Mitochondrial & Chloroplast Transport

1539-Pos Board B431
Ran GTPase-Independent and Stereochemical Control of Kinesin-1 and Mitochondrial Motility by Domains of Ran-Binding Protein-2
Paulo A. Ferreira, Hemangi Patil, Kyou-ing Cho.
Duke University Medical Center, Durham, NC, USA.
The microtubule-based motor proteins, dynein and kinesin-1, mediate fast mitochondrial trafficking, but the mechanisms underlying the regulation of mitochondrial motility are ill-defined. The Ran-binding protein 2 (RanBP2) is a pleiotropic and multimodular protein, which couples directly with the kinesin-1 isoforms, KIF5B/KIF5C, via its tripartite domains, the kinesin-binding domain (KBD) and the Ran GTPase-binding domains, RBD1 and RBD2. The coupling of RBD1-RBD2 to kinesin-1 activates its ATPase activity 30-fold and with activation kinetics that is biphasic and cooperative. Here, we employ structure-function, biochemical, kinetic and cell-based assays with time-lapse live-cell microscopy of over 260,000 mitochondrial motility-related events to probe the interplay between Ran GTPase and RBD1-RBD2 on kinesin-1 activation and mitochondrial motility. We uncover mutually exclusive subdomains in RBDs toward Ran GTPase binding, kinesin-1 activation and modulation of mitochondria motility. The RBDs exhibit Ran-GTP-independent, subdomain and stereochemically-dependent discrimination on the biphasic activation kinetics of kinesin-1 or regulation of mitochondrial motility. Remarkably, RBD1-RBD2 and KBD alone exert opposing effects on the equilibrium between the stationary and motile phases of mitochondria and multiple biophysical parameters of mitochondrial motility. Further, the regulation of the bidirectional transport of mitochondria by either RBD1-RBD2 or KBD is highly coordinated, since their effects are accompanied always by changes in motile biophysical parameters of opposite-polarity. These studies uncover Ran GTPase-independent antagonizing and multimodal mechanisms of kinesin-1 activation and regulation of mitochondrial motility by distinct domains of RanBP2. Further, they open new venues toward the pharmacological harnessing of mechanisms regulating kinesins, mitochondrial motility or RanBP2 in a variety of disparate disorders.

1540-Pos Board B432
MICU1 is an Essential Gatekeeper for MCU-Mediated Mitochondrial Ca2+ Uptake that Regulates Cell Survival
Muniswamy Madesh1, Karthik Mallilankaraman1, Patrick Dooman1, Cesar Cardenas2, Harish C. Chandramosthry3, Marioly Muller3, Russell Miller4, Nicholas Hoffman1, Rajesh Gandhirajan1, Morris Birbaum1, Brad Rothberg1, Don-On Daniel Mak2, James Kevin Foskett2.
1Temple University School of Medicine, Philadelphia, PA, USA, 2University of Pennsylvania, Philadelphia, PA, USA.
Mitochondrial Ca2+ uptake is mediated by an inner membrane Ca2+ channel called the uniporter. Ca2+ uptake is driven by the considerable voltage present across the inner membrane (∆Ψm) generated by proton pumping by the respiratory chain. Mitochondrial matrix Ca2+ concentration ([Ca2+]m) is maintained 5-6 orders of magnitude lower than its equilibrium level, but the molecular mechanisms for how this is achieved are not clear. Here we demonstrate that the mitochondrial protein MICU1 is required to preserve normal [Ca2+]m under basal conditions. In its absence, mitochondria become constitutively loaded with Ca2+, triggering excessive reactive oxygen species generation and sensitivity to apoptotic stress. MICU1 interacts with the uniporter pore-forming subunit MCU and sets a Ca2+ threshold for mitochondrial Ca2+ uptake without affecting the kinetic properties of MCU-mediated Ca2+ uptake. Thus, MICU1 is a gatekeeper of MCU-mediated mitochondrial Ca2+ uptake that is essential to prevent mitochondrial Ca2+ overload and associated stress.

1541-Pos Board B433
Translocation of Knotted Proteins into Mitochondria
Piotr Szymczak.
University of Warsaw, Warsaw, Poland.
In recent years a surge of interest has arisen in properties and function of knotted proteins. As more and more knotted structures are discovered in the protein Data Bank, it becomes increasingly important to understand how, if at all, the non-trivial topology affects the protein’s function in the cell. In particular, it has been hypothesized that the presence of a knot in the polypeptide backbone may affect the ability of knotted proteins to be degraded in proteosome or translocated through the intercellular membranes, e.g. during import into mitochondria. In these processes, the translocating proteins typically have to pass through constrictions that are too narrow to accommodate folded structures, thus translocation must be coupled to protein unfolding. However, as shown in a number of theoretical and experimental studies the protein knot can get tightened under the tension. The radius of gyration of the tight knot is about 7-8 Angstrom, whereas the diameters of the narrowest constrictions of the mitochondrial pores are in the 12-15 Angstrom range, making it possible for the knots to get stuck during the translocation process. In this communication, we report the result of molecular dynamics simulations of knotted protein translocation which show how such topological traps might be prevented by using a pulling protocol of a repetitive, off-character. Such a repetitive pulling is biologically relevant, since the mitochondrial import motor, like other ATPases transform chemical energy into directed motions via nucleotide-hydrolysis-mediated conformational changes, which are cyclic in character. This research has been supported by the Polish NCN grant N N202 055440.

1542-Pos Board B434
On the Role of Positively Charged Residues of TM2 Domain in the Chloride Transport of Human UCP2
Tuan Hoang1, Tijana Matovic2, James Parker3, Matthew D. Smith3, Masoud Jelokhani-Niaraki1.
1University of Guelph, Guelph, ON, Canada, 2Wilfrid Laurier University, Waterloo, ON, Canada.
Located in the inner mitochondrial membrane, uncoupling proteins (UCPs) dissipate the proton electrochemical gradient causing reduction in the rate of ATP synthesis. Among five human UCP homologues, UCP2 is unique with its ubiquitous expression in various tissues. This important feature has been attributed to UCP2’s multiple physiological roles in tissues, including its involvement in protective mechanisms against oxidative stress, glucose and lipid metabolism. Despite numerous physiological studies, UCP2 function in cell remains poorly understood. UCP2 proton transport is regulated by purine nucleotides such as ATP, ADP, GDP and GTP. In addition, UCP2 has also been observed to transport chlorides and other small anions. Identification of the key amino acid residues in UCP2 in proton, anion transport and regulation will help determine the protein’s mechanism of action in cells. It has been established that positively charged residues on transmembrane helix 2 (TM2) of UCP1 and UCP2 are crucial for chloride transport. However, a full understanding of the transport mechanism is yet to be achieved. More importantly, some of these residues are also involved in the UCP2 proton transport regulation. To further understand the ion transport of UCP2, four TM2 mutants have been made (R76Q, R88Q, R96Q, and K104Q). Over-expressed proteins were purified and reconstituted into lipid bilayers for structural and functional studies. All mutants share an overall helical structure, but differ in charged residues. More importantly, some of these residues are also involved in the chloride transport and regulation. Identification of the key residues in proton and anion transport and regulation will help determine the protein’s mechanism of action in cells. In addition, UCP2’s involvement in protective mechanisms against oxidative stress, glucose and lipid metabolism will provide a more detailed molecular image of UCP2 ion transport mechanism.