊗ ωn)U

∥∥ − 2ε

3
�

∥∥(id ⊗ ω)U
∥∥ − ε

(cf. Remark 9). �
Definition 23. Let G be a quantum group. A representation W fulfilling the condition of Propo-
sition 22 is called maximal.

Lemma 24. Let W be a maximal representation of G and let V ∈ Rep(G). If Φ ∈ Mor(BV ,BW)

is such that (Φ ⊗ id)V = W then Φ is an isomorphism.



P.M. Sołtan, S.L. Woronowicz / Journal of Functional Analysis 252 (2007) 42–67 55
Proof. The C∗-algebras BV and BW are closures of the sets of right slices of V and W, respec-
tively. Therefore Φ maps a dense subset of BV onto a dense subset of BW. By the maximality of
W the map Φ increases norm:∥∥Φ

(
(id ⊗ ω)V

)∥∥ = ∥∥(id ⊗ ω)W
∥∥ �

∥∥(id ⊗ ω)V
∥∥

for any ω ∈ A∗. It follows that Φ is isometric and consequently an isomorphism. �
Theorem 25. Let W be a maximal representation of G and let

Âu = {
(id ⊗ ω)W: ω ∈ A∗

}‖·‖-closure
. (5.14)

Then

(1) Âu is a non-degenerate separable C∗-subalgebra of B(HW) and W ∈ M(Âu ⊗ A).
(2) For any representation U of G there exists a unique ΦU ∈ Mor(Âu,BU) such that

(ΦU ⊗ id)W = U. (5.15)

(3) For any pair (B,U) such that U ∈ Rep(G) and B is a non-degenerate C∗-subalgebra
of B(HU) such that U ∈ M(B ⊗ A) and such that for any U ∈ Rep(G) there exists a unique
ΦU ∈ Mor(B,BU) such that (ΦU ⊗ id)U = U , there exists an isomorphism Ψ ∈ Mor(Âu,B)

such that (Ψ ⊗ id)W = U.

Proof. Clearly we have Âu = BW and so statement (1) is just a reformulation of the remarks at
the beginning of Section 3.5 (cf. [20, Theorem 1.6]).

AD (2). To prove existence of ΦU notice that both U and W are subrepresentations of U ⊕W.
Therefore, by Proposition 14(1) there exist Φ1 ∈ Mor(BU⊕W,BW) and Φ2 ∈ Mor(BU⊕W,BU)

such that

W = (Φ1 ⊗ id)(U ⊕ W), U = (Φ2 ⊗ id)(U ⊕ W).

By Lemma 24 the morphism Φ1 is an isomorphism. Then

U = ([
Φ2 ◦ Φ−1

1

] ⊗ id
)
W.

We let ΦU = Φ2 ◦ Φ−1
1 .

Uniqueness of ΦU is clear: if Φ ′ ∈ Mor(Âu,BU) satisfies

(Φ ′ ⊗ id)W = U

then for any ω ∈ A∗ we have

Φ ′((id ⊗ ω)W
) = (id ⊗ ω)U = ΦU

(
(id ⊗ ω)W

)
.

Thus, in view of (5.14) we have Φ ′ = ΦU .
AD (3). This is a standard consequence of the universal property of (Âu,W). �
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Remark 26. Note that the unique morphism ΦU described in Theorem 25(2) is a surjection
onto BU . In particular its image does not contain multipliers of BU which are not in BU (cf. the
proof of Lemma 24).

Proposition 27. Let W be a maximal representation of G. Then for any C∗-algebra D and any
unitary U ∈ M(D ⊗ A) such that (id ⊗ Δ)U = U12U13 there exists a unique ΦU ∈ Mor(Âu,D)

such that (ΦU ⊗ id)W = U .

Proof. We can assume that the C∗-algebra D is faithfully and non-degenerately represented on
a Hilbert space HU . Then U ∈ M(K(HU) ⊗ A) is a representation of G and by Theorem 25(2)
there exists a unique πU ∈ Mor(Âu,BU) such that (5.15) holds. Since BU is generated by U

and U ∈ M(D ⊗ A), the identity map is a morphism from BU to D. Moreover this is the only
morphism from BU to D which leaves U unchanged. �
Corollary 28. For any U ∈ Rep(G) there exists a unique non-degenerate representation πU

of Âu on the Hilbert space HU such that

(πU ⊗ id)W = U.

Moreover the association U ↔ πU establishes a bijective correspondence between Rep(G) and
the class of all non-degenerate representations of the C∗-algebra Âu.

Proof. Let U ∈ Rep(G). Then U ∈ M(K(HU) ⊗ A) and by Proposition 27 there exists a unique
ΦU ∈ Mor(Âu,K(HU)) such that we have (5.15). We let πU be ΦU considered as a map from
Âu to B(HU). Of course πU is a non-degenerate representation of Âu.

Conversely, for any non-degenerate representation π of Âu on a Hilbert space H , the uni-
tary element U = (π ⊗ id)W ∈ M(K(H) ⊗ A) is a strongly continuous unitary representation
of G. �
Remark 29. Let us note that the correspondence between representations of G and repre-
sentations of Âu described in Corollary 28 is a functor from the W∗-category Rep(G) to the
W∗-category of non-degenerate representations of Âu. In fact it is an equivalence of categories
preserving direct sums and tensor products.

Definition 30. The C∗-algebra Âu defined in Theorem 25 is called the universal quantum group
C∗-algebra of G. The representation W ∈ M(Âu ⊗A) is called the universal representation of G.

5.2. The universal dual

Proposition 31. Let Âu be the universal quantum group C∗-algebra of G and let W ∈ M(Âu ⊗A)

be the universal representation. Then

(1) There exists a unique Δ̂u ∈ Mor(Âu, Âu ⊗ Âu) such that

(Δ̂u ⊗ id)W = W23W13. (5.16)
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The morphism Δ̂u is coassociative and

{
Δ̂u(x)(IÂu

⊗ y): x, y ∈ Âu
}
,

{
(x ⊗ IÂu

)Δ̂u(y): x, y ∈ Âu
}

(5.17)

are linearly dense subsets of Âu ⊗ Âu.
(2) There exists a unique êu ∈ Mor(Âu,C) such that

(
êu ⊗ id

)
W = IA. (5.18)

The morphism êu has the following property:

(
id ⊗ êu) ◦ Δ̂u = (

êu ⊗ id
) ◦ Δ̂u = id. (5.19)

Proof. The unitary element

W23W13 ∈ M(Âu ⊗ Âu ⊗ A)

⊂ M
(
K(HW) ⊗ K(HW) ⊗ A

) = M
(
K(HW ⊗ HW) ⊗ A

)
is a strongly continuous unitary representation of G. Moreover W23W13 is a quantum family of
elements affiliated with BW23W13 generating this algebra. Therefore the identity map is a mor-

phism from BW23W13 to Âu ⊗ Âu.
By the universal property of (Âu,W), there exists a unique Morphism Φ ∈ Mor(Âu,BW23W13)

such that

(Φ ⊗ id)W = W23W13.

Let Δ̂u be the composition of Φ with the identity on BW23W13 considered as a morphism from
BW23W13 to Âu ⊗ Âu. Then Δ̂u ∈ Mor(Âu, Âu ⊗ Âu) satisfies (5.16).

To obtain coassociativity of Δ̂u we compute:

([
(Δ̂u ⊗ id) ◦ Δ̂u

] ⊗ id
)
W = (Δ̂u ⊗ id ⊗ id)(Δ̂u ⊗ id)W

= (Δ̂u ⊗ id ⊗ id)(W23W13)

= W34W24W14

= (id ⊗ Δ̂u ⊗ id)(W23W13)

= (id ⊗ Δ̂u ⊗ id)(Δ̂u ⊗ id)W

= ([
(id ⊗ Δ̂u) ◦ Δ̂u

] ⊗ id
)
W.

Now we can take right slice with any ω ∈ A∗ and coassociativity of Δ̂u follows. The fact that the
sets (5.17) are contained in Âu ⊗ Âu and their linear density of in Âu ⊗ Âu is proved in the same
way as [20, Proposition 5.1] (the crucial ingredient being (5.16)).

AD (2). Take U = 1 ⊗ IA ∈ M(K(C) ⊗ A). Then U is a strongly continuous unitary repre-
sentation of G and by the universal property of (Âu,W), there exists a unique êu ∈ Mor(Âu,C)

satisfying (5.18). Notice that it follows from (5.16) and (5.18) that
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([(
id ⊗ êu)Δ̂u

] ⊗ id
)
W = (

id ⊗ êu ⊗ id
)
(Δ̂u ⊗ id)W

= (
id ⊗ êu ⊗ id

)
(W23W13)

= (
IÂu

⊗ [(
êu ⊗ id

)
W

])
W = W.

In particular, for any ω ∈ A∗ we obtain

(
êu ⊗ id

)
Δ̂u

(
(id ⊗ ω)W

) = (id ⊗ ω)
([(

id ⊗ êu)Δ̂u
] ⊗ id

)
W = (id ⊗ ω)W

and the first part of (5.19) follows. The second part is proved analogously. �
Definition 32. Let Âu be the universal quantum group C∗-algebra of G and let Δ̂u be the mor-
phism defined in Proposition 31(1). The pair (Âu, Δ̂u) will be called the universal dual of G.

Remark 33. The universal dual of a quantum group is not, in general, a quantum group. Nev-
ertheless, as we will see, it retains a lot of structure, such as the coinverse, scaling group and
unitary coinverse.

Proposition 34. Let W ∈ M(Â ⊗ A) be the reduced bicharacter for G and Ĝ = (Â, Δ̂ ). Then
there exists a unique Λ̂ ∈ Mor(Âu, Â ) such that

(Λ̂ ⊗ id)W = W.

The morphism Λ̂ satisfies

(Λ̂ ⊗ Λ̂ ) ◦ Δ̂u = Δ̂ ◦ Λ̂. (5.20)

Proof. Existence and uniqueness of Λ̂ follows from Theorem 25(2).
To prove property (5.20), notice first that

(Δ̂ ⊗ id)(Λ̂ ⊗ id)W = (Δ̂ ⊗ id)W = W23W13

= [
(Λ̂ ⊗ id)W

]
23

[
(Λ̂ ⊗ id)W

]
13

= (Λ̂ ⊗ Λ̂ ⊗ id)(W23W13)

= (Λ̂ ⊗ Λ̂ ⊗ id)(Δ̂u ⊗ id)W.

Therefore for ω ∈ A∗ we have

Δ̂
(
Λ̂

(
(id ⊗ ω)W

)) = (id ⊗ id ⊗ ω)(Δ̂ ⊗ id)(Λ̂ ⊗ id)W

= (id ⊗ id ⊗ ω)(Λ̂ ⊗ Λ̂ ⊗ id)(Δ̂u ⊗ id)W

= (Λ̂ ⊗ Λ̂)Δ̂u
(
(id ⊗ ω)W

)
. �

Definition 35. The unique Λ̂ ∈ Mor(Âu, Â ) defined in Proposition 34 is called the reducing
morphism.
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Remark 36. The reducing morphism clearly plays the role analogous to the regular representa-
tion of a group C∗-algebra. We chose to name it differently in order not to confuse it with the
established notion of a regular representation of a locally compact quantum group ([8]).

Proposition 37. Assume that there exists a character ê of Â such that

(id ⊗ ê)Δ̂ = id (5.21)

and let W ∈ M(Â ⊗ A) be the reduced bicharacter. Then

(1) (ê ⊗ id)W = IA.
(2) êu = ê ◦ Λ̂.
(3) Λ̂ is an isomorphism.

Proof. Statement (1) is a consequence of

W = (id ⊗ ê ⊗ id)(Δ̂ ⊗ id)W

= (id ⊗ ê ⊗ id)(W23W13) = (
IÂ ⊗ [

(id ⊗ ê)W
])

W

and the unitarity of W .
Once this is established, (2) follows because

([ê ◦ Λ̂] ⊗ id
)
W = (ê ⊗ id)(Λ̂ ⊗ id)W = (ê ⊗ id)W = IA

which is the defining property of êu.
We will now show that the reduced bicharacter is a maximal representation of G. Then Λ̂ will

be an isomorphism by Lemma 24. The argument used here has already appeared in [4, p. 177].
We will use it in the version similar to that of [3, p. 875].

The first observation is that it follows from the formula in statement (1) that for any ω ∈ A∗
we have

∣∣ω(IA)
∣∣ = ∣∣ê((id ⊗ ω)W

)∣∣ �
∥∥(id ⊗ ω)W

∥∥. (5.22)

Let U ∈ Rep(G) and let us realize the reduced bicharacter W as a manageable multiplicative
unitary on a Hilbert space H. By [20, Theorem 1.7] we have W23U12W

∗
23 = U12U13 as elements

of M(K(HU) ⊗ K(H) ⊗ A). Let Û = σK(HU ),A(U)∗ ∈ M(A ⊗ K(HU)), where σK(HU ),A ∈
Mor(K(HU) ⊗ A,A ⊗ K(HU)) is the flip. It follows that

Û∗
23W12 = Û13W12Û

∗
13.

For each ω ∈ A∗ and η ∈ B(HU)∗ we define ωη ∈ A∗ by

ωη(x) = (ω ⊗ η)
(
Û∗(x ⊗ IHU

)
)
.

We have
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(id ⊗ ωη)W = (id ⊗ ω ⊗ η)
(
Û∗

23W12
)

= (id ⊗ ω ⊗ η)
(
Û13W12Û

∗
13

)
= (id ⊗ η)

[
Û

[(
(id ⊗ ω)W

) ⊗ I
]
Û∗]. (5.23)

Also

η
(
(id ⊗ ω)U

) = η
(
(ω ⊗ id)

(
Û∗))

= (ω ⊗ η)
(
Û∗) = ωη(IA). (5.24)

Now using (5.24), (5.22) and (5.23) we have

∣∣η(
(id ⊗ ω)U

)∣∣ = ∣∣ωη(IA)
∣∣ �

∥∥(id ⊗ ωη)W
∥∥

= ∥∥(id ⊗ η)
[
Û

[(
(id ⊗ ω)W

) ⊗ I
]
Û∗]∥∥ � ‖η‖∥∥(id ⊗ ω)W

∥∥.

Since for any t ∈ B(HU) we have ‖t‖ = sup{|η(t)|: η ∈ B(HU)∗, ‖η‖ = 1}, we conclude that
for any ω ∈ A∗ ∥∥(id ⊗ ω)U

∥∥ �
∥∥(id ⊗ ω)W

∥∥. �
Remark 38. The assumption (5.21) in Proposition 37 is in fact equivalent to the formula in
statement (1) of that proposition (cf. the proof of Proposition 31(2)).

Proposition 39. Let (Âu,W) be the universal quantum group C∗-algebra of and the universal
representation of G. Then

(1) for any t ∈ R there exists a unique τ̂ u
t ∈ Mor(Âu, Âu) such that(

τ̂ u
t ⊗ id

)
W = (id ⊗ τ−t )W. (5.25)

Moreover (τ̂ u
t )t∈R is a one parameter group of automorphisms of Âu.

(2) For any x ∈ Âu the map R � t → τ̂ u
t (x) ∈ Âu is continuous.

(3) For any t ∈ R we have (
τ̂ u
t ⊗ τ̂ u

t

) ◦ Δ̂u = Δ̂u ◦ τ̂ u
t (5.26)

and êu ◦ τ̂ u
t = êu.

(4) If (τ̂t )t∈R is the scaling group of Ĝ and Λ̂ ∈ Mor(Âu, Â) is the reducing morphism then for
any t ∈ R we have

τ̂t ◦ Λ̂ = Λ̂ ◦ τ̂ u
t . (5.27)

Proof. AD (1). For any t ∈ R the element (id ⊗ τ−t )W ∈ M(K(HW) ⊗ A) is a representation
of G. Therefore, by the universal property of (Âu,W), there exists a unique τ̂ u

t ∈ Mor(Âu, Âu)

such that (5.25) holds. It is easy to see that (τ̂ u
t )t∈R is a one parameter group of automorphisms

of Âu.
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AD (2). Take x ∈ Âu and ε > 0. There exists a functional ω ∈ A∗ such that

∥∥x − (id ⊗ ω)W
∥∥ <

ε

3

and the map R � t → ω ◦ τ−t is norm continuous. Therefore for t, s ∈ R

∥∥τ̂ u
t (x) − τ̂ u

s (x)
∥∥ �

∥∥τ̂ u
t (x) − τ̂ u

t

(
(id ⊗ ω)W

)∥∥
+ ∥∥τ̂ u

t

(
(id ⊗ ω)W

) − τ̂ u
s

(
(id ⊗ ω)W

)∥∥
+ ∥∥τ̂ u

s

(
(id ⊗ ω)W

) − τ̂ u
s (x)

∥∥.

The first and third terms are each smaller than ε
3 and the middle term

∥∥τ̂ u
t

(
(id ⊗ ω)W

) − τ̂ u
s

(
(id ⊗ ω)W

)∥∥
= ∥∥(id ⊗ ω)

((
τ̂ u
t ⊗ id

)
W − (

τ̂ u
s ⊗ id

)
W

)∥∥
= ∥∥(id ⊗ ω)

(
(id ⊗ τ−t )W − (id ⊗ τ−s)W

)∥∥
= ∥∥(

id ⊗ [ω ◦ τ−t − ω ◦ τ−s]
)
W

∥∥
� ‖ω ◦ τ−t − ω ◦ τ−s‖

is smaller than ε
3 for s sufficiently close to t .

AD (3). Just as in the proof of formula (5.20) (Proposition 34) we can easily show that

((
Δ̂u ◦ τ̂ u

t

) ⊗ id
)
W = ([(

τ̂ u
t ⊗ τ̂ u

t

) ◦ Δ̂u
] ⊗ id

)
W

and (5.26) follows. Similarly for any t ∈ R and ω ∈ A∗

êu(τ̂ u
t

(
(id ⊗ ω)W

)) = êu((id ⊗ ω)
(
τ̂ u
t ⊗ id

)
W

)
= êu((id ⊗ ω)(id ⊗ τ−t )W

)
= ω

(
τ−t

((
êu ⊗ id

)
W

))
= ω

(
τ−t (IA)

) = ω(IA)

= ω
((

êu ⊗ id
)
W

)
= êu((id ⊗ ω)W

)
proves the other formula.

AD (4). Let W be the reduced bicharacter for (G, Ĝ). First let us see that for any t ∈ R we
have

(τ̂t ⊗ id)W = (id ⊗ τ−t )W. (5.28)

Indeed, we can realize W as a modular multiplicative unitary on some Hilbert space H. Then
([13,20]) the scaling group of G is given by τt (a) = Q2it aQ−2it where Q is one of the two
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positive self adjoint operators appearing in the definition of modularity of W . Similarly the scal-
ing group of Ĝ is τ̂t (x) = Q̂2it xQ̂−2it , where Q̂ is the other positive self-adjoint operator. Now
since W commutes with Q̂ ⊗ Q, we obtain (5.28).

Now for t ∈ R we can compute

(Λ̂ ⊗ id)
(
τ̂ u
t ⊗ id

)
W = (Λ̂ ⊗ id)(id ⊗ τ−t )W

= (id ⊗ τ−t )(Λ̂ ⊗ id)W

= (id ⊗ τ−t )W = (τ̂t ⊗ id)W

= (
τ̂ u
t ⊗ id

)
(Λ̂ ⊗ id)W.

As before, the resulting formula([
Λ̂ ◦ τ̂ u

t

] ⊗ id
)
W = ([τ̂t ◦ Λ̂] ⊗ id

)
W

suffices to have (5.27). �
Lemma 40. Let W ∈ M(Â ⊗ A) be the reduced bicharacter. Then

WR̂⊗R = W.

Proof. Let ω ∈ Â∗ and μ ∈ A∗ be analytic for (the transpose of) (τ̂t ) and (τt ), respectively.
Using the fact that for any ν ∈ Â∗ and λ ∈ A∗

κ
(
(ν ⊗ id)W

) = (ν ⊗ id)(W ∗),

κ̂
(
(λ ⊗ id)Ŵ

) = (λ ⊗ id)
(
Ŵ ∗)

we have

([ω ◦ τ̂ i
2
] ⊗ [μ ◦ τ i

2
])(WR̂⊗R

) = ([ω ◦ τ̂ i
2
◦ R̂] ⊗ [μ ◦ τ i

2
◦ R])W

= ([ω ◦ τ̂ i
2
◦ R̂] ⊗ μ

)
(W ∗)

= (
μ ⊗ [ω ◦ τ̂ i

2
◦ R̂])Ŵ

= (μ ⊗ ω)(Ŵ ∗) = (ω ⊗ μ)W

= ([ω ◦ τ̂ i
2
] ⊗ [μ ◦ τ i

2
])W,

where in the last step we used holomorphic continuation of

(τ̂t ⊗ τt )W = W

which follows from (5.28). The conclusion follows from the fact that functionals of the form
([ω ◦ τ̂ i

2
] ⊗ [μ ◦ τ i

2
]) separate points of Â ⊗ A. �

Before the next proposition let us state a remark which will come handy in the proof.
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Remark 41. Let C be a C∗-algebra and let S be an anti-morphism from Âu to C, i.e. S ∈
Mor(Âu,C

op). Then for any ω ∈ A∗ we have

(id ⊗ ω) ◦ (S ⊗ R) = S ◦ (
id ⊗ [ω ◦ R]). (5.29)

Proposition 42. Let (Âu,W) be the universal quantum group C∗-algebra and the universal rep-
resentation of G. Then

(1) There exists a unique anti-automorphism R̂ u of Âu such that for any ω ∈ A∗

R̂ u((id ⊗ ω)W
) = (

(id ⊗ ω)Wc)�
. (5.30)

(2) R̂ u is involutive.
(3) Let σ̂ be the flip on Âu ⊗ Âu. Then

σ̂ ◦ (
R̂ u ⊗ R̂ u) ◦ Δ̂u = Δ̂u ◦ R̂ u. (5.31)

Moreover if (τ̂ u
t )t∈R is the one parameter group of automorphisms of Âu defined in Propo-

sition 39 then for any t ∈ R we have

τ̂ u
t ◦ R̂ u = R̂ u ◦ τ̂ u

t . (5.32)

(4) If R̂ is the unitary coinverse of Ĝ and Λ̂ ∈ Mor(Âu, Â ) is the reducing morphism then we
have

R̂ ◦ Λ̂ = Λ̂ ◦ R̂ u.

Proof. AD (1). The contragradient representation W
c of W is a strongly continuous unitary rep-

resentation of G. Therefore, by the universal property of (Âu,W), there exists a unique morphism
θ ∈ Mor(Âu,BWc) such that

(θ ⊗ id)W = W
c (5.33)

(cf. Theorem 25(2)). Clearly BWc = (Âu)
� and we can define a map

R̂ u : Âu � x −→ θ(x)� ∈ Âu.

It is easy to see that so defined R̂ u is an anti-morphism of Âu to itself which satisfies (5.30)
which determines this anti-morphism uniquely. The map R̂ u is an anti-automorphism of Âu.
This follows for example from the fact that (R̂ u)2 = id established below.

AD (2). Let us take contragradient representations of both sides of (5.33). Then(
R̂ u ⊗ R

)
W = W. (5.34)

Now applying (R̂ u ⊗ R) to both sides of (5.34) and then using this equation we arrive at

((
R̂ u)2 ⊗ id

)
W = (

R̂ u ⊗ R
)
W = W.
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Thus for any ω ∈ A∗ we have

(
R̂ u)2(

(id ⊗ ω)W
) = (id ⊗ ω)

((
R̂ u)2 ⊗ id

)
W = (id ⊗ ω)W

and it follows (R̂ u)2 = id.
AD (3). Let us begin with (5.32). For any t ∈ R we have:

([
R̂ u ◦ τ̂ u

t

] ⊗ R
)
W = (

R̂ u ⊗ R
)(

τ̂ u
t ⊗ id

)
W = (

R̂ u ⊗ R
)
(id ⊗ τ−t )W

= (
R̂ u ⊗ [R ◦ τ−t ]

)
W = (

R̂ u ⊗ [τ−t ◦ R])W
= (id ⊗ τ−t )

(
R̂ u ⊗ R

)
W = (id ⊗ τ−t )W

= (
τ̂ u
t ⊗ id

)
W = (

τ̂ u
t ⊗ id

)(
R̂ u ⊗ R

)
W

= ([
τ̂ u
t ◦ R̂ u] ⊗ R

)
W.

Now let us take ω ∈ A∗. Then with information from the above computation and using formula
(5.29) twice (once with S = R̂ u ◦ τ̂ u

t and then with S = τ̂ u
t ◦ R̂ u) we get

(
R̂ u ◦ τ̂ u

t

)((
id ⊗ [ω ◦ R])W) = R̂ u((id ⊗ [ω ◦ R])((τ̂ u

t ⊗ id
)
W

))
= (id ⊗ ω)

([
R̂ u ◦ τ̂ u

t

] ⊗ R
)
W

= (id ⊗ ω)
([

τ̂ u
t ◦ R̂ u] ⊗ R

)
W

= (
τ̂ u
t ◦ R̂ u)((id ⊗ [ω ◦ R])W)

.

Now since {ω ◦ R: ω ∈ A∗} = A∗ and Âu is the closure of the set of right slices of W we
get (5.32).

For the proof of (5.31) let us first notice that the defining property of Δ̂u and (5.34) imply that

(
R̂ u ⊗ R̂ u ⊗ R

)
(Δ̂u ⊗ id)W = (

R̂ u ⊗ R̂ u ⊗ R
)
(W23W13)

= [(
R̂ u ⊗ R

)
W

]
13

[(
R̂ u ⊗ R

)
W

]
23

= W13W23.

Therefore

([
σ̂ ◦ (

R̂ u ⊗ R̂ u) ◦ Δ̂u
] ⊗ R

)
W = W23W13 = (Δ̂u ⊗ id)W

= (Δ̂u ⊗ id)
(
R̂ u ⊗ R̂ u)

W

= ([
Δ̂u ◦ R̂ u] ⊗ R

)
W

and in the same way as in the proof of (5.32) we obtain (5.31). This time formula (5.29) must
also be used twice: once with S = σ̂ ◦ (R̂ u ⊗ R̂ u) ◦ Δ̂u and then with S = Δ̂u ◦ R̂ u.

AD (4). Let W ∈ M(Â ⊗ A) be the reduced bicharacter. Using (5.34) in the second and
Lemma 40 in the fourth step we have
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([
Λ̂ ◦ R̂ u] ⊗ R

)
W = (Λ̂ ⊗ id)

(
R̂ u ⊗ R

)
W

= (Λ̂ ⊗ id)W = W = WR̂⊗R

= (
R̂ u ⊗ R

)
(Λ̂ ⊗ id)W = ([R̂ ◦ Λ̂] ⊗ R

)
W.

Again, as in proofs of (2) and (3) we can use (5.29) once with S = Λ̂◦R̂ u and then with S = R̂◦Λ̂

and appeal to the fact that R is a homeomorphism for the ultraweak topology on A. �
Proposition 43. Let (Âu,W) be the universal quantum group C∗-algebra and the universal rep-
resentation of G. Then there exists a unique closed linear operator κ̂u on the Banach space Âu
such that

{
(id ⊗ ω)(W∗): ω ∈ A∗

}
(5.35)

is a core for κ̂u and

κ̂u((id ⊗ ω)(W∗)
) = (id ⊗ ω)W.

Moreover

(1) the domain of κ̂u is an algebra and κ̂u is anti-multiplicative: κ̂u(xy) = κ̂u(y)κ̂u(x) for all
x, y ∈ Dom(κ̂u).

(2) For any x ∈ Dom(κ̂u) the element κ̂u(x)∗ belongs to Dom(κ̂u) and κ̂u(κ̂u(x)∗)∗ = x.

(3) κ̂u = R̂ u ◦ τ̂ u
i
2
.

Proof. Take η ∈ B(HW)∗ and ω ∈ A∗. Then with repeated use of a variation of formula (5.29)
we compute:

(
η ◦ R̂ u ◦ τ̂ u

t

)[(
id ⊗ [ω ◦ R])(W∗)

] = ([
η ◦ R̂ u ◦ τ̂ u

t

] ⊗ [ω ◦ R])(W∗)

= ([
η ◦ R̂ u] ⊗ [ω ◦ R])[(τ̂ u

t ⊗ id
)
(W∗)

]
= ([

η ◦ R̂ u] ⊗ [ω ◦ R])[(id ⊗ τ−t )(W
∗)

]
= ([

η ◦ R̂ u] ⊗ [ω ◦ R ◦ τ−t ]
)
(W∗)

= (ω ◦ R ◦ τ−t )
[([

η ◦ R̂ u] ⊗ id
)
(W∗)

]
= ω

[
(R ◦ τ−t )

([
η ◦ R̂ u] ⊗ id

)
(W∗)

]
.

We shall now take the limit t → i
2 . By Proposition 16 and properties of analytic generators of

one parameter groups, the last term above converges to

ω
[([

η ◦ R̂ u] ⊗ id
)
W

] = (ω ◦ R)
[([

η ◦ R̂ u] ⊗ R
)
W

]
= (

η ⊗ [ω ◦ R])[(R̂ u ⊗ R
)
W

] = (
η ⊗ [ω ◦ R])W
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(cf. (5.34)). Since functionals of the form ω ◦ R fill up all of A∗, we find that for any ω ∈ A∗ the
element (id ⊗ ω)(W∗) belongs to the domain of the analytic extension of the group (τ̂ u

t )t∈R to
the point t = i

2 and we have

(
R̂ u ◦ τ̂ u

i
2

)(
(id ⊗ ω)(W∗)

) = (id ⊗ ω)W.

Moreover the set (5.35) is dense in Âu and is (τ̂ u
t )t∈R-invariant. Indeed, recall that all automor-

phisms (τt )t∈R are ultraweakly continuous, so

τ̂ u
t

(
(id ⊗ ω)(W∗)

) = (id ⊗ ω)
(
τ̂ u
t ⊗ id

)
(W∗)

= (id ⊗ ω)(id ⊗ τ−t )(W
∗)

= (
id ⊗ [ω ◦ τ−t ]

)
(W∗)

belongs to (5.35). It is a simple observation (cf. e.g. [10, Proposition F.5]) that this implies that
(5.35) must be a core for τ̂ u

i
2
. If we now put κ̂u = R̂ u ◦ τ̂ u

i
2

then κ̂u is a closed operator on Âu.

Clearly there at most one operator with a given core and prescribed action on this core. Of course,
w have (3). Properties (1) and (2) are well-known facts from the theory analytic extensions of
one parameter groups of automorphisms ([24]). �
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