
JOURNAL OF MATHEMATICAL ANALYSIS ANJJ APPLICATIONS 109, 171-181 (1985) 

On Some New integral Inequalities in 
N Independent Variables 

EN HAO YANG 

Department of Mathematics, Jinan University, 
Guangzhou, Peoples Republic of China 

Submitted by R. P. Boas 

Integral inequalities of the Gollwitzer type in n independent variables are 
established which generalize some known results obtained by Gollwitzer, Bondge, 
Pachpatte, Shih, and Yeh. 0 1985 Academrc press, IX 

1. INTRODUC~~N 

One reason for much of the successful mathematical development in the 
theory of differential and integral equations is the availability of various 
kinds of inequalities. During the past few years, the discovery and the 
application of the new generalizations of the Gronwall-Bellman inequality 
in more than one independent variables have attracted the interest of many 
authors. The aim of this paper is to establish some new n-independent- 
variable integral inequalities which unify and extend some known results 
due to Gollwitzer [Z], Bondge and Pachpatte Cl], Pachpatte [3,4], and 
Shih and Yeh [S]. The inequalities obtained here are useful for some 
problems in the theory of partial differential and integral equations in 
several variables. Throughout this paper the following notations will be 
used. 

Let R, = [0, co) and Z= [0, h), where Ochd co. A point (xi, x; ,,.., x;) 
in the n-dimensional Euclidean space R” will be denoted by xi, and the 
origin of R” is denoted by 0. For any two points X, y in R”, x < y (that is, 
xi < y,, i = 1, 2 ,..., n), we denote 

Yl 

s s 
‘” . . . . ds, ds, _ 1 i= 1, 2, . . . . n, 

XI & 
. . . ds, by j’ . ds; 

x 
D,=& 

I 

and D=D,D2 . . . D,. The natural partial ordering on R” is defined by 
x < y if and only if xi < yI for i = 1,2,..., n. Let C(I”, R + ) be the class of all 
continuous functions on Z” with range in R, . 
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In what follows, we define the functionals Ejo( s, x; u) on C(P, R + ) by 

Ejl’(s, x; 0) = jA uy(s, tk) j’ ag 1(s, tk+‘). . . j‘ a!“(& t’) 
.* t k d-1 J 

xv(tJ)dtJdtJ-‘...dtk, 

j = 1) 2,..., m;k=l,2 ,..., j;O6x<s,sEI”, 

where v E C(ln, R + ), alj)(s, x): Z” x Z” + R + are continuous functions. 

2. MAIN RESULT 

THEOREM 1. Let the functions u and w be in the class C(P, R +), and let 
al;l’(s, x): I” x I” + R + be continuous functions. Suppose that the inequality 

u(s) > w(x) - f E!J’(s, x; w) (2-l) 
J=l 

is satisfied for 0 Q x < s, where s E r”. Then the following two inequalities are 
also valid for 0 < x < s: 

(1) 

where 

u(s) 2 w(x) exp 
( j 

- 1 J!l A,(% t) df) > 

A,(s, x) = max[&‘(s, x), a(~+ l)(s, 
J J X) a(“)@, x)1, , . . . ,  J 

for each s E I?’ fixed, j = 1, 2 ,..., m; 

(11) 4s) b w(x)lq,(s, xl, 

where the function q,,,(s, x) is defined by 

ql(s, xl = exp SC A,@, t) dt, 
-XI=, 

q&s, x) = 1+ iS m-i+ ’ A,(s, t) qr- l(s, t) dt, r = 2, 3 ,..., m. 
1[ 

/=I 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

Proof. We first prove the validity of (2.2). Fixing s E Z”, the inequality 
(2.1) can be rewritten as 

w(x) G r1(x) forO<x<s, (2.6) 
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where 

r,(x) = u(s) + f qJ’(s, x; w). 
J=l 

Therefore, 

TIb) = 4s) on x, = s,, i = 1, 2 ,..., n, 

and by using (2.6) we obtain 

(-)“Dr,(x) =a\“(S, x) w(x) + f a’,J)(s, x) E$J’(s, x; w) 
J=2 

<A,(s,x) 

i 

r,(x)+ t qqs,x;r,) 

I 

, (2.7) 
J=2 

here A,($, x) is given by (2.3). We define 

r2(x) = r,(x) + 2 Efj)(s, x; rl), 
J=2 

then ~~(3) < rz(x) when 0 6 x < S, and r2(x) = u(s) on xi = s,, i = 1,2 ,..., n. 
By applying (2.7) we derive 

(- l)“Dr,(x) = (- l)“Dr,(x) + 2 a$J)(s, x) E$J’(s, x; rl) 
J=3 

+ @(s , x) l-l(X) 

6A,(s,x)r,(x)+A,(s,x)r,(x), o<x<s, P-8) 

where A,(s, x) is given by (2.3) and r3(x) is defined by 

r3(x) = r2(x) + 2 qJ’(s, x; r2). 
J=3 

Continuing in this way then we obtain 

0 < x < s, k = 1, 2 ,..., m - 1, (2.9) 

w(x) G r,(x) < r2(x) d . . . G r,(x), o<x<s, (2.10) 

and 

r1(x)=r2(x)= ... =r,(x)=u(s) onx,=s,, i= l,..., n, (2.11) 
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where 

rl(x) = u(s) + f lq’(s, x; w), 
j= 1 (2.12) 

T~+~(x)=T~(x)+ f E&(s,x;Q), k=l,2,...,m-1. 
J=k+l 

From the last equality in (2.12) with k=m- 1, we derive 

(- l)“Dr,(x) = (- l)“Dr,- 1(x) + a$+, x) rm- l(X) 

m-1 

<r,(x) C A,(s, x) + 4fV.c x) r,- 1(x) 
/=I 

<r,(x) jJ A,@, x), OQx<s, (2.13) 
J=l 

since (2.9) and (2.10) hold. We see from (2.12) that r/(x) > U(S) > 0 is valid 
for j = 1, 2,..., m and 0 <x <s. Hence, we obtain from (2.13) that 

( - l)“DfAx) < -f A (s x) 

r,(x) ‘,=1 ’ ’ ’ 
O<xds,sEl”fixed. (2.14) 

The above inequality (2.14) can be rewritten as 

(-l)nr,(x).D1D2...Dnrm(~)< f 

rfi@) 
. 

A (s x) 
J ’ 

/=I 

+ ( -1)“D,,r,(x).D1D2... Dn-lrm(~) 

C(x) 
2 

i.e., 

D1”‘;;;;rm(x)] < 2 A,(s, x), 
m J=l 

since (- l)“D,r,(x). D, ... D,- ,r,,,(x) > 0 holds. Keeping x1, x2 ,..., x,- 1 
fixed in the above inequality, setting x, = t,, and integrating the both sides 
with respect to t, from x, to s,, we obtain 

since D, . ..Dn~l~m(~l....r~,~,,~,)=D1...Dn--~(~)=Ofor n>2. 
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The above inequality implies 

S” m 
d fc A,(s, xl,..., x,- 1, t,) dt,, 

x 
“J=l 

since here we have (-l)“-‘D,_lr,(~).D1...D,_,r,(~)~O. 
Keeping x1 ,..., x,-*, x, fixed in the above inequality, setting 

X,-l = t, _ 1, and then integrating with respect to t, _ I from X, _ 1 to S, _ 1, 
we derive 

(- 1)“-2D1 ..* Dne2r,,,(x) 

since D1~~~Dn-2rm(~1 ,..., x,_~,s,_~,x,)=D~...D~-~u(s)=O for na3. 
Proceeding in this way we easily obtain 

Keeping x1, x3 ,..., x, fixed in the above inequality, setting x2 = t,, and 
integrating with respect to t2 from x2 to s2, and in view of 

Aj(S, ~13 ~2, t3,..., t,) dt,. . * dt3. 

D1rm(xl, s2, x3 ,..., x”)=O, then we obtain 

Now keeping x2,..., x, fixed in the above inequality, setting x, = t,, and 
integrating with respect to I, from x, to sl, and using 
rm(s, 3 x2,.-, x,) = U(S), we obtain 

-ln(u(s)/r,(x)) d [’ f A,(s, t) dt, 
*J=l 

or 

r,(x) < u(s) exp IS f Ai(s, t) dt (= 4s) 41(s, x)1. (2.15) 
x 

J=l 

Hence the desired inequality (2.2) follows from (2.10) and (2.15). 
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We now prove the inequality (2.4). Substituting the bound for r,,,(x) in 
(2.15) in the inequality (2.9) with k = m - 1, we have 

m-- I 
(-l)"Dr,_,(x)<u(s) ql(s, x) C A,(s,x), O<x6s. 

J=l 

Integrating the above inequality with respect to x, from x, to s,, and using 
D, ...Dn-lrmpI(xl ,...,. ‘cnpl,s,)=O, we get 

Integrating the above inequality with respect to x,- , from x, _, to s, _ , , 
and using D1...Dn-2rm~1(x1,..,,xn~2, s,-~,x,)=O, we have 

( -l)“P2D1 ... Dn-Zrmpl(x) 

Continuing in this way then we obtain 

-D,r,-,(x)Q/li...~~~u(si~~:A,(r,x,,r,,....1.) 
*2 

xql(s,xl, t, ,..., t,)dt;..dt,. 

Now, integrating the above inequality with respect to xi from x, to s1 and 
using r,- ,(sl, x2,..., x,) = U(S) we obtain 

rm ~ 1(x) d 4s) q2(s, x) when O<x<s, 

where q2(s, x) is given by (2.5). Similarly, substituting the above bound for 
r,+,(x) in the inequality (2.9) with k = m - 2, after integration we get the 
bound on r,p2(x) such that 

rm 2(x) G 4s) q3b, x) whenOdx<s. 

Continuing in this way, we can easily derive the desired inequality (2.4). 
The proof of the Theorem 1 is now completed. 
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COROLLARY 1. In the above Theorem 1, if m = 1 and a\‘)(s, x) = 
a(s) b(x), where a(x) and b(x) are nonnegative continuous functions defined 
on I”, then we derive Theorem 1 in Shih and Yeh [S] which in turn is an 
extension of Gollwitzer [2, Theorem 21 and Bondge and Pachpatte 
[ 1, Theorem 11. 

COROLLARY 2. In the above Theorem 1, ij” m = 2, av)(s, x) = f (s, x) 
(i = 1, 2), and ai2)(s, x) = g(s, x), here f and g: Z” x I” + R, are continuous 
functions, then we derive the lower boundfor u(s) such that 

U(s) 2 W(x) { 1 + f’f (s, r) (exp j’ (f (s, t) + g(s, t)) dt) dr) -I) o<x<s. 
x r 

We note that Theorem 4 in [S] is a special case of the above Corollary 2 
in which f (s, x) = a(s) b(x) and g(s, x) = c(x). 

3. FURTHER EXTENSIONS 

In this section we shall give some further extensions of Theorem 1, which 
unify and extend several known inequalities in [l-5]. 

THEOREM 2. Let all of the hypotheses in Theorem 1 be satisfied, and let 
H(r) be a positive, strictly increasing, convex, submultiplicative, and con- 
tinuous function defined for r > 0, H(0) = 0, and Lim H(r) = +co as r + co. 
Let p(x), q(x) be positive continuous functions on Z” with p(x) + q(x) = 1. 
Suppose that the inequality 

u(s) 2 w(x) - b(s) H-’ 
i 

f E’:)(s, x; H(w)) 
1 

(3.1) 
/=I 

is satisfied for 0 < x < s, s E I”, where H- ’ denotes the inverse of H, and b(x) 
is a nonnegative continuous function on I”. Then for 0 < x <s we have 

u(s) Lp(s) H-’ H(w(x)) - 
P(S) exp 

[q(s) H(b(s)/ds)) A,(s, t) 

+A,(s, t)+ .*. +A,& t)] dt , 

and 

(3.3) 
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where 

u/h, x) = 1 + J- [q(s) fw(s)lq(s)) A,(% 1) + A*h t) + . . . 
x 

+ A--k+ I(% t)] vk- I(& f) & k = 2, 3 ,..., m - 1, 

Proof: Rewrite the inequality (3.1) as 

Since H is increasing, convex, and submultiplicative, from the above 
inequality we observe 

H(w(x)) <P(S) WU(S)/P(S)) + 4(s) ff(b(s)lq(s)) f W(.c x; NW)), 
‘=I 

i.e., 

P(S) H(u(sYP(s)) 2 NW(X)) -4(s) Wb(s)lq(s)) f -q+, x; NW)). 
‘=I 

Now, a suitable application of Theorem 1 to the above inequality yields 
the desired inequalities (3.2) and (3.3). 

The above Theorem 2 generalizes the known results due to Bondge 
and Pachpatte [ 1, Theorem 21, Gollwitzer [2, Theorem 11, Pachpatte 
[4, Theorem 23, and Shih and Yeh [S, Theorems 2 and 51. 

THEOREM 3. Let all of the hypotheses in Theorem 1 be satisfied, and let 
the function b(x) be the same as defined in Theorem 2. Let G(r) be a positive, 
continuous, strictly increasing, subadditive, and submultiplicative function for 
r > 0, G(0) = 0, and G(r) -+ + 00 as r -+ + 00. Suppose that the inequality 

4s) > w(x) - b(s) G-’ T E$“(s, x; G(w)) 
‘=I 

(3.5) 

is satisfied for 0 < x < s, s E I”, where G- 1 denotes the inverse function of G. 
Then when 0 < x < s we also have the following inequalities: 
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u(s)>G-’ G(w(x)) exp - 1’ [G(b)) A,(.% 1) + Ads, t) 
x 

+ ..+ +A& r)] dt 
)i 

, (3.6) 

4s) 2 G-‘CG(w(x))/z,(s, x)1, (3.7) 

where the function z,(s, x) is defined by 

zl(s, x) =exp s ’ [G(b(s)) A,(s, t) + A,(s, t) + ... + A,(s, t)] dt, 
x 

Z&J, x)= 1 +I’ [G(b(s)) A,@, t)+A,(s, t)+ ... 
x 

+A-,c+lh t)l .L~(s, t)dt, k = 2, 3 ,..., m - 1, (3.8) 

zm(s, x) = 1 + js G(W)) A,@, t) z,_ ,(s, t) dt. 
5 

Proof: Rewrite the given inequality (3.5) as 

w(x) G 4s) + b(s) G-’ 

Since G is increasing, subadditive, and submultiplicative, so we obtain from- 
the above inequality 

G(w(x)) G G(u(s)) + G(b)) f EW, x; G(w)), 
,=l 

i.e., 

G(u(s)) > G(w(x)) - G(b(s)) f a?!-“(.~, x; G(w)). 
I=1 

A suitable application of Theorem 1 to the above inequality yields the 
desired inequalities (3.6) and (3.7). 

The above Theorem 3 generalizes the known results obtained in Bondge 
and Pachpatte [l, Theorem 61, Pachpatte [3, Theorem 31, and Shih and 
Yeh [S, Theorem 61. By the way, we note here that the additional con- 
dition G(r) + + co as r + +cc should be added to the Theorem 6 in [S] to 
ensure the desired lower bound for U(S). 

In concluding this paper, we remark that there are different ways to 
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applying the inequalities in Theorems l-3, according to the choice of the 
unknown function from u and M’. If u is unknown and we set 
w(x)=F(u(x)), here 1;: R, + R, is any known continuous function, then 
as discussed in [ 11, [2], and [S], we may use these inequalities to obtain 
the lower bounds for U(S) from the corresponding integral inequalities for U. 
If the function u’ is chosen as unknown function and u is a known con- 
tinuous function, then as we will show in the following example, the upper 
bound on u(x) can be obtained by using our inequalities. 

EXAMPLE. Suppose the following integral equation 

u(x) = k(s) + j’ A(s, t; u(t)) dt + j’ g(s, t) 
x li ( 

j’ B(s, r; u(r)) dr dr (*) 
I > 

is satisfied for 0 6 x 6s, where Sol” is a vector-valued parameter; and 
k:I”-+R, g:I”xP-+R, and A and B:I”xI”xR+R are known con- 
tinuous functions. We assume further that the inequalities 

IAh t; p)I Gfh t) I PI, 
lB(s, c 411 6Ns, t)lql, 

fors,tEI”,t<s;p,qeR, 

are satisfied, where f and h: I” x I” -+ R + are known continuous functions. 
Then, if u(x) is a continuous solution of (*) on I” we easily obtain from 
Eq. (*) that 

I&)l 3 W)l- jh t) Iu(t)l dt x 

-j; I&, t,i(j; h(s, Y) Iv(r)1 dr dt, ) 06x<tts,sEr. 
(**I 

Setting U(S) = Ik(s)l and w(x) = Iu(x)l in (**), and applying Theorem 1 to 
the above inequality, then we obtain the upper bound on Iv(x)1 such that 

Mx)l G I&)l exp j’ Cf(s, t) + Is(s, t)l + h(s, t)l & OQx<s,sEr, 
1[ 

and 

Iu(x)l < lk(s)l 1+ j’ (f (s, t) + I A& f)l) x 

(f(s, r) + I&, r)l + W, r)) dr 
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since here we have A,(s, x) <f(s, x) + Ig(s, x)1, where A,(s, x) is defined by 
Al = max(f(s, x), 1 g(s, x)1 ) for each s E I” fixed. 
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