
Available online at www.sciencedirect.com

ScienceDirect

Indagationes Mathematicae 23 (2012) 733–761
www.elsevier.com/locate/indag

Implicit QR with compression

P. Boitoa, Y. Eidelmanc,∗, L. Gemignanib, I. Gohberg (Z”L)d,1

a XLIM-DMI, UMR CNRS 7252, Faculté des Sciences et Techniques, Universit de Limoges, France
b Dipartimento di Matematica, Università di Pisa, Largo Bruno Pontecorvo 5, 56127 Pisa, Italy

c School of Mathematical Sciences, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University,
Ramat-Aviv, 69978, Israel

d Department of Mathematics, Tel-Aviv University, Israel

Abstract

In this paper, we elaborate on the implicit shifted QR eigenvalue algorithm given in [D.A. Bini, P. Boito,
Y. Eidelman, L. Gemignani, I. Gohberg, A fast implicit QR eigenvalue algorithm for companion matrices,
Linear Algebra Appl. 432 (2010), 2006–2031]. The algorithm is substantially simplified and speeded up
while preserving its numerical robustness. This allows us to obtain a potentially important advance towards
a proof of its backward stability together with both cost reductions and implementative benefits.
c⃝ 2012 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.

Keywords: Companion matrix; Polynomial roots; Quasiseparable matrices; QR method; Eigenvalue computation

When Israel Gohberg, the fourth author of this paper, passed away on October 12, 2009, the
main results of the paper, especially the method of compression which lies in the basis of this
work, were already obtained. The expression Z”L after his name is used in Hebrew and means
“of blessed memory”.

1. Introduction

The paper is motivated by the search of efficient and numerically robust methods for
computing the complete set of eigenvalues of a companion matrix with application to the

∗ Corresponding author.
E-mail addresses: paola.boito@unilim.fr (P. Boito), eideyu@post.tau.ac.il (Y. Eidelman), gemignan@dm.unipi.it

(L. Gemignani), gohberg@post.tau.ac.il (I. Gohberg (Z”L)).
1 Deceased.

0019-3577/$ - see front matter c⃝ 2012 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights
reserved.
doi:10.1016/j.indag.2012.05.006

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82437765?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1016/j.indag.2012.05.006&domain=pdf
http://www.elsevier.com/locate/indag
http://dx.doi.org/10.1016/j.indag.2012.05.006
http://www.elsevier.com/locate/indag
mailto:paola.boito@unilim.fr
mailto:eideyu@post.tau.ac.il
mailto:gemignan@dm.unipi.it
mailto:gohberg@post.tau.ac.il
http://dx.doi.org/10.1016/j.indag.2012.05.006

734 P. Boito et al. / Indagationes Mathematicae 23 (2012) 733–761

polynomial zero-finding problem. It is well known that for a Hermitian tridiagonal matrix the
QR eigenvalue algorithm computes all the eigenvalues at a quadratic cost instead of the cubic
cost required for dense Hessenberg matrices. Recent efforts have reached similar speed-up for
certain classes of rank-structured matrices including small rank corrections of Hermitian and
unitary matrices (see for a short summary [5] and the references given therein). The study of
companion matrices started with the paper [2] by showing that the shifted QR iteration applied
to a companion matrix A ∈ CN×N maintains the low rank structure of A. From then, a lot of
algorithms have been developed that differ on the way used to parametrize and represent the
rank structure. An up-to-date survey of these developments and algorithms can be found in the
monograph [8].

The choice of the parametrization affects the computational and numerical properties of the
resulting eigensolver. From one hand, for accuracy reasons it is important to control the growth
of the parameters involved in the QR process by preserving at the same time the unitary plus
rank-one structure of the initial companion matrix. These arguments strongly push in favor
of the use of unitary-based parametrizations, where most of the coefficients are deduced from
the representation of the rank structure in terms of unitary matrices. On the other hand, these
parametrizations demand heavy computational effort, resulting in an increase of the big-O
constant, and somewhat mask the original QR method, especially because the matrices generated
under the process are only implicitly specified in terms of certain additional factors.

One way to alleviate this dichotomy is exploited in the implicit shifted QR eigenvalue
algorithm for companion matrices described in our previous work [1]. That algorithm makes use
of two different representations for specifying the matrices Ak, k ≥ 0, A0 = A generated under
the QR iteration and for carrying out each QR step Ak → Ak+1. The composite scheme can be
summarized as follows. The matrix Ak is initially provided as a rank-one perturbation of a unitary
matrix given as product of two banded unitary matrices. These unitary factors are stored in
factored form by the product of a linear number of 2×2 and 3×3 unitary matrices. Then, from the
factorization of the unitary term an explicit entry-wise representation via generators is computed
for the cumulative matrix Ak . This representation is employed to perform one step of the implicit
shifted QR eigenvalue algorithm Ak → Ak+1, where Ak+1 = G N−1 · · · G1 · Ak · G H

1 · · · G H
N−1

and G1, . . . , G N−1 are the unitary transformations generated by the implicit shifted QR iteration.
Finally these transformations are applied to the matrix Ak represented in the initial unitary plus
rank-one format to obtain the novel subsequent iterate.

Although the numerical experience reported in [1] is satisfactory in terms of accuracy and
timings, it would be noted that the proposed approach can be prone to some drawbacks. In
particular, the mechanism using two diverse representations is mathematically unsound, it makes
difficult to prove theoretical stability results and, even more important, it is computationally
burdensome to replicate for possible generalizations and extensions involving both companion
pencils, matrix polynomials and block companion matrices. The main contribution of this paper
is a substantial improvement of the implicit shifted QR eigenvalue algorithm presented in [1]
aimed to circumvent all these issues.

More specifically, in this paper the structured QR iteration is greatly simplified by adopting a
unique generator-based representation for all the matrices involved in the QR step. A technique
named compression is introduced which makes it possible to compute the generators of the
novel iterate Ak+1 given the generators of the actual matrix Ak together with the transformations
(Givens rotation matrices) generated by the implicit shifted QR scheme and with preservation of
small orders of generators. The use of a unique parametrization is a potentially important advance
towards the proof of the backward stability of the method. The compression process employs

P. Boito et al. / Indagationes Mathematicae 23 (2012) 733–761 735

unitary matrices and yields a set of generators that are parts of unitary matrices so that the stability
properties of the method in [1] are preserved or even enhanced. In addition, the resulting strategy
has several computational benefits as it is cheaper, much simpler for implementation and easy
to adjust for the block and the pencil case. The results of extensive numerical experiments are
reported to confirm the practical impact and significance of these achievements.

The paper is organized as follows. In Section 2 we recall the structural properties and
introduce condensed representations for the matrices generated by the QR process applied to an
input companion matrix. In Section 3 we introduce the compression technique. Fast algorithms
using this technique that carry out both the single-shift and the double-shift implicit QR iteration
are described in Sections 4 and 5. In Section 6 the results of extensive numerical experiments are
reported and, finally, the conclusion and a discussion of future work are the subjects of Section 7.

2. Definitions and properties of generators

For a given monic polynomial λ(z) of degree N , λ(z) =
N−1

i=0 aλi zi
+ zN , the associated

companion matrix A ∈ CN×N is

A =


0 0 · · · 0 −λ0
1 0 · · · 0 −λ1
0 0 · · · 0 −λ2
...

...
. . .

...
...

0 0 · · · 1 −λN−1

 . (2.1)

This paper is concerned with the problem of computing all the eigenvalues of A by means of the
implicit shifted QR method

A0 = A

qk(A(k)) = Q(k) R(k), (QR factorization)

A(k+1)
:= Q(k)∗ A(k)Q(k),

(2.2)

where qk(z) is a monic polynomial of degree one (single-shift step) or two (double-shift step)
suitably chosen to accelerate the convergence.

In order to analyze the structural properties of the matrices Ak, k ≥ 0, it is useful to embed
A = A0 into a larger set. We denote by H N the class of upper Hessenberg matrices A ∈ CN×N

which are rank one perturbations of unitary matrices, i.e.,

A = U − pqT , (2.3)

where U ∈ CN×N is unitary and p, q ∈ CN . The vectors p = (p(i))N
i=1, q = (q(i))N

i=1 are
called the vectors of perturbation for the matrix A.

The class H N contains companion matrices of order N . In fact in the representation (2.3) for
the companion matrix (2.1) the unitary matrix U can be taken as the circulant

U =


0 0 · · · 0 1
1 0 · · · 0 0
0 1 0 · · · 0
...

...
. . .

...
...

0 0 · · · 1 0

 (2.4)

736 P. Boito et al. / Indagationes Mathematicae 23 (2012) 733–761

and the vectors of perturbation are

p =


1 + λ0

λ1
λ2
...

λn−1

 , q =


0
0
0
...

1

 . (2.5)

Since a matrix A ∈ H N is upper Hessenberg, from (2.3) it follows that the entries below the
first subdiagonal of the matrix U have the form

U (i, j) = p(i)q(j), 1 ≤ j ≤ i − 2, 3 ≤ i ≤ N . (2.6)

We define the class U N to be the set of N × N unitary matrices with the elements located in the
lower triangular portion specified by i − j ≥ 2, 1 ≤ i, j ≤ N , of the form (2.6). The numbers
p(i) (i = 3, . . . , N), q(j) (j = 1, . . . , N − 2) are called lower generators of the matrix U .
Notice that (2.6) implies

U (k, 1 : k − 2) = p(k)Qk−2, k = 3, . . . , N (2.7)

with

Q j =

q(1) · · · q(j)


, j = 1, . . . , N − 2. (2.8)

We write

Q j = row(q(i)) j
i=1, j = 1, . . . , N − 2.

In the sequel we use the notation row(·) to denote the matrix formed by appending column
vectors of the same size, for instance, the numbers as above. Similarly, we use the notation col(·)
for the matrix obtained by stacking row vectors.

Assume that U ∈ CN×N has entries in the upper triangular part represented in the form

U (i, j) = g(i)b<
i−1, j h(j), 1 ≤ i ≤ j ≤ N , (2.9)

where b<
i−1, j = b(i) · · · b(j − 1) for i < j and b<

i−1,i = Iri with matrices g(i), h(i) (i = 1,

. . . , N), b(k) (k = 1, . . . , N − 1) of sizes 1 × ri , ri × 1, rk × rk+1 respectively. The elements
g(i), h(i) (i = 1, . . . , N), b(k) (k = 1, . . . , N − 1) are called upper triangular generators of
the matrix U with orders rk (k = 1, . . . , N).

Every matrix U from the class U N has upper triangular generators with orders not greater
than two (see [1] for the proof). Hence, every matrix A from the class H N defined in (2.3) is
completely specified by the following parameters:

1. upper triangular generators g(i), h(i) (i = 1, . . . , N), b(k) (k = 1, . . . , N −1) of the unitary
matrix U ;

2. subdiagonal entries σk (k = 1, . . . , N − 1) of the matrix U ;

3. the vectors of perturbation p = (p(i))N
i=1, q = (q(i))N

i=1.

For the companion matrix A in (2.1) the subdiagonal entries are σk = 1, k = 1, . . . , N − 1,
the vectors of perturbation are defined in (2.5) and upper triangular generators of the unitary

P. Boito et al. / Indagationes Mathematicae 23 (2012) 733–761 737

matrix U from (2.4) are

g(1) = 1, g(i) = 0, i = 2, . . . , N , h(j) = 0, j = 1, . . . , N − 1,

h(N) = 1,

b(k) = 1, k = 1, . . . , N − 1.

Upper triangular generators of a matrix are however not unique. Thus we conclude by
mentioning some basic properties of generators which will be used in the next section to derive
a minimal set of upper generators of a matrix U ∈ U N and, a fortiori, of a matrix A ∈ H N .

Lemma 2.1. Let U ∈ CN×N be a matrix with upper triangular generators g(i), h(i) (i = 1,

. . . , N), b(k) (k = 1, . . . , N − 1) with orders rk (k = 1, . . . , N). Using these generators define
the matrices Gk, Hk of sizes k × rk, rk × (N − k + 1), respectively, via the recursive relations

G1 = g(1), Gk =


Gk−1b(k − 1)

g(k)


, k = 2, . . . , N (2.10)

and

HN = h(N), Hk =

h(k) b(k)Hk+1


, k = N − 1, . . . , 1. (2.11)

Then the relations

U (i, i : N) = g(i)Hi , i = 1, . . . , N , (2.12)

and

U (1 : i, i) = Gi h(i), i = 1, . . . , N (2.13)

hold.

Proof. The recursions (2.12) and (2.13) mean

Gi = col(g(k)b<
k−1,i)

i
k=1, i = 1, . . . , N (2.14)

and

H j = row(b<
k, j+1h(k))N

k= j . (2.15)

By comparing (2.14) and (2.15) with (2.9) we obtain (2.12) and (2.13). �

The reverse statement is also true. The proof immediately follows from (2.14) and (2.13).

Lemma 2.2. Let U ∈ CN×N be matrix satisfying the relations (2.13), where Gk (k = 1, . . . , N)

are matrices defined via the relations (2.10) for some matrices g(i), h(i) (i = 1, . . . , N),

b(k) (k = 2, . . . , N −1). Then the elements g(i), h(i) (i = 1, . . . , N), b(k) (k = 1, . . . , N −1)

are upper triangular generators of the matrix U.

The next result describes a procedure which can be used to modify a set of generators by
computing a possibly different set of generators of lower orders.

Lemma 2.3. Let U ∈ CN×N be a matrix with upper triangular generators g(i), h(i) (i = 1,

. . . , N), b(k) (k = 2, . . . , N −1) of orders rk (k = 1, . . . , N). By using the generators g(k), b(k)

define the matrices Gk (k = 1, . . . , N − 1) via relations (2.10). Suppose that for matrices

738 P. Boito et al. / Indagationes Mathematicae 23 (2012) 733–761

Sk (k = 1, . . . , N) of sizes rk × tk and matrices g(1)(i), h(1)(i) (i = 1, . . . , N), b(1)(k) (k = 1,

. . . , N − 1) with corresponding sizes the relations

g(1)(k) = g(k)Sk, k = 1, . . . , N , (2.16)

Gk Skb(1)(k) = Gkb(k)Sk+1, k = 1, . . . , N − 1, (2.17)

Gk Skh(1)(k) = Gkh(k), k = 1, . . . , N (2.18)

are satisfied. Then the elements g(1)(i), h(1)(i) (i = 1, . . . , N), b(1)(k) (k = 1, . . . , N − 1) are
upper triangular generators of the matrix U of the orders tk (k = 1, . . . , N).

Proof. Define the matrices G(1)
k of sizes k × tk via the recursive relations

G(1)
1 = g(1)(1), G(1)

k =


G(1)

k−1b(1)(k − 1)

g(1)(k)


, k = 2, . . . , N . (2.19)

We prove by induction the relations

G(1)
k = Gk Sk, k = 1, . . . , N . (2.20)

For k = 1 from (2.19), (2.10) and (2.16) we get

G(1)
1 = g(1)(1) = g(1)S1 = G1S1.

Let us now assume that for some k with 1 ≤ k ≤ N − 1 the relation (2.20) holds. From (2.19),
(2.16), (2.17) and (2.10) we find that

G(1)
k+1 =


G(1)

k b(1)(k)

g(1)(k + 1)



=


Gk Skb(1)(k)

g(k + 1)Sk+1


=


Gkb(k)Sk+1

g(k + 1)Sk+1


= Gk+1Sk+1,

which completes the proof of (2.20). By using (2.18) and (2.20) we obtain

G(1)
k h(1)(k) = Gk Skh(1)(k) = Gkh(k), k = 1, . . . , N .

Hence by Lemma 2.1 it follows that

U (1 : k, k) = G(1)
k h(1)(k), k = 1, . . . , N

and by Lemma 2.2 we conclude that g(1)(i), h(1)(i) (i = 1, . . . , N), b(1)(k) (k = 1, . . . , N − 1)

are upper triangular generators of the matrix U . �

3. The compression technique

Based on Lemma 2.3, in this section we introduce a novel method, referred to as the
compression technique, that for any matrix from the class U N with given upper triangular
generators computes another set of generators with minimal orders. This method is at the core of
the fast QR eigenvalue algorithm for companion matrices developed in the next two sections.

Theorem 3.1. Let U ∈ CN×N be a unitary matrix from the class U N with lower generators
p(i) (i = 3, . . . , N), q(j) (j = 1, . . . , N − 2), subdiagonal entries σk (k = 1, . . . , N − 1),

P. Boito et al. / Indagationes Mathematicae 23 (2012) 733–761 739

upper triangular generators g(i), h(i) (i = 1, . . . , N), b(k) (k = 1, . . . , N − 1) of orders
rk (k = 1, . . . , N). Then a set of upper triangular generators g(1)(i), h(1)(i) (i = 1, . . . , N),

b(1)(k) (k = 1, . . . , N − 1) of the matrix U of orders

tk = 2, k = 1, . . . , N − 1, tN = 1 (3.1)

are obtained by using the following algorithm.

1. Set

SN = h(N), h(1)(N) = 1, g(1)(N) = g(N)SN (3.2)

and

h(1)(N − 1) =


1
0


, b(1)(N − 1) =


0
1


, (3.3)

SN−1 =

h(N − 1) b(N − 1)SN


, (3.4)

g(1)(N − 1) = g(N − 1)SN−1, (3.5)

zN =

σN−1 g(1)(N)


, xN = p(N). (3.6)

2. For k = N − 1, . . . , 2 perform the following.

(a) Determine the complex Givens rotation Vk and the number xk such that
p(k)

xk+1


= Vk


xk
0


. (3.7)

(b) Compute
ak yk
fk dk


= V ∗

k


σk−1 g(1)(k)

xk+1q(k − 1) zk+1


(3.8)

with the matrices ak, yk, fk, dk, zk+1 of sizes 1 × 1, 1 × 2, 1 × 1, 1 × 2, 1 × 2 respectively.
It is shown that the vector row


fk dk


has unit norm so that one can determine a

3 × 3 unitary matrix Fk−1 satisfying the condition
fk dk


F∗

k−1 =

01×2 1


. (3.9)

(c) Determine the matrices h(1)(k − 1), b(1)(k − 1) of sizes 2 × 1, 2 × 2 from the partition

Fk−1(1 : 2, :) =

h(1)(k − 1) b(1)(k − 1)


. (3.10)

(d) Compute the matrices Sk−1 of the size rk−1 × 2 and zk of the size 1 × 2 by the formulas

Sk−1 = h(k − 1)(h(1)(k − 1))∗ + b(k − 1)Sk(b
(1)(k − 1))∗,

zk = ak(h
(1)(k − 1))∗ + yk(b

(1)(k − 1))∗.
(3.11)

(e) Compute

g(1)(k − 1) = g(k − 1)Sk−1. (3.12)

Proof. One should check that the relations (2.16)–(2.18) hold; hence, by Lemma 2.3 this implies
that g(1)(i), h(1)(i) (i = 1, . . . , N), and b(1)(k) (k = 1, . . . , N − 1) are upper triangular
generators of the matrix U . Moreover from the formulas (3.2), (3.3), (3.10), (3.12) it follows
that the orders of these generators are in accordance with (3.1).

From (3.2) we obtain (2.18) and (2.16) with k = N . By using (3.3), (3.5), (3.4) we obtain
(2.16)–(2.18) with k = N − 1.

740 P. Boito et al. / Indagationes Mathematicae 23 (2012) 733–761

Next we prove by induction that all the matrices

Ûk =


U (1 : k, 1 : k − 1) Gk Sk

xk+1 Qk−1 zk+1


, k = 2, . . . , N − 1 (3.13)

are unitary, the rows


fk dk


(k = N , . . . , 2) have unit norms and the relations (2.16)–(2.18)
hold.

Using (3.6) and (3.4) we have

ÛN−1 =


U (1 : N − 1, 1 : N − 2) G N−1h(N − 1) G N−1b(N − 1)h(N)

p(N)QN−2 σN−1 g(N)h(N)


.

By using (2.7) with k = N , (2.13) with i = N − 1, N and (2.10) with k = N we deduce that
ÛN−1 = U and hence ÛN−1 is a unitary matrix. Suppose that for some k with N −1 ≥ k ≥ 2 the
matrix Ûk is unitary. By using (2.7), (2.13), (2.10) and the equality Qk−1 =


Qk−2 q(k − 1)


we get

Ûk =

U (1 : k − 1, 1 : k − 2) Gk−1h(k − 1) Gk−1b(k − 1)Sk
p(k)Qk−2 σk−1 g(k)Sk
xk+1 Qk−2 xk+1q(k − 1) zk+1

 .

From the equalities (3.7), (3.8) and (3.5), (3.12) we obtain
Ik−1 0

0 V ∗

k


Ûk

=

U (1 : k − 1, 1 : k − 2) Gk−1h(k − 1) Gk−1b(k − 1)Sk
xk Qk−2 ak yk
01×(k−2) fk dk

 . (3.14)

Since the matrix on the left hand side of (3.14) is unitary the three-dimensional row


fk dk


has the unit norm. Hence one can determine a unitary 3 × 3 matrix Fk−1 such that (3.9) holds.
Further, from (3.10) we have

h(k − 1) b(k − 1)Sk
ak yk


F∗

k−1 =


Sk−1 w′

k
zk w′′

k


(3.15)

with the matrices Sk−1, zk of sizes rk−1 × 2, 1 × 2 determined via (3.11) and some matrices
w′

k, w
′′

k of sizes rk−1 × 1, 1 × 1. Thus by using (3.14), (3.9) and (3.15) we get
Ik−1 0

0 V ∗

k


Ûk


Ik−2 0

0 F∗

k−1



=

U (1 : k − 1, 1 : k − 2) Gk−1Sk−1 Gk−1w
′

k
xk Qk−2 zk w′′

k
01×(k−2) 01×2 1

 . (3.16)

Since the matrix on the left hand side of (3.16) is unitary we conclude that Gk−1w
′

k = 0, w′′

k = 0
and, therefore,

Ik−1 0
0 V ∗

k


Ûk


Ik−2 0

0 F∗

k−1


=

U (1 : k − 1, 1 : k − 2) Gk−1Sk−1 0
xk Qk−2 zk 0

0 0 1


=


Ûk−1 0

0 1


.

P. Boito et al. / Indagationes Mathematicae 23 (2012) 733–761 741

Hence it follows that the matrix Ûk−1 is unitary. Moreover from (3.15) it follows that
h(k − 1) b(k − 1)Sk


F∗

k−1 =

Sk−1 w′

k


and due to Gk−1w

′

k = 0 we obtain
Gk−1h(k − 1) Gk−1b(k − 1)Sk


=

Gk−1Sk−1 0


Fk−1. (3.17)

Finally, from (3.17) using the partition (3.10) we obtain the equalities (2.17), (2.18) with
k = N − 2, . . . , 1. The relations (2.16) with k = N − 2, . . . , 1 follow directly from (3.12). �

It is worth noting that the representation of a matrix U from the class U N by means of a set
of upper generators of minimal orders constructed as in the proof of Theorem 3.1 can be related
with a suitable factorization of U exploited for the design of the QR algorithm suggested in [1].

Remark 3.2. From the proof of Theorem 3.1 one can derive easily that every matrix U from the
class U N admits the factorization

U = V · F,

where

V = ṼN−1 · · · Ṽ2, F = F̃1 · · · F̃N−2,

Ṽi = Ii−1 ⊕ Vi ⊕ IN−i−1, F̃i = Ii−1 ⊕ Fi ⊕ IN−i−2

with 2 × 2 unitary matrices Vi and 3 × 3 unitary matrices Fi defined in the theorem.

4. The structured QR iteration: the single-shift case

Let A ∈ CN×N be an upper Hessenberg matrix. Let us consider one single-shift step of the
QR iteration (2.2) for this matrix with shift polynomial q(z) = z −α. The implicit QR algorithm
consists of the computation of the unitary matrix Q of the form

Q = Q̃1 Q̃2 · · · Q̃N−1, (4.1)

where

Q̃i = Ii−1 ⊕ Qi ⊕ IN−i−1 (4.2)

and Qi , i = 1, . . . , N − 1 are complex Givens rotation matrices determined so that
(Q̃∗

1q(A))(2, 1) = 0 and, moreover, A(1)
= Q∗ AQ is upper Hessenberg.

The restoration of the Hessenberg form is performed by means of a bulge-chasing procedure.
First we compute the matrices A′

1 = Q̃∗

1 A, A1 = A′

1 Q̃1. Then we observe that the matrix
A′

1 is upper Hessenberg and the matrix A1 is similar to the matrix A and contains a nonzero
entry in the (3, 1) position. We choose the matrix Q2 in order to annihilate this entry, i.e., to
get (Q̃∗

2 A1)(3, 1) = 0. Then we compute the matrices A′

2 = Q̃∗

2 A1, A2 = A′

2 Q̃2, the matrix
A′

2 is upper Hessenberg and the matrix A2 is similar to the matrix A and contains a nonzero
entry in the (4, 2) position. We choose the matrix Q3 in order to annihilate this entry, i.e., to get
(Q̃∗

3 A2)(4, 2) = 0. Then we compute the matrices A′

3 = Q̃∗

3 A2, A3 = A′

3 Q̃3, the matrix A′

3 is
upper Hessenberg and the matrix A3 is similar to the matrix A and contains a nonzero entry in
the (5, 3) position. We continue this procedure and obtain the sequence of matrices

A0 = A; A′

k = Q̃∗

k Ak−1, Ak = A′

k Q̃k, k = 1, . . . , N − 1;

A(1)
:= AN−1.

(4.3)

742 P. Boito et al. / Indagationes Mathematicae 23 (2012) 733–761

Here all the matrices A′

k, k = 1, . . . , N − 1, and the matrix A(1) are upper Hessenberg and all
the matrices Ak, k = 1, . . . , N − 1, are similar to the matrix A.

In the sequel of this section we present a fast adaptation of the implicit single-shift QR
algorithm for an input matrix A ∈ H N . The modified algorithm works on the generators of
the matrix and this explains why it is referred to as a structured QR iteration.

Using the decomposition (2.3) and setting

U0 = U ; U ′

k = Q̃∗

kUk−1, Uk = U ′

k Q̃k, k = 1, . . . , N − 1;

U (1)
:= UN−1,

(4.4)

p0 = p; pk = Q̃∗

k pk−1, k = 1, . . . , N − 1; p(1)
:= pN−1 (4.5)

q0 = q; qk = Q̃T
k qk, k = 1, . . . , N − 1; q(1)

:= qN−1 (4.6)

we get

A′

k = U ′

k − pkqT
k−1, Ak = Uk − pkqT

k , k = 1, . . . , N − 1. (4.7)

Here Uk, U ′

k are unitary matrices and pk, qk are vectors. The new iterate A(1) has therefore the
form

A(1)
= U (1)

− p(1)(q(1))T . (4.8)

The problem of computing a set of generators of the matrix A(1) is addressed in the following
result.

Theorem 4.1. Let A = U − pqT be a matrix from the class H N with vectors of perturbation
p = col(p(i))N

i=1, q = col(q(i))N
i=1, upper triangular generators g(i), h(i) (i = 1, . . . , N),

b(k) (k = 1, . . . , N − 1) of orders rk (k = 1, . . . , N) and subdiagonal entries σk (k = 1,

. . . , N − 1) of the matrix U, and let α be a number. Then the Givens rotation matrices Qk,

k = 1, . . . , N − 1, the vectors of perturbation p(1)
= col(p(1)(i))N

i=1, q(1)
= col(q(1)(i))N

i=1

of the upper Hessenberg matrix A(1)
= Q∗ AQ as well as the subdiagonal entries σ

(1)
k

(k = 1, . . . , N − 1) and the upper triangular generators g(1)(i), h(1)(i) (i = 1, . . . , N), b(1)(k)

(k = 1, . . . , N − 1) with orders not greater than two of the unitary matrix U (1) in (4.8) are
obtained by the following procedure.

1. Compute the Givens rotation matrices Qk, k = 1, . . . , N − 1, the vectors of perturbation
p(1)

= col(p(1)(i))N
i=1, q(1)

= col(q(1)(i))N
i=1 of the upper Hessenberg matrix A(1)

=

Q∗ AQ and the subdiagonal entries σ
(1)
k (k = 1, . . . , N − 1) of the unitary matrix U (1),

by performing these steps.
(a) Determine the complex Givens rotation matrix Q1 from the condition

Q∗

1


g(1)h(1) − p(1)q(1) − α

σ1 − p(2)q(1)


=


∗

0


. (4.9)

Compute
γ1 w1

f2 v2


= Q∗

1


g(1)h(1) g(1)b(1)

σ1 g(2)


, (4.10)


s2 η2

ρ2 β2


=


f2 v2h(2)

p(3)q(1) σ2


Q1, (4.11)

P. Boito et al. / Indagationes Mathematicae 23 (2012) 733–761 743
p(1)(1)

c2


= Q∗

1


p(1)

p(2)


,


q(1)(1) θ2


=

q(1) q(2)


Q1 (4.12)

with numbers γ1, f2, s2, ρ2, η2, β2, c2, θ2 and r2-dimensional rows w1 and v2.

(b) For k = 2, . . . , N − 2 perform the following computation. Determine the complex Givens
rotation matrix Qk and the number δk−1 such that

Q∗

k


sk − ckq(1)(k − 1)

ρk − p(k + 1)q(1)(k − 1)


=


δk−1

0


. (4.13)

Compute
γk wk

fk+1 vk+1


= Q∗

k


ηk vkb(k)

βk g(k + 1)


, (4.14)

sk+1 ηk+1
ρk+1 βk+1


=


fk+1 vk+1h(k + 1)

p(k + 2)θk σk+1


Qk, (4.15)

p(1)(k)

ck+1


= Q∗

k


ck

p(k + 1)


,

q(1)(k) θk+1


=

θk q(k + 1)


Qk,

(4.16)

σ
(1)
k−1 = δk−1 + p(1)(k)q(1)(k − 1) (4.17)

with numbers γk, fk+1, sk+1, ρk+1, ηk+1, βk+1, ck+1, θk+1 and rk+1-dimensional rows
wk, vk+1.

(c) Determine the complex Givens rotation matrix QN−1 and the number δN−2 such that

Q∗

N−1


sN−1 − cN−1q(1)(N − 2)

ρN−1 − p(N)q(1)(N − 2)


=


δN−2

0


. (4.18)

Compute
γN−1 wN−1

fN vN


= Q∗

N−1


ηN−1 vN−1b(N − 1)

βN−1 g(N)


, (4.19)

sN ηN


=


fN vN h(N)


QN−1, (4.20)
p(1)(N − 1)

p(1)(N)


= Q∗

N−1


cN−1
p(N)


,

q(1)(N − 1) q(1)(N)


=

θN−1 q(N)


QN−1,

(4.21)

σ
(1)
N−2 = δN−2 + p(1)(N − 1)q(1)(N − 2) (4.22)

with numbers γN−1, fN , sN , ηN and rN -dimensional rows wN−1, vN . Set σ
(1)
N−1 = sN .

2. Determine the numbers hQ(k), bQ(k), dQ(k), gQ(k) from the partition

Qk =


hQ(k) bQ(k)

dQ(k) gQ(k)


, k = 1, . . . , N − 1 (4.23)

and set

gU (k) =

γk wk


, k = 1, . . . , N − 1, gU (N) = ηN , (4.24)

hU (k) =


hQ(k)

h(k + 1)dQ(k)


, k = 1, . . . , N − 1, hU (N) = 1, (4.25)

744 P. Boito et al. / Indagationes Mathematicae 23 (2012) 733–761

bU (k) =


bQ(k) 0

h(k + 1)gQ(k) b(k + 1)


, k = 1, . . . , N − 2,

bU (N − 1) =


bQ(N − 1)

h(N)gQ(N − 1)


.

(4.26)

3. By using the algorithm from Theorem 3.1 with lower generators p(1)(i) (i = 3, . . . , N),

q(1)(j) (j = 1, . . . , N − 2), subdiagonal entries σ
(1)
k (k = 1, . . . , N − 1) and upper

triangular generators gU (i), hU (i) (i = 1, . . . , N), and bU (k) (k = 1, . . . , N − 1) with
orders r ′

k = rk + 1, k = 1, . . . , N − 1, r ′

N = 1 determine upper triangular generators
g(1)(i), h(1)(i) (i = 1, . . . , N), b(1)(k) (k = 1, . . . , N − 1) of orders

tk = 2, k = 1, . . . , N − 1, tN = 1 (4.27)

of the matrix U (1).

Proof. From (4.2) it follows that premultiplication of a matrix C by the matrix Q̃∗

k means only
premultiplication of the rows k, k + 1 of C by the matrix Q∗

k and postmultiplication of a matrix
C by the matrix Q̃k means only postmultiplication of the columns k, k + 1 of C by the matrix
Qk . This in particular implies that the vectors pk, qk from (4.5), (4.6) have the form

pk = (p(1)(1), . . . , p(1)(k), ck+1, p(k + 2), . . . , p(N))T , k = 1, . . . , N − 2, (4.28)

qk = (q(1)(1), . . . , q(1)(k), θk+1, q(k + 2), . . . , q(N))T , k = 1, . . . , N − 2 (4.29)

and moreover the formulas (4.12), (4.16), (4.21) yield the coordinates of the vectors of
perturbation p(1)

= Q∗ p, q(1)
= QT q . Furthermore from (4.4) it follows that

U ′

k(1 : k, 1 : k − 1) = U (1)(1 : k, 1 : k − 1), k = 2, . . . , N − 1, (4.30)

U ′

k(k + 2 : N , k + 1 : N) = U (k + 2 : N , k + 1 : N), k = 1, . . . , N − 2 (4.31)

and

Uk(1 : k, 1 : k) = U (1)(1 : k, 1 : k), k = 1, . . . , N − 1. (4.32)

By using the matrices gU (k), bU (k) define the matrices GU
k via the recursive relations

GU
1 = gU (1), GU

k =


GU

k−1bU (k − 1)

gU (k)


, k = 2, . . . , N . (4.33)

From (4.24), (4.26) we have

GU
1 =


γ1 w1


, GU

k =


GU

k−1b̃(k) GU
k−1b̂(k)

γk wk


, k = 2, . . . , N − 1,

GU
N =


GU

N−1bU (N − 1)

ηN

 (4.34)

with

b̃(k) =


bQ(k − 1)

h(k)gQ(k − 1)


, b̂(k) =


01×rk+1

b(k)


, k = 2, . . . , N − 1. (4.35)

P. Boito et al. / Indagationes Mathematicae 23 (2012) 733–761 745

Notice that in the view of (4.23) one can rewrite the formulas (4.25), (4.26) for k = 1, . . . , N −2
in the form

hU (k) b̃(k + 1) b̂(k + 1)


=


1 0 0
0 h(k + 1) b(k + 1)


Qk 0
0 Irk+2


, (4.36)

and 
hU (N − 1) bU (N − 1)


=


1 0
0 h(N)


QN−1. (4.37)

We prove by induction that the Givens rotation matrices Qk with k = 1, . . . , N − 2 are
determined via (4.9), (4.13) and, moreover, that the relations

Uk(1 : k + 2, k : N) =

GU
k hU (k) GU

k b̃(k + 1) GU
k b̂(k + 1)Hk+2

sk+1 ηk+1 vk+1b(k + 1)Hk+2
ρk+1 βk+1 g(k + 2)Hk+2

 , (4.38)

hold for k = 1, . . . , N − 2.
From (2.9) and (2.3) we obtain

(A − α I)(1 : 2, 1) =


g(1)h(1) − p(1)q(1) − α

σ1 − p(2)q(1)


which yields the condition (4.9) for the matrix Q1.

By using (2.6) with i = 3, j = 1, (2.12) with i = 1, 2, 3 and (2.11) with k = 1, 2 we find that

U (1 : 3, 1 : N) =

g(1)h(1) g(1)b(1)h(2) g(1)b(1)b(2)H3
σ1 g(2)h(2) g(2)b(2)H3

p(3)q(1) σ2 g(3)H3

 . (4.39)

From (4.10) we get

U ′

1(1 : 3, 1 : N) =

 γ1 w1h(2) w1b(2)H3
f2 v2h(2) v2b(2)H3

p(3)q(1) σ2 g(3)H3

 .

The first row of the matrix U ′

1 can be expressed in the form

U ′

1(1, 1 : N) =

γ1 w1

 1 0 0
0 h(2) b(2)


I2 0
0 H3


. (4.40)

From (4.34) and (4.36) with k = 1 we have

U1(1, 1 : N) = GU
1


hU (1) b̃(2) b̂(2)

 I2 0
0 H3


=

GU

1 hU (1) GU
1 b̃(2) GU

1 b̂(2)H3

. (4.41)

By using (4.11) we find that

U1(2 : 3, 1 : N) =


s2 η2 v2b(2)H3
ρ2 β2 g(3)H3


. (4.42)

746 P. Boito et al. / Indagationes Mathematicae 23 (2012) 733–761

By combining (4.41) and (4.42) together we obtain (4.38) with k = 1.
Let us now assume that for some k with 2 ≤ k ≤ N − 3 the representation

Uk−1(1 : k + 1, k − 1 : N) =

GU
k−1hU (k − 1) GU

k−1b̃(k) GU
k−1b̂(k)Hk+1

sk ηk vkb(k)Hk+1
ρk βk g(k + 1)Hk+1

 (4.43)

holds. By using (4.7) and (4.28), (4.29) it follows that

Ak−1(k : k + 1, k − 1) = Uk−1(k : k + 1, k − 1) − pk−1(k : k + 1)qk−1(k − 1)

=


sk
ρk


−


ck

p(k + 1)


q(1)(k − 1)

and, therefore, to get zero entry in the position (k + 1, k − 1) in the matrix A′

k = Q̃∗

k Ak−1 one
should take Qk such that (4.13) holds. Next by using (4.13), (4.14) and (4.16), (4.17) we get

U ′

k(1 : k + 1, k − 1 : N) =

GU
k−1hU (k − 1) GU

k−1b̃(k) GU
k−1b̂(k)Hk+1

σ
(1)
k−1 γk wk Hk+1

ck+1q(1)(k − 1) fk+1 vk+1 Hk+1

 . (4.44)

From (4.28), (4.29), (4.7) and the fact that A′

k is upper Hessenberg we deduce that U ′

k(k+2, k) =

p(k + 2)θk . Hence, by using (4.31), (2.12), (2.11) together with (4.44) we obtain

U ′

k(1 : k + 2, k : N) =


GU

k−1b̃(k) GU
k−1b̂(k)h(k + 1) GU

k−1b̂(k)b(k + 1)Hk+2
γk wkh(k + 1) wkb(k + 1)Hk+2

fk+1 vk+1h(k + 1) vk+1b(k + 1)Hk+2
p(k + 2)θk σk+1 g(k + 2)Hk+2

 .

From the decomposition

U ′

k(1 : k, k : N) =


GU

k−1b̃(k) GU
k−1b̂(k)

γk wk


1 0 0
0 h(k + 1) b(k + 1)


I2 0
0 Hk+2


by applying (4.34) and (4.36) one finds that

Uk(1 : k, k : N) = GU
k


hU (k) b̃(k + 1) b̂(k + 1)Hk+2


. (4.45)

From (4.15) it is also seen that

Uk(k + 1 : k + 2, k : N) =


sk+1 ηk+1 vk+1b(k + 1)Hk+2
ρk+1 βk+1 g(k + 2)Hk+2


. (4.46)

By combining (4.45) and (4.46) together we obtain (4.38).
Now (4.38) with k = N − 2 gives

UN−2(1 : N , N − 2 : N)

=

GU
N−2hU (N − 2) GU

N−2b̃(N − 1) GU
N−2b̂(N − 1)h(N)

sN−1 ηN−1 vN−1b(N − 1)h(N)

ρN−1 βN−1 g(N)h(N)

 . (4.47)

P. Boito et al. / Indagationes Mathematicae 23 (2012) 733–761 747

In the same way as above we obtain (4.18). By using (4.18), (4.19) and (4.21), (4.22) we deduce
that

U ′

N−1(1 : N , N − 2 : N)

=

 GU
N−2hU (N − 2) GU

N−2b̃(N − 1) GU
N−2b̂(N − 1)h(N)

σ
(1)
N−2 γN−1 wN−1h(N)

p(1)(N)q(1)(N − 2) fN vN h(N)

 . (4.48)

From (4.34) with k = N − 1 it follows that

U ′

N−1(1 : N − 1, N − 1 : N) = GU
N−1


1 0
0 h(N)


.

By using (4.20) and (4.37) we obtain

UN−1(1 : N , N − 1 : N) =


GU

N−1hU (N − 1) GU
N−1bU (N − 1)

sN ηN


. (4.49)

In the view of (4.34) with k = N and hU (N) = 1 this implies that

UN−1(1 : N , N) = GU
N hU (N). (4.50)

Thus, by using (4.44), (4.48) and (4.30) we get

σ
(1)
k−1 = U ′(k, k − 1) = U (1)(k, k − 1), k = 2, . . . , N − 1

and using (4.49) and (4.32) we have

σ
(1)
N−1 = sN = UN−1(N , N − 1) = U (1)(N , N − 1).

Hence it follows that σ
(1)
k (k = 1, . . . , N − 1) are the subdiagonal entries of the matrix U (1).

Finally, from (4.38), (4.49), (4.50) and (4.32) we deduce that

U (1)(1 : k, k) = GU
k hU (k), k = 1, . . . , N .

By virtue of Lemma 2.2 this relation implies that gU (i), hU (i) (i = 1, . . . , N), and bU (k)

(k = 1, . . . , N − 1) are upper triangular generators of the matrix U (1). The orders of these
generators equal r ′

k = rk+1 +1, k = 1, . . . , N −1, r ′

N = 1. By applying Theorem 3.1 we obtain
upper triangular generators g(1)(i), h(1)(i) (i = 1, . . . , N), b(1)(k) (k = 1, . . . , N − 1) of the
matrix U (1) with orders defined in (4.27) and this concludes the proof. �

The structured single-shift QR iteration applied to an input matrix A = A0 ∈ H N
requires a linear number of arithmetic operations per step by using linear storage. Experimental
comparisons with customary eigensolvers are shown in Section 6.

5. The structured QR iteration: the double-shift case

The double-shift technique is employed to compute a pair of complex conjugate eigenvalues
of a real upper Hessenberg matrix by using real arithmetic only. A double-shift step of the QR
iteration (2.2) consists of the computation of a new iterate A(1) generated from A = A(0) with
shift polynomial q(z) = (z − α)(z − ᾱ) = z2

− sz + t, s, t ∈ R. The implicit version proceeds
by finding the unitary matrix Q of the form

Q = Q̃1 Q̃2 · · · Q̃N−2 Q̃N−1, (5.1)

748 P. Boito et al. / Indagationes Mathematicae 23 (2012) 733–761

where Q̃i ∈ CN×N are unitary matrices satisfying

Q̃i = Ii−1 ⊕ Qi ⊕ IN−i−2, i = 1, . . . , N − 2, Q̃N−1 = IN−2 ⊕ QN−1. (5.2)

These matrices are determined so that (Q̃∗

1q(A))(2 : 3, 1) = (0 0)T and A(1)
= Q∗ AQ is an

upper Hessenberg matrix.
By using a standard bulge-chasing approach one computes the unitary matrices Qi (i = 1,

. . . , N − 1) and then the matrix A(1) as follows. At the first step we determine the 3 × 3 unitary
matrix Q1 from the condition

Q∗

1(q(A)(1 : 3, 1)) =

∗ 0 0

T
. (5.3)

Next we compute the matrix A1 = Q̃∗

1 AQ̃1 which is similar to the matrix A and contains nonzero
entries in the positions (3, 1) and (4, 1). We choose the matrix Q2 in order to annihilate these
entries, i.e., to obtain the matrix A′

2 = Q̃∗

2 A1 with zero entries below the first subdiagonal in
the first column. Then we compute the matrix A2 = A′

2 Q̃2. The matrix A2 is similar to the
matrix A and contains nonzero entries in the positions (4, 2), (5, 2). We choose the matrix Q3 in
order to annihilate these entries, i.e., to obtain the matrix A′

3 = Q̃∗

3 A2 with zero entries below
the first subdiagonal in the second column. Then we compute the matrix A3 = A′

3 Q̃3. The
matrix A3 is similar to the matrix A and contains nonzero entries in the positions (5, 3), (6, 3).
We continue this procedure for k = 4, 5, . . . , N − 2 and obtain the matrix AN−2 with a
nonzero entry in the (N , N − 2) position. To annihilate this entry we determine a Givens
rotation matrix QN−1 and obtain A′

N−1 = Q̃∗

N−1 AN−2 and finally the upper Hessenberg matrix
A(1)

= AN−1 = A′

N−1 QN−1. Thus we obtain the sequence (4.3) to determine the new iterate
A(1) in the double-shift case.

The next result reformulates the process in terms of generators by providing a structured QR
iteration for the double-shift step applied to an input matrix A ∈ H N .

Theorem 5.1. Let A = U − pqT be a real matrix from the class H N with vectors of
perturbation p = col(p(i))N

i=1, q = col(q(i))N
i=1, upper triangular generators g(i), h(i)

(i = 1, . . . , N), b(k) (k = 1, . . . , N − 1) of orders rk (k = 1, . . . , N) and subdiagonal
entries σk (k = 1, . . . , N − 1) of the orthogonal matrix U, and let s, t be real numbers.
Then the unitary matrices Qk, k = 1, . . . , N − 1, the vectors of perturbation p(1)

=

col(p(1)(i))N
i=1, q(1)

= col(q(1)(i))N
i=1 of the upper Hessenberg matrix A(1)

= Q∗ AQ, as

well as subdiagonal entries σ
(1)
k (k = 1, . . . , N − 1) and the upper triangular generators

g(1)(i), h(1)(i) (i = 1, . . . , N), b(1)(k) (k = 1, . . . , N − 1) with orders not greater than two of
the unitary matrix U (1) from (4.8) are determined by the following procedure.

1. Compute the unitary matrices Qk, k = 1, . . . , N − 1, the vectors of perturbation p(1)
=

col(p(1)(i))N
i=1, q(1)

= col(q(1)(i))N
i=1 of the upper Hessenberg matrix A(1)

= Q∗ AQ and

the subdiagonal entries σ
(1)
k (k = 1, . . . , N − 1) of the unitary matrix U (1), by performing

these steps.
(a) Set

a11 = g(1)h(1) − p(1)q(1), a12 = g(1)b(1)h(2) − p(1)q(2),

a22 = g(2)h(2) − p(2)q(2),

a21 = σ1 − p(2)q(1), a32 = σ2 − p(3)q(2),

(5.4)

P. Boito et al. / Indagationes Mathematicae 23 (2012) 733–761 749

compute

v =

a2

11 + a12a21 − sa21 + t a21(a11 + a22 − s) a32a21
T

,

and determine the 3 × 3 orthogonal matrix Q1 from the condition

Q∗

1v =

∗ 0 0

T
. (5.5)

Set
θ2 =


q(1) q(2)


. (5.6)

Compute
γ1 w1
f3 v3


= Q∗

1

g(1)h(1) g(1)b(1)h(2) g(1)b(1)b(2)

σ1 g(2)h(2) g(2)b(2)

p(3)q(1) σ2 g(3)

 , (5.7)


s2 η2
ρ2 β2


=


f3 v3h(3)

p(4)θ2 σ3


Q1, (5.8)

p(1)(1)

c3


= Q∗

1


c2

p(3)


, (5.9)

H1 =


f3 − c3θ2 v3h(3) − c3q(3)

01×2 σ3 − p(4)q(3)


Q1, (5.10)

q(1)(1) θ3


=

q(1) q(2) q(3)


Q1 (5.11)

with matrices γ1, w1, f3, v3, s2, η2, ρ2, β2, c3, θ3, H1 of sizes 1 × 2, 1 × r3, 2 × 2, 2 ×

r3, 2 × 1, 2 × 2, 1 × 1, 1 × 2, 2 × 1, 1 × 2, 3 × 3 respectively.
(b) For k = 2, . . . , N − 3 perform the following computation. Determine the 3 × 3 unitary

matrix Qk and the number δk−1 such that

Q∗

k Hk−1(1 : 3, 1) =

δk−1
0
0

 . (5.12)

Compute
γk wk

fk+2 vk+2


= Q∗

k


ηk vk+1b(k + 1)

βk g(k + 2)


, (5.13)

sk+1 ηk+1
ρk+1 βk+1


=


fk+2 vk+2h(k + 2)

p(k + 3)θk+1 σk+2


Qk, (5.14)

p(1)(k)

ck+2


= Q∗

k


ck+1

p(k + 2)


, (5.15)

Hk =


fk+2 − ck+2θk+1 vk+2h(k + 2) − ck+2q(k + 2)

01×2 σk+2 − p(k + 3)q(k + 2)


Qk, (5.16)

q(1)(k) θk+2


=

θk+1 q(k + 2)


Qk, (5.17)

σ
(1)
k−1 = δk−1 + p(1)(k)q(1)(k − 1) (5.18)

with matrices γk, wk, fk+2, vk+2, sk+1, ηk+1, ρk+1, βk+1, ck+2, θk+2, Hk of sizes 1 ×

2, 1 × rk+2, 2 × 2, 2 × rk+2, 2 × 1, 2 × 2, 1 × 1, 1 × 2, 2 × 1, 1 × 2, 3 × 3 respectively.
(c) Find the 3 × 3 unitary matrix QN−2 and the number δN−2 such that

Q∗

N−2 HN−3(1 : 3, 1) =

δN−3
0
0

 . (5.19)

750 P. Boito et al. / Indagationes Mathematicae 23 (2012) 733–761

Compute
γN−2 wN−2

fN vN


= Q∗

N−2


ηN−2 vN−1b(N − 1)

βN−2 g(N)


, (5.20)

sN−1 ηN−1


=


fN vN h(N)


QN−2, (5.21)
p(1)(N − 2)

cN


= Q∗

N−2


cN−1
p(N)


, (5.22)

HN−2 =


fN − cN θN−1 vN h(N) − cN q(N)


QN−2, (5.23)
q(1)(N − 2) θN


=

θN−1 q(N)


QN−2, (5.24)

σ
(1)
N−3 = δN−3 + p(1)(N − 2)q(1)(N − 3) (5.25)

with matrices γN−2, wN−2, fN , vN , sN−1, ηN−1, ρN−1, βN−1, cN , θN , and HN−2 of sizes
1 × 2, 1 × rN , 2 × 2, 2 × rN , 2 × 1, 2 × 2, 1 × 1, 1 × 2, 2 × 1, 1 × 2, 2 × 2 respectively.

(d) Compute the Givens rotation matrix QN−1 and the number δN−2 such that

Q∗

N−1 HN−2(1 : 2, 1) =


δN−2

0


. (5.26)

Compute
γN−1
fN+1


= Q∗

N−1ηN−1, (5.27)
sN ηN


= fN+1 QN−1, (5.28)

p(1)(N − 1)

p(1)(N)


= Q∗

N−1cN ,

q(1)(N − 1) q(1)(N)


= θN QN−1, (5.29)

σ
(1)
N−2 = δN−2 + p(1)(N − 1)q(1)(N − 2) (5.30)

with two-dimensional rows γN−1, fN+1 and numbers sN , ηN . Set σ
(1)
N−1 = sN .

2. Determine the matrices hQ(k), bQ(k), dQ(k), gQ(k) of sizes 2 × 1, 2 × 2, 1 × 1, 1 × 2 from
the partitions

Qk =


hQ(k) bQ(k)

dQ(k) gQ(k)


, k = 1, . . . , N − 2 (5.31)

and the two-dimensional columns hQ(N − 1), bQ(N − 1) from the partition

QN−1 =

hQ(N − 1) bQ(N − 1)


. (5.32)

Set

gU (k) =

γk wk


, k = 1, . . . , N − 2,

gU (N − 1) = γN−1, gU (N) = ηN ,
(5.33)

hU (k) =


hQ(k)

h(k + 2)dQ(k)


, k = 1, . . . , N − 2,

hU (N − 1) = hQ(N − 1), hU (N) = 1,

(5.34)

bU (k) =


bQ(k) 0

h(k + 2)gQ(k) b(k + 2)


, k = 1, . . . , N − 3,

bU (N − 2) =


bQ(N − 2)

h(N)gQ(N − 2)


, bU (N − 1) = bQ(N − 1).

(5.35)

P. Boito et al. / Indagationes Mathematicae 23 (2012) 733–761 751

3. By using the algorithm from Theorem 3.1 compute upper triangular generators g(1)(i), h(1)(i)
(i = 1, . . . , N), b(1)(k) (k = 1, . . . , N − 1) of orders

tk = 2, k = 1, . . . , N − 1, tN = 1

of the matrix U (1).

Remark 5.2. The “bulge vector” Hk−1(1 : 3, 1), which is used in (5.12) to determine Qk , can
also, in principle, be computed as

Hk−1(1 : 3, 1) =


sk − ck+1q(1)(k − 1)

ρk − p(k + 2)q(1)(k − 1)


,

thus making the computation of Hk in (5.16) unnecessary. However, we prefer to compute the
bulge vector as in (5.16) for reasons of numerical stability.

Proof. From the formulas (5.1), (5.2) it follows that the vectors pk, qk from (4.5), (4.6) have the
form

pk = (p(1)(1), . . . , p(1)(k), ck+2, p(k + 3), . . . , p(N))T , k = 1, . . . , N − 2, (5.36)

qk = (q(1)(1), . . . , q(1)(k), θk+2, q(k + 3), . . . , q(N))T , k = 1, . . . , N − 2, (5.37)

and moreover the formulas (5.9), (5.11), (5.15), (5.17), (5.22), (5.24) and (5.29) yield the
coordinates of the vectors of perturbation p(1)

= Q∗ p, q(1)
= QT q . Furthermore from (4.4)

one deduces the relations (4.30), (4.32) together with the equalities

U ′

k(k + 3 : N , k + 2 : N) = U (k + 3 : N , k + 2 : N), k = 1, . . . , N − 3. (5.38)

By using the matrices gU (k), bU (k) define the matrices GU
k via the recursive relations (4.33).

From (5.33), (5.35) we have

GU
1 =


γ1 w1


, GU

k =


GU

k−1b̃(k) GU
k−1b̂(k)

γk wk


, k = 2, . . . , N − 2,

GU
N−1 =


GU

N−2bU (N − 2)

γN−1


, GU

N =


GU

N−1bU (N − 1)

ηN

 (5.39)

with

b̃(k) =


bQ(k − 1)

h(k + 1)gQ(k − 1)


, b̂(k) =


01×rk+2

b(k + 1)


, k = 2, . . . , N − 2. (5.40)

Notice that from (5.31) one can rewrite the formulas (5.34), (5.35) in the form
hU (k) b̃(k + 1) b̂(k + 1)


=


I2 0 0
0 h(k + 2) b(k + 2)


Qk 0
0 Irk+3


,

k = 1, . . . , N − 3, (5.41)
hU (N − 2) bU (N − 2)


=


I2 0
0 h(N)


QN−2. (5.42)

We prove by induction that the relations

Ak(k + 1 : k + 3, k : k + 2) = Hk, k = 1, . . . , N − 3 (5.43)

752 P. Boito et al. / Indagationes Mathematicae 23 (2012) 733–761

with the matrices Hk (k = 1, . . . , N −3) defined in (5.10), (5.16) hold, the 3×3 unitary matrices
Qk, k = 1, . . . , N − 3 are determined via (5.5), (5.12) and, moreover, that the relations

Uk(1 : k + 3, k : N) =

GU
k hU (k) GU

k b̃(k + 1) GU
k b̂(k + 1)Hk+3

sk+1 ηk+1 vk+2b(k + 2)Hk+3
ρk+1 βk+1 g(k + 3)Hk+3

 ,

k = 1, . . . , N − 3 (5.44)

are fulfilled.
By using (2.6) and (2.9) we obtain the formulas (5.4). Hence to satisfy the condition (5.3) one

should take the 3 × 3 unitary matrix Q1 such that the condition (5.5) holds. From (2.6), (2.12)
and (2.11) we find that U (1 : 4, 1 : N) can be specified as follows:

g(1)h(1) g(1)b(1)h(2) g(1)b(1)b(2)h(3) g(1)b(1)b(2)b(3)H4
σ1 g(2)h(2) g(2)b(2)h(3) g(2)b(2)b(3)H4

p(3)q(1) σ2 g(3)h(3) g(3)b(3)H4
p(4)q(1) p(4)q(2) σ3 g(4)H4

 .

From (5.7) and (5.6) we obtain

U ′

1(1 : 4, 1 : N) =

 γ1 w1h(3) w1b(3)H4
f3 v3h(3) v3b(3)H4

p(4)θ2 σ3 g(4)H4

 . (5.45)

By using (4.3) and (4.7) we find that

A1(2 : 4, 1 : 3) = A′

1(2 : 4, 1 : 3)Q1 = [U ′

1(2 : 4, 1 : 3) − p1(2 : 4)q(1 : 3)]Q1.

From (5.45), (5.36) and (5.6) this implies that

A1(2 : 4, 1 : 3) =


f3 v3h(3)

p(4)θ2 σ3


−


c3

p(4)

 
θ2 q(3)


Q1

which gives (5.43) with k = 1.
The first row of the matrix U ′

1 can be expressed in the form

U ′

1(1, 1 : N) =

γ1 w1

 I2 0 0
0 h(3) b(3)


I3 0
0 H4


. (5.46)

Using (5.46) and (5.41) with k = 1 yields

U1(1, 1 : N) = GU
1


hU (1) b̃(2) b̂(2)

 I2 0
0 H4


=

GU

1 hU (1) GU
1 b̃(2) GU

1 b̂(2)H4

. (5.47)

From (5.8) we deduce that

U1(2 : 4, 1 : N) =


s2 η2 v3b(3)H4
ρ2 β2 g(4)H4


. (5.48)

By combining (5.47) and (5.48) together we obtain (5.44) with k = 1.
Let us now assume that for some k with 2 ≤ k ≤ N − 4 the relations

Ak−1(k : k + 2, k − 1 : k + 1) = Hk−1 (5.49)

P. Boito et al. / Indagationes Mathematicae 23 (2012) 733–761 753

and

Uk−1(1 : k + 1, k − 1 : N)

=

GU
k−1hU (k − 1) GU

k−1b̃(k) GU
k−1b̂(k)Hk+2

sk ηk vk+1b(k + 1)Hk+2
ρk βk g(k + 2)Hk+2

 (5.50)

hold. Then from (5.49) it follows that in order to get zero entries in the positions (k + 1, k − 1),

(k + 2, k − 1) in the matrix A′

k = Q̃∗

k Ak−1 one should take Qk such that (5.12) holds. By using
the equalities (5.49), (5.50), (4.7), (5.36) and (5.37) there follows that

sk
ρk


= Ak−1(k : k + 2, k − 1) + pk−1(k : k + 2)qk−1(k − 1)

= Hk−1(:, 1) +


ck+1

p(k + 2)


q(1)(k − 1).

Hence from (5.12), (5.15) and (5.18) we obtain

Q∗

k−1


sk
ρk


=

δk−1
0
0

+


p(1)(k + 1)

ck+2


q(1)(k − 1)

=


σ

(1)
k−1

ck+2q(1)(k − 1)


. (5.51)

Thus by virtue of (5.50), (5.51) and (5.14) we find that

U ′

k(1 : k + 2, k − 1 : N)

=

GU
k−1hU (k − 1) GU

k−1b̃(k) GU
k−1b̂(k)Hk+2

σ
(1)
k−1 γk wk Hk+2

ck+2q(1)(k − 1) fk+2 vk+2 Hk+2

 . (5.52)

By using (5.36), (5.37), (4.7) and the fact that A′

k has all zero entries below the first subdiagonal
(except that one in the position (k + 2, k)) we deduce that U ′

k(k + 3, k) = p(k + 3)θk+1. Hence
by using (5.38), (2.12), (2.11) together with (5.52) we get

U ′

k(1 : k + 3, k : N)

=


GU

k−1b̃(k) GU
k−1b̂(k)h(k + 2) GU

k−1b̂(k)b(k + 2)Hk+3
γk wkh(k + 2) wkb(k + 2)Hk+3

fk+2 vk+2h(k + 2) vk+2b(k + 2)Hk+3
p(k + 3)θk+1 σk+2 g(k + 3)Hk+3

 . (5.53)

By using (4.3) and (4.7) we find that

Ak(k + 1 : k + 3, k : k + 2) = A′

k(k + 1 : k + 3, k : k + 2)Qk

= [U ′

k(k + 1 : k + 3, k : k + 2)

− pk(k + 1 : k + 3)qk−1(k : k + 2)]Qk .

754 P. Boito et al. / Indagationes Mathematicae 23 (2012) 733–761

In the view of (5.53), (5.36) and (5.37) this gives

Ak(k + 1 : k + 3, k : k + 2)

=


fk+2 vk+2h(k + 2)

p(k + 3)θk+1 σk+2


−


ck+2

p(k + 3)

 
θk+1 q(k + 2)


Qk

which implies (5.43).
Now let us consider the representation of U ′

k(1 : k, k : N) as
GU

k−1b̃(k) GU
k−1b̂(k)

γk wk


I2 0 0
0 h(k + 2) b(k + 2)


I3 0
0 Hk+3


.

By applying (5.39) and (5.41) we obtain

Uk(1 : k, k : N) = GU
k


hU (k) b̃(k + 1) b̂(k + 1)Hk+3


. (5.54)

By using (5.14) we get

Uk(k + 1 : k + 3, k : N) =


sk+1 ηk+1 vk+2b(k + 2)Hk+3
ρk+1 βk+1 g(k + 3)Hk+3


. (5.55)

Combining (5.54) and (5.55) together gives (5.44).
From (5.44) with k = N − 3 we deduce that

UN−3(1 : N , N − 3 : N)

=

GU
N−3hU (N − 3) GU

N−3b̃(N − 2) GU
N−3b̂(N − 2)h(N)

sN−2 ηN−2 vN−1b(N − 1)h(N)

ρN−2 βN−2 g(N)h(N)

 . (5.56)

In the same way as above we obtain (5.19) and

U ′

N−2(1 : N , N − 3 : N)

=

GU
N−3hU (N − 3) GU

N−3b̃(N − 2) GU
N−3b̂(N − 2)h(N)

σ
(1)
N−3 γN−2 wN−2h(N)

cN q(1)(N − 2) fN vN h(N)

 . (5.57)

By using (4.3) and (4.7) we find that

AN−2(N − 1 : N , N − 2 : N) = A′

N−2(N − 1 : N , N − 2 : N)QN−2

= [U ′

N−2(N − 1 : N , N − 2 : N)

− pN−2(N − 1 : N)qN−3(N − 2 : N)]QN−2.

From this relation in the view of (5.57), (5.36) and (5.37) we obtain

AN−2(N − 1 : N , N − 2 : N) =


fN vN h(N)

− cN


θN−1 q(N)


QN−2

which implies

AN−2(N − 1 : N , N − 2 : N) = HN−2 (5.58)

with the matrix HN−2 defined in (5.23). Next from (5.57) and (5.39) with k = N − 2 we have

U ′

N−2(1 : N − 2, N − 2 : N) = GU
N−2


I2 0
0 h(N)


.

P. Boito et al. / Indagationes Mathematicae 23 (2012) 733–761 755

By using (5.21) and (5.42) we get

UN−2(1 : N − 2, N − 2 : N) =


GU

N−2hU (N − 2) GU
N−2bU (N − 2)

sN−1 ηN−1


. (5.59)

From (5.58) it follows that in order to get zero entry in the position (N , N − 2) in the matrix
A′

N−1 = Q̃∗

k AN−2 one should take QN−1 such that (5.26) holds. By using the equalities (5.58),
(5.59), (4.7) and (5.36), (5.37) we find that

sN−1 = AN−2(N − 1 : N , N − 2) + pN−2(N − 1 : N)qN−2(N − 2)

= HN−2(:, 1) + cN q(1)(N − 2).

Hence from (5.26), (5.29) and (5.30) we obtain

Q∗

N−1sN−1 =


δN−1

0


+


p(1)(N − 1)

p(1)(N)


q(1)(N − 2)

=


σ

(1)
N−2

p(1)(N)q(1)(N − 2)


. (5.60)

Thus by using (5.59), (5.60) and (5.27) we get

U ′

N−1(1 : N , N − 2 : N) =

 GU
N−2hU (N − 2) GU

N−2bU (N − 2)

σ
(1)
N−2 γN−1

p(1)(N)q(1)(N − 2) fN+1

 . (5.61)

From (5.39) with k = N − 1 we have

U ′

N−1(1 : N , N − 1 : N) =


GU

N−1 QN−1
fN+1 QN−1


.


I2 0
0 h(N)


.

Hence, (5.28), (5.32) and (5.34), (5.35) with k = N − 1 imply

UN−1(1 : N , N − 1 : N) =


GU

N−1hU (N − 1) GU
N−1bU (N − 1)

sN ηN


. (5.62)

In the view of (5.39) with k = N and hU (N) = 1 this relation gives

UN−1(1 : N , N) = GU
N hU (N). (5.63)

Thus, by virtue of (5.52), (5.57), (5.61) and (4.30) we get

σ
(1)
k−1 = U ′(k, k − 1) = U (1)(k, k − 1), k = 2, . . . , N − 1

and from (5.62) and (4.32) this yields

σ
(1)
N−1 = sN = UN−1(N , N − 1) = U (1)(N , N − 1).

Hence it follows that σ
(1)
k (k = 1, . . . , N − 1) are the subdiagonal entries of the matrix U (1).

Furthermore, by using (5.44), (5.59), (5.63) and (4.32) we have

U (1)(1 : k, k) = GU
k hU (k), k = 1, . . . , N .

From Lemma 2.2 this means that gU (i), hU (i) (i = 1, . . . , N), bU (k) (k = 1, . . . , N − 1)

are upper triangular generators of the matrix U (1). The orders of these generators equal r ′

k =

756 P. Boito et al. / Indagationes Mathematicae 23 (2012) 733–761

rk+2 + 1, k = 1, . . . , N − 2, r ′

N−1 = 2, r ′

N = 1. By applying Theorem 3.1 we obtain upper
triangular generators g(1)(i), h(1)(i) (i = 1, . . . , N), b(1)(k) (k = 1, . . . , N − 1) of the matrix
U (1) with orders defined in (4.27). �

Analogously with the single-shift case we may conclude that the structured double-shift
QR iteration applied to an input matrix A = A0 ∈ H N requires a linear number of
arithmetic operations per step by using linear storage. Experimental comparisons with customary
eigensolvers are also shown in Section 6.

6. Numerical tests

In order to test the performance of the proposed structured QR iterations, we implemented
the single-shift strategy in MATLAB and in Fortran 90/95, and the double-shift strategy in
MATLAB. The Fortran implementation has been used for timing comparisons. The codes can
be downloaded from the URL

http://www.unilim.fr/pages perso/paola.boito/software.html
A crucial point in the implementation of the QR method is deflation. Deflation occurs when

the current iterate matrix A is numerically reducible, that is, when a subdiagonal entry happens
to be negligible. In this case the eigenvalue problem splits into two subproblems of smaller size.
If the negligible subdiagonal entry is in last or last-but-one position, then one eigenvalue or a pair
of complex conjugate eigenvalues, respectively, has converged. In the present implementations:

• Deflation is performed according to the classical Wilkinson criterion, i.e., a subdiagonal
entry A(k + 1, k) is considered small enough for deflation if |A(k + 1, k)| <

ϵ (|A(k, k)| + |A(k + 1, k + 1)|), where ϵ is the machine epsilon;
• Deflation is also performed when the product of two consecutive subdiagonal entries is small

enough to ensure that the current iterate is numerically reducible; see e.g. [9,6,1] for details.

The accuracy and stability of our algorithms has been measured in the numerical experiments
by computing backward and forward errors. Let λ(z) =

N
j=0 c j z j

= cn
N

j=1(z − α j) be a
test polynomial; denote as {α̃ j } j=1,...,N the roots of λ(z) computed by the method that is being
analyzed, and as {c̃ j } j=0,...,N the coefficients of a polynomial having {α̃ j } j=1,...,N as “exact”
roots. Here the coefficients {c̃ j } j=0,...,N are computed in MATLAB by using the high precision
arithmetic environment.

We use the following definitions for errors:

• Absolute forward error: MaxEigAbs = max j=1,...,N mink=1,...,N |α j − α̃k |.

• Relative forward error: MaxEigRel = maxα j ≠0, j=1,...,N mink=1,...,N
|α j −α̃k |

|α j |
.

• Absolute backward error: MaxCoeffAbs = max j=0,...,N |c j − c̃ j |.

• Relative backward error: MaxCoeffRel = maxc j ≠0, j=0,...,N
|c j −c̃ j |

|c j |
.

For practical purposes, when λ(z) is defined by its coefficients we take as “exact” roots
{α j } j=1,...,n the roots computed by LAPACK routines ZGEEV (for complex coefficients) or DGEEV
(for real coefficients), or by the MATLAB command roots. On the other hand, if λ(z) is
defined by its roots, then we compute its “exact” coefficients {c j } j=0,...,N by using high precision
arithmetic.

In Examples 1 and 2, we consider polynomials of large degree (random and cyclotomic),
useful to check the growth of running time and the stability of the algorithm. The Fortran
implementation of the single shift strategy is employed here, with the exception of Example 1bis.

http://www.unilim.fr/pages_perso/paola.boito/software.html

P. Boito et al. / Indagationes Mathematicae 23 (2012) 733–761 757

Table 1
Average results for complex polynomials with random coefficients. Times are measured in seconds. “Old” refers to the
algorithm in [1], “new” to the algorithm described in the present paper.

N Time (old) Error (old) Time (new) Error (new) time L

50 0.0230 8.50e−15 0.0196 6.35e−15 0.00950
100 0.0685 3.23e−14 0.0584 1.25e−14 0.0446
150 0.136 7.00e−14 0.109 1.63e−14 0.134
200 0.278 1.03e−13 0.223 2.94e−14 0.320
300 0.605 2.77e−13 0.505 3.95e−14 1.10
400 1.00 4.34e−13 0.754 4.69e−14 2.67
500 1.59 6.31e−13 1.17 8.66e−14 5.17
600 2.48 8.82e−13 1.92 1.02e−14 8.64
700 3.64 1.54e−12 2.64 1.07e−13 14.65
800 4.45 2.11e−12 3.01 1.21e−13 23.13
900 5.67 1.95e−12 4.30 1.36e−13 31.15

1000 6.99 2.27e−12 4.96 1.84e−13 40.44

3000 63.88 1.55e−11 50.00 6.67e−13 1250.32
5000 197.81 4.74e−11 154.66 1.81e−12 7595.66

The machine we used to run the Fortran code is a laptop with an AMD Turion processor and 2 GB
RAM, equipped with the f95 compiler under Linux Ubuntu. We have observed, however, that the
same code may give slightly different results on different machines. We have also compared the
performance of the algorithm described in the present paper to the fast QR algorithm presented
in [1] referred to as the “Old” algorithm. For the sake of comparison the time time L reported by
the LAPACK routine is also indicated.

Example 1. In this example we consider polynomials with complex coefficients whose real and
imaginary parts are randomly chosen in the range [−1, 1]. Table 1 shows, for several values
of the degree, the average errors and timings over 10 polynomials. The cases N = 3000
and N = 5000 are exceptions in that a single polynomial has been used. Further, we have
computed a linear fit on logarithmic timings for our algorithm, for random polynomials of
degrees 100, 200, 300, . . . , 2000. The resulting slope is 2.01, which supports the theoretical
result of O(N 2) overall complexity for approximating all the roots of a polynomial of
degree N .

Example 1bis. We also test the Matlab implementation of the double shift strategy for random
polynomials (this time with real coefficients): see Table 2. For each value of the degree, results
are computed as an average over 10 polynomials.

Example 2. Given a degree N , consider the complex polynomial λN (z) = zN
− i , where i is the

imaginary unit. Table 3 shows the errors and timings for several values of the degree N .

Example 3. This example presents ill-conditioned polynomials of small degree, which provide
a test for backward stability and for the accuracy of computed results. We use here the Matlab
implementation, in the double shift version except for the last polynomial, which has complex
coefficients.

Following [7], we also explore the effect of balancing. Balancing amounts to replacing the
original companion matrix A with D AD−1, where D is a diagonal matrix. Ideally, the variation

758 P. Boito et al. / Indagationes Mathematicae 23 (2012) 733–761

Table 2
Average results for the Matlab double shift implementation applied to real polynomials with random coefficients; N it
denotes the average number of iterations per eigenvalue.

N MaxEigAbs N it

100 1.03e−14 1.69
200 2.15e−14 1.58
300 4.35e−14 1.58
400 4.63e−14 1.50
500 9.43e−14 1.49
600 7.21e−14 1.53
700 1.05e−13 1.46

Table 3

Results for polynomials λN (z) = zN
− i . Times are measured in seconds. “Old” refers to the algorithm in [1], “new” to

the algorithm described in the present paper.

N Time (old) Error (old) Time (new) Error (new) time L

50 0.0450 6.82e−15 0.0360 4.72e−15 0.0340
100 0.117 7.97e−15 0.0680 1.25e−15 0.170
150 0.273 1.05e−14 0.143 1.40e−14 0.528
200 0.367 1.99e−14 0.218 1.66e−14 1.35
250 0.497 4.46e−14 0.320 1.77e−14 2.16
300 0.789 7.08e−14 0.557 2.22e−14 3.21
400 1.27 1.46e−13 0.815 2.66e−14 9.53
500 1.96 2.39e−13 1.46 4.94e−14 23.57
600 3.06 4.10e−13 2.18 2.40e−14 27.48
700 4.49 4.26e−13 2.90 3.58e−14 69.16
800 5.53 7.10e−13 3.99 4.13e−14 64.67
900 7.57 7.51e−13 4.94 1.57e−13 83.31

1000 8.84 9.02e−13 6.00 8.92e−14 168.04

in magnitude of the elements of the new matrix should be smaller than for A, thus improving
the performance of a numerical rootfinder. For a structured approach, the matrix D needs to be
chosen of the form D = diag(β, β2, βN) for a suitable parameter β which amounts to a scaling
of the polynomial, i.e., to compute the roots of the scaled polynomial λ̂(z) = λ(βz). We therefore
obtain

D AD−1
= β



0 0 · · · 0 −
λ0

βN

1 0 · · · 0 −
λ1

βN−1

0 0 · · · 0 −
λ2

βN−2

...
...

. . .
...

...

0 0 · · · 1 −
λN−1

β


= β Â,

where Â is the companion matrix associated with λ̂(z). Hence, the eigenvalues of A can be easily
recovered from the eigenvalues of Â via multiplication by β. We will not go into details as to

P. Boito et al. / Indagationes Mathematicae 23 (2012) 733–761 759

Table 4
Results for polynomial 1 (Wilkinson polynomial).

β = 1 β = 23 β = 2−7 eig eig nobal

MaxEigAbs 4.33e−3 8.25e−2 9.90e−3 6.53e−2 6.78e−2
MaxEigRel 3.33e−4 5.89e−3 7.63e−4 4.66e−3 4.52e−3
MaxCoeffAbs 9.96e+5 8.75e+5 4.40e+6 4.75e+4 7.21e+4
MaxCoeffRel 8.44e−14 1.55e−13 5.26e−13 3.99e−15 8.88e−15

MaxCondEig 3.23e+27 2.22e+15 3.95e+66

Table 5
Results for polynomial 2.

β = 1 β = 2−7 eig eig nobal

MaxEigAbs 5.09e−12 3.01e−12 2.05e−12 4.30e−13
MaxEigRel 3.27e−12 2.01e−12 1.36e−12 6.50e−13
MaxCoeffAbs 6.70e−12 1.60e−10 2.14e−12 1.19e−11
MaxCoeffRel 7.81e−13 1.19e−11 6.65e−14 9.88e−13

MaxCondEig 2.63e+5 1.95e+40

the most effective criteria for choosing β; here we are essentially interested in investigating the
robustness of our method for different values of β.

The examples are mainly taken from [7,4,3].

1. Wilkinson polynomial of degree 20: λ(z) =
20

j=1(z − j).
2. Monic polynomial of degree 20 with roots [−2.1 : 0.2 : 1.7], in Matlab notation.
3. Monic polynomial with roots 2k, k = −10, −9, . . . , 9.
4. Reversed Wilkinson polynomial of degree 20: λ(z) =

20
j=1(z −

1
j).

5. λ(z) = 20!
20

j=0
z j

j ! .

6. λ(z) = z20
+ z19

+ · · · + z + 1.
7. Given an even positive integer N , define the complex polynomial (of degree N)

λ(z) =

N/2−1
k=−N/2

z −

2(k + 0.5) − i sin


2(k+0.5)
N−1


N − 1

 .

For comparison purposes, we also show errors for the Matlab routine eig applied to
the companion matrix of the (unbalanced) test polynomials at points 1–5. Observe that eig
automatically performs balancing, whereas the column “eig nobal” shows results for eig with
the balancing feature disabled (see Tables 4–10).

These results confirm the robustness of our method under balancing.

7. Conclusion and future work

In this paper we have developed a novel implicit QR eigenvalue algorithm for companion
matrices. The novel method is conceptually simpler and computationally faster than the one
presented in [1], by preserving or even enhancing its numerical accuracy. In our opinion the
algorithm using a compression technique is fairly optimized and a last final refinement would

760 P. Boito et al. / Indagationes Mathematicae 23 (2012) 733–761

Table 6
Results for polynomial 3.

β = 1 β = 2−2 β = 2−7 eig eig nobal

MaxEigAbs 1.03e−9 2.33e−10 4.19e−9 2.51e−12 3.85e−3
MaxEigRel 3.16e−7 1.19e−8 4.72e−11 4.01e−13 1.99
MaxCoeffAbs 7.19 4.96e+1 9.28e+3 6.14 11.19
MaxCoeffRel 1.57e−7 3.53e−9 9.29e−12 5.80e−14 4.69

MaxCondEig 1.38e+15 1.37e+18 4.57e+37

Table 7
Results for polynomial 4.

β = 1 β = 2−3 β = 2−7 eig eig nobal

MaxEigAbs 1.27e−1 4.25e−4 1.47e−4 1.33e−1 1.41e−1
MaxEigRel 9.43e−1 6.16e−3 2.21e−3 9.70e−1 1.93
MaxCoeffAbs 5.44e−14 5.41e−14 5.53e−14 1.32e−14 1.40e−14
MaxCoeffRel 1.00 7.17e−14 4.55e−14 1.56 2.01e+3

MaxCondEig 2.14e+16 2.42e+15 1.88e+28

Table 8
Results for polynomial 5.

β = 1 β = 23 β = 2−7

MaxEigAbs 5.23e−12 1.58e−11 2.56e−11
MaxEigRel 7.78e−13 2.41e−12 3.90e−12
MaxCoeffAbs 1.01e+5 1.56e+4 1.44e+6
MaxCoeffRel 1.36e−13 1.54e−14 3.82e−12

MaxCondEig 8.04e+16 1.65e+4 6.32e+56

Table 9
Results for polynomial 6. Here relative and absolute errors are the same.

β = 1 β = 2−7

MaxEigAbs 4.56e−15 1.92e+4
MaxEigRel 4.56e−15 1.92e+4
MaxCoeffAbs 1.54e−14 1.14e+23
MaxCoeffRel 1.54e−14 1.14e+23

MaxCondEig 1.38 1.03e+39

Table 10
Results for polynomial 7.

n = 8 n = 16 n = 32

MaxEigAbs 3.12e−15 7.48e−14 8.75e−10
MaxEigRel 1.54e−14 8.81e−14 1.92e−8
MaxCoeffAbs 1.00e−14 8.75e−14 7.00e−12

MaxCondeig 1.97e+1 9.05e+3 4.78e+9

P. Boito et al. / Indagationes Mathematicae 23 (2012) 733–761 761

be to make simultaneous the double process of performing the QR iteration and reconstructing
a minimal generator representation of the matrix returned as output. Experimental results are
reported to show that the proposed algorithm behaves like a numerically backward stable method.
The theoretical proof of backward stability is an ongoing research project. We are also planning
to extend and use the compression technique for the design of fast QZ iterations for dealing with
structured generalized eigenvalue problems.

Acknowledgment

The third author’s work was partially supported by MIUR, grant number 20083KLJEZ.

References

[1] D.A. Bini, P. Boito, Y. Eidelman, L. Gemignani, I. Gohberg, A fast implicit QR eigenvalue algorithm for companion
matrices, Linear Algebra Appl. 432 (2010) 2006–2031.

[2] D.A. Bini, F. Daddi, L. Gemignani, On the shifted QR iteration applied to companion matrices, Electron. Trans.
Numer. Anal. 18 (2004) 137–152.

[3] D.A. Bini, Y. Eidelman, L. Gemignani, I. Gohberg, Fast QR eigenvalue algorithms for Hessenberg matrices which
are rank-one perturbations of unitary matrices, SIAM J. Matrix Anal. Appl. 29 (2007) 566–585.

[4] S. Chandrasekaran, M. Gu, J. Xia, J. Zhu, A fast QR algorithm for companion matrices, Oper. Theory Adv. Appl.
179 (2008) 111–143.

[5] G. Golub, F. Uhlig, The QR algorithm: 50 years later its genesis by John Francis and Vera Kublanovskaya and
subsequent developments, IMA J. Numer. Anal. 29 (2009) 467–485.

[6] W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes. The Art of Scientific Computing,
third ed., Cambridge University Press, Cambridge, 2007.

[7] M. Van Barel, R. Vandebril, P. Van Dooren, K. Frederix, Implicit double shift QR-algorithm for companion matrices,
Numer. Math. 116 (2010) 177–212.

[8] R. Vandebril, M. Van Barel, N. Mastronardi, Matrix Computations and Semiseparable Matrices. Vol. II, Eigenvalue
and Singular Value Methods, Johns Hopkins University Press, 2008.

[9] J. Wilkinson, The Algebraic Eigenvalue Problem, Oxford University Press, 1965.

	Implicit QR with compression
	Introduction
	Definitions and properties of generators
	The compression technique
	The structured QR iteration: the single-shift case
	The structured QR iteration: the double-shift case
	Numerical tests
	Conclusion and future work
	Acknowledgment
	References

