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We prove that there is a one to one correspondence between the Gelfand—Shilov
space W, of type W and the space Sﬁ’; of generalized type S. As an application

we prove the equality W,, N W = W,$, which is a generalization of the equality
S, N S* = §; found by I. M. Gelfand and G. E. Shilov (“Generalized Functions, II,
111,” Academic Press, New York/London, 1967).  © 1996 Academic Press, Inc.

INTRODUCTION

The purpose of this paper is to investigate the relations between the
Gelfand—Shilov spaces of generalized type S and of type W which were
introduced by I. M. Gelfand and G. E. Shilov in [GS]. They used these
spaces to investigate the uniqueness of the solutions of the Cauchy
problems of partial differential equations. Although the Gelfand—Shilov
spaces of generalized type S are defined by means of the positive se-
quences M, and N, and the spaces of type I are defined by means of the
weight functions M(x) and Q(y), we show that the class of the spaces of
type W is exactly the same as a class of the spaces of generalized type S.
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In Section 1 we state definitions of the Gelfand—Shilov spaces of
generalized type S and type W, some relations between sequences and
their associated functions, and basic concepts of Young conjugates and
their properties. In Section 2 we prove that the spaces W,,, W%, and W
of type W are equal to some spaces SMP, SNa, and S,{ZZ of generalized type
S, respectively, under the natural condition M c ) and vice versa. In
Section 3 as an application of the above result we show the equality

Wy N W =w (W)

under the natural condition M < Q (see Section 1 for definition). For this
we first show the equality

Sy, N SN =Sy (S)
The above two equalities are generalizations of the equality
S NS =S’ (S0)

which was suggested by Gelfand and Shilov in [GS] and proved affirma-
tively by Kashpirovsky in [Ka] in 1979.

An equality of type (S) was also proved in Pathak [P] under the
condition (P). But, this result cannot be applied to prove the equality (W)
as the defining sequence N, of Q*(y) satisfies (M.1)* (see Lemma 2.5)
and (M.1)* implies the reverse inequality (P)* of (P). See Section 3 for
definitions of the conditions (P) and (P)* and for an example. So we
replace (P) by a natural condition

M,N, > p!

which is always satisfied if M(x) c Q(y), and we modify the proof in [P] in
order to make use of the condition M,N, D p! instead of (P) Finally we
also prove the triviality of the spaces S,, NS and S, ¥ under the

condition M,N, c p¥, 0 <s <1, which will complete the generallzatlon
of the equality (SO).

1. PRELIMINARIES

Let M,, p=0,1,2,..., be a sequence of positive numbers. We impose

the conditions denoted (M.1), (M.2), and (M.2) which denote logarithmic
convexity, stability under ultradifferential operators, and stability under
differential operators. We assume that M, = 1 for simplicity and refer to
[K, p. 26] for details. We also use the multi-index notations |a|= «;
+ - +a, al=a! a)l and 9% = (9/dx)™ ---(&/&xn)”" for a =
(aj,...,a,) €Ng.
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DeriniTioN 1.1, For each sequence M, of positive numbers we define
the associated function M( p) on [0, ) by

p?
M = suplog—. 1.1
() = suplog - (1)

DerINITION 1.2, Let M, and N, be sequences of positive numbers
satisfying (M.1). Then we write M, c N, (M, < N,, respectively) if there
are constants L and C (for any L > 0 there is a constant C > 0, respec-
tively) such that M, < CL?N,, p =0,1,2,.... M, and N, are equivalent
if M, cN,and M, > N, hold.

For example, M, = p!" and N, = p”* are equivalent if s > 0, by Stirling’s
formula.

DeriNITION 1.3.  Let M(x) and N(x) be real functions. Then we write
M(x) € N(x) (M(x) < N(x), respectively) if there are constants L and C
(for every L > 0 there is a constant C > 0, respectively) such that M(x) <
N(Lx) + C. M(x) and N(x) are equivalent if M(x) c N(x) and M(x) D
N(x).

DeriNITION 1.4, If M( p) is an increasing convex function in log p and
increases more rapidly than log p? for any p as p tends to infinity, we
define its defining sequence by

P
M = sup

_ p=0,1,2,....
P >0 exp M( p)

DEFINITION 1.5. Let M:[0,%) — [0,0) be a convex and increasing
function with M(0) =0 and lim,__x/M(x) = 0. Then we define its
Young conjugate M* by

M*(y) = sup(xy — M(x)).

We now refer to [GS, Vol. Il, Chap. 1V] for the definitions of the
Gelfand-Shilov spaces of type S and to [GS, Vol. I, Appendix 1, Chap. V]
for the Gelfand—Shilov spaces of generalized type S.

Let M(x) and Q(y) be differentiable functions on [0, «) satisfying the
condition

(K) M@0 = Q@) =M'(0) =00 =0 and their derivatives contin-
uous, increasing, and tending to infinity.

We refer to [GS, Vol. Il, Appendix 2, Chap. V] for the Gelfand-Shilov
spaces of type W.
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DeriNnITION 16. A space & of Fourier transforms @(&) =
Jar@(x)e~ "¢ dx of the functions ¢ € ® is called the Fourier-dual of ®.

2. EQUIVALENCE OF THE GELFAND-SHILOV SPACES

In this section we prove the equivalence of the Gelfand—Shilov spaces of
type W and the spaces of generalized type S.

Let M,, p=0,1,2,..., be a sequence of positive numbers. We impose
the following conditions on Mp;

(M.1)" (Strong Logarithmic Convexity) m, = M,/M,,_, is increasing
and tending to infinity as p — o.
(M.1)*  (Duality) p!/M, satisfies (M.1)".

ProposITION 2.1 [K, p. 49]. If M, satisfies (M.1), then M, is the defining
sequence of the associated function of itself, that is,

p
M = sup ————,
P psoexp M( p)

where M( p) is the associated function of M,,.

We can easily obtain the following Lemma 2.2 from the Lemma 2.3 in
[CCK, p. 370].

LEMMA 2.2. Let M :[0,) — [0,%) be the function satisfying the condi-
tion (K). Then M(x) is equivalent to the associated function of the defining
sequence of itself, i.e.,

xp
M(x) = suplog—,
P Mp

where M, is the defining sequence of M(x).

LEMMA 2.3 [CCK]. Let M( p) be a function satisfying the condition (K).
Then the defining sequence M, of the Young conjugate M*(p) of M(p) is
equivalent to p!/M,, where M, is the defining sequence of M(p). In fact,
M} = (p/e)’/M,.

Conversely, if M, satisfies (M.1) and (M.1)*, then the associated function
M*(p) of p'/M, and the Young conjugate M*( p) of the associated function
M(p) of M, are equivalent.

LEMMA 2.4. Let M, be a sequence of positive numbers satisfying the

conditions (M.1) and (M.1)*. Then the associated function M(p) of M, is
equivalent to a function My( p) which satisfies the condition (K).
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Conversely, let M(p) be a function satisfying the condition (K). Then the
defining sequence M, of M( p) satisfies the conditions (M.1) and (M.1)* up
to equivalence.

Proof. We may assume that m, =M,/M,_, and p/m, are strictly
increasing. Let w(¢) be the line segments connecting (mp,p/mp) and
(mPH,(p + 1)/mp+1), p=12,..., where (mp,p/mp) =(0,0forp =0
and let M,(p) = [§w(¢)dt. Then the function M( p) satisfies the condi-
tion (K). We claim that the associated function M( p) of M, is equivalent
to My(p). Denote by m(A) the number of m, < A. We obtain the
following inequalities for m, <A <m,

p/m, <w(A) <(p+1)/m,., (2.1)
p/m, . <m(A)/A<p/m,. (2.2)

Combining (2.1) and (2.2) we have
w(A) <m(A)/x <w(A) (2.3)

for all A > 0.

Integrating (2.3) and applying the formula M( p) = [{m(A) /A dA in [K,
p. 50] and the convexity of M, we conclude that My(31) < M(A) < My())
for all A > 0.

To prove the converse, let M( p) be a function satisfying the condition
(K). Then the defining sequence M, of M(p) satisfies (M.1). Since the
Young conjugate M*(p) of M(p) also satisfies the condition (K) the
defining sequence (p/e)’/M, of M*(p) also satisfies (M.1). We com-
plete the proof by Stirling’s formula.

LEMMA 2.5 [GS, p. 245]. Let M, and N, satisfy (M.1) and (M.1)*. Then

—_—

Su=S"  and 5V,

DeriNnITION 2.6. We call S,/ M a space of type S, if the sequences M,
and N, satisfying the condltlon (M.1y, (M.1)*, and M,N, > p!. Also, We
call WQ a space of type W, if the functions M and () satisfy the condition
(K) and the relation M c Q.

Remark 2.7. (i) Let M,=pV", N,=p”, 0<r,s<1r+s=>1 Then
Sﬁi is a space of type S,.
(i) Let M(x)=e*—x—1,Q(y) =ye’ —y. Then M(x) and Q(y)
satisfy (K) and M(x) c Q(y) and, W,? is a space of type W,. In fact,
M(x) D Q(y) also holds and W)} is a space of type W,.



GELFAND—SHILOV SPACES 833

(iii) Let M, and N, be the defining sequences of the above func-
tions M(x) and Q*(y), respectively. Then S,‘]}’Z is a space of type S,. Also,
let M, and N, be the defining sequences of the above functions M(x) and
Q(y). Then Sﬁ:Np is a space of type S, by Lemma 2.3 and Lemma 2.4.

We now prove the main theorem in this section.

THEOREM 2.8. There is a one to one correspondence baween the spaces of
type S, and type W,. In other words for any given space S, o of type S, there
is Wi of type W, such that S, M= = W, and vice versa.

Proof. For any given spaces Sy M of type §,, we claim that S, M= WN*
where M is the associated functlon of M, and N* is the Young conjugate
of the associated function N of N,. Let ¢ € S . Then for every o, B € Nj
we obtain

| afp(£)| < CAIBIPIM,, N, (2.4)

for some 4, B > 0. Since N, satisfies (M.1)* or p!/N, satisfies (M.1), it is
easy to see that N, <p!. Hence the function (&) can be continued
analytically into the complex domain as an entire analytic function. Apply-
ing the Taylor expansion and the inequality (2.4) we have

(o)l
"

| E%(E+in)] < X

vENG

C Y A“M Ny, [ Bnl™/y!
yeNG

< 2"CA*'M,, exp N*(2Bln)). (2.5)

IA

Dividing | £]'*! in both sides of the inequality (2.5) and taking infimum for
|a| in the right hand side of (2.5), we have

lo( &+ in)l < 2"Cexp[—M(I£]/4) + N*(2Blnl)].

Note that we may use |£[1*! 9Rp(£)] instead of | £« d%p(&)] in (2.4). Also
Lemma 2.3 implies N*(2BIn)) < N*(B'|n]) for some B’ > 0. Thus, we
have

lo( &+ in)l < Ciexp[-M(I§]/4) + N*(B'In))]. (2.6)

It follows that S,{}]ﬁ C W," where M is the associated function of M,, N*

is the associated function of p!/N,, and N* is the Young conjugate of the
associated function N of N,.
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By Lemma 2.4, WA’)’* is a space of type W and also the fact M,N, D p!
implies M c N* = N*, Hence W,{}’* is a space of type W,. Conversely, let
© € W), Then the inequality (2.6) is satisfied. Hence by the Cauchy
integral formula together with the inequality (2.6) we have

B! o(2)de, ...d
L = _
QD(X)| (27Ti) /\{,-—x,-|=R(§1 —xl)ﬁfrl ...(gn _xn)ﬁ,,+1
!
< CW sup exp[—M(al&l) + N*(blnl)]
[{j—x]<R

|
<CB_eXpN*(b’R) sup exp[—M(al¢l)]

R!BI
-—x,-|sR

BI
_CweXpN*(bR)EXIO[ M(al£°)], (2.7)
where the quantity M(al £]) attains its minimum at & = £°. In fact, we can
write ¢€° =x + OR where 0= (0,,...,6,), 6,=00r +1,i=12,...,n
By the convexity of M and the relation M c N*, we have

exp| —M(al¢°)] = exp[ —M(alx + 6R])]
< exp[ —M(a(lx| - |6RI))]
<e [ —|x| }exp M(a,R)

< exp[—M(Elxl)]exp N*(a,R).

Hence the inequality (2.7) is reduced to

2%(x)| < CB! exp[zm;?ﬁ = eXp[‘M(%'X'”

- cp expN*[Z}gaB+b)R] exp[_M(gm)]. (28)

Multiplying |x#| in both sides of (2.8), taking the supremum for |x|, and
taking the infimum for R in the right hand side of (2.8) we have

exp N*(cR) [
RIE] Sgp exp M((a/2)|x|)

lx* dFp(x)| < C, B'mf



GELFAND—SHILOV SPACES 835

-1

B RIBI
< Cy(2/a)“ M, B! ( P exp N*(cR)
1B\~
< Cy(c/a)'clPIM,,, 'B!(%
18]

< C,AIBIFM,, N,

18I’
where A =2/a, B = ce.

It follows that WY c Si7. Now, for a given space W, of type W, let
M, and N, be the deflnmg sequences of M and Q*. Then M, and N,
satlsfy (M. 1)’ and (M.1D* by Lemma 2.4. Furthermore the reIatlon Mc Q
implies M, > p!/N, or M,N, D p'. Thus S is a space of type S,. But by
the first part of the proof, the space S,/ M s equal to WN1 where M is the
associated function of M, and Ny is the Young conjugate of the associ-
ated function N, of N,. Also WN1 is equal to W, since M, and M are
equivalent and N, and Q* are equwalent and so are Nj* and (Q*)* =
Therefore we have W = S WhICh completes the proof |

Using the similar method as in Theorem 2.8 and Lemma 2.5 we obtain
the following theorem.

THEOREM 2.9. Let W,, and W be spaces of type W. Then there exist
spaces S M, and S™v of generalized type S such that W, = S M, and W = §%.

In this case, the sequences M, and N, satisfy the conditions (M.1) and
(M.1)*. Conversely, if M, and N, satisfy the conditions (M.1) and (M.1)*,

then the spaces Sy, and S Ny are equal to some spaces W, and W of type
W, respectively.

3. EQUALITY FOR THE SPACES OF GENERALIZED
TYPE S AND TYPE W

Applying the results of the above section we prove, in this section, the
equality (W) under the non-triviality condition M(x) c Q(y). For this
equality we first prove the equality (S) under the conditions which are
satisfied by the defining sequences M, and N, of M(x) and Q*(y),
respectively, where M(x) c Q(y).

First we state Pathak’s result on the equality (S).

THEOREM 3.1 [P].  Suppose that there exists a positive constant C such that

+
Nmzc(”pq)NN p.g=01,... (P)
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and that (M.2) holds for N, and (M.1) and (M.2) hold for M,,. Then the
equality (S) holds.

But, we cannot apply this result to prove the equality (W) as the defining
sequence N, of Q*(y) satisfies (M.1)* (see Lemma 2.5) and (M.1)*
implies the following reverse inequality

sC(p;q)Nqu, p.g=01,... (P)*

for some constant C.

For example, the condition (P) is not satisfied by N, = p!*, 0 <s <1,
which is the defining sequence of some Q*(y) where Q(y) satisfies the
condition (K). So we replace (P) by a natural condition

M,N, > p!

which is always satisfied if M(x) c Q(y), and we modify the proof in [P] in
order to make use of the condition M,N, O p! instead of (P).

Let M,, p=0,1,2,..., be a sequence of positive numbers. We impose
one of the following conditions on M,

(M.0) (Nontriviality) M, > pY;
(M.0" (Triviality) M, cp¥ 0<s<Ll
We first prove the equality SMp nshr = S}}; for the case M,N, D p!,
which is a generalization of the equality S, N §° = S; for the case r + s >
1.

Making use of integration by parts, the Leibniz formula, and the
Schwarz inequality we can obtain the following:

Lemma 32. If M, and N, satisfy the condition (M.2Y, then the supre-
mum norm | - ||. and the L*-norm || - ||, are equivalent for the spaces of type
S.

THEOREM 3.3.  If M, and N, satisfy the conditions (M.1) and (M.2), and
if M, N, satisfies (M.0), then the equality

Sy, N SN =Sy

holds.
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Proof. Using integration by parts, the Leibniz formula, and the Schwarz
inequality as in [Ka] we obtain

e aBp(x)I3 = [ [x?e a%(x)] 9% (x) dx
Bl2«a 28—k 2o () I,
- kk§“(k)( ] )klllé' () lallx2e Ko ()]
< Cz%:(f)(zka)k!AZ(laHlBI—k)Mzal_kNzﬁ_lkl

3 2 N
< C%4X HBDMZaINZBZ(f)( ka)k!(M|k|N|k|) '
k

< C}(2AH)X PV M2 N2 . (3.1)

This implies that ¢(x) belongs to S,‘[}’Z in view of Lemma 3.2.
The reverse inclusion is obvious, which completes the proof.

Remark 3.4. Let SM” be a space of type S,. Then M, and N, satisfy
(M.1) and (M.1)*. Since (M.2)* implies (P)* and (P)* |mpI|es (M 2), the
equality (S) holds by Theorem 3.3.

THEOREM 3.5.  Let W, be a space of type W,. Then the equality
Wy, N W =wa
holds.

Proof For given spaces 1¥,,, W, and W7 of type W, there exist S,
r,and S,/ N of type S, such that

Wy =Sy, W*=S%  and We=5y

by Theorem 2.8 and Theorem 2.9.
Since S, M s a space of type §,, the equality S,, NS No = =Sy ¥ holds by

Remark 3.4. Consequently, we have the equality W Nwe= WQ

We now prove the triviality of the spaces S,‘[}’Z and SMp N S under the
condition M,N, c p¥, 0 <s <1, which generalizes the equality

B, N S¥ = S’or the other case r + s < 1, which will complete the general-
ization of the quality (S0).
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THeoReM 3.6. If M, and N, satzsﬁ/ the condition (M.2) and M,N,
satisfies (M.0Y, then both the spaces Sy Pand Sy N SN are trivial.

Proof. 1f ¢(x) belongs to SMZ or Sy N S™», then by the condition
(M.0), o(x) is continued analytically into the complex plane as an entire
analytic function. For ¢(x) eSMp we have [lx®d%(x)ll.. < CA*!|al?,
0 <s < 1. Also, applying mtegratlon by parts, the Leibniz formula, and
the Schwarz inequality we have for ¢ € S, M, 0 SN

1x 3% (x)ll.

< CA|a| Z ||xa7k+107a7k+l(p(x)”2

4 Z ” a— kaa k+1 (-x)||2

for some constants C and A.
Replacing a, 8 by @ — k + 1 in (3.1), we have

lxert g ()l < A L [Mpasa i Nowra-y

j<a+l

<2’ Y jinsihRa + 2 —ji°

j<a+l

< C2A42 g 11+,

Similarly, we have [lx® % ge~**%(x)|5 < C2A%|at***. Therefore, in
view of Lemma 3.2 we obtain that

lx® 9% (x)lle < CoARaIE+9/2 < C, A 10+ /2

for o(x) € §,, N S™.
Now it is easy to show that if an entire analytic function ¢({) on C”
satisfies the inequality

1£%0%( &)l < CA¥lals,  0<s<1, (3.2)

then ¢(¢) degenerates to a constant function.
In fact, by the Taylor expansion we obtain

Pp(0) = Lot P(&)(—€) /.
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By letting |&| — o, (3.2) implies that d4p(0) = 0 for B # 0, hence ¢ is
constant. Therefore the spaces Sﬁf; and Su, N SN are trivial.
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