
Journal of Mathematical Analysis and Applications 264, 617–638 (2001)
doi:10.1006/jmaa.2000.7145, available online at http://www.idealibrary.com on

Time-Periodic Solutions of Quasilinear
Parabolic Differential Equations

I. Dirichlet Boundary Conditions

Gary M. Lieberman

Department of Mathematics, Iowa State University, Ames, Iowa 50011
E-mail: lieb@iastate.edu

Submitted by B. Straughan

Received February 2, 1999

We study boundary value problems for quasilinear parabolic equations when the
initial condition is replaced by periodicity in the time variable. Our approach is
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1. INTRODUCTION

The usual theory of quasilinear parabolic equations (see �16� 26� and the
references therein) is concerned with initial-boundary value problems for
operators P defined by

Pu = −ut + aij�X�u�Du�Diju+ a�X�u�Du�� (1.1)

for a positive definite matrix-valued function aij and a scalar-valued func-
tion a. A typical such problem is Pu = 0 in 
, u = ϕ on S
, u = u0 on ω
for some domain 
 ⊂ �n+1 with lateral boundary S
 and initial surface ω.
(If 
 = ω× �0� T �, then S
 = ∂ω× �0� T �.) Under appropriate conditions
on 
 and the functions in the equations (in particular, sufficient smooth-
ness), this problem is known to have a solution, with known smoothness.

In this work, we replace the initial condition u = u0 on ω with the peri-
odic condition u�·� 0� = u�·� T � on ω. This periodic problem has been stud-
ied by a number of authors [1, 3, 4, 9, 11–13, 29–31, 34, 37], etc. (see [36]
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for a more complete discussion), but only under severe assumptions. All
of these authors assume that 
 = ω× �0� T � and that the functions aij , a,
and ϕ are periodic with period T . We shall study problems in which 
 may
be noncylindrical (although it must be periodic in the sense described in
Section 2) and only ϕ is periodic.

These authors make further hypotheses on the problem. Ŝmulev [34]
assumes that aij is independent of Du, and Nakao and Ohara [30] and
Seidman [31] assume that Pu = −ut + divψ��Du��Du −G�X�u� for suit-
able functions ψ and G. We shall show that, when specialized to this partic-
ular structure, our results hold under weaker hypotheses on ψ and G than
theirs. Further comparisons to known results will be made in later sections
of this paper. We also study equations with aijDiju a suitable multiple of
the mean curvature operator �u = div�Du/�1 + �Du�2�1/2�) under suitable
additional hypotheses. These mean curvature equations seem to fall outside
all previous work on periodic problems.

We also improve previous results by weakening the hypotheses on 
. For
example, Nakao and Ohara [30] assumed that ∂ω has nonnegative mean
curvature with respect to the unit inner normal. We shall show that this cur-
vature condition is not needed for their class of equations, and we consider
weaker smoothness hypotheses on the domains than in other works.

An important element of our work here is the use of estimates already
proved for initial-boundary value problems. This approach is not new (see,
for example, [1, 11–13, 37]), but we use sharper estimates than in the cited
papers. Whenever possible, we shall simply quote such estimates; however,
in order to examine a broad class of problems, we shall also present proofs
of some estimates not already in the literature but the proofs are usually
very simple modifications of previous proofs.

For the reader’s convenience, we begin with some notation and a
reduction of the solvability of quasilinear problems in Section 2 to estab-
lishing certain a priori estimates on the solutions. Sections 3 and 4 are
devoted to these estimates. Examples are discussed in Section 5, and some
remarks directly related to other, uniformly parabolic examples are given
in Section 6. Additional remarks appear in Section 7.

2. NOTATION AND REDUCTION TO A PRIORI ESTIMATES

For the most part, our notation follows that in [26]. For example, points
in �n+1 (n ≥ 2) are denoted by X = �x� t� and the summation convention is
observed throughout. We use 
 for a domain (nonempty, connected open
set) in �n+1, and we define diam 
 to be the infimum of those numbers R
such that �x − x0� < R for all X ∈ 
 and some x0 ∈ �n. We refer to [26]
for the definitions of 
�t�, Q�X0� R�, �
, B
, C
, and S
. We also use
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the weighted parabolic Hölder space H∗�b�
a from [22], and we write � for


× � × �n.
We say that 
 ⊂ �n × �0� T � is periodic if the set


∗ = �X � 0 < t < 2T � X ∈ 
 or �x� t − T � ∈ 
�

is a domain, and if any (topological) boundary point X of 
∗ with 0 <
t < 2T is in S
. For simplicity, we write ω for the set of all x ∈ �n such
that �x� 0� ∈ B
. When 
 is a cylinder ω× �0� T �, then 
 is automatically
periodic with S
 = ∂ω× �0� T �. In addition, if 
 is a periodic domain, we
write S
 ∈ H1+α if �
∗ ∈ H1+α (as defined on p. 76 of [26]). We write our
problem as

Pu = 0 in 
� u = ϕ on Sω� u�·� 0� = u�·� T � in 
� (2.1)

with P defined by (1.1). We always assume that ϕ is T -periodic. When Pu =
−ut + divA�X�u�Du� + B�X�u�Du�, we say that P is in divergence form.
In addition, by virtue of the linear theory in [22] (see [27] for the application
to periodic problems), the coefficients of P need not be continuous with
respect to t.

The basis for our existence program is the following reduction to a priori
estimates via the Leray–Schauder fixed point theorem. To state this theo-
rem more simply, for any subset K of � and β ∈ �0� 1�, we use H∗

β�K� to
denote the space of all functions f defined on K such that

�f �x� t� z� p� − f �y� t� w� q�� ≤ F��x− y� + �z −w� + �p− q��β

for some constant F and all �x� t� z� p� and �y� t� w� q� in K.

Lemma 2.1. Suppose that S
 ∈ H1+α and ϕ ∈ H1+α�S
� is T -periodic
for some α ∈ �0� 1� and T > 0. Suppose that aij and a are in H∗

β�K� for
any bounded subset K of �. If there are constants M ≥ 0 and η ∈ �0� α�
(independent of τ ∈ �0� 1�) such that any solution of

ut = aij�X�u�Du�Diju+ τa�X�u�Du� in 
� (2.2a)

u = τϕ on S
� (2.2b)

u�·� 0� = u�·� T � in ω (2.2c)

obeys the estimate �u�0 + �Du�η < M , then (2.1) has a solution in H∗�−1−α�
2+β .

Proof. We follow the proof of [20, Lemma 5.1] with two changes: We
replace the initial condition in that work with the periodic condition, and
we use the linear theory from [27].
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Problem (2.1) can be embedded in a more general family of problems
as in [20, Lemma 5.1], but this additional generality is not relevant to the
problems considered here. On the other hand, it is useful to note that the
coefficients aij and a need only be measurable with respect to t in Lemma
2.1, assuming that the Hölder continuity with respect to the other variables
is uniform in t.

3. POINTWISE ESTIMATES

We now start to prove the estimates required by Lemma 2.1. In this
section, we estimate the L∞ norm of the solution. Our first estimates deal
with equations in divergence form. First we set R = diam
, and we assume
that there are positive constants a1� b0� b1, and M along with an increasing
convex function H such that H�0� = 0 and

p ·A�X� z�p� ≥ H��p�� − a1H

( �z�
R

)
� (3.1a)

zB�X� z�p� ≤ b0�p ·A�X� z�p��+ + b1H

( �z�
R

)
(3.1b)

for all �X� z�p� ∈ � with �z� ≥ M . If we assume that a1� b0, and b1 are
small enough, then we first obtain an integral estimate on solutions.

Lemma 3.1. Let H, A, and B satisfy conditions (3.1a), (3.1b), let P be in
divergence form, and let u be a solution of (2.1) with �ϕ� ≤ M . Suppose also
that there is a positive constant ε < 1 such that �a1 + b1�/�1 − b0� ≤ ε. Then

∫


H

( �u�
R

)
dX ≤ C�ε��
�H

(
2M
R

)
� (3.2a)

∫
��u�≥M�

�Du ·A�X�u�Du��dX ≤ C�ε��
�H
(

2M
R

)
/ (3.2b)

If also there is a constant m ≥ 1 such that

σH ′�σ� ≤ mH�σ� (3.3)

for all σ > M , then, for any q ≥ 1, there is a constant C determined only by
ε, m, M0 = H�M/R�T/M , n, and q such that

∫


H

( �u�
R

)q
dX ≤ C�ω�H

(
M

R

)q
/ (3.4)
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Proof. Inequalities (3.2a), (3.2b) follow from the proof of [21, Lemma
2.3] after noting that 0 ≤ �Du · A�− ≤ a1H��u�/R� and observing, as in
[30], the terms obtained by integrating the ut term are zero.

For (3.4), we combine the proofs of [25, Theorem 2.2; 26, Theorem 9.11].
First, we define J�τ� = min�M� �τ −M�+� and χ�τ� = ∫ τ

M J�σ� dσ . If we
use the test function J��u�� sgnu along with (3.1) and (3.2) and note that
0 ≤ J ′��u�� ≤ 1 and J��u�� ≤ �u� wherever �u� > M , we find that∫


�t1�
χ��u��dx−

∫

�t0�

χ��u��dx

=
∫ t1
t0

∫

�t�

�−J ′��u��Du ·A+ J��u�� sgn uB�dX

≤ C�ε��
�H
(

2M
R

)

for t0 ∈ �0� T � and t1 ∈ �t0� t0 + T �. From (3.2a), it follows that there is
t0 ∈ �0� T � such that∫


�t0�
H

( �u�
R

)
dx ≤ C�n� ε�RnH

(
2M
R

)
/

Because H is convex and increasing, it follows that H�τ�/τ is an increasing
function of τ. We therefore see that �u� ≤MH��u�/R�/H�M/R�, and hence
(recalling (3.3))

χ��u�� ≤M�u� ≤ 3M2H��u�/R�/H�M/R� ≤ C�m�M2H��u�/R�/H�2M/R�
wherever �u� ≥M . Combining these estimates, we find that∫


�t0�
χ��u��dx ≤ C�m�n� ε�RnM2/

By explicit evaluation of χ, it is easily seen that χ��u�� ≥ M�u�/4 wherever
�u� ≥ 2M , so∫

�x∈
�t1���u�x�t1��≥2M�
�u�x� t1��dx ≤ C�m�n� ε��1 +M0�MRn

for any t1 ∈ �0� T �. For τ ≥ 0 and t ∈ �0� T �, we write 
τ�t� for the subset
of 
�t� on which �u� ≥ τM to infer from this result that

sup
0<t<T

∫

τ�t�

1dx ≤ C0�m�M0� n� ε�Rn/τ/

Next, for τ ≥ 1 to be chosen, we define

w0�σ� =
(
H�σ/R�q−1�σ/R� −H�τM/R�q−1�τM/R�)+
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and use w0��u�� sgn u as a test function to infer that

∫

+
H

( �u�
R

)q−1

H��Du��dX ≤ C�m�q
∫

+
H

( �u�
R

)q
dX� (3.5)

where 
+ denotes the set on which �u� ≥ τM . Next, set

w = (
H��u�/R�q −H�τM/R�q)+

and use Hölder’s inequality along with the Sobolev imbedding theorem (for
each fixed t) to infer that

∫


wdX ≤

∫ T
0

( ∫

τ�t�

1dx
)1/n( ∫


τ�t�
wn/�n−1� dx

)�n−1�/n
dt

≤ C�n�
[
C0

τ

]1/n

R
∫


�Dw�dX/

Now (3.3) and Young’s inequality in the form aH�b�/b ≤ H�a� + H�b�
[21, Lemma 1.1(e)] with a = �Du� and b = �u�/R imply that

R
∫


�Dw�dx ≤ mq

[ ∫

+
H

( �u�
R

)q
dX +

∫

+
H

( �u�
R

)q−1

H��Du��dX
]
/

We now combine these last two inequalities with (3.5) to see that

∫


wdX ≤ C�m�n� q�

[
C0

τ

]1/n ∫


H

( �u�
R

)q
dX/

For τ = max�1� �2C�m�n� q��nC0�, we conclude from this inequality via
simple rearrangement that

∫

+
H

( �u�
R

)q
dX ≤ 4

∫

+
H

(
τM

R

)q
dX ≤ C�m�q� τ��
�H

(
M

R

)q
/

The proof is completed by combining this estimate with the obvious one
for the integral over 
 \
+.

Note that the smallness hypothesis on a1� b0, and b1 is equivalent to the
single assumption a1 + b0 + b1 < 1, which is only needed to prove (3.2a),
(3.2b). Although the condition b0 < 1 is necessary for our method, the
smallness condition on a1 and b1 can be relaxed since it is only used to apply
the Poincaré inequality [21, Lemma 2.2]. In particular, for H�σ� = σm, a
sharp upper bound is known for a1 + b1. When H�σ� = σ2, it is just the first
eigenvalue of the Laplacian with zero Dirichlet data. With this observation,
we can reproduce the results in [3, 4].
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Examples of functions H which satisfy (3.3) are H�σ� = σm, or H�σ� =
σk�ln�1 + σ��K for 1 ≤ k < m and K > 0. In addition (see [21]), H may
satisfy the growth conditions

lim sup
σ→∞

σ−kH�σ� = ∞� lim inf
σ→∞ σ−kH�σ� = 0

for all k in an arbitrary interval �k1� k2� ⊂ �1�∞�.
Once we have these integral estimates, the L∞ bound is proved via Moser

iteration. For this iteration, we no longer need the close connection between
the p and z behavior.

Lemma 3.2. Suppose that there are constants a0� a1� b0� b1�m, and M
with m ≥ 2 such that

p ·A ≤ a0�p� − a1�z�m� zB ≤ b0�p ·A�+ + b1�z�m (3.6)

for �z� ≥M . If �ϕ� ≤M , then any solution of (2.1) obeys the estimate

sup



�u� ≤ 2M + C�a0� a1� b0� b1�m�M� n�
∫


�u��n+1��m−1� dX/ (3.7)

Proof. We imitate the proof of [26, Theorem 9.8]. For q > max�1� 2b0 −
2n�, we use the test function

η =
[
t

(
1 − M

�u�
)+]�n+1�q−n

�u�q+nm−n−1 sgn u/

Then for ζ = �1 −M/�u��+t and

v = �q+ nm− n− 1�
(

1 − M

�u�
)
+ ��n+ 1�q− n�M�u� �

we see that

sup
0<s<2T

∫

�s�

�u�q+nm−nζ�n+1��q−1� dx+
∫


�Du��u�q+nm−n−2ζ�n+1��q−1�v dX

≤ c1q
2
∫


�u�q+nm−n−2+mζ�n+1��q−1� dX�

with c1 determined by a0� a1� a2�m, and T . The iteration described in [26,
Theorem 9.8] then gives

sup

∗\


�u� ≤ 2M + C
∫

∗

�u��n+1��m−1� dX = 2M + 2C
∫


�u��n+1��m−1� dX/

The desired estimate now follows by noting that sup
∗\
 �u� = sup
 �u�.
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Note that (3.1) and (3.3) imply (3.6) with the same m although the con-
stants a1� b0� b1, and M must be suitably modified. When H�σ� = σm, our
result is the periodic analog of a result of Aronson and Serrin [2] for solu-
tions of the initial-boundary value problem.

For nondivergence equations, the L∞ estimate follows by easy modifi-
cations of the corresponding estimates for elliptic equations. In particular,
many of the estimates in [10, Chap. 10] have periodic-parabolic analogs.
Rather than provide a complete description of the possible structure con-
ditions, we give two simple ones. The first one, based on [10, Theorem
10.3], uses the important function � defined by

��X� z�p� = aij�X� z�p�pipj/ (3.8)

Lemma 3.3. If there are nonnegative constants µ1 and µ2 such that

a�X� z�p� sgn z
��X� z�p� ≤ µ1�p� + µ2

�p�2 (3.9)

for all �X� z�p� ∈ � with �p� �= 0 and if u is a solution of (2.1), then

sup



�u� ≤ sup �ϕ� + C�µ1� R�µ2/ (3.10)

Proof. As in the proof of [10, Theorem 10.3], we assume without loss
of generality that 0 ≤ x1 ≤ 2R in 
 and that µ2 > 0. Then the function v
defined by

v�x� = sup
S


ϕ+ + µ2�exp�2�µ1 + 1�R� − exp��µ1 + 1�x1��

satisfies the inequalities v ≥ u on S
 and

−vt + aij�X�u�Dv�Dijv + a�X�u�Dv� < 0

in 
. It’s easy to see that there is a linear operator L given by Lw =
−wt + āijDijw + biDiw such that L�u − v� > 0 in 
 and u − v ≤ 0 on
S
. The strong maximum principle implies that u− v can attain a positive
maximum only on B
, and the periodic condition implies that a positive
maximum would also occur on ω×�T�, and hence u− v ≤ 0 in 
. Because
of the explicit form of v, this inequality gives the upper bound for u and a
lower bound follows by similar reasoning, and the case µ2 = 0 follows by
sending µ2 → 0.

Our second L∞ bound for equations in nondivergence form is approx-
imately analogous to the bound for equations in divergence form. It uses
another important structure function � , the trace of �aij�.
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Lemma 3.4. Suppose that there are positive constants M and L such that

sgn za�X� z�p� ≤ �p�
R

� �X� z�p� (3.11)

for all �X� z�p� ∈ � with �z� ≥M and �p� ≥ L. Then

sup



�u� ≤ max�M� sup �ϕ�� + 2LR/ (3.12)

Proof. Modify the proof of [32, Theorem 3] in the same way that we
modified the proof of [10, Theorem 10.3] to prove Lemma 3.3.

4. GRADIENT ESTIMATES

Now we turn to the crux of the results for periodic solutions: estimates on
the gradient of the solution. Although it is possible to obtain global gradient
estimates directly in some cases (see, for example, [30]), we shall follow the
path used for the Cauchy–Dirichlet problem of first deriving a boundary
gradient estimate and then using this estimate to obtain a global one.

It is well known from the theory for the Cauchy–Dirichlet problem that
the functions � and � , defined above, play a crucial role in the boundary
gradient estimate. The proof of [26, Theorem 10.4] and the strong max-
imum principle give our first boundary gradient estimate, in which d�X�
denotes the parabolic distance from X to S
.

Lemma 4.1. Suppose S
 ∈ H1+α. If there are positive constants µ and p0
such that

�p�2−α� + �a� ≤ µ�� �p�2−α ≤ µ� (4.1)

for �p� ≥ p0, then there is a constant C determined only by G, n, p0, R, T ,
α, µ, and �ϕ�1+α such that �u− ϕ� ≤ Cd in 
 and supS
 �Du� ≤ C.

In general, the theorems in [26, Chap. 10] extend to the periodic case pro-
vided the hypotheses of those theorems are suitably modified. We include
a particular version of this observation related to curvature equations.

Lemma 4.2. Let 
 = ω × �0� T � with ∂ω ∈ C2, write H0 for the mean
curvature of ∂ω, and suppose there are functions g�X� z�p� and G�X� z�
with g > 0 and G decreasing with respect to z for fixed X such that

aij�X� z�p� = g�X� z�p�
[
δij − pipj

1 + �p�2
]

(4.2a)

a�X� z�p� = g�X� z�p�G�X� z�� (4.2b)
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and such that there are constants K1 and R with

�G�x� t� z� −G�y� t� z�� ≤ K1�x− y� (4.3)

for all x and y with d�x�� d�y� ≤ R, all t ∈ �0� T � and z ∈ �. Suppose
also that

�n− 1�H0�x� ≥ �G�X�ϕ�X��� (4.4)

for all X ∈ S
. If either 1 ≤ µ� for �p� ≥ p0 or

sup �ϕt � ≤ g�X� z�p���n− 1�H0�x� − �G�X�ϕ�X���� + µ�� (4.5)

then there is a constant C determined by K1, p0, R, T , α, and �ϕ�1+α such
that �u− ϕ� ≤ Cd in 
 and supS
 �Du� ≤ C.

From a boundary gradient estimate, a global one follows by known gra-
dient estimates which are local in time, but not in space. For equations in
divergence form and u a (sufficiently smooth) solution of (2.1), we define

v = �1 + �Du�2�1/2� ν = Du/v� gij = δij − νiνj� dµ = v dx/

We also assume that Ai is differentiable with respect to �x� z� p� and that
there are two matrix-valued functions �Cik� and �Di

k� such that �Di
k� is

differentiable with respect to �x� z� p� and

Cik +Di
k = ∂Ai

∂z
pk +

∂Ai

∂xk
+ Bδik/

Next, we define

Aij = v
∂Ai

∂pj
� D

ij
k = ∂Di

k

∂pj
� � = piν

k ∂D
i
k

∂z
+ νk

∂Di
k

∂xi
/

To simplify our structure conditions, we use β�β1� / / / � β7 to denote non-
negative constants and we suppose that there is a nonnegative constant τ0
along with a bounded function =1 such that

Cikg
jkζij ≤ β1=

1/2
1 �Aijζikζjk�1/2� (4.6a)

Cikν
kξi ≤ β1=

1/2
1 �Aijξiξj�1/2� (4.6b)

vD
ij
kν

kζij ≤ β1=
1/2
1 �Aijζikζjk�1/2� (4.6c)

� ≤ β2
1=1 (4.6d)

for all n × n matrices ζ, all n-vectors ξ and η, and all �X� z�p� ∈ � such
that z = u�X� and v > τ0.

We also write 
τ for the subset of 
 on which v > τ. The first step in
proving our gradient bound is to reduce the L∞ estimate of �Du� to an
integral one by applying [26, (11.49)] with ρ = �2T �1/2.
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Lemma 4.3. Suppose conditions (4.6a)–(4.6d) hold and that there are
C1��τ0�∞�� functions w, λ, and = such that

w is increasing� (4.7a)

ξ−βw�ξ� is a decreasing function of ξ� (4.7b)

w�ξ�β�=�ξ�/λ�ξ��N/2/ξ is an increasing function of ξ� (4.7c)

ξ−β�=�ξ�/λ�ξ��N/2 is a decreasing function of ξ (4.7d)

for N = n if n ≥ 3, N > 2 if n = 2. Suppose also that

vλ�v�
(

1 +
(
vλ′�v�
λ�v�

)2
)
gijξiξj ≤ Aijξiξj� (4.8)

=1 ≤ v=� 1 ≤ = (4.9)

on 
τ0
. If also v ≤ τ on S
 for some τ ≥ τ0, then

sup

τ

(
1 − τ

v

)N+2

w≤C�n�β�β1T
1/2�T−�N+2�/2

×
∫

τ

w�=/λ�N/2= dµdt/

(4.10)

Next, we assume that there is a differentiable vector-valued function Ā
such that (

=

λ

)N/2
=v ≤ β2w

β3Du · �A/ (4.11)

Then we reduce our estimate to one on
∫
wqDu · �AdX. In many cases,

we can take �A = A, but our examples will show the utility of considering
other choices. To estimate this integral, we need some additional structure
conditions on �A, some of which are related to A.

Lemma 4.4. Suppose conditions (4.6), (4.7a), (4.7b), and (4.11) hold and
that v < τ on S
. Suppose also that there is a positive, decreasing function ε
such that

w′�v� �A · ξ ≤ β4�Aijξiξj�1/2�ν · �A�1/2� (4.12a)

v� �Az� + � �Ax� ≤ β5Du · �A� (4.12b)

w �Aijζij ≤ β4�vAijζikζjk�1/2�Du · �A�1/2� (4.12c)

=1v ≤ ε�v�w2Du · �A� (4.12d)

Du · �A ≤ Du ·A� (4.12e)
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on 
τ0
. Set σ = supt osc
�t� u and E = exp�β5σ�. If there is a constant τ1 ≥ τ

such that

400�β1σ�2E2q2β2
4ε�τ1��1 + βq�3 ≤ 1 (4.13)

for some q ≥ 2, then there is a constant C determined only by n, q, β, β1,
and β4 such that∫


τ

wqDu · �AdX ≤ C�w�τ1� + Eσ�q
∫

τ

Du ·AdX/ (4.14)

Proof. We follow the proof of [26, Lemma 11.12] except that we keep
track of the presence of �A.

Our final estimate for equations in divergence form is an immediate con-
sequence of [26, Lemma 11.13] and is related to Lemma 3.1.

Lemma 4.5. Suppose that

�Du��A� ≤ β6Du ·A� �B� ≤ β7Du ·A (4.15)

for v ≥ τ0. Let σ1 = osc
 u, and suppose that u = ϕ on S
 and that
there is a constant C such that �Dϕ� ≤ C and �u − ϕ� ≤ Cd in 
. Set
τ2 = max�τ0� 4β6σ1/R� and

D = sup
v<τ2

(
�B − β7Du ·A�+ + �Du ·A�+ + σ1

R
�A�

)
/ (4.16)

If k0 is the smallest positive integer such that T ≤ k0R
2, then∫


τ2

Du ·AdX ≤ k0C�n� exp�β7σ1�Rn�σ2
1 + �D+ C�
�C2�R2�/ (4.17)

To discuss equations in nondivergence form, we define the operators δ
and δ̄ by

δf �X� z�p� = ∂f

∂z
+ p

�p�2 · ∂f
∂x
� δ̄f �X� z�p� = p · ∂f

∂p
�

we suppose that aij can be decomposed as

aij�X� z�p� = aij∗ �X� z�p� +
1
2
�pifj�X� z�p� + pjfi�X� z�p�� (4.18)

for some differentiable functions aij∗ and fi with �aij∗ � positive-definite with
minimum eigenvalue λ∗, and we define

A∞ = lim sup
�p�→∞

sup
�X∈
� �z�≤sup �u��

1
�

(
v

2λ∗

∑
i� j

�δ̄aij∗ �2 + �δ̄− 1��
)
� (4.19a)

B∞ = lim sup
�p�→∞

sup
�X∈
� �z�≤sup �u��

1
�

(
δ� + �δ̄− 1�a

)
� (4.19b)

C∞ = lim sup
�p�→∞

sup
�X∈
� �z�≤sup �u��

1
�

(
v

2λ∗

∑
i� j

�δaij∗ �2 + δa

)
/ (4.19c)
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Then we have the following global gradient bound, which is just a conse-
quence of [26, Theorem 11.1] (which, in turn, is based on [33, Sect. 6])
and the strong maximum principle.

Theorem 4.6. Let u ∈ C2�1�
� be a solution of (2.1) with Du ∈ C0��
�.
If A∞, B∞, and C∞ are all finite and if A∞ ≤ 0 or C∞ ≤ 0, then there is a
constant c1 determined only by supS
 �Du��A∞� B∞� C∞� p0� µ, and the limit
behavior in (4.19) such that sup
 �Du� ≤ c1.

Finally, if Ai is Lipschitz with respect to �x� z� p� and B is bounded or if
aij is Lipschitz with respect to �x� z� p� and a is bounded, a Hölder gradient
estimate holds. We refer the reader to [26, Chap. 12] for precise versions
of these estimates.

5. EXAMPLES

We now present some examples to apply the estimates of Sections 3
and 4. In all examples, we assume that S
 ∈ H1+α and that ϕ ∈ H1+α�S
�
for some α ∈ �0� 1�. When 
 = ω × �0� T �, we write H0 for the mean
curvature of ∂ω. Additional regularity assumptions may be made as needed.

Example 1. Nakao–Ohara–Seidman type equations. We start with a
structure based on [30], [31]. Let P have the form

Pu = −ut + div�ψ��Du��Du� +G�X�u� (5.1)

for a positive, continuous function ψ defined on �0�∞� and a Caratheodory
function G defined on 
×� such that there are constants δ ∈ �0� 1�, m ≥ 0,
and M > 0 along with an increasing, convex function H such that

σ1−δψ�σ� is an increasing function of σ (5.2)

for σ ≥M and

σH ′�σ� ≤ mH�σ�� σ2ψ�σ� ≥ H�σ� (5.3)

for all σ > M . Although ψ�0� need not be defined, we adopt the convention
that ψ��p��p = 0 when p = 0. (Note that (5.2) implies limσ→0+ σψ�σ� = 0.)
We also assume that

zG�X� z� ≤ εH��z�/R� +G0 (5.4)

for some nonnegative constants ε and G0 with ε < 1, and that G ∈ L∞�
×
K� for any bounded subset K of �. Nakao and Ohara [30] assume (among
other things) that

ψ�σ� ≥ k0σ
m−2� ψ′�σ� ≥ k0σ

m−3 �5/2′�
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for constants k0 > 0 and m ≥ 2 and that G�X� z� = g�x� z� − f �X� with

zg�x� z� ≤ k2�z� + k3�z�β �5/4′�
for some β ∈ �1�m� and f and g are locally Lipschitz; these conditions
easily imply (5.2) and (5.3) with δ = 1 and H�σ� = k0σ

m and (5.4). More-
over, when m = 2, the conditions in (5/2′) imply that ψ�σ� ≥ k0�lnσ + 1�
for σ ≥ 1, so they cannot allow the special case ψ ≡ 1 (although it appears
that the proofs in [30] allow this case). Also, when m = 2, we can allow
zG ≤ k2�z� + ε1�z�2 ln�1 + �z�� for sufficiently small ε1, which is strictly
stronger than (5/4′). Seidman [31] assumes that G ≡ 0, that (5.2) and (5.3)
hold with δ = m and H�σ� = σm, and that ψ�σ� ≤ Cσm.

Now, (3.1) and (3.3) hold with a1 = b0 = 0, b1 = �1 + ε�/2, and M
sufficiently large, so we have an L∞ bound for solutions of (2.2) which is
uniform in τ ∈ �0� 1�. Next, � = nψ��p�� + �p�ψ′��p�� and � = ψ��p���p�2 +
ψ′��p���p�3, so (4.1) holds with µ = 1 and p0 sufficiently large. Therefore
Lemma 4.1 gives a boundary gradient estimate; Nakao and Ohara also
assume that 
 = ω× �0� T � with H0 ≥ 0 and that ϕ ≡ 0. Seidman allows
nonzero C∞ boundary data.

For the global gradient bound, we have (4.6)–(4.9) with Di
k = 0, =1 = vδ,

τ0 = 2 + supS
 v, β1 suitably large, β = 1, w = v, =, =1 = v, and λ = vδ−1,
so Lemma 4.3 gives a bound on sup v in terms of∫


τ

w�=/λ�N/2= dµdt =
∫

τ

v2+�1−δ�N/2 dX

for τ ≥ τ0. Next, (4.11), (4.12), and (4.13) hold with w = v, β3 = �1 −
δ��N + 2�/2, β2 = 1, �A�X� z�p� = vδ−1Du, β4 sufficiently large, β5 = 0,
ε�v� = v−2 and τ1 sufficiently large, and Lemma 4.4 gives an estimate on∫
v2+�1−δ�N/2 dX in terms of

∫
Du ·AdX, which is estimated via Lemma

4.5 with β6 = β7 = 1. If ψ ∈ C2�0�∞� and G ∈ C1��
 × ��, then we have
a Hölder gradient estimate, and then Lemma 2.1 provides the existence of
solutions under this additional smoothness.

To remove the additional smoothness assumptions, we first note that
there are sequences of smooth functions �ψj� and �Gj� which satisfy (5.2),
(5.3), and (5.4) with uniform constants such that Aj → A uniformly on
bounded subsets of �n, where Aj�p� = pψj�p��, and Gj�·� z� → G�·� z�
a.e. for any z ∈ �. We write uj for the solution of (2.1) when P is given by
(5.1) with ψ and G replaced by ψj and Gj , respectively. From our estimates,
there is a constant U (independent of j) such that sup �uj� + sup �Duj� ≤ U .
To continue, we prove a uniform continuity estimate for uj with respect
to t. For X0 ∈ 
 and r > 0 sufficiently small, set t1 = t0 − r2 and write
B = B�x0� r� and Q = B × �t1� t0�. There is a constant k determined only
by the geometry of S
 such that Q�X1� kr� ⊂ Q ∩ 
 for some X1 ∈ 
.
Let ζ = C�n�r−n��1 − �x − x1�2�+�2 with C�n� chosen so that

∫
ζ dx = 1
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and set Uj�t� = ∫
ζ�x�uj�x� t�dx. From the weak form of the equation,

we have

�Uj�t0� −Uj�t1�� =
∣∣∣∣
∫
Q
�Dζ ·Dujψj��Duj�� + ζGj�X�uj��dX

∣∣∣∣
≤ C�Q�r−n−1 + Cr2 ≤ Cr

because �Dζ� ≤ Cr−n−1. Next, we note that U�t� = u�x∗� t� for some x∗ ∈
B, so �uj�x0� ti� −Uj�ti�� ≤ Ur for i = 0� 1. Hence �uj�x0� t0� − uj�x0� t1�� ≤
Cr, and the sequence �uj� is equicontinuous, so there is a function u such
that uj → u uniformly. Minty’s Lemma can be used to show that u is a
weak solution of (2.1) (see [30]), but we shall show directly that �Duj�
converges strongly to Du.

To prove this convergence, let j and k be positive integers and set

I =
∫


�A�Duj� −A�Duk�� · �Duj −Duk�dX/

The proof of [21, (5.8)] shows that

∫


H��Duj −Duk��dX ≤ C�n�m�

[
I + I1/2

( ∫


H��Duj��dX

)1/2]
�

and the differential equations for these functions yield

I =
∫


�A�Duj� −Aj�Duj�� · �Duj −Duk�dX

+
∫


�Ak�Duk� −A�Duk�� · �Duj −Duk�dX

+
∫


�Gj�X�uj� −Gk�X�uk���uj − uk�dX/

Because of the uniform convergence of �Aj� and �uj� to their respective
limits, we can make I arbitrarily small by choosing j and k large enough,
and hence ∫



H��Duj −Duk��dX → 0

as j� k→ ∞, and then Jensen’s inequality implies that �Duj� is convergent
in L1. By uniqueness of limits, we must have Duj → Du, and then Hölder’s
inequality implies that Duj → Du in Lq for any q ∈ �1�∞�. It then follows
from the dominated convergence theorem that u is a weak solution of (5.1).

Example 2. The time-dependent prescribed mean curvature equation.
Now let ψ�σ� = �1 + σ2�−1/2 in (5.1) and suppose that there are constants
M > 0 and ε ∈ �0� 1� such that �sgn z�G�X� z� ≤ ε�n− 1�/R for �z� ≥ M .
Then Lemma 3.4 implies that �u�0 ≤ max��ϕ�0�M� + C�ε�R.
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For the gradient estimates, we also assume that 
 = ω×�0� T � with ∂ω ∈
C2 and sup �ϕt � + �G�X�ϕ�X��� ≤ �n− 1�H0�x� at each point X ∈ S
. We
also assume that Gz ≤ 0 and that �Gx� is bounded on bounded subsets of

 × �, and then a boundary gradient estimate follows from Lemma 4.2
with g�X� z�p� = 1/�1 + �p�2�.

The global gradient estimate is more delicate. First, conditions (4.6)–
(4.9) hold with Cik = 0, = = =1 = 1,w = v, λ = 1/v, and β1 = sup �Gx�1/2,
so Lemma 4.3 implies that

sup v ≤ C
∫

τ

v2+�N/2�Du ·AdX (5.5)

provided τ ≥ τ0 = 2 + supS
 v. Since (4.12a) only holds for w′ ≤ 1/v, we
can’t estimate the right hand side of (5.5) directly. Instead, we use Lemma
4.4 with �A = A, w = ln v, q = 2, β4 = 1, β5 = 0, and ε�v� = �ln v�−2 and
then Lemma 4.5 (with β6 = β7 = 1) to infer that∫


τ

�ln v�2Du ·AdX ≤ C
∫

τ

Du ·AdX ≤ C (5.6)

for τ ≥ τ0.
Now we use a slight variation of Lemma 4.4 similar to the proof of (3.4).

Let θ be a differentiable function such that θ�v� = 0 on S
 and set I�v� =∫ v
τ θ�s�ds. In addition, we define

�2 = v−2gijgkmDikuDjmu� �1 = v−2gijDivDjv/

By multiplying the equation for u by div�θ�v�ν� and integrating by parts,
we see that ∫

ω×�t2�
I�v� dx+

∫ t2
t1

∫
ω
��2θ�v� + �1vθ

′�v��dxdt

=
∫ t2
t1

∫
ω
�θ�v�dxdt +

∫
ω×�t1�

I�v�dx
(5.7)

for any t1 and t2 such that 0 ≤ t1 < t2 ≤ 2T . In particular, we take θ�v� =
�ln v�2�1 − τ/v�+, so θ′ and θ are nonnegative, and

1
4
θ�v��v − τ� ≤ I�v� ≤ θ�v��v − τ�/

Further, �θ�v� ≤ Cv on 
τ, and �2 and �1 are nonnegative. Combining
these estimates with (5.6) then yields∫

ω×�t2�
�ln v�2��1 − τ/v�+�2 dµ ≤ C + 4

∫
ω×�t1�

�ln v�2��1 − τ/v�+�2 dµ/

Using (5.6) again and arguing as in Lemma 3.1, we conclude that

sup
t∈�0�T �

∫
�x�v�x�t�≥τ�

1dµ ≤ C�ln τ�−2



time-periodic solutions 633

for τ ≥ τ0. To finish the proof, we take θ�v� = vq�v − τ�+, with q = 2 +
N/2, along with t1 = 0 and t2 = T in (5.7) to infer that∫


τ

�vq�1 − τ/v��2 + vq�1 − τ/v��1� dµdt ≤ C�q�
∫

τ

vq�1 − τ/v� dµdt/

Then Hölder’s inequality and the Michael–Simon version [28] of the
Sobolev inequality (in the form [19, (1.4)]) with h = vq��1 − τ/v�+�3 imply
as before that∫


τ

vq�1 − τ/v�3 dµdt ≤ C�q��ln τ�−2
∫

τ

vq�1 − τ/v� dµdt/

From this inequality, we conclude that∫

τ

vq dµdt ≤ C�q��

so we infer a gradient bound from (5.5). A Hölder gradient estimate follows
directly from the smoothness of G.

Example 3. Motion by mean curvature. Now we consider the equation

ut = �1 + �Du�2�1/2�div�Du/�1 + �Du�2�1/2� +G�X�u��
with G and 
 as in Example 2 but with the estimate on H0 relaxed to
�n− 1�H0�x� ≥ �G�X�ϕ�X���. As before, we obtain an L∞ estimate for u
from Lemma 3.4 and a boundary gradient estimate from Lemma 4.2 with
g ≡ 1. If we choose aij∗ = δij and fi = pi/v

2, then A∞ = −1, B∞ = 0, and
C∞ = sup �Gx�, so Theorem 4.6 gives a global gradient bound.

Example 4. Uniformly parabolic equations. First, we suppose that the
equation is in divergence form and let H be a convex function with
H�0� = 0 such that

1 + δ ≤ sH ′�s�
H�s� ≤ m (5.8)

for some positive constants m and δ. If A and B satisfy conditions (3.1a),
(3.1b) with a1 + b0 + b1 < 1, then Lemma 3.1 and 3.2 give an L∞ bound for
u. For the gradient bound, we also assume that there are positive constants
θ1, θ2, and θ3 such that

θ1H��p���p�−2�ξ�2 ≤ ∂Ai

∂pj
ξiξj ≤ θ2H��p���p�−2�ξ�2� (5.9a)

�∂A
∂x

� + �p��∂A
∂z

� + �B� ≤ θ3H��p�� (5.9b)

for �p� ≥ 1. Lemma 4.1 with p0 = 1 and µ = C�θ1� θ2� θ3� gives a bound-
ary gradient estimate. In addition, conditions (4.6)–(4.9) are satisfied with
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Di
k = 0, =1 = H�p�, w = v, λ = H�v�/v, = = H�v�v, and β1 determined by

θ1, θ2, and n, so Lemma 4.3 gives a gradient bound in terms of
∫
vqH�v�dX

for some q ≥ 1 determined only by n. To estimate this integral, we first
observe that conditions (4.11) and (4.12) hold with �A�p� = H��p���p�−2p,
w = v, θ = 2, β5 = 0, and suitable β4; if also θ3 is sufficiently small (which
is true if the left-hand side of (5.9b) is o�H�), then (4.13) holds. Finally, if
�A� = O�H��p��/�p��, then (4.15) holds with some β6 and β7 so the gra-
dient estimate now follows from Lemmata 4.4 and 4.5. Assuming finally
that A and B are continuous, we infer the existence of solutions via the
approximation argument in Example 1.

For equations in nondivergence form, we suppose first that there are
positive constants µ1 and µ2 along with a positive function λ (defined on
�) such that

aijξiξj ≥ λ�ξ�2� (5.10a)

sgn za ≤ µ1λ�p� + µ2 (5.10b)

for all �X� z�p� ∈ � and all ξ ∈ �n. Then Lemma 3.3 gives an L∞ bound for
u. Next, we suppose that the operator is uniformly parabolic, in the sense
that there is a positive constant µ such that �aij� ≤ µλ. A boundary gradient
estimate then follows from Lemma 4.1 if there are positive constants p0,
θ1, and θ2 such that �a� ≤ θ1λ�p�2 and �p�−α ≤ θ2λ for �p� ≥ p0. Next, we
assume that there are positive constants L and θ3 and a decreasing function
ε with ε�σ� → 0 as σ → ∞ such that

�δ̄aij� ≤ θ3λ� �δ̄− 1�a ≤ θ3λ�p�2� (5.11a)

�δaij� ≤ ε��p��λ� δa ≤ ε��p��λ�p�2 (5.11b)

for �p� ≥ L. The global gradient estimate is a consequence of Theorem 4.6
(with C∞ ≤ 0), and the Hölder gradient estimate then follows.

6. REFINEMENTS FOR UNIFORMLY PARABOLIC OPERATORS

By invoking additional local estimates, we can prove existence of solu-
tions to (2.1) under even weaker hypotheses. Rather than attempting to
give a complete description of these results, we mention some applications
to uniformly parabolic operators which improve the results discussed in
Example 4.

In the divergence structure case, we suppose that H satisfies (5.8), that
A and B satisfy conditions(3.1a), (3.1b) with a1 + b0 + b1 < 1, and that
there are positive constants θ1, θ2, and θ3 such that (5.9a), (5.9b) hold for
�p� ≥ 1. If we also assume either m ≤ 2 or δ ≥ 1 (in particular if H�s� = sm
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for some m > 1), then the arguments in [5, 7] (see [6]) along with (5.8) and
(5.9) imply a Hölder estimate for u. Because of this continuity estimate, a
local version of our interior gradient bound is true (see, e.g. [26, p. 280]),
and a Hölder gradient estimate holds if we assume that (5.9a) holds for all
p by the arguments in [23].

For equations in nondivergence form, we recall first that condi-
tions (5.10a), (5.10b) imply an L∞ bound and that a Hölder gradient
estimate follows from a global gradient estimate. (We also recall that
�aij� ≤ µλ.) If there are constants m ≥ −α, θ2� / / / � θ5 with θ3 ≥ θ2 > 0
and a decreasing function ε with ε�σ� → 0 as σ → ∞ such that

θ2�p�m ≤ λ ≤ θ3�p�m�∣∣∣∣∂aij∂pk
− ∂aik

∂pj

∣∣∣∣ ≤ θ3λ/�p��

�p��aijx � + �p�2�aijz � + �a� ≤ ε��p��λ�p�2

for �p� ≥ 1, then a boundary gradient estimate follows from Lemma 4.1
and we can invoke the results of [26, Sect. 11.7] (see also [17]) in place of
Theorem 4.6 to infer a global gradient bound. In particular, no conditions
are made on the derivatives of a. Moreover, we can relax the condition on
m to m ≥ −2 if 
 is a cylinder ([26, Theorem 10.4] with (10.13b) holding)
and we can remove the lower bound on m altogether if 
 is cylindrical and
ϕ is time-independent [26, Corollary 10.5]. In particular, we can remove the
hypotheses on the derivatives of a in [13]. Finally, if m = 0, then (5.10a)
and the estimate �a� = O��p�2� imply a Hölder estimate for u by virtue of
the straightforward extension [18, Theorem 3.2; 26, Lemma 11.4] of the
corresponding result for linear equations by Krylov and Safonov [15], so
we can take ε to be a positive constant in this case.

When aij does not depend on p, then we can weaken our hypotheses
still further. If �aij�, 1/λ, and �a�/�λ��p�2 + 1�� are uniformly bounded
for bounded z, and if aij is continuous with respect to �x� z� uni-
formly on bounded subsets of 
 × �, then the interpolation technique of
Trudinger [35] gives the required gradient estimate via the last inequality
on page 173 of [26]. Again, 
 need not be cylindrical. This result improves
[34, Theorem 6] by removing the conditions on derivatives of aij and a.

7. FURTHER RESULTS

All of the results given above can be further refined in several ways.
Here, we indicate some extensions which relate directly to previous results
for periodic solutions of parabolic equations.



636 gary m. lieberman

First, if ∂ω satisfies a uniform exterior H1+α condition (as defined in [26,
p. 228]), then ω can be approximated (from inside) by smooth domains
satisfying a uniform exterior H1+α condition with uniform constants for the
approximating domains. By using our existence results and uniform esti-
mates in the approximating domains, we see that a solution exists provided
P satisfies the hypotheses of Lemma 4.1 along with the hypotheses giving
L∞ bounds on u and on Du. In particular, Examples 1 and 4 fall into in
this category.

Next, we can often allow continuous boundary values by imitating the
arguments in [10, Sect. 14.5; 26, Sect. 12.5(v)]. In particular, continuous
boundary values are allowed in Examples 2, 3, and 4 (but not in Example 1
without further structure conditions), and also for the uniformly parabolic
equations from Section 6. (Suitable interior gradient bounds are given in
[26, Sect. 11.5] for Examples 2 and 4 and for Section 6, and in [8] for
Example 3.) The analysis of semilinear equations from Section 6 in this
situation gives an appropriate extension of the results in [34].

If P is in divergence form with Ai�X� z�p� = �pi�mi−2pi for mi > 2 and
�B�X� z�p�� = O�∑ �pi�mi� uniformly as �p� → ∞, a gradient bound follows
from [24, Example 2]. Further generalizations of this example are given in
[24]. Similar problems were studied by Nakao [29] and Yamada [37], but
they were unable to prove an L∞ bound for the gradient. The hypotheses of
[37] do not, in fact, imply such a bound because the equation is replaced by
a differential inclusion with inhomogeneous terms in L2. We can recover
Yamada’s results (under our weaker regularity hypotheses on 
) by first
approximating the differential inclusion by an equation with smooth coeffi-
cients and then proving appropriate uniform bounds. Yamada also assumed

 to be not necessarily cylindrical but smoother than we consider here.

In many cases, the hypotheses of Section 3 can be replaced by the exis-
tence of an ordered subsolution-supersolution pair, that is, a pair of func-
tions �v� v̄� with v ≤ v̄ in 
 such that

Pv ≥ 0 in 
� v ≤ ϕ on S
� v�·� 0� ≤ v�·� T � in ω

and

Pv̄ ≤ 0 in 
� v̄ ≥ ϕ on S
� v̄�·� 0� ≥ v̄�·� T � in ω/

The argument used in [13] applies to all of our examples except the uni-
formly parabolic equations of nondivergence form in Example 4, and hence
the hypotheses of Section 3 can be replaced by the existence of an ordered
subsolution-supersolution pair in all these cases. The key new idea here is
that the coefficients of P do not need to be continuous with respect to t,
so the nonperiodicity of v and v̄ are irrelevant to our argument.

We close with some observations on the regularity of solutions. We have
assumed that aij and a are Hölder with respect to �x� z� p� but not t
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to obtain an H1+α solution with locally Hölder continuous second spatial
derivatives. The time derivative is locally Hölder continuous with respect
to x but not necessarily t. Further smoothness follows via the linear the-
ory. For example, if S
 ∈ H2+α, ϕ ∈ H2+α, and aij and a in Hα, then
u ∈ H2+α�
�. If, additionally, aij and a are time-periodic with period T ,
then it follows that there is a periodic solution with ut also time-periodic.
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