
Ž .JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 203, 828]839 1996
ARTICLE NO. 0414

Equivalence of the Gelfand]Shilov Spaces

Jaeyoung Chung

Department of Mathematics, Kunsan National Unï ersity, Kunsan 573-360, Korea
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We prove that there is a one to one correspondence between the Gelfand]Shilov
space W V of type W and the space S Np of generalized type S. As an applicationM M p

we prove the equality W l W V s W V , which is a generalization of the equalityM M
s s ŽS l S s S found by I. M. Gelfand and G. E. Shilov ‘‘Generalized Functions, II,r r

.III,’’ Academic Press, New YorkrLondon, 1967 . Q 1996 Academic Press, Inc.

INTRODUCTION

The purpose of this paper is to investigate the relations between the
Gelfand]Shilov spaces of generalized type S and of type W which were

w xintroduced by I. M. Gelfand and G. E. Shilov in GS . They used these
spaces to investigate the uniqueness of the solutions of the Cauchy
problems of partial differential equations. Although the Gelfand]Shilov
spaces of generalized type S are defined by means of the positive se-
quences M and N and the spaces of type W are defined by means of thep p

Ž . Ž .weight functions M x and V y , we show that the class of the spaces of
type W is exactly the same as a class of the spaces of generalized type S.

828

0022-247Xr96 $18.00
Copyright Q 1996 by Academic Press, Inc.
All rights of reproduction in any form reserved.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82437716?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


GELFAND]SHILOV SPACES 829

In Section 1 we state definitions of the Gelfand]Shilov spaces of
generalized type S and type W, some relations between sequences and
their associated functions, and basic concepts of Young conjugates and
their properties. In Section 2 we prove that the spaces W , W V , and W V

M m
of type W are equal to some spaces S , S Nq, and S Nq of generalized typeM Mp p

S, respectively, under the natural condition M ; V and vice versa. In
Section 3 as an application of the above result we show the equality

W l W V s W V WŽ .M M

Ž .under the natural condition M ; V see Section 1 for definition . For this
we first show the equality

S l S Np s S Np . SŽ .M Mp p

The above two equalities are generalizations of the equality

S l S s s S s S0Ž .r r

w xwhich was suggested by Gelfand and Shilov in GS and proved affirma-
w xtively by Kashpirovsky in Ka in 1979.
Ž . w xAn equality of type S was also proved in Pathak P under the

Ž . Ž .condition P . But, this result cannot be applied to prove the equality W
U Ž . Ž .U Ž .as the defining sequence N of V y satisfies M.1 see Lemma 2.5p

Ž .U Ž .U Ž .and M.1 implies the reverse inequality P of P . See Section 3 for
Ž . Ž .Udefinitions of the conditions P and P and for an example. So we

Ž .replace P by a natural condition

M N > p!p p

Ž . Ž . w xwhich is always satisfied if M x ; V y , and we modify the proof in P in
Ž .order to make use of the condition M N > p! instead of P . Finally wep p

also prove the triviality of the spaces S l S Np and S Np under theM Mp p

condition M N ; p!s, 0 - s - 1, which will complete the generalizationp p

Ž .of the equality S0 .

1. PRELIMINARIES

Let M , p s 0, 1, 2, . . . , be a sequence of positive numbers. We imposep

Ž . Ž . Ž .Xthe conditions denoted M.1 , M.2 , and M.2 which denote logarithmic
convexity, stability under ultradifferential operators, and stability under
differential operators. We assume that M s 1 for simplicity and refer to0
w x < <K, p. 26 for details. We also use the multi-index notations a s a1

a Ž .a1 Ž .anq ??? qa , a!s a ! ??? a !, and  s r x ??? r x for a sn 1 n 1 n
Ž . na , . . . , a g N .1 n 0
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DEFINITION 1.1. For each sequence M of positive numbers we definep
Ž . w .the associated function M r on 0, ` by

r p

M r s sup log . 1.1Ž . Ž .
Mp p

DEFINITION 1.2. Let M and N be sequences of positive numbersp p
Ž . Ž .satisfying M.1 . Then we write M ; N M $ N , respectively if therep p p p

Žare constants L and C for any L ) 0 there is a constant C ) 0, respec-
. ptively such that M F CL N , p s 0, 1, 2, . . . . M and N are equï alentp p p p

if M ; N and M > N hold.p p p p

For example, M s p!s and N s p p s are equivalent if s ) 0, by Stirling’sp p
formula.

Ž . Ž .DEFINITION 1.3. Let M x and N x be real functions. Then we write
Ž . Ž . Ž Ž . Ž . .M x ; N x M x $ N x , respectively if there are constants L and C

Ž . Ž .for every L ) 0 there is a constant C ) 0, respectively such that M x F
Ž . Ž . Ž . Ž . Ž . Ž .N Lx q C. M x and N x are equï alent if M x ; N x and M x >
Ž .N x .

Ž .DEFINITION 1.4. If M r is an increasing convex function in log r and
increases more rapidly than log r p for any p as r tends to infinity, we
define its defining sequence by

r p

M s sup , p s 0, 1, 2, . . . .r exp M rŽ .r)0

w . w .DEFINITION 1.5. Let M : 0, ` ª 0, ` be a convex and increasing
Ž . Ž .function with M 0 s 0 and lim xrM x s 0. Then we define itsx ª`

Young conjugate MU by

MU y s sup xy y M x .Ž . Ž .Ž .
x

w xWe now refer to GS, Vol. II, Chap. IV for the definitions of the
w xGelfand]Shilov spaces of type S and to GS, Vol. II, Appendix 1, Chap. IV

for the Gelfand]Shilov spaces of generalized type S.
Ž . Ž . w .Let M x and V y be differentiable functions on 0, ` satisfying the

condition

Ž . Ž . Ž . XŽ . XŽ .K M 0 s V 0 s M 0 s V 0 s 0 and their derivatives contin-
uous, increasing, and tending to infinity.

w xWe refer to GS, Vol. II, Appendix 2, Chap. IV for the Gelfand]Shilov
spaces of type W.
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˜ Ž .DEFINITION 1.6. A space F of Fourier transforms w j sˆ
Ž . yi x?j

nH w x e dx of the functions w g F is called the Fourier-dual of F.R

2. EQUIVALENCE OF THE GELFAND]SHILOV SPACES

In this section we prove the equivalence of the Gelfand]Shilov spaces of
type W and the spaces of generalized type S.

Let M , p s 0, 1, 2, . . . , be a sequence of positive numbers. We imposep
the following conditions on M ;p

Ž .X Ž .M.1 Strong Logarithmic Convexity m s M rM is increasingp p py1
and tending to infinity as p ª `.

Ž .U Ž . Ž .XM.1 Duality p!rM satisfies M.1 .p

w x Ž .PROPOSITION 2.1 K, p. 49 . If M satisfies M.1 , then M is the definingp p
sequence of the associated function of itself, that is,

r p

M s sup ,p exp M rŽ .pG0

Ž .where M r is the associated function of M .p

We can easily obtain the following Lemma 2.2 from the Lemma 2.3 in
w xCCK, p. 370 .

w . w .LEMMA 2.2. Let M : 0, ` ª 0, ` be the function satisfying the condi-
Ž . Ž .tion K . Then M x is equï alent to the associated function of the defining

sequence of itself, i.e.,

x p

M x ( sup log ,Ž .
Mp p

Ž .where M is the defining sequence of M x .p

w x Ž . Ž .LEMMA 2.3 CCK . Let M r be a function satisfying the condition K .
U U Ž . Ž .Then the defining sequence M of the Young conjugate M r of M r isp

Ž .equï alent to p!rM , where M is the defining sequence of M r . In fact,p p
U Ž . pM s pre rM .p p

Ž .X Ž .UCon¨ersely, if M satisfies M.1 and M.1 , then the associated functionp
aŽ . U Ž .M r of p!rM and the Young conjugate M r of the associated functionp
Ž .M r of M are equï alent.p

LEMMA 2.4. Let M be a sequence of positï e numbers satisfying thep

Ž .X Ž .U Ž .conditions M.1 and M.1 . Then the associated function M r of M isp
Ž . Ž .equï alent to a function M r which satisfies the condition K .0
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Ž . Ž .Con¨ersely, let M r be a function satisfying the condition K . Then the
Ž . Ž .X Ž .Udefining sequence M of M r satisfies the conditions M.1 and M.1 upp

to equï alence.

Proof. We may assume that m s M rM and prm are strictlyp p py1 p
Ž . Ž .increasing. Let w t be the line segments connecting m , prm andp p

Ž Ž . . Ž . Ž .m , p q 1 rm , p s 1, 2, . . . , where m , prm s 0, 0 for p s 0pq1 pq1 p p

Ž . r Ž . Ž .and let M r s H w t dt. Then the function M r satisfies the condi-0 0 0
Ž . Ž .tion K . We claim that the associated function M r of M is equivalentp

Ž . Ž .to M r . Denote by m l the number of m F l. We obtain the0 p
following inequalities for m F l - mp pq1

prm F w l - p q 1 rm 2.1Ž . Ž . Ž .p pq1

prm F m l rl - prm . 2.2Ž . Ž .pq1 p

Ž . Ž .Combining 2.1 and 2.2 we have

1 w l F m l rl F w l 2.3Ž . Ž . Ž . Ž .2

for all l ) 0.
Ž . Ž . r Ž . wIntegrating 2.3 and applying the formula M r s H m l rl dl in K,0

1x Ž . Ž . Ž .p. 50 and the convexity of M , we conclude that M l F M l F M l0 0 02

for all l G 0.
Ž .To prove the converse, let M r be a function satisfying the condition

Ž . Ž . Ž .XK . Then the defining sequence M of M r satisfies M.1 . Since thep
U Ž . Ž . Ž .Young conjugate M r of M r also satisfies the condition K the

Ž . p U Ž . Ž .Xdefining sequence pre rM of M r also satisfies M.1 . We com-p
plete the proof by Stirling’s formula.

w x Ž . Ž .ULEMMA 2.5 GS, p. 245 . Let M and N satisfy M.1 and M.1 . Thenp p

&&
M Np pS s S and S S .M Np p

DEFINITION 2.6. We call S Np a space of type S if the sequences MM 0 pp
Ž .X Ž .Uand N satisfying the condition M.1 , M.1 , and M N > p!. Also, wep p p

call W V a space of type W if the functions M and V satisfy the conditionM 0
Ž .K and the relation M ; V.

Ž . r p sRemark 2.7. i Let M s p! , N s p , 0 - r, s - 1, r q s G 1. Thenp p
S Np is a space of type S .M 0p

Ž . Ž . x Ž . y Ž . Ž .ii Let M x s e y x y 1, V y s ye y y. Then M x and V y
Ž . Ž . Ž . Vsatisfy K and M x ; V y and, W is a space of type W . In fact,M 0

Ž . Ž . MM x > V y also holds and W is a space of type W .V 0
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Ž .iii Let M and N be the defining sequences of the above func-p p

Ž . U Ž . Nptions M x and V y , respectively. Then S is a space of type S . Also,M 0p

Ž .let M and N be the defining sequences of the above functions M x andp p

Ž . p!r NpV y . Then S is a space of type S by Lemma 2.3 and Lemma 2.4.M 0p

We now prove the main theorem in this section.

THEOREM 2.8. There is a one to one correspondence between the spaces of
type S and type W . In other words, for any gï en space S Np of type S , there0 0 M 0p

is W V of type W such that S Np s W V and ¨ice ¨ersa.M 0 M Mp

Proof. For any given spaces S Np of type S , we claim that S Np s W N U

M 0 M Mp p

where M is the associated function of M and NU is the Young conjugatep
of the associated function N of N . Let w g S Np. Then for every a , b g Nn

p M 0p

we obtain

a b < a < < b <j  w j F CA B M N 2.4Ž . Ž .< a < < b <

Ž .U Ž .Xfor some A, B ) 0. Since N satisfies M.1 or p!rN satisfies M.1 , it isp p

Ž .easy to see that N $ p!. Hence the function w j can be continuedp
analytically into the complex domain as an entire analytic function. Apply-

Ž .ing the Taylor expansion and the inequality 2.4 we have

< a g <j  w jŽ .
a <g << <j w j q ih F hŽ . Ý

g !nggN0

< a < < < <g <F C A M N Bh rg !Ý < a < <g <
nggN0

n < a < a < <F 2 CA M exp N 2 B h . 2.5Ž .Ž .< a <

< < < a < Ž .Dividing j in both sides of the inequality 2.5 and taking infimum for
< < Ž .a in the right hand side of 2.5 , we have

n a< < < < < <w j q ih F 2 C exp yM j rA q N 2 B h .Ž . Ž . Ž .

< < < a < b Ž . < < a b Ž . < Ž .Note that we may use j  w j instead of j  w j in 2.4 . Also
aŽ < <. U Ž X < <. XLemma 2.3 implies N 2 B h F N B h for some B ) 0. Thus, we

have

XU< < < < < <w j q ih F C exp yM j rA q N B h . 2.6Ž . Ž .Ž . Ž .1

It follows that S Np ; W N U

where M is the associated function of M , N a
M M pp

is the associated function of p!rN , and NU is the Young conjugate of thep
associated function N of N .p
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By Lemma 2.4, W N U

is a space of type W and also the fact M N > p!M p p

implies M ; N a ( NU. Hence W N U

is a space of type W . Conversely, letM 0
N U Ž .w g W . Then the inequality 2.6 is satisfied. Hence by the CauchyM

Ž .integral formula together with the inequality 2.6 we have

b ! w z dz . . . dzŽ . 1 nb< < w x sŽ . Hn b q1 b q11 n< <2p iŽ . z yx sR z y x ??? z y xŽ . Ž .j j 1 1 n n

b !
U< < < <F C sup exp yM a j q N b hŽ . Ž .< b <R < <z yx FRj j

b !
XU < <F C exp N b R sup exp yM a jŽ . Ž .< b <R < <z yx FRj j

b !
XU 0< <s C exp N b R exp yM a j , 2.7Ž . Ž .Ž .< b <R

Ž < <. 0where the quantity M a j attains its minimum at j s j . In fact, we can
0 Ž .write j s x q u R where u s u , . . . , u , u s 0 or "1, i s 1, 2, . . . , n.1 n i

By the convexity of M and the relation M ; NU , we have

0< < < <exp yM a j s exp yM a x q u RŽ .Ž .
< < < <F exp yM a x y u RŽ .Ž .

a
< <F exp yM x exp M a RŽ .1ž /2

a
U< <F exp yM x exp N a R .Ž .2ž /2

Ž .Hence the inequality 2.7 is reduced to

XUexp 2 N a q b R aŽ .2b< < < < w x F Cb ! exp yM xŽ . < b < ž /2R
XUexp N 2 a q b R aŽ .2

< <F Cb ! exp yM x . 2.8Ž .< b < ž /2R

< a < Ž . < <Multiplying x in both sides of 2.8 , taking the supremum for x , and
Ž .taking the infimum for R in the right hand side of 2.8 we have

U < < < a <exp N cR xŽ .
a b< <x  w x F C b ! inf supŽ . 1 < b < < <exp M ar2 xRR Ž .Ž .x
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y1< b <R< <aF C 2ra M b ! supŽ .1 < a < Už /exp N cRŽ .R

y1< <b< <b reŽ .< <a < b <F C cra c M b !Ž .1 < a < ž /N< b <

F C A < a < B < b < M N ,1 < a < < b <

where A s 2ra, B s ce.
It follows that W N U

; S Np. Now, for a given space W V of type W letM M M 0p

M and N be the defining sequences of M and VU. Then M and Np p p p

Ž .X Ž .Usatisfy M.1 and M.1 by Lemma 2.4. Furthermore, the relation M ; V
implies M > p!rN or M N > p!. Thus S Np is a space of type S . But byp p p p M 0p

the first part of the proof, the space S Np is equal to W N1
U

where M is theM M 1p 1

associated function of M and NU is the Young conjugate of the associ-p 1

ated function N of N . Also W N1
U

is equal to W V since M and M are1 p M M 11
U U Ž U .Uequivalent and N and V are equivalent and so are N and V s V.1 1

NV pTherefore we have W s S which completes the proof.M M p

Using the similar method as in Theorem 2.8 and Lemma 2.5 we obtain
the following theorem.

THEOREM 2.9. Let W and W V be spaces of type W. Then there existM
spaces S and S Np of generalized type S such that W s S and W V s S Np.M M Mp p

Ž .XIn this case, the sequences M and N satisfy the conditions M.1 andp p

Ž .U Ž .X Ž .UM.1 . Con¨ersely, if M and N satisfy the conditions M.1 and M.1 ,p p

then the spaces S and S Np are equal to some spaces W and W V of typeM Mp

W, respectï ely.

3. EQUALITY FOR THE SPACES OF GENERALIZED
TYPE S AND TYPE W

Applying the results of the above section we prove, in this section, the
Ž . Ž . Ž .equality W under the non-triviality condition M x ; V y . For this

Ž .equality we first prove the equality S under the conditions which are
Ž . U Ž .satisfied by the defining sequences M and N of M x and V y ,p p

Ž . Ž .respectively, where M x ; V y .
Ž .First we state Pathak’s result on the equality S .

w xTHEOREM 3.1 P . Suppose that there exists a positï e constant C such that

p q q
N G C N N , p , q s 0, 1, . . . PŽ .pqq p qž /p
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Ž . Ž . Ž .and that M.2 holds for N and M.1 and M.2 hold for M . Then thep p
Ž .equality S holds.

Ž .But, we cannot apply this result to prove the equality W as the defining
U Ž . Ž .U Ž . Ž .Usequence N of V y satisfies M.1 see Lemma 2.5 and M.1p

implies the following reverse inequality

p q q U
N F C N N , p , q s 0, 1, . . . PŽ .pqq p qž /p

for some constant C.
Ž . sFor example, the condition P is not satisfied by N s p! , 0 - s - 1,p

U Ž . Ž .which is the defining sequence of some V y where V y satisfies the
Ž . Ž .condition K . So we replace P by a natural condition

M N > p!p p

Ž . Ž . w xwhich is always satisfied if M x ; V y , and we modify the proof in P in
Ž .order to make use of the condition M N > p! instead of P .p p

Let M , p s 0, 1, 2, . . . , be a sequence of positive numbers. We imposep
one of the following conditions on M :p

Ž . Ž .M.0 Nontriviality M > p!;p

Ž X Ž . sM.0 Triviality M ; p! , 0 - s - 1.p

We first prove the equality S l S Np s S Np for the case M N > p!,M M p pp p

which is a generalization of the equality S l S s s S s for the case r q s Gr r
1.

Making use of integration by parts, the Leibniz formula, and the
Schwarz inequality we can obtain the following:

Ž .XLEMMA 3.2. If M and N satisfy the condition M.2 , then the supre-p p
5 5 2 5 5mum norm ? and the L -norm ? are equï alent for the spaces of type` 2

S.

Ž . Ž .THEOREM 3.3. If M and N satisfy the conditions M.1 and M.2 , andp p
Ž .if M N satisfies M.0 , then the equalityp p

S l S Np s S Np
M Mp p

holds.
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Proof. Using integration by parts, the Leibniz formula, and the Schwarz
w xinequality as in Ka we obtain

2a b 2 a b b5 5x  w x s x  w x  w x dxŽ . Ž . Ž .2 H
nR

b 2a 2 byk 2 ayk5 5 5 5F k!  w x x w xŽ . Ž .Ý 2 2ž /ž / kkkF2 a
kFb

b 2a2 2Ž < a <q < b <y < k <.F C k! A M NÝ <2 a <y < k < <2 b <y < k <ž /ž / kkk

b y12a2 2Ž < a <q < b <.F C A M N k! M NŽ .Ý<2 a < <2 b < < k < < k <ž /ž / kkk

Ž < < < <.2 a q b2 2 2F C 2 AH M N . 3.1Ž . Ž .< a < < b <

Ž . NpThis implies that w x belongs to S in view of Lemma 3.2.M p

The reverse inclusion is obvious, which completes the proof.

Remark 3.4. Let S Np be a space of type S . Then M and N satisfyM 0 p pp

Ž . Ž .U Ž .U Ž .U Ž .U Ž .M.1 and M.1 . Since M.1 implies P and P implies M.2 , the
Ž .equality S holds by Theorem 3.3.

THEOREM 3.5. Let W V be a space of type W . Then the equalityM 0

W l W V s W V
M M

holds.

Proof. For given spaces W , W V , and W V of type W there exist S ,M M 0 M p

S Np, and S Np of type S such thatM 0p

W s S , W V s S Np , and W V s S Np
M M M Mp p

by Theorem 2.8 and Theorem 2.9.
Since S Np is a space of type S , the equality S l S Np s S Np holds byM 0 M Mp p p

Remark 3.4. Consequently, we have the equality W l W V s W V.M M

We now prove the triviality of the spaces S Np and S l S Np under theM Mp p

condition M N ; p!s, 0 - s - 1, which generalizes the equalityp p

S l S s s S sf or the other case r q s - 1, which will complete the general-r r
Ž .ization of the quality S0 .
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Ž .XTHEOREM 3.6. If M and N satisfy the condition M.2 and M Np p p p

Ž .X Np Npsatisfies M.0 , then both the spaces S and S l S are trï ial.M Mp p

Ž . Np NpProof. If w x belongs to S or S l S , then by the conditionM Mp p

Ž .X Ž .M.0 , w x is continued analytically into the complex plane as an entire
Ž . Np 5 a a Ž .5 < a < < < sanalytic function. For w x g S we have x  w x F CA a ! ,`M p

0 - s - 1. Also, applying integration by parts, the Leibniz formula, and
the Schwarz inequality we have for w g S l S Np

M p

5 a a 5x  w xŽ . `

< a < 5 aykq1 aykq1 5F CA x  w xŽ .Ý 2ž
kFa
Ž .kF 1, . . . , 1

5 ayk aykq1 5q x  w xŽ .Ý 2 /
kFa
Ž .kF 1, . . . , 1

for some constants C and A.
Ž .Replacing a , b by a y k q 1 in 3.1 , we have

< <4 a2aykq1 aykq1 25 5x  w x F C 2 A j!M NŽ . Ž . Ý2 <2 aq2yj < <2 aq2yj <
jFaq1

s< <4 a2 1ys< < < < < <F C 2 A j ! j ! 2a q 2 y j !Ž . Ž .Ý
jFaq1

2 2 < a < < < 1qsF C A a ! .1 1

5 ayk aykq1 Ž .5 2 2 2 < a < < < 1qsSimilarly, we have x  w x F C A a ! . Therefore, in2 2 2
view of Lemma 3.2 we obtain that

5 a a 5 < a < < < Ž1qs.r2 < a < Ž1qs.x  w x F C A a ! F C A a ! r2Ž . ` 3 3 3 4

Ž . Npfor w x g S l S .M p
Ž . nNow it is easy to show that if an entire analytic function w z on C

satisfies the inequality

5 a a 5 < a < sj  w j F CA a ! , 0 - s - 1, 3.2Ž . Ž .`

Ž .then w z degenerates to a constant function.
In fact, by the Taylor expansion we obtain

ab aqb w 0 s  j yj ra !.Ž . Ž . Ž .Ý
a



GELFAND]SHILOV SPACES 839

< < Ž . b Ž .By letting j ª `, 3.2 implies that  w 0 s 0 for b / 0, hence w is
constant. Therefore the spaces S Np and S l S Np are trivial.M Mp p
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