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Abstract N-terminal truncation of chemokines by proteases
including dipeptidyl peptidase (DP) IV significantly alters their
biological activity; generally ablating cognate G-protein coupled
receptor engagement and often generating potent receptor anta-
gonists. DP8 is a recently recognised member of the prolyl oligo-
peptidase gene family that includes DPIV. Since DPIV is known
to process chemokines we surveyed 27 chemokines for cleavage
by DP8. We report DP8 cleavage of the N-terminal two residues
of IP10 (CXCL10), ITAC (CXCL11) and SDF-1 (CXCL12).
This has implications for DP8 substrate specificity. Chemokine
cleavage and inactivation may occur in vivo upon cell lysis and
release of DP8 or in the inactivation of internalized chemo-
kine/receptor complexes.
� 2008 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

The dipeptidyl peptidase (DP) IV gene family contains four

atypical serine proteases belonging to the prolyl oligopeptidase

gene family [1]. This family is characterised by the catalytic
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triad serine-aspartic acid-histidine, with this order of residues

being the reverse of that seen in typical serine proteases. The

DPIV gene family has six members, four of which, DPIV,

fibroblast activation protein, and the more recently discovered

DP8 and DP9, possess DPIV enzyme activity. These enzymes

have the rare enzyme ability to hydrolyse a prolyl bond two

residues from the N-terminus of substrates [1–3].

Linking proteases with their substrates is crucial for under-

standing protease function [4]. DPIV is the best-studied mem-

ber of its family. DPIV has roles in metabolism, immune

responses, the endocrine system and cancer biology. Since glu-

cagon-like peptide-1 (GLP-1) was in 1993 found to be a DPIV

substrate much interest has been focused on the enzyme activ-

ity of DPIV, and its inhibition as a type 2 diabetes therapy [5].

Identification of DP8 and DP9 as enzymes possessing DPIV

enzyme activity, previously assumed unique to DPIV, has

stimulated investigations of DP8/9 functions and substrate

specificity. This knowledge is crucial for further progress in

selective targeting of DPIV family enzymes for disease thera-

pies.

No in vivo functions of DP8 and DP9 have been delineated.

A recent report has identified the known DPIV substrates

GLP-1, GLP-2, neuropeptide Y (NPY) and peptide YY as

in vitro substrates of DP8 and DP9 [6]. DP8 shows a kinetic

favouring of substrates in the following order NPY > GLP-

1 > GLP-2� PYY compared with DPIV which shows

NPY � PYY > GLP-1 > GLP-2. Although the substrate spec-

ificity of DP8 and DP9 is very similar to DPIV, their cleavage

rates are slower than DPIV [6], so it is likely that the biologi-

cally preferred and relevant substrates of DP8 and DP9 are yet

to be discovered. DP8 and DPIV both have a strong preference

for proline in the P1 position [7]. However, DP8 has a strong

preference for hydrophobic or basic residues at P2, in contrast

to the much less discriminatory DPIV [7].

Chemokines regulate multiple cell functions, including cell

chemotaxis, proliferation and apoptosis, as well as leukocyte

trafficking regulation and homing to tissues. These biological

activities are mediated through their interaction with G-protein

coupled chemokine receptors expressed by target cells such as

leucocytes and neural and endothelial cells [8]. Proteolytic trun-

cation of chemokines has significant effects on their biological
blished by Elsevier B.V. All rights reserved.
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activity by modifying the binding capacity to their respective

cognate chemokine receptors [1,9]. DPIV and matrix metallo-

proteinases (MMPs) have been shown to process the N-termi-

nus of many chemokines thereby altering G-protein coupled

receptor binding, activation and often desensitisation [9–14].

Biological functions of eight chemokines are known to be

inactivated or altered following cleavage by DPIV. These in-

clude CXCL10 (inflammatory protein-10, IP10), CXCL11

(interferon-inducible T cell chemo-attractant, ITAC) and

CXCL12 (stromal cell-derived factors 1a and 1b, SDF-1a
and SDF-1b). For example, DPIV inactivates both SDF-1a
and SDF-1b, by specifically cleaving their N-terminal dipep-

tide, which abrogates both their chemotactic and antiviral

activities [14]. ITAC truncated by DPIV no longer induces

extracellular signal-regulated kinase 1/2 or Akt/protein kinase

B phosphorylation in CXC chemokine receptor-3 (CXCR3)

transfected cells [13]. IP10 and ITAC signal via CXCR3. ITAC

attracts activated T-helper type 1 lymphocytes and natural kill-

er cells. ITAC truncation by DPIV results in loss of calcium

binding though CXCR3 and more than 10-fold reduced che-

motactic potency. Moreover, cleaved ITAC is a chemotaxis

antagonist [13].

Certain chemokine receptors are coreceptors for human

immunodeficiency virus type 1 (HIV-1) to enter susceptible

CD4-expressing cells, so the cognate chemokines can compet-

itively block virus entry [14]. CXCR4, the receptor for SDF-1,

is a coreceptor for the T cell tropic strains of HIV-1 [15]. Inter-

action of CXCR4 with its ligand SDF-1 can block HIV-1

infection whereas SDF-1 proteolysis by DPIV or MMPs abro-

gates this protection [10,14]. SDF-1 also promotes tumour

growth and malignancy, and is suggested to be involved in

bone trophism of metastatic cells expressing CXCR4 [16].

Hence, inhibition of SDF-1 actions could be useful in develop-

ing novel anti-cancer therapies.

Here, we report testing 27 chemokines, 16 of which contain a

penultimate proline, and demonstrate that, like DPIV, DP8

can remove the N-terminal dipeptides from SDF-1, IP10 and

ITAC.
2. Materials and methods

2.1. Cloning, protein expression and purification
2.1.1. Expression of DP8 in Sf9 insect cells. DP8 (882aa) was cloned

into the baculovirus pFastBacHTB vector using NcoI and XbaI sites.
Constructs were transformed into MAX Efficiency� DH10Bac� com-
petent cells. Serum-free adapted Sf9 cells were grown in SF900� III
Media at 27 �C in suspension. Transfection with plasmid viral DNA
used Cellfectin� and 2 · 106 cells/ml. Once cell viability reached 30%
the supernatant was harvested by centrifugation and filtered
(0.22 lM) then stored with 2% FCS. Virus amplification used the same
method. Protein expression used a multiplicity of infection of 2 and
harvesting cell pellets from 50 ml cells after 4 days. All reagents for
DP8 expression were from Invitrogen (Carlsbad, CA).

2.1.2. Purification of DP8 protein from Sf9 insect cells. Protein pel-
lets were suspended in Tris buffer (50 mM Tris–HCl, pH 8.0, 100 mM
NaCl) containing 10 mM imidazole and the protease inhibitors
100 lM leupeptin (Sigma–Aldrich, St Louis, MO) and 20 lM E-64
(Sigma). Cells were lysed in a chilled French Press at 4000 psi. Follow-
ing ultracentrifugation (100000 · g, 30 min, 4 �C), lysate supernatant
was loaded onto a 1 ml HisTrap nickel column (Amersham Biosci-
ences, Little Chalfont, Bucks, UK) and washed with Tris buffer con-
taining 10 mM then 30 mM imidazole. DP8 was eluted with 500 mM
imidazole in Tris buffer and stored below 4 �C in 20% glycerol then la-
ter concentrated and buffer-exchanged using a 30 kDa spin column
(Amicon, Houston, TX) into Tris buffer with 20% glycerol.
2.1.3. DP8 size exclusion chromatography. Size exclusion chroma-
tography was carried out in Tris buffer on Sephadex 200 (Amersham)
at a flow rate of 0.5 ml/min. The Sephadex column was calibrated with
dextran blue (4000 kDa), thyroglobulin (669 kDa), apoferritin
(443 kDa), b-amylase (200 kDa), alcohol dehydrogenase (150 kDa)
and bovine serum albumin (66 kDa). Elution fractions were run on
7.5% SDS–PAGE under reducing conditions and transferred to PVDF
membrane. Recombinant DP8 protein was detected using H-Ala-Pro-
pNA and by immunoblot using an antibody to polyhistidine (Qiagen,
Düsseldorf, Germany).

2.1.4. Expression and purification of DPIV. DPIV cloning, protein
expression and purification has been described previously [17]. The
DPIV construct, cDNA accession number M80536, lacked the cyto-
plasmic and transmembrane domains. This soluble construct encoded
744 amino acids in the pMelBacA vector that uses the honeybee mell-
itin secretion signal (Invitrogen). The DPIV was further purified using
Superose 12 (Amersham) and 10 mM Tris, pH 8.0 then stored in 10%
glycerol. A linear regression curve of protein standards was generated
by plotting retention times against the log of the molecular mass of the
calibration proteins immunoglobulin G (Mr 150000 Da), bovine serum
albumin (Mr 67000 Da), cytochrome c (Mr 12600 Da) and cytidine
(Mr 246 Da).

2.2. Kinetic constants
DP8 kinetics was tested in Tris buffer at 37 �C with eight concentra-

tions of H-Ala-Pro-pNA (50 ll) (Bachem, Bubendorf, Switzerland).
DP8 and DPIV proteins were diluted to 9.5 nM and 10 nM, respec-
tively into a final assay volume of 100 ll. The data from three different
protein batches and four independent experiments were analysed using
non-linear regression of the Michaelis–Menten equation in the soft-
ware Prism (v.4, GraphPad, San Diego, CA). DPIV was assayed with
H-Gly-Pro-AFC and H-Ala-Pro-AFC at 20 �C in 10 mM Tris–HCl,
1 mM EDTA, pH 7.6.

2.3. Chemokine cleavage by DP8 and DPIV
The 27 chemokines were synthesized as described previously [18] and

were identical to the intact counterparts found in humans (Table 1).
The expected chemokine sizes were calculated using the in-house soft-
ware PeptID. Chemokine (1.5 lg) was incubated with 0.082 lM DPIV,
1.11 lM DP8 or a quantity of the control vector preparation equivalent
to the amount of DP8 for up to 24 h at 37 �C in 15 ll of 33 mM Tris–
EDTA, pH 7.6. The calculated polypeptide masses were 88300 Da for
DPIV and 104558 Da for DP8.

2.4. Matrix-assisted laser desorption ionization time-of-flight mass
spectroscopy (MALDI-TOF) analysis

MALDI-TOF was performed on a Voyager-DETM STR BioSpect-
rometry Workstation (Perseptive Biosystems Inc., Framingham, MA)
equipped with a nitrogen laser (337 nm) running in linear mode with
delayed extraction and ion acceleration at 25000 V. At each time point
a sample of enzyme/chemokine solution was mixed with matrix solu-
tion in a 1:1 ratio then 1 ll of this mixture was applied to a standard
stainless steel MALDI sample plate and allowed to air evaporate.
Matrix solution consisted of 31–44 mM 3,5-dimethoxy-4-hydroxycin-
namic acid (sinapinic acid), 30% acetonitrile and 0.3% trifluoroacetic
acid. Calibration was performed using calibration mixture 3 from
the Sequazyme� Peptide Mass Standards Kit (Applied Biosystems,
Foster City, CA).

2.5. In vitro relative t1/2 life of DP8 truncated chemokines
The concentration of active DP8 was determined by active-site titra-

tion [10] to be 4.853 ± 1.066 lM. This assay used the slow-binding
DPIV inhibitor isoleucyl-cyano-pyrrolidine (P59/99; Probiodrug,
Halle, Germany) [19], which has a slow off-rate and acts as an irrevers-
ible inhibitor during a brief (<4 h) assay.

MALDI-TOF MS was used as described above to measure cleavage
rates of chemokines by DP8. To estimate cleavage rates, chemokine at
12.032 ± 0.521 lM was incubated with purified active protein at
0.743 ± 0.136 lM (16:1 ratio of chemokine:DP8) in a total volume of
15 ll at 37 �C in 33 mM Tris–EDTA buffer, pH 7.6. Reaction samples
of 1 ll were taken at 0, 0.25, 0.5, 2, 4, 8 and 24 h. Relative ratios and
in vitro half-lives (t1/2) were estimated from ratios between the MS
intensities of intact and cleaved chemokines after baseline correction
and noise-filter/smoothing.



Table 1
Chemokine cleavage by DP8 and DPIV

Chemokine Uniprot number NH2-terminal quadrapeptide Number of amino acids DP8 D[M+H]+ DPIV D[M+H]+

CXCL1/Groa P09341 ASVA 73 nc nc
CXCL2/Grob P19875 APLA 73 nc 143.6
CXCL3/Groc P19876 ASVV 73 nc nc
CXCL5/ENA78 P42830 AGPA 78 nc nc
CXCL6/GCP2 P80162 GPVS 77 nc 153.7
CXCL7/NAP2 P02775 AELR 70 nc nc
CXCL8/IL-8 P10145 SAKE 72 nc nc
CXCL9/MIG Q07325 TPVV 104 nc 202.1
CXCL10/IP10 P02778 VPLS 77 203.0 197.8
CXCL11/ITAC O14625 FPMF 73 245.7 246.1
CXCL12/SDF-1a P48061 KPVS 67 226.8 228.2
CXCL12/SDF-1b P48061 KPVS 72 228.5 226.6
CCL1/I309 P22362 KSMQ 73 nc nc
CCL2/MCP1 P13500 QPDA 76 nc nc
CCL3L1/MIP1a P10147 APLA 73 nc nc
CCL4/MIP1b P13236 APMG 69 nc nc
CCL5/ RANTES P13501 SPYS 68 nc nc
CCL7/MCP3 P80098 QPVG 76 nc nc
CCL8/MCP2 P80075 QPDS 76 nc nc
CCL11/Eotaxin P61671 GPAS 74 nc 154.4
CCL13/MCP4 Q99616 QPDA 75 nc nc
CCL14/HCC1 Q16627 TKTE 74 nc nc
CCL15/HCC2 Q16663 QFIN 92 nc nc
CCL16/HCC4 O15467 QPKV 97 nc nc
CCL17/TARC Q92583 ARGT 71 nc nc
CCL23/MPIF P55773 RVTK 99 nc nc
CCL27/CTACK Q9Y4X3 FLLP 88 nc nc

N-terminal amino acid sequences where obtained using the Uniprot accession numbers listed at www.uniprot.org. Calculated mass is compared to
the molecular mass observed by MALDI-TOF at commencement of and after incubation of each chemokine with each protein.
nc signifies that the peptide was not cleaved.
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2.6. Silver staining
The samples were loaded onto 10% SDS–PAGE in 4· urea loading

buffer. Pre-stained SeeBlue� Plus 2 (Invitrogen) was used as a molec-
ular weight standard. Following electrophoresis, the gel was incubated
in a Fixer solution (40% methanol, 10% acetic acid) for a minimum of
30 min. This was followed by 5 min incubation in a solution of 12 mM
potassium hexacyanoferrate III (Sigma) and 25 mM sodium thiosul-
fate (Sigma). The gel was then rinsed three times with distilled water
and incubated for a further 10 min in water. This process was repeated
until the gel became clear. The gel was then incubated for 20 min in
12 mM silver nitrate solution. This was followed by two rinses in dis-
tilled water and two rinses in 2.9% sodium carbonate solution. The gel
was transferred to a clean vessel and allowed to develop in developing
solution. Once the desired intensity of the bands was reached, the incu-
bation was stopped with 5% acetic acid solution.
3. Results

3.1. Recombinant soluble human DP8 and DPIV

DP8 was highly purified, active and dimeric. The purified re-

combinant human DP8 eluted from Sephadex 200 predominantly

in its dimeric form, at approximately 220 kDa, but activity was

observed in gel filtration fractions of greater size consistent with

an active tetramer (Fig. 1A). On SDS–PAGE, the DP8 appeared

as a monomer of approximately 110 kDa that accounted for 90%

of the total protein (Fig. 1C and D). These biochemical observa-

tions on DP8 concord with previous indications that the native

active form of DP8 is dimeric but the dimeric size is not evident

on SDS–PAGE [7]. The Km and kcat of DP8 using H-Ala-Pro-

pNA were 0.16 ± 0.07 mM and 10.3 ± 0.8 s�1, with Kcat/Km

65 s�1 mM�1. Thus, this baculovirus – expressed purified recom-

binant human DP8 exhibited kinetic values consistent with those

observed by others [6,7]. The purified recombinant soluble human
DPIV showed a high level of purity and a size of approximately

180 kDa (Fig. 1B and C), which is the size of dimeric DPIV

[20]. The Km (mM) and kcat (s�1) for DPIV using H-Ala-Pro-

AFC were 0.13 ± 0.042 and 25.9 ± 2.0, respectively (Kcat/Km

199 ± 0.03 s�1 mM�1), and 0.177 ± 0.28 and 30.9 ± 1.3, respec-

tively on H-Gly-Pro-AFC [17].
3.2. Chemokine cleavage by DP8 and DPIV

The ability of DP8 and DPIV to hydrolyse naturally occur-

ring peptides was tested three times using a MALDI-TOF MS

based assay. Representative samples were taken at 0, 4, 8 and

24 h of peptide–enzyme co-incubation.

The four DP8-hydrolysed chemokines were SDF-1a, SDF-

1b, IP10 and ITAC. MALDI-TOF data were obtained follow-

ing incubations with each chemokine of up to 24 h with DP8

or DPIV. Significant cleavage of SDF-1a and SDF-1b was evi-

dent in the first minute of incubation with DPIV, whereas 1 h

was the shortest incubation needed to detect truncated SDF-1

following incubation with DP8. Similarly, IP10 and ITAC

were more rapidly hydrolysed by DPIV than DP8. Two prep-

arations of DP8 produced similar data. Fig. 2 shows data

derived from a single preparation of DP8.

Within 4 h of DPIV treatment eight chemokines exhibited

size reductions consistent with removal of two N-terminal

amino acids. These eight chemokines were SDF-1a, SDF-1b,

IP10, ITAC, GCP2, Grob, MIG and eotaxin. DPIV mediated

hydrolysis of these eight chemokines has been reported previ-

ously [11,21,22]. No additional cleaved peptide sizes were de-

tected during longer incubations with DPIV up to 24 h.

There was no evidence of DPIV mediated cleavage in 19 of

the 27 chemokines that were tested (Table 1). Unlike previous

http://www.uniprot.org


Fig. 1. Purity and size of DP8 and DPIV. (A) The elution profile of 1 mg of purified recombinant DP8 from size exclusion chromatography through
Sephadex S200; arrows indicate DP8 locations and molecular mass deduced from calibration curve and immunoblot. DP activity was detected in
fractions 52–74. (B) The elution profile of soluble recombinant DPIV from size exclusion chromatography through Superose 12; arrows indicate
calculated molecular mass. (C) Purified DP8 and DPIV were the predominant bands on silver stained SDS–PAGE. (D) Immunoblot of DP8 gel
filtration fractions 50–78 using an antibody to polyhistidine. The positions of molecular mass (kDa) marker proteins are shown.

822 K. Ajami et al. / FEBS Letters 582 (2008) 819–825
reports [11,21], no cleavage of RANTES was observed in three

replicate experiments.

Additionally, as a control procedure cell culture pellet de-

rived from baculovirus-infected Sf9 cells was subjected to the

purification procedure that was used to purify DP8. The prod-

uct of this protocol, termed the vector control preparation,

was incubated at a cell-equivalent dose with each chemokine

for 24 h then subjected to MALDI-TOF analysis. This proce-

dure showed that the dipeptidyl peptidase pattern of chemo-

kine truncation by the DPIV and DP8 preparations was

specific for those peptidases and not due to a co-purifying pep-

tidase activity derived from infected Sf9 cells.

3.3. In vitro kinetics of chemokine degradation by recombinant

human DP8

The relative t1/2 data obtained on the four chemokines

shown to be hydrolysed by DP8 (Table 2) used a separate

preparation of purified recombinant human DP8 in four repli-

cate experiments. Negative controls included incubating che-

mokines alone and with the vector control preparation.

Examples of MALDI-TOF data from these time course exper-

iments form Supplemental figures 1 to 4.
4. Discussion

SDF-1a, SDF-1b, IP10 and ITAC are the first chemokine

substrates of DP8 to be identified. These chemokines are

known to be substrates of DPIV [11,21] and hydrolysis by
DPIV was observed in this study. Unlike DPIV, DP8 did

not hydrolyse GCP2, Grob, and eotaxin. Moreover, DPIV

hydrolysed chemokines more rapidly than did DP8. DPIV also

exhibits greater catalytic efficiency than DP8 when removing

the N-terminal dipeptide of NPY [23]. These data indicate that

DPIV is more efficient than DP8 at catalyzing the cleavage of

known DPIV substrates. The DP8 chemokine substrate degra-

dome appears to be more restricted than that of DPIV and

concords with the narrower P1 and P2 substrate specificity

of DP8 compared to DPIV that has been obtained using arti-

ficial dipeptide substrates [6,7].

DP8 and DPIV are unusual enzymes in having the capacity

to hydrolyse the prolyl bond. All the chemokines hydrolysed

by DP8 or DPIV contain a penultimate proline. However,

seven of the 16 chemokines that contained a penultimate pro-

line were hydrolysed by neither DP8 nor DPIV. Therefore,

proline in position P1 is insufficient to cause a natural peptide

to be a DP8 or DPIV substrate. The DPIV catalytic pocket is

small, about 8 Å across, and is inside a hollow protein that has

a 15 Å – wide opening at the interface between its hydrolase

and propeller domains [24]. The DP8 structure is predicted

to be very similar [25,26]. These physical restrictions are

thought to limit the substrate size but all chemokines are about

8 kDa, so examining 27 chemokines half of which have a

proline in P1 provides interesting substrate specificity data.

Using synthetic chromagenic dipeptides, a strong preference

of DP8 for substrates with lysine or valine or phenylalanine

at the P2 position has been demonstrated [7]. Similarly, the

chemokines hydrolysed by DP8, which were SDF-1, IP10
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and ITAC, contain lysine, valine or phenylalanine, respec-

tively, at the P2 position. DPIV has high selectivity constants

(kcat/Km) in the cleavage of SDF-1, IP10 and ITAC and a ki-

netic favouring in the order SDF-1 > ITAC > IP10 [21]. Our

data suggest that DP8 differs a little in substrate preference,

with a kinetic favouring of SDF-1 > IP10� ITAC. Our re-

sults suggest that the P1 0 and P2 0 residues might also have sub-
Fig. 2. Chemokine cleavage by DP8 and DPIV. Recombinant DP8 (A,B
respectively. The vector control preparation (E,F) was incubated with chem
ITAC (IV). Representative MALDI-TOF analyses of chemokine immediately
Peaks are labeled with their molecular mass. Asterisks label double-charged
strate specificity roles. ITAC, the least favoured substrate, has

methionine in P1 0 and phenylalanine in P2 0, while SDF-1 and

IP10 both contain serine in P2 0 and leucine and valine in P1 0,

respectively (Table 1).

Interestingly, six of the twelve chemokines that have the pre-

ferred residue proline in the P1 position but are not cleaved by

DP8 have serine, glycine or alanine at P2 even though these
) and DPIV (C,D) were incubated with chemokine for 24 and 4 h,
okine for 24 h. DP8 cleaved SDF-1a (I), SDF-1b (II), IP10 (III), and
before (A,C,E) and after (B,D,F) these incubations are shown (n = 3).
chemokine peaks.



Fig. 2 (continued)

Table 2
Relative t1/2 life of DP8 truncated chemokines in vitro, using a 16:1
chemokine:DP8 ratio and MALDI-TOF analysis

Chemokine Relative t1/2 (h)

CXCL12/SDF-1a (1–67) 4 ± 0.5
CXCL12/SDF-1b (1–72) 2 ± 0.5
CXCL10/IP10 (1–77) 13 ± 2.4
CXCL11/ITAC (1–73) > 24

Data represent means ± S.D. (n = 4).
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residues can be at P2 in synthetic chromagenic dipeptide sub-

strates of DP8 [7]. This observation suggests that structural
characteristics other than P1 and P2, perhaps including P1 0

and P2 0 as proposed above, influence DP8 substrate specificity.

Further support for this hypothesis is provided by the observa-

tion that DP8 hydrolyses neuropeptide Y but not peptide YY.

Neuropeptide Y and peptide YY are both hydrolysed by DPIV

and have identical P1, P2 and P2 0 residues but differ at P1 0 (iso-

leucine in peptide YY and serine in neuropeptide Y) [6]. Exo-

site interactions have been shown to drive substrate hydrolysis

or even negatively select chemokine substrates [27]. Thus,

unfavourable exosite interactions may prevent cleavage of cer-

tain chemokines. Therefore, predicting cleavage based on the

N-terminal sequence is difficult.
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Whereas DPIV can access chemokines extracellularly, the

intracellular location of DP8 makes it unclear whether DP8

makes physical contact with chemokines in vivo and so the bio-

logical relevance is unclear. Such uncertainty applies to most

proteases where substrates have been identified only in in vitro

assays [4]. Potentially upon cell death in inflammatory lesions

DP8 released to the extracellular space would retain activity

and process chemokines involved in these pathological lesions.

Alternately, after triggering their cognate receptor, chemokines

internalized with their receptors might be substrates for DP8.

DP8 is implicated in immune responses by its upregulation

following T cell activation [2]. IP10 and ITAC have crucial

roles in hepatitis C virus infection and DP8 is highly expressed

in B-cell chronic lymphocytic leukaemia, various tumors and

activated T cells, so this selective chemokine inactivation might

have implications for cancer biology and immunobiology.
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