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a b s t r a c t

We propose a new fast algorithm for solving a TV-based image restoration problem.
Our approach is based on merging subspace optimization methods into an augmented
Lagrangian method. The proposed algorithm can be seen as a variant of the ALM
(Augmented Lagrangian Method), and the convergence properties are analyzed from a
DRS (Douglas–Rachford splitting) viewpoint. Experiments on a set of image restoration
benchmark problems show that the proposed algorithm is a strong contender for the
current state of the art methods.
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1. Introduction

Restoration of digital images based on variational models and optimization techniques has been extensively studied for
the last 20 years in many areas of image processing and computer vision, such as medical imaging [1], astronomy [2,3],
and compressed sensing [4,5]. Image restoration in such fields of applications can often be formulated as linear inverse and
ill-posed problems. Let u0 ∈ Rn denote the original image, and f ∈ Rm denote the observed image (or measurements) with
noise. The general model is given by

f = Ku0 + ε (1.1)
where ε is a white gaussian noise, and K ∈ Rm×n is a linear operator, typically a convolution operator in the image
deconvolution problem or the composition of a samplingmatrix and a specific transformmatrix (such as Fourier transform)
in the compressed sensing. These are two examples considered in this study.

Byusing anMAP (maximumaposteriori) estimator,we canderive the following variational problem for image restoration
problem

argminu


1
2
‖Ku − f ‖2

2 + τφ(u)


(1.2)

where φ(u) denotes the regularizer, which is usually convex but non-smooth, such as TV (total variation) or l1 norms of
frame coefficients, and τ > 0 is the regularization parameter. In this paper, we mainly discuss TV-based image restoration
problems. Thus for the image prior we adopt the TV function [6]. In other words, the regular term in the variational problem
(1.2) is given by

φ(u) = TV (u) = ‖Du‖1 =

−
i

|D1u|i + |D2u|i (1.3)

where D = (D1;D2) and (D1u)i, (D2u)i denote the horizontal and vertical first order differences at pixel i (we use the
definition of anisotropic total variation here, but themethodproposed in the paper is also suited for isotropic total variation).
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The TV-based model has become one of the standard techniques known for preserving sharp discontinuities. Recently,
various algorithms were developed on the basis of convex optimization techniques to compute the minimizer of the
variational problem (1.2), such as SpaRSA (sparse reconstruction by separable approximation) [7], Nesterovs algorithm [8],
FISTA (fast iterative shrinkage/thresolding algorithm) [9], TwIST (two-step IST) [10]. These methods were shown to be
considerably faster than earlier methods, including interior-point methods [11,12] and iterative thresholding ideas [13,14].
Very recently, a new algorithm named SALSA (split augmented Lagrangian shrinkage algorithm) [15] was proposed and
shown to bemore efficient than TwIST, FISTA, and SpaRSA. SALSA can be seen as an application of variable splittingmethods,
and then the obtained constrained problem is tackled with an augmented Lagrangian (AL) scheme [16]. In other words,
SALSA is a variant of the alternating direction method of multipliers (ADMM).

In this paper, we propose a new variant of augmented Lagrangian method using subspace optimization accelerating
[17,18]. It also can be identified as a variant of split Bregman iteration [19]. Compared with SALSA applied to TV-based
image restoration, our proposed algorithm is implemented without solving the sub-minimization problem of TV-denoising
by Chambolle’s projection algorithm [20]. Besides, by adopting subspace optimization accelerating technology, the proposed
algorithmmay bemore efficient than SALSA, which belongs to the family of augmented Lagrangian algorithms. Experiments
demonstrate that the proposed algorithm is efficient, and it is shown to be faster than SALSA.

The rest of this paper is organized as follows. In Section 2, we briefly review the augmented Lagrangian approach
and propose our algorithm which can be regarded as a variant of the augmented Lagrangian method. In Section 3, the
convergence properties of the proposed algorithm are researched from a DRS (Douglas–Rachford splitting) viewpoint. In
Section 4, in the context of image deconvolution and compressed sensing, the proposed algorithm is implemented and
compared with other available methods. The conclusion about the proposed algorithm is given in Section 5.

2. Augmented Lagrangian approach using Subspace Optimization accelerating

2.1. Augmented Lagrangian approach

Let us start with a general constrained optimization problem of the form

min
d∈Rm,u∈Rn

J(d) + H(u), s.t. Bu = d (2.1)

where J : Rm
→ R, H : Rn

→ R are closed, proper and convex functions, and B ∈ Rm×n is a bounded linear operator.
The augmented Lagrangian function [15,16] for the problem (2.1) is given by

Lµ(u, d, r) = J(d) + H(u) − ⟨r, d − Bu⟩ +
µ

2
‖Bu − d‖2

2 (2.2)

where r ∈ Rm is a vector of Lagrange multipliers and µ > 0 is the penalty parameter.
The so-called augmented Lagrangian method (ALM), also known as the method of multipliers (MM), is obtained by

applying the general Uzawa algorithm [21] to the augmented Lagrangian formulation. More precisely, for fixed r we solve
the minimizer of the Lagrangian function Lµ(u, d, r)with respect to (u; d), and then for fixed (u; d)we obtain r through one
iterative step of gradient ascent method. By alternating these two steps we get a sequence (uk, dk, rk) as follows:

(uk+1, dk+1) = argminu,d


J(d) + H(u) − ⟨rk, d − Bu⟩ +

µ

2
‖Bu − d‖2

2


rk+1

= rk + µ(Buk+1
− dk+1).

(2.3)

Let rk = µbk, then the ALM/MM can be rewritten as follows
(uk+1, dk+1) = argminu,d


J(d) + H(u) +

µ

2
‖Bu − d + bk‖2

2


bk+1

= bk + (Buk+1
− dk+1).

(2.4)

The first executing step in (2.4) is not trivial since it involves non-separable quadratic aswell as non-smooth terms. Replacing
it by the alternatingminimizationwith respect to each vector leads to a variant of the so-called alternating directionmethod
of multipliers (ADMM)

dk+1
= argmind


J(d) +

µ

2
‖Buk

− d + bk‖2
2


uk+1

= argminu


H(u) +

µ

2
‖Bu − dk+1

+ bk‖2
2


bk+1

= bk + (Buk+1
− dk+1).

(2.5)

2.2. Proposed image restoration algorithm

Let l = (u; d). The first two executing steps in (2.5) can be interpreted as an application of block coordinate descent [22]
for function F bk(l) = J(d) + H(u) +

µ

2 ‖Bu − d + bk‖2
2. The convergence rate of ADMMmay suffer from the influence of the



2768 D.-Q. Chen et al. / Journal of Computational and Applied Mathematics 235 (2011) 2766–2774

difference between lk generated by (2.5) and l̃k = argminlF bk(l). Thus we consider to solve the sub-minimization problem
l̃k = argminlF bk(l) by merging a recently developed subspace optimization method [17,18] into the alternating direction
method, which has no additional complexity and may accelerate ADMM efficiently.

We now return to the unconstrained optimization formulation of regularized image restoration, as defined in (1.2). The
corresponding constrained optimization problem is

min
d∈R2n,u∈Rn

τ‖d‖1 +
1
2
‖Ku − f ‖2

2, s.t. Du = d (2.6)

where ‖d‖1 =
∑

i |di|.
Let F b(l) = τ‖d‖1 +

1
2‖Ku − f ‖2

2 +
µ

2 ‖Du − d + b‖2
2. Assume that the problem (2.6) is to be solved via an iterative

algorithm. Instead of solving argminlF bk(l) by the alternating direction method, we search for the solution of this problem
within the subspace spanned by a set of directions {t ik}

L+1
i=1 , that is

αk
= argminαF

bk(lk + Skα), (2.7)

lk+1
= lk + Skαk (2.8)

where the columns of Sk are {t ik}
L+1
i=1 .

First, we discuss the definition of the direction t ik in (2.7). Assume that l̃k = (ũk
; d̃k) is generated by the first two executing

steps of ADMM for problem (2.6), where J(d) = τ‖d‖1,H(u) =
1
2‖Ku − f ‖2

2, B = D. We choose sk = l̃k − lk as the first
direction included in Sk. Besides, the subspace may be enriched with L previous propagation directions. Specially we can
define Sk = [sk, {r ik}

L
i=1], where r ik = lk−i+1

− lk−i, 0 < i < L+1. Then according to (2.7) and (2.7) we get: F bk(lk+1) ≤ F bk(l̃k).
Next we consider the subspace optimization problem defined in (2.7). Define the set C = {(u; d) ∈ R3n

||di| ≠ 0, 1 ≤ i
≤ 2n}. F bk is a smooth function on the set C , and for any l ∈ C , ∇2F bk is given by

∇
2F bk

=


µDTD + K TK −µDT

−µD µI


. (2.9)

For the subspace optimization problem (2.7) we have

(Sk)T∇F bk(lk + Skαk) = 0. (2.10)

If lk ∈ C , then function ∇
2F bk is independent of variables u and d according to the formula (2.9). Through Taylor series

expansion we get

∇F bk(lk + Skαk) = ∇F bk(lk) + (∇2F bk)Skαk. (2.11)

Together (2.10) with (2.11) we have

αk
= −


(Sk)T∇2F bkSk

−1 
(Sk)T∇F bk(lk)


. (2.12)

If lk ∉ C , then let l̂k = lk + [0; εc], where 0 < ε ≪ 1 and c = [ci]T1≤i≤2n satisfies

ci =


0, di ≠ 0
1, di = 0.

Let c0 = [0; c]. Through Taylor series expansion at the point l̂k we have

∇F bk(lk + Skαk) = ∇F bk(l̂k) + (∇2F bk)(Skαk
− εc0). (2.13)

Together (2.10) with (2.13) we get

αk
= −


(Sk)T∇2F bkSk

−1 
(Sk)T (∇F bk(l̂k) − ε∇2F bkc0)


. (2.14)

As ε → 0, we have αk
≈ −


(Sk)T∇2F bkSk

−1 
(Sk)T∇F bk(lk)


, which is just the value defined in the formula (2.12).

Let ϕ(d) = τ‖d‖1, and the whole augmented Lagrangian approach using Subspace Optimization accelerating (AL_SOP)
can be written as follows

Algorithm 1. AL_SOP for image restoration

Step 1: Initialize: uk
= f , bk = 0, k = 0;



D.-Q. Chen et al. / Journal of Computational and Applied Mathematics 235 (2011) 2766–2774 2769

Step 2: Iteration:

d̃k = argmind


ϕ(d) +

µ

2
‖Duk

− d + bk‖2
2


;

ũk
= argminu


1
2
‖Ku − f ‖2

2 +
µ

2
‖Du − d̃k + bk‖2

2


;

update subspace Sk = [sk, {r ik}
L
i=1];

αk
= −


(Sk)T∇2F bkSk

−1 
(Sk)T (∇F bk(l̂k) − ε∇2F bkc0)


;

lk+1
= lk + Skαk

;

bk+1
= bk + Duk+1

− dk+1
;

k = k + 1;

until some stopping criterion is satisfied.

3. Convergence analysis

The question arising now iswhether the iterative sequence generated by the algorithmproposed in Section 2.2 converges
to the solution of problem (2.6). In this section we analyze the convergence properties of the iterative algorithm from the
DRS viewpoint. First, we introduce the DRS algorithm proposed in [23].

Considering the minimization problem:

min
p∈Rn

h1(p) + h2(p). (3.1)

Define proximity operator proxλh(z) = argminx{
1
2λ‖x − z‖2

+ h(x)} = (I + λ∂h)−1(z), A = ∂h1, B = ∂h2. We have the
following convergence result (for more details we refer to Theorem 7 in [23] and Theorem 19 in [24]).

Proposition 3.1 (DRS Algorithm [23,24]). Let A, B be maximal monotone operators and assume that a solution of (3.1) exists.
Let λ > 0, and {τk} be one sequence such that 0 < infk∈N τk ≤ supk∈N τk < 2,

∑
k∈N τk(2 − τk) = +∞, and {ξ k

} and {ηk
}

be sequences in Rn. Suppose that 0 ∈ Ran(A + B), and
∑

k∈N τk(‖ξ
k
‖2 + ‖ηk

‖2) < +∞. Then, for any initial elements t0, the
following DRS algorithm converges to an element t∗:

pk = proxλh2(t
k) + ξ k, (3.2)

tk+1
= tk + τk(proxλh1(2p

k
− tk) + ηk

− pk). (3.3)

Furthermore, the sequence {pk} converges to p∗ satisfying 0 ∈ A(p∗) + B(p∗).

Considering the constrained optimization problem (2.6). Let l = (u; d), F(l) = ϕ(d) +
1
2‖Ku − f ‖2

2, G = (D, −I). Then
the ALM/MM for (2.6) can be rewritten as follows

lk+1
= argminl


F(l) +

µ

2
‖Gl + bk‖2

2


bk+1

= bk + Glk+1.
(3.4)

Based on the idea of Theorem 2.4 in [25] we have the following result.

Theorem 3.2. Let tk = µbk, where bk is given by (3.4). Then the iterative sequence {tk} satisfies:

tk+1
= proxµ(F∗◦(−G∗))(t

k). (3.5)

Proof. First, we show that the following relation holds true

p̂ = argminp∈Rn

γ

2
‖Ap − q‖2

2 + h(p)


⇒ γ (Ap̂ − q) = proxγ (h∗◦(−A∗))(−γ q) (3.6)

where h : Rm
→ R ∪ {+∞} is proper, convex and lower semi-continuous (lsc), and A ∈ Rm×n is a bounded linear operator,

and ‘∗’ denotes the dual operator.
Though the relation (3.6) has been proved in [25], we present the proof here for completeness. The left-hand side of (3.6)

is equivalent to

0 ∈ γ A∗(Ap̂ − q) + ∂h(p̂) (3.7)

which implies

p̂ ∈ ∂h∗(−γ A∗(Ap̂ − q)). (3.8)
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Applying −γ A on both sides of (3.8) and then adding γ (Ap̂ − q) we obtain

− γ q ∈ (I + γ ∂(h∗
◦ (−A∗)))(γ (Ap̂ − q)) (3.9)

which is, by definition of proximity operator proxλh, equivalent to the right-hand side of (3.6).
Applying (3.6) to (3.4) with h = F , p̂ = lk+1, A = G, q = −bk, γ = µ we get

tk+1
= proxµ(F∗◦(−G∗))(t

k). � (3.10)

Finally, we analyze the convergence properties of Algorithm 1 based on the above results.

Theorem 3.3. Let {(lk = (uk
; dk), bk)} be sequences generated by Algorithm 1, and let αk

= lk − l̃k, where l̃k = argminl(F(l) +
µ

2 ‖Gl + bk−1
‖
2
2). Suppose that

∑
k∈N(‖αk

‖2) < +∞, then {bk} converges. Furthermore, if {lk} converges, then the limit of {lk}
is the solution of (2.6).

Proof. Let b̃k+1
= bk+Gl̃k+1. Thenβk+1

= bk+1
−b̃k+1

= G(lk+1
− l̃k+1) = Gαk+1. Thuswehave ‖βk+1

‖
2
2 = (αk+1)TGTGαk+1.

Let c = ρ(GTG) denote the spectral radius of GTG. Thus we have

‖βk+1
‖
2
2 ≤ c‖αk+1

‖
2
2. (3.11)

Since
∑

k∈N(‖αk
‖2) < +∞, thus

∑
k∈N(‖βk

‖2) < +∞.
Let tk+1

= µbk+1, t̃k+1
= µb̃k+1. Then

tk+1
= t̃k+1

+ µβk+1. (3.12)

Since l̃k+1
= argminl(F(l)+ µ

2 ‖Gl+bk‖2
2), and b̃k+1

= bk+Gl̃k+1, applying (3.6) to these equationswith h = F , p̂ = l̃k+1, A =

G, q = −bk, γ = µ we obtain

t̃k+1
= proxµ(F∗◦(−G∗))(t

k). (3.13)

Together (3.12) with (3.13) we get

tk+1
= proxµ(F∗◦(−G∗))(t

k) + µβk+1. (3.14)

The above formula coincides with the DRS algorithm (3.2) and (3.3) for h2 = 0, λh1 = µ(F∗
◦ (−G∗)), τk = 1, ξ k

= 0, ηk
=

µβk+1. As
∑

k∈N(‖βk
‖2) < +∞, then according to Proposition 3.1 the sequence {tk} converges to an element t∗ satisfying

t∗ = argmintF
∗
◦ (−G∗)(t). (3.15)

Thus the sequence {bk} converges to an element b∗
=

t∗
µ
.

Besides, considering the equation bk+1
= bk + Glk+1 included in Algorithm 1, by passing to the limit we get

lim
k→+∞

Glk = 0. (3.16)

Furthermore, if the sequence {lk} converges to an element l∗, then by the Eq. (3.16) we get Gl∗ = 0. As
∑

k∈N(‖αk
‖2) <

+∞, thus limk→+∞ ‖αk
‖2 = 0, and hence the sequence {l̃k} also converges to l∗. By the definition of {l̃k} we get

∂F(l̃k) + µGT (Gl̃k + bk−1) = 0. (3.17)

By passing to the limit we get

∂F(l∗) + µGT (Gl∗ + b∗) = ∂F(l∗) + GT t∗ = 0. (3.18)

Let L(l, t) = F(l)+ < t,Gl >: that is the Lagrangian function for problem (2.6). Then according to (3.15), (3.18) and
Karush–Kuhn–Tucker (KKT) conditions [26] we conclude: {l∗} is the solution of (2.6). �

4. Experiment

In this section, we present some numerical results using Algorithm 1 and compare it with that of the current state of the
art methods (all of which are freely available online): TWIST1 [10], FISTA2 [9] and SALSA3 [15]. Our programs are performed
under Windows XP and MATLAB 7.0 running on a Lenovo laptop with a Dual Intel Pentium CPU 1.8 G and 1 GB of memory.

1 http://www.lx.it.pt/bioucas/code/TwIST_v1.zip.
2 http://iew3.technion.ac.il/becka/papers/wavelet_FISTA.zip.
3 http://cascais.lx.it.pt/mafonso/SALSA_v1.0.zip.

http://www.lx.it.pt/bioucas/code/TwIST_v1.zip
http://iew3.technion.ac.il/becka/papers/wavelet_FISTA.zip
http://cascais.lx.it.pt/mafonso/SALSA_v1.0.zip
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Table 1
TV-based image restoration: CPU times (in seconds).

Experiment FISTA TWIST SALSA Our algorithm

1 30.453 21.876 11.01 3.6406
2 44.813 20.06 12.0156 2.6875
3 120.77 22.864 9.1406 6.6402
4 35.328 21.025 12.719 6.5156

Fig. 1. Error evolution: (a) experiment 1; (b) experiment 2; (c) experiment 3; (d) experiment 4.

4.1. Image deconvolution result

In this subsection we use image Cameraman as the test image, and evaluate the algorithms considered in this paper in
four typical image deconvolution scenarios: strong blur with low noise; strong blur with medium noise; mild blur with low
noise; mild blur with medium noise, which are summarized below:

• Experiment 1: PSF (point-spread function): v(x1, x2) = 1/(1+ x21 + x22), −7 ≤ x1, x2 ≤ 7, gaussian noise with σ 2
= 2;

• Experiment 2: PSF: v(x1, x2) = 1/(1 + x21 + x22), −7 ≤ x1, x2 ≤ 7, gaussian noise with σ 2
= 8;

• Experiment 3: PSF: 7 × 7 Gaussian PSF with standard deviation 2, gaussian noise with σ 2
= 2;

• Experiment 4: PSF: 7 × 7 Gaussian PSF with standard deviation 2, gaussian noise with σ 2
= 8;

Set J(u) = ϕ(Du) +
1
2‖Ku − f ‖2

2, and the stopping criterion we used in these experiments is

‖J(uk+1) − J(uk)‖/‖J(uk)‖ < 10−5. (4.1)

In our experiments, we adjust the regularization parameter τ to achieve the best SNR (signal-noise-ratio), and useµ = 0.1τ
in all experiments following [15]. Besides, we define ∂|di|(0) = 0 and choose ε = 0 in Algorithm 1. For experiments 1 and
2, we adopt Sk = [sk] for the subspace optimization problem; for experiments 3 and 4, we use the ADMM algorithm for the
first 5 iteration steps and then adopt Algorithm 1 with the subspace Sk = [sk].

The CPU times taken by FISTA, SALSA, TwIST and our proposed algorithm are listed in Table 1. The evolutions of errors
defined by (4.1) are plotted in Fig. 1.

We can conclude from Table 1 and Fig. 1, for a TV-based image restoration problem, our proposed algorithm is clearly
faster than the other competing algorithms. Referring to Sections 2 and 3, our proposed algorithm uses the Hessian matrix
of the data fidelity term of (1.2) and can be seen as an approximation to (3.5), which converges to an element with an
exponential convergence rate assuming ‖proxµ(F∗◦(−G∗))‖ < 1; while the above mentioned algorithms, i.e. FISTA and
TWIST, are essentially only variants of gradient descent methods. Furthermore, our proposed algorithm is implemented
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Fig. 2. Compressive sensing example 1: (a) image Brain; (b) 50% randomly chosen Fourier coefficients with Gaussian noise σ = 0.001, SNR = 5.62 dB;
(c) recovered result using Algorithm 1, SNR = 10.06 dB; (d) error evolution.

without solving the nested minimization problem of TV-denoising compared with SALSA. Besides, by adopting subspace
optimization accelerating technology, the proposed algorithm may be faster than SALSA which belongs to the family of
augmented Lagrangian algorithms. The analysis of these algorithms is verified by our experiments above.

4.2. Compressed sensing result

We now discuss the magnetic resonance image (MRI) restoration from partial Fourier observations, which has been the
focus of much recent interest due to its connection with compressed sensing and the fact that it models MRI acquisition
[27,15]. For this example, the linear operator K in model (1.1) is given by

K = PF (4.2)
where F ∈ Cn×n represents a Fourier transformmatrix, and P ∈ Rp×n is a sub-sampling matrix containing p rows of a n× n
identity matrix.

In the experiments, we test our algorithm on two real MRI images: Brain and Chest. The CS (Compressed sensing) data
is obtained from random sampled Fourier coefficients of MRI images. In other words, the matrix P is a random sampling
matrix. Note that, while ideal for compressed sensing, this type of sampling is not practical for most MRI applications.
For more detailed information about the selection of sampling matrices we refer to [1,27]. Because the focus of this paper
is on numerics, and not on the details of image acquisition, we choose uniform random sampling for simplicity. In the
experiments, we adjust the parameters τ and µ following Section 4.1. For Algorithm 1, we adopt Rk

= [sk] for the subspace
optimization problem. Figs. 2 and 3 show the results of compressed sensing for images of the Brain and Chest. Figs. 2(d) and
3(d) show the the evolutions of errors defined in (4.1). Again, we may conclude our algorithm is faster than SALSA, which is
also the fastest of the other competing algorithms mentioned above.

5. Conclusion

In this article, by merging a recently developed subspace optimization method into the alternating direction method,
we propose a new iterative algorithm for image restoration. Then we analyze the convergence properties of the iterative
algorithm from a DRS viewpoint. Experiments demonstrate our algorithm is clearly faster than recently proposed methods.
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Fig. 3. Compressive sensing example 2: (a) image Chest; (b) 50% randomly chosen Fourier coefficients with Gaussian noise σ = 0.001, SNR = 5.29 dB;
(c) recovered result using Algorithm 1, SNR = 7.82 dB; (d) error evolution.
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