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Abstract

We use C*-algebra theory to provide a new method of decomposing the essential spectra of self-adjoint
and non-self-adjoint Schrodinger operators in one or more space dimensions.
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1. Introduction

In a recent study by Hinchcliffe [14] of the spectrum of a periodic, discrete, non-self-adjoint
Schrédinger operator acting on Z2 with a dislocation along {0} x Z, we were struck by the fact
that the essential spectrum of the operator, defined by means of the Calkin algebra, divides into
two parts, one of which occupies a region in the complex plane, the other being one or more
simple curves; the curves are associated with surface states confined to a neighbourhood of the
dislocation. The same phenomenon occurs in the self-adjoint case, but here the distinction is
between parts of the (real) spectrum that have infinite spectral multiplicity and other parts with
finite multiplicity, at least in two dimensions.

In this paper we describe a method of decomposing the essential spectrum of a self-adjoint
or non-self-adjoint Schrodinger operator into parts by using the two-sided ideals of a certain
standard C*-algebra. Our conclusion is that one can define different types of essential spectrum,
provided one is given this extra structure; we warn the reader that the spectral classification that
we obtain is not a unitary invariant of the operators concerned. However, the C*-algebra used
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is the same for all the applications considered so the results obtained have a high degree of
model-independence.

At a broad conceptual level, the C*-algebras that we consider are closely related to algebras
and modules that were introduced by Georgescu, Méntoiu, Roe and others [1-3,15,16,19,20];
many further references and useful comments may be found in [12,13]. However, our treatment
works in very general metric space setting and does not depend on the presence of any group
action, whether abelian or nonabelian. As a result it is applicable to more or less arbitrary waveg-
uides, discrete and continuous graphs and Riemannian manifolds, as well as to RY and Z¢. The
idea of studying the essential spectrum of an operator by constructing a C*-algebra with a large
class of closed two-sided ideals is also not new. It first appeared in [2,3], but all previous treat-
ments apply in much more restricted contexts than that here.

Some of our spectral results can be proved by methods that are geometric in the sense that they
involve Hilbert space methods rather than C*-algebras. An advantage of the approach described
here is that instead of dealing with new applications by invoking analogy and experience, the
use of C*-algebras enables one to formulate simple general theorems that cover applications
directly. The method accommodates many of the technical hypotheses that have been used in the
field within a single formalism.

In Sections 2 and 4 we investigate the relevant C*-algebra theory without reference to its
application. Section 3 is devoted to showing how to apply the results to discrete Schrodinger
operators. Theorems 10 and 11 describe the spectrum when a periodic potential has a dislocation
on one or both of the two axes in Z?; the second possibility has not previously been considered.
After a substantial amount of preparatory work, we turn in Section 7 to the study of Schrédinger
and more general differential operators acting in L>(R?), and show that the abstract methods de-
veloped earlier can be applied to their resolvent operators under suitable hypotheses. The spectral
mapping theorem then allows one to pull the results back to the original operators. Example 42
explains the application of the methods to multi-body Schrodinger operators. Finally, in Sec-
tion 8 we show that our methods are not only relevant in a Euclidean context. We prove that
the C*-algebraic assumptions are satisfied when considering the Laplace—Beltrami operator on
three-dimensional hyperbolic space by writing down the explicit formulae available in this case;
the same applies to a wide variety of other Riemannian manifolds but general heat kernel bounds
are needed for the proofs.

2. Some C*-algebra theory

Throughout this section .4 will denote a (usually non-commutative) C*-algebra with identity,
and 7 will denote a (closed, two-sided) ideal in A. It is well-known that such an ideal is nec-
essarily closed under adjoints and that A4/.7 is again a C*-algebra with respect to the quotient
norm. See [10, Chapter 1] or [17, Chapter 1] for various standard facts about C*-algebras that
we will use without further comment.

If x € A then we denote the spectrum of x by o (x); it is known that if A is replaced by a
larger C*-algebra, o (x) does not change. If 7 is an ideal in A we denote the natural map of
A onto the quotient algebra A/J by 7. If several ideals 7, are labelled by a parameter r, we
write 7, instead of 7 7. for brevity, and also put o, (x) = o (7 7, (x))

Lemma 1. If the ideals J1, J> in A satisfy J» € J1 € A then

o1(x) Co2(x) Co(x).
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Proof. We first put J3 = {0}, so that A/ 73 = A and 03(x) = o (x). Suppose that 1 <r <s <3
and that A ¢ o,(x). Then there exists y € A such that

(75 (x) — A1) 75 (y) = 5 (y) (A — 7 (x)) =1
in A/J,. Hence there exist u, v € J; such that

x—ADy=1+u, YAl —x)=1+4v.
Applying 7, to both equations and using the fact that 7y € 7, we obtain

(7 () = A7, (y) = 71, () (A1 — 7, (x)) = 1.
Hence XA ¢ 0, (x) and 0, (x) Cos(x). O
Note. If A= L(H) and J is the ideal C(H) of all compact operators on the Hilbert space H,
then o (7 7(x)) is (one of several inequivalent definitions of) the essential spectrum of x by
[5, Theorem 4.3.7]. Needless to say we are interested in more general examples.

There are several ways of constructing A and the relevant ideals J.. Given 7, the largest

choice of A is described in (2) and more concretely in Lemma 3. If one wishes make another

choice, call it ,/Z, one has to confirm that J C JZI C A.

Theorem 2. Let B be a C*-algebra with identity and let {p,},> | be an increasing sequence of
orthogonal projections in B with p, # 1 for every n. Then the norm closure J of

Jo={xeB:In>1. pyx =xp, = x}
is a C*-subalgebra that does not contain the identity of B. We have

J={xeB: lim llx = paxpal =0}. ()
Moreover J is an ideal in the C*-algebra with identity A defined by

A={aeB:aJ CJ and Ja C J}. 2)
If B= L(H) and p, converge strongly to I as n — oo then

KH) ST CA,
50
o (77 (x)) € Oess(x) € 0 (x)

forall x € A.
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Proof. First note that if p,x = xp, = x then p,x = xp,;, = x for all m > n. It follows by ele-
mentary algebra that Jp is a *-subalgebra of B, and this implies the same for J. If x € Jy then
there exists n for which 1 — p, = (1 — p,)(1 — x). Therefore

1=l1=pull= 0= p)A=x)| <II1=pallll —x| =11 —x]

because p, # 1 for every n. Hence |1 — x|| > 1 for all x € J and we can deduce that 1 ¢ 7.

If x € B and lim,,_, » ||x — ppxp, || = O then the fact that p,xp, € Jy implies that x € 7.
Conversely if x € J and € > 0 then there exists y € Jy such that ||[x — y|| < e. There now exists
N > 1 such that y = p,yp, for all n > N. For all such n we have

lx — prxpull < llx =yl + Iy — poxpall

=|lx =yl + lPnyPn — PnXpPnll
<L2x =yl

< 2e.

Hence lim,, . « ||x — puxpa| = 0.

The proofs that A is a C*-algebra with identity and that 7 is an ideal in .4 are both elementary
algebra.

If B = L(H) then in order to prove that IC(H) C 7 it is sufficient by (1) and a density ar-
gument to observe that if x is a finite rank operator then lim,— o ||x — puxpn|| — 0. The final
inclusion of the theorem follows from Lemma 1. O

The following provides an alternative description of A.
Lemma 3. Let B, {p,};2 |, J and A be defined as in Theorem 2. Let
Do={aeB:Vn>1.3m > n. pyap, =apy,.} 3)
and
D={aeB:Vn>1.ap, € J}. “4)

Then Dy € D and A="D ND*.

Proof. The inclusions Dy C D and A C D N D* are elementary. If a € D and x € J then for
some n > 1 we have

ax =a(pyx) =(ap,)x€J. J<J.

A density argument now implies that a7 € J. By taking adjoints we conclude that
DND*CA O

Note. In spite of the notation we do not claim that D is the norm closure of Dy.
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Lemma 4. Let {p,}° | be an increasing sequence of projections on 'H that converge strongly
to 1 and let J and A be constructed as described in Theorem 2. If {¢,}22 | is a sequence of unit
vectors in H and lim,— o || pn@r || =0 for every n > 1 then lim, . ||a¢,|| = 0 for every a € J.

Proof. This is elementary if a € Jp and follows for all @ € J by approximation. O

We say that a sequence {¢,}72 | of unit vectors in 7 is localized (with respect to ) if there

exists n > 1 and ¢ > O such that || p,¢|| > c forall r > 1.

Theorem 5. If x € A and % € o(x) \ 0(7w7(x)) then there exists a sequence {¢,}°, that is
localized with respect to J and satisfies either

lim [x¢, — Agr|| =0 o)
r—00
or
lim ||x*¢, — A¢,|| = 0. (6)
r—00

Proof. If A € o (x) then there exists a sequence {¢, f’;l of unit vectors such that either (5) or (6)

holds; see [5, Lemma 1.2.13]. Both cases are similar and we only consider the first.
If L eo(x)\o(my(x)) and (5) holds and lim, . || pn @, || =0 forall n > 1 then 7 7 (A1 — x)
is invertible in A/ .7, so there exist y € A and a € J such that

yAl—x)=1+a.
Lemma 4 now yields
1= lim |[(1+a)¢,|
r—>0o0

Tim (vl 1 =g )
=0.

N

The contradiction establishes thatif A € o (x) \ o (7 7(x)) then || p, ¢, || does not converge to 0 as
r — oo for some n > 1. It follows that there exists a subsequence {,}72, and ¢ > 0 such that

lpnrll Zcforallr > 1. O

Note. Theorem 5 has no converse. If a € A is a self-adjoint operator then any eigenvalue A of
a that is embedded in the continuous spectrum satisfies the conclusion of the theorem for the
choice J = KC(H). One simply defines ¢, to be the normalized eigenvector of a corresponding
to the eigenvalue A for all n.

Sometimes one has several ideals in A but neither is contained in the other.

Theorem 6. Let 7y and J» be two ideals in the C*-algebra A with identity, and put J3 =
TJ1NFs. Then

o3(x) =01(x) Uoz(x)

for all x € A.
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Proof. It is elementary that 73 is an ideal. Let B=.4/J; & A/J> and define the C*-homo-
morphism 7 : A — B by m = m @ mp. Then the image C = 7 (A) is a C*-subalgebra of B and
the kernel of 7 is J3. If x € A then the spectrum of 7 (x) is the same whether regarded as an
element of B or C. In the former case the spectrum is o1(x) U o2(x) and in the latter case it
iso3(x). O

We next describe one of the C*-algebras that we shall be using in the next section. Let H;
and H; be infinite-dimensional Hilbert spaces and let H = H; & H> be their Hilbert space tensor
product. Let /; denote the identity operator on H; fori =1, 2.

Theorem 7. Let { P,};° | be an increasing sequence of finite rank projections in Hy which con-
verges strongly to I} as n — oo and put p, = P, @ I. Then J defined as in Theorem 2 is the
closed linear span of all operators A| ® Ay where A1 € KK(H1) and Ay € L(H3). Also A, defined
as in Theorem 2, contains the closed linear span of all operators A1 @ Ay where A; € L(H;) for
i=1,2.

Proof. Let J' denote the closed linear span of all operators a = A} ® Ay where Ay € K(H1)
and A, € L(H3). The formula

lim ”Al - PnAIPn” =0
n— o0
implies
lim |[a — ppapnll =0.
n—od
We deduce that a € 7 and hence that 7' C 7. Conversely if x € Jy then there exists n > 1 such
that x = p,xp,. If P, has rank k then p,xp, can be written as the sum of k? terms of the form
A| ® A, where each A; has rank 1. Hence p,xp, € J'. The inclusion Jy € 7' implies 7 < J'.
The final statement of the theorem follows directly from the inclusions
(AI® AT T, J(A1®A)CT. m|
3. Application to discrete Schrodinger operators
In this section we construct a C*-subalgebra A of £(H) where H = [*(Z%) by an ad hoc
procedure. A more systematic approach that uses a standard C*-algebra is described in Section 4.
We put H; = [*(Z) and H, = [*(Z?~"), so that
H=Hi ®Hy =1*(Z, H2) )
by means of canonical unitary isomorphisms. We define the projections p, by

o(x) if —n<x;<n,
0 otherwise,

(Pa@)(x) = {

for all ¢ € H and x € Z¢. We also define the C*-algebra A and the ideal 7 as in Theo-
rems 2 and 7. The ideal [J contains all bounded operators on H that are ‘concentrated’ in some
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neighbourhood of the dislocation set S = {0} x Z¢~!. In Section 4 we explain how to generalize
the ideas in this section by allowing the dislocation set to have a completely general shape.

Lemma 8. The C*-algebra A contains all ‘Schridinger operators’ of the form
m
(A$)(x) =Y _a,(x)$(x +by) ®)
r=1

where ¢ € 1*(Z%), x € 28, m € Z, b, € Z¢ and a, € I°°(Z?) forallr €{1,2,...,m}.

Proof. An elementary calculation implies that p,4xAp, = Ap, for all n > 1 where k =
max{|b,|: 1 <r <m}, so A € Dy. The same applies to A*, so we may apply Lemma 3. O

We say that the Schrodinger operator A on H is periodic in the Z direction with period k&
if TyA = ATy where (Tyg)(m) = ¢(m + k) for all ¢ € >(Z, H>). This holds if and only if the
coefficients a, are all periodic in the Z direction with period k.

Theorem 9. If the Schrodinger operator A is periodic in the Z direction with period k then
0 (77(A)) = 0ess(A) = (A). ©))
If in addition H = A+ B 4+ C where B € J and C € K(H), then
Oess(A) S Oess (A + B) = 0ess(H) S 0 (H). (10)

Proof. The identities in (9) follow directly from Lemma 1 provided we can prove that o (A) C
o(wg(A)). If L € 0(A) then there exists a sequence {¢;, f‘; | of unit vectors such that either
lim, s o0 || Agpy — A || =0 or lim,_, o || A%}, — Adp, || = O; see [5, Lemma 1.2.13]. Both cases are
similar, so we only consider the first.

By translating the ¢, sufficiently and using the translation invariance of A, we see that
there exists a sequence {1, }°°, of unit vectors such that lim, o [|AYr — A, || = 0 and
lim; oo || pn ¥ || = O for every n. The argument of Theorem 5 establishes that A € o (77 (A))
and hence that 0 (A) C o (7 (A)).

The statements in (10) now follow from Lemma 1 as soon as one observes that o (7 7(H)) =

o(rg(A)) and o (i) (H)) =0 (micry(A+ B)). O

The following theorem identifies the asymptotic part of the spectrum of certain Schrodinger
operators H as x; — —oo. The operators concerned have much in common with those of [7],
but we allow them to be non-self-adjoint and require the underlying space to be discrete.

Theorem 10. Let S = {x € Z%: x| > 0} and put

o(x) ifxy=-—n,

0 otherwise,

(Pn@)(x) = {
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for all ¢ € I>(Z) and n > 0. Let A be of the form (8) and suppose that it is periodic in the x
direction. Also let H = A + B where B is any bounded operator confined to S in the sense that
poB = Bpo = B. If J is defined as in Theorem 2 then

0(A) = 0ess(A) = 0 (17 (H)) S 0ess(H) S 0 (H).

We omit the proof, which is similar to that of Theorem 9 and uses the fact that B € 7.

We finally come to an application that involves two different closed ideals. Let H =
A + V| + V, where A acts on H = [2(Z?), is of the form (8) and is periodic in both horizontal
and vertical directions. We assume that the bounded potential V| has support in Z x [—a2, a>]
while the bounded potential V; has support in [—ay, a1] x Z for some finite a;, a,. Let [J be the
ideal associated with the sequence of projections

¢G, j) if —n<i<n,
0 otherwise,

(Pnd) (G, j)={

and let 7> be the ideal associated with the sequence of projections

¢, j) if —n<j<n,
0 otherwise.

(gn®) (i, j) = {
The appropriate C*-algebra A is defined by
A={xeLH): x1 €T, Jix €T, xJo € Ja, Jox € o}
Theorem 11. Under the above assumptions H € A and
Oess(H) =01(A+ V) Uoa(A + V2).
If Vy is periodic in the x1 direction and V; is periodic in the x» direction then
Oess(H) =0 (A+ V) Uo(A+ V).

Proof. Since V, € J;, we have o1(H) = 01(A + V}). Since V| € J>, we have or(H) =
02(A + V3). In order to apply Theorem 6 we need to prove that 03(H) = gess(H). This follows
if J1 N J>» = K(H). The only non-trivial part is to prove that if x € 73 N 7, then x € KC(H).

Given such an x put x,, , = PuqnXqnpm for all m,n > 1. Noting that p,, and g, commute
and that their product is of finite rank we see that x,, , € JC(H) for all m, n. Since x € J» we
have

lim Xm,n = PmXPm
n—00

and since x € J; we have

lim puxpn, =x.
m-—0o0

Therefore x € K(H).
The final statement of the theorem involves an application of Theorem 9. O
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4. The standard C*-algebra

If A= L(H) for some infinite-dimensional, separable Hilbert space H then A contains only
one non-trivial ideal, namely /C(H). In this section we construct a ‘slightly smaller’ C*-algebra
which has a rich ideal structure. We formulate the theory at a very general metric space level, so
that it is applicable not only to Z¢ and R¢, but to unbounded discrete and continuous graphs and
waveguides, in which X is an unbounded region in R?. In Section 8 we show that it may also be
applied to Schrodinger operators on Riemannian manifolds, writing out the details in the case of
three-dimensional hyperbolic space.

If H=L?*R?) or H = [*(Z%) then the C *-algebra A constructed below coincides with the
algebra C*(Q) of [11] by virtue of [11, Propositions 4.11, 4.12]. However, this fact depends on
the use of Fourier transforms on R¢ or Z¢, which have no analogue in our more general context.

Let (X, d, i) denote a space X provided with a metric d and a measure u; we require X to be
a complete separable metric space with infinite diameter in which every closed ball is compact;
all balls in this paper are taken to have positive and finite radius. We also require that the measure
of every open ball B(a,r) = {x € X: d(x,a) < r} is positive and finite. Let ¢/ denote the class
of all non-empty, open subsets of X.

If S, T € X we put

d(S,T)=inf{d(s,1): s€ Sandr € T}.
The function x — d(x, S) is continuous on X; indeed
|d(x. $) —d(y,$)| <d(x.y)
forall x,y € X and S C X. If (X, d) is a length space in the sense of Gromov then
B(a,r)= {xeX: d(x,a) gr}
and
d(B(a, r), B(b, s)) = max{d(a, by —r —s, 0}

forall a,b € X and r, s > 0. However, if X = Z¢ with the Euclidean metric, neither of these
identities need hold.
Now put H = L?(X, 11). For any S € U we define the projection Pg on H by

x) ifxes,
(Ps)(x) = {‘“ ) .
0 otherwise.
We abbreviate P, ) to Py ;.

Lemma 12. If A € L(H) then there exists a largest open set U such that APy = 0. There also
exists a largest open set V such that Py A = 0.
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Proof. If V is the class of all open sets V such that APy = 0 then the only candidate for U
is U =Jycyp V and by Lindeldf’s theorem we may also write U = [ J;, V,, where V,, is a
sequence of sets in V. Put W) =V and W41 = W, UV, 4. If W, € V then

APy

n+l

=APwy, + APy, (1- Py, =0,

so W11 € V. It follows by induction that APy, =0 for all n > 1. Now Py, is an increasing
sequence of projections that converges weakly to Py so APy = 0. The second statement of the
lemma has a similar proof. O

Lemma 13. If A, B € L(H) and AB # 0 then for every & > 0 there exists a € X such that
AP, #0and P, B #0.

Proof. Let {a,};2 | be a countable dense set in X and define the sets Ey inductively by E| =
B(ay, ¢) and

Epi1=Blan+1,8) \ (E1U---UEy).

It follows directly that the sets E,, are disjoint and that their union is X. Therefore

n
Jim 2 P, =1

r=1

the limit being in the weak operator topology. Therefore

n

nlggoZAPE,B = AB#0
r=1

in the same sense and there must exist n such that A Pg, B # 0. We conclude first that A Pg, # 0

and Pg, B # 0 and then that AP,, . #0 and P,, . B#0. O

We say that A € L(H) lies in A, (or that A has range m) if P, ,APp ¢ # 0 implies d(a, b) <
r +s 4+ m. If A has an integral kernel K this amounts to requiring that K (x, y) # 0 implies
d(x,y) < m,but we do not require that A has such a kernel.

Lemma 14. If A € A, and B € A, then A* € Ay, A+ B € Amax(m.n) and AB € Ay 4.

Proof. The invariance of .4,, under adjoints follows immediately from its definition.

If P,y (A+B)Pps#0then P, ,APps#0o0r Py BPps #0. Therefored(a,b) <r+s+m
ord(a,b) <r+ s+ n.Inboth cases we deduce that d(a, b) < r + s + max(m, n).

If P, ,ABPy s # 0 then Lemma 13 implies that for every ¢ > O there exists ¢ € X such that
P, rAP..#0and P. . BPy #0. Therefore d(a,c) <r+e+mandd(c,b) <&+ s+n. These
imply that d(a, b) <r +s+m+n+2¢. Letting ¢ — 0 we finally deduce that AB € A, 4,. O

We will frequently refer to the standard C*-algebra A below; this is defined in the next theo-
rem. The algebra A below is called the set of all finite range operators in [11, Section 4].
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Theorem 15. If A is the norm closure of A = U An then A is a C*-subalgebra of L(H). If
V e L®(X, u) and V also denotes the operator of multiplication by the function V, then V € A.
Moreover K(H) C A.

Proof. The first statement follows directly from Lemma 14. If P, ,V P, s # Othen P, Py sV #0
and hence P, , Py s # 0. Therefore the open set U = B(a, r) N B(b, s) is not empty, and there
exists ¢ € X with d(a,c) <r and d(b,c) < s. Therefore d(a,b) <r +s <r +s + 0 and
Ve Ap.

If A is compact and A = APy = PyA for some open set U with diameter n then
P, APy #0 implies P, ,PyAPyPps # 0 and hence P, Py # 0 and Py Pp s 7# 0. Hence
there exist u, v € U such that d(a, u) < r and d(v, b) < s. We deduce that d(a,b) <r +s+n
so A € A, . Since the set of all such A is norm dense in KC(H), we conclude that (H) € A. O

If Sel and r > 0 we put
Sr)={xeX: dx,S) <r}= U{B(x,r): xes}.

The following alternative definition of 4 is slightly more transparent in spite of the fact that it
quantifies over a much larger class of sets.

Theorem 16. Given m > 1, let ), denote the set of all A € L(H) such that for every S € U one
has APg = Ps(m)APs. Then A is the norm closure of Ufnozo Y.

Proof. If we put T(m) = X \ S(m) then A € ), if and only if for every S € U one has
PrmyAPs =0.

LetAeA,,0<r<1/3ands=1/3.1f Seld and b € T(m + 1) then B(a,r) C S implies
d(a,by>2m+1>r+s+mandthen P, AP, , =0. Since S may be written as the union of a
countable number of balls B(a, r) with 0 <r < 1/3, Lemma 12 implies that P, ;A Ps = 0. Since
T (m + 1) may be covered by a countable number of balls B(b, s), all with s = 1/3, we deduce
that Pr(,4+1)A Ps =0. Therefore A € Y, 11.

Conversely let A € V,,,r, s >0andd(a,b) >r+s+m.If weput S = B(a,r) then B(b, s) C
T (m), so PronyAPs =0 implies P, AP, , = 0. Therefore A € A,,.

The two inclusions together imply

(@

-Am = U ym
1 m=1

m

and hence the statement of the theorem. O

We wish to associate an ideal Js with every non-empty open subset S of X. This may be
done in two ways and we will prove that they yield the same result. The idea is to identify
operators that ‘decrease in size’ as one moves away from S. It will become clear that Js depends
only on the asymptotic form of § at infinity, and that two sets S and S, that move away from
each other as one goes to infinity give rise to different ideals, however slowly this separation
occurs.
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If Sel and r > 0, we put

Tsn={A €A A= Psu)APsu)}
={Ae A A= APsy) = PsiA}
={A e A: 0=APr@y) = Pr;nA)}

where T(n) = X \ S(n) = {x € X: d(x,S) > n}. We also define

Ksn={A€A: AP, #0 = d(a,S) <n+r}
ﬂ{AE.A: P, A#0 = d(a,S)<n+r}
={AcA:d@,S)>n+r = AP, =P, A=0}.

Lemma 17. Ifn > 1 then

U{B(x,r): d(x,8)>r+n}
gT(n)gU{B(x,r): d(x,8)>r+n—1}. a1
Hence
Ksn-1<S Isn € Ksn- (12)

Proof. If y € B(x,r) andd(x, S) > r +n thend(y, S) > n. Hence B(x,r) C T (n). This proves
the first inclusion of (11).

If x € T(n) then d(x, S) > n. Putting » = 1/2 we deduce that x € B(x,r) and d(x, S) >
r +n — 1. This proves the second inclusion of (11).

IfAeKsn—1then APy, = Py ,A=0forallx,r suchthatd(x, S) > r+n—1,soLemma 12
and the second inclusion of (11) together imply that A Pr ;) = Pr) A = 0. Therefore A € Js p.
On the other hand if A € Js, then A Pr(,) = Pr(»)A = 0. The first inclusion (11) of now implies
that APy , = Py ,A =0 wheneverd(x, S) > r+n. Therefore A € K ,. This completes the proof
of (12). O

Let F denote the family of all non-empty open sets S such that S(n) # X for every n > 1.
We say that S, T € F are asymptotically equivalent if for all n > 1 there exists m > 1 such that
S(n) € T(m) and T (n) € S(m). In particular all non-empty, open, bounded sets are asymptoti-
cally equivalent to each other.

Theorem 18. If S € U then

e 0
U \7S,n = U K:S,n-
n=1 n=1

If S € F then this set, denoted by TJs, is a proper; closed, two-sided ideal in A and it contains
K(H). If S, T are asymptotically equivalent then Js = Jr.
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Proof. Lemma 17 implies that

We denote this linear subspace of A by Jg.

Let A€ Ay and BeKs . If ABP,, #0then BP,,#0sod(a,S)<n+r.If P, ,AB#0
then Lemma 13 implies that for every ¢ > O there exists b € X such that P, AP # 0 and
Py e B # 0. Therefore d(a,b) < m +r + ¢ and d(b, S) < n + . We conclude that d(a, S) <
m +n +r + 2¢. Since ¢ > 0 is arbitrary we deduce that d(a, S) <m +n +r. Thereiore AB €
KCS,m+n- A similar argument can be applied to BA. These calculations imply that AJg € J¢
and J¢ Ac . §. The statement of the theorem now follows by a density argument.

In order to prove that Jg is proper we need to establish that ||[I — A|| > 1 for all A € Jg,
or equivalently that this holds for all A € Js , and all n > 1. If A = APg(,) = Ps(,)A then this
follows from

11 = Psyll = | (1 = Ps)( = A) | < I = Psny Il — Al < [T = Al

provided ||[I — Ps(yll = 1. Since S € F there exists a € X \ S(n + 2). This implies that
B(a,1)N S(n) = 0. Since B(a, 1) has positive measure there exists a non-zero ¢ € H whose
support is contained in B(a, 1) and for which (I — Pg,))¢ = ¢.

If A is a finite rank operator then lim,_, [|[A — Psn)APsu)ll =0, so A € Js. The same
applies to all A € JC(H) by a density argument.

If S, T are asymptotically equivalent then routine algebra shows that J¢ = Jp. This implies
immediately that Js = Jr. O

If Ae Aand S € F we put o5(A) =0 (77,(A)).

Theorem 19. Let S, T € F. If S C T then Js C Jr and os(A) 2 o7 (A) for every A € A. If
S, T € F are asymptotically independent in the sense that

Vazl.dm2>21. Sm)NTm)S(SNT)(m), 13)

then
Tsnr =Ts NIt (14)

and
osnr(A) =05(A) Uor(A) 5)

for every A € A.

Proof. If A € Jg then there exists n > 1 such that A = A Ps(;) = Ps)A. If § C T, this implies
A= APru) = PreA and hence Jg € Jp. Therefore Jg C Jr and o5(A) 2 o7 (A) for every
A € Aby Lemma 1.
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If S, T € F we deduce that Jsnr € Js N Jr. Now suppose that S, T are asymptotically
independent and that A € Js N Jr. Eq. (1) implies

lim [|A — Psu)APsmll =0, lim ||A - PrayAPrull =0.
n—>oo n—oo
If we put
An = Psu) Prn) APrn) Ps(n)
= PsynT () APT()nS(n) »
then asymptotic independence implies
An = Pisnryom)An = An Pisntym)
s0 Ay € Jgny- Finally
lim [|[A— A, < lim A= Psmu)APsqll
n—>oo n—0o0
+ lim_ | Psay (A = ProyAPre) P |
< lim [|A — PsmyAPsyll + lim [[A — Proy APrmll
n—0o0 n—0oo
=0.
Therefore A € Jsnr. Eq. (15) finally follows from Theorem 6. O

The C*-algebra A contains L°°(X) and is therefore not separable. It is unlikely that one can
obtain a useful classification of its irreducible representations, but a partial classification of its
ideals can be obtained as follows.

Let X be some compactification of X and let 3X = X \ X denote the ‘points at infinity’. The
restriction of any f € C(X) to X lies in L>°(X, ut). Since every non-empty open subset of X has
positive measure we see that

Il = leee =N fllcay = 11f 1A (16)
It follows that B = C(X) is a commutative C*-subalgebra of .A. Note that there is a _order-
preserving one-one correspondence between the ideals Z in B and the open subsets V of X. It is
given by

Vr={xeX: f(x)+#0 for some f €T}
and

Iy ={f e C(X): Flz\w =0}.

We will write E to denote the (compact) closure of a set E C X in X,evenif EC X.If U is
an open subset of X then we define its set of asymptotic directions U C 9 X to be the set of all
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a € 9X that possess a neighbourhood V' < X for which V N X C U. It is immediate that U is an
open subset of X and that U U U is an open subset of X with complement X \ U.

If S €U then S(n) is an increasing sequence of open sets in X, so S(n) is an increasing
sequence of open subsets of 9 X. We put

S= U S(n)

and observe that S is also an open subset of 0X.

Example 20. Let X = R? with the usual Euclidean metric and let X be the ‘sphere at infinity’
parametrized by unit vectors e, called directions.

(a) If
S={xeX:Vie{l,2,....d}.x; >0},
then
Smy=S=[eeX:Vie{l,2,...,d}. ¢ > 0}
for all n > 1. Therefore B/(Js N B) >~ C(K) where
K={eeX:3ie{l,2,....,d}.¢ <0}

(b) If we are only interested in asymptotics in a particular direction e € X' then we may define

§=R"\ U re, rl/2

r>0
One sees that § € F and
Sm)=S=2\{e)
for all n > 1. The quotient map 7 from B to B/(Js N B) ~ C is given by 7 (f) = f(e).
Lemma 21. If S € U then Js,0 N L (X, ) is dense in Js N L(X, ).
Proof. Let f € Js N L>®(X, n). If p, is the multiplication operator associated with the char-
acteristic function of S(n) then p,f € Jso N L™ forall n > 1 and lim,— o || f — pufll =0

by (1). O

Theorem 22. The map J — Vg defines an order-preserving map from ideals in A to open
subsets of X. If S € U then

Vi = SUX.

IfSeFthenSUX #X.
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Proof. The first statement of the theorem depends on the observation that if 7 is an ideal in A
then 7 N B is an ideal in B.
Given S € U, we put V =V 7,ng. It follows directly from the definitions that

Ce(S()USm) € Ts0NBCS TsN B

where C, denotes the space of continuous functions with compact support in the stated set. There-
fore S(n) U S(n) C V forall n > 1. Since S is non-empty, letting n — oo we obtain X U §§ V.

Ifa¢ XU S then there exists fe C(X) such that f(a) =1.Given g € J5.0 N L°°(X) there
exists n > 1 such that g = gp, = png, where p, is the characteristic function of S(n). Since
ae X\ Sn+2), given ¢ > 0, there exists b € X \ S(n + 2) such that | f(b) — 1| < e. Putting
& = 1/2 there exists § € (0, 1) such that x € B(b, §) implies | f(x)| > 1/2 and x ¢ S(n). The set
B(b, 8) has positive measure so || f — glloo > 1/2. Lemma 21 now implies that || f — h]|co = 1/2
forall h € Js N L®(X) so f ¢ Js N B. Since this holds for all f € C(X) such that f(a) =1 we
conclude thata ¢ Vand V C X U s.

The final statement of the theorem follows from the fact that § € F implies 1 ¢ Js. O

Corollary 23. If S € F, then
B/(JsNB)~C@HX\?S).
5. Pseudo-resolvents

If one has a family of resolvent operators R(z, A) all lying in a C*-algebra A and 7 : 4 — B
is an algebra homomorphism with a non-trivial kernel 7, then 7 (R(z)) satisfy the resolvent
equations in 5. In this section we show how to define the spectrum of this new family, which is
not the resolvent family of any obvious operator. This will be a crucial ingredient of our general
theory.

Let A° denote the set of invertible elements of an associative algebra A with identity. If a € A
the spectrum of a is defined by

o(a)= {aeC: al —a ¢A°}.

If we put U = C\ o (a) and define r : U — A by r, = (z1 —a)~! then r satisfies the resolvent
equations

ro —ry =(y —a)rary A7)
for all @, y € U. Moreover
I+ —ara =1 —a)rq
soo(a)={z: 14+ (z—a)ry ¢ A°}.

Our goal in this section is to define the spectrum of a pseudo-resolvent, defined as a function
r: U — A that satisfies (17) even though it is not generated by any a € A.



522 E.B. Davies / Journal of Functional Analysis 257 (2009) 506-536
If A is a closed, unbounded operator on a Banach space B and R(z, A) denotes its family of
resolvent operators, defined for all z ¢ o (A), then

o(R(z, A))={0}U{z—s"" sea(A) (18)

by [5, Lemma 8.1.9]. This motivates our analysis, which is, however, purely algebraic, making no
reference to Banach spaces or to unbounded operators. The advantage of this is that the results are
immediately applicable to quotient algebras .A/.7, for which no geometric interpretation exists.

Theorem 24. [f U C Cand r : U — A is a pseudo-resolvent and o € U then 1 + (z — a)ry € A°
forallzeU. If

U= {z: 1+ (z—a)rg er}
then U C U and the formula
Fo=ra(l+ @ —wrg) ™ (19)

defines an extension of the pseudo-resolvent from U to U. Moreover 7 : U — A is a maximal
pseudo-resolvent. The set o(r) = C\ U is called the spectrum of the pseudo-resolvent r and
satisfies

o(r)={z: 1+ (z—a)rq ¢ A°} (20)
for every choice of o € U.
Proof. By interchanging the labels o, y in (17) we see that r, and r, commute. Moreover
(I4+ @ =) (1 +@=py)ry) =1+ —a)ra —ry — (v —a@)rary}
=1,

so both terms on the left-hand side are invertible. This proves that U C U.1f o,z € U then (17)
implies that

rotzrz(1+(z_a)ra)

80 7z =r; for all z € U and F is an extension of r to U.
If B,y € U, then starting from (19) we obtain

(v — BVgFy = (vra — Bra)ra(1+ (B —a)ra) " (1+ (v —a)rg) ™

={(1+ @ —a)ra) — (1+ (B —a)ra)}

x rg(1+ (B —rg) (1 4+ —arg) ™!
=r{(1+ B =) = (1+ (¢ —a)ry) ')
=g — 7y

Therefore 7 is a pseudo-resolvent on U.
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Now let 7 be a further extension of 7 to a pseudo-resolvent on U S U.If Z€ U then by the first
half of this proof 1 + (z — a)rq € A%, 50 7 € U. Therefore U = U and 7 : U — A is a maximal
pseudo-resolvent.

We have proved that U={z: 1+ (z—a)ry € A°} forall « € U, and this proves (20). O

Corollary 25. Let J be a two-sided ideal in the associative algebra A with identity and let
w: A— AT be the quotient map. If U € C and r : U — A is a maximal pseudo-resolvent
then

cr(r[(r)) Co(r).

Proof. We need only observe that z — 7 (r;) is a pseudo-resolvent in A/ 7 but its domain U
need not be maximal. If its maximal extension has domain V 2 U then

o(n(r)):C\VQC\U:U(r). O
6. Perturbation theory

When extending the theory of Section 3 to differential operators, one has to be careful not to
refer to strong operator convergence, because the standard C*-algebra A is only closed under
norm convergence. In this section we collect some of the technical results that will be needed.
These are formulated at the natural level of generality, but the reader should keep in mind that
they will be applied to a resolvent operator A acting in L>(R?, dx).

Let X be a set with a countably generated o-field and a o-finite measure 1, and put L> =
L3(X, ).

Lemma 26. Let A be a linear operator on L? that is positive in the sense that if 0 < ¢ € L? then
0< Ap e L2. Then A is bounded and

IA] = sup{[|Ag]l: 0< ¢ € L* and ||¢|| < 1} < oo.
Moreover |A(¢)| < A(|p]) for all ¢ € L.
Proof. See [5, Lemma 13.1.1 and Theorem 13.1.2]. O

In the following discussion V will always denote a (possibly unbounded) measurable function
V1 X — C, which we call a potential, and also its associated multiplication operator. Given a
positive operator A, let V4 denote the set of potentials V that are relatively bounded with respect
to A in the sense that

IVIia=sup{|V(A®)|: lloll <1}

is finite.

Lemma 27. We have |V |4 < AV |l for all V € L. Therefore L*®(X) C ]7A. IfIW| < V|
and V € Vs then W € V4 and |Wll 4 < ||V Ila. The space V4 is a Banach space with respect to
the norm || - || A
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Proof. The last statement is the only one that is not elementary. Let & € L? satisfy ||&]| = 1 and
&(x) > 0 almost everywhere in X and let y = A£, so that ¥ > 0. The exists a measurable set E
such that ¥ (x) > 0 almost everywhere in E and ¥ (x) = 0 almost everywhere in X \ E. In many
cases E = X but we do not assume this. If ¢ € L? and

[ X) if [p(x)| < n&(x),
Pn(x) = { 7"5'%())?)('” otherwise,

then |¢,| < |¢| and |¢, | < n&. The dominated convergence theorem implies that ||, — ¢l — O
as n — 00. Moreover

|A(dn)| < A(1¢n]) < A&) =nyr

so A(¢y) has support in E. Letting n — oo we conclude that the same holds for A(¢). We
conclude that if V has support in X \ E then VA = 0, so we focus attention henceforth on the
restriction of all the potentials involved to E. _

We next observe that |[Vi/|l < ||V |4 so if V, is a Cauchy sequence in V4 then V, is a
Cauchy sequence in L?(E, ). Therefore V,, ¥ converges in L norm to a limit Vi in L2(E, 11).
There exists a subsequence n(r) such that V() converges almost everywhere in E to V.

Given ¢ > 0 there exists N, such that for all m,n > N, we have

| (Vi = Vi) (AD) |, < ellgll2
for all ¢ € L?. Replacing n by n(r), letting r — oo and using Fatou’s lemma we obtain
[(Vie = V)(A) ||, <eligll2
forall m > N, and all ¢ € L. Hence V € 17/4 and ||V, = V|la—>0asm —o00. O
Now let V4 denote the closure of L in 17,4.

Lemma 28. If V € V4 then V € V, if and only if lim,_s0 | V™ — V|4 = 0 where

\%4 if |V <n,
V(n)(x)z{nv(ii)) iflV)l<n

Vol otherwise.

IfIW|<|V]and V € V4 then W € Vy.

Proof. If V € V4 then there exist X,, € L such that || X,|lcc <7 and ||V — X, ]|l4 — 0 as
n — 0o. By carrying out a separate calculation at every x € X we see that

[V =V <V = X,l.
Lemma 27 now implies that

lim [V —v®|, < lim |V = X,lla=0.
n—o0

n—oo
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The converse statement, that lim,,_, oo ||V(”) — Va4 =0 implies V € V4, is elementary. The
second statement of the lemma follows in a similar way from the inequality

W-—w®|<|v-v®. g

Lemma 29. If 0 < A < B as operators on L?, in the sense that 0 < A¢p < B¢ for all ¢ such that
0< ¢ € L? then Vg C Vq.

Proof. If ¢ € L2 and V € Vj then

|V(Ap)|=1VI|A@)| < IVIA(I¢]) < IVIB(I])

SO
Ivaap |, < | IVI(Blgl) ], < [IVI] g1l = 1VIsl¢l2

for all ¢ € L2. This implies ||Vl < ||V < oo and hence V € VA. The proof of the lemma is
completed as in Lemma 28. O

We now specialize to the case in which H = L2(RY, ). Our goal is to describe certain classes
of potential in V4, particularly when A is a positive convolution operator. Such operators arise
as the resolvents of constant coefficient, second order partial differential operators and in certain
other contexts; the reader primarily interested in Schrodinger operators should keep Example 34
in mind. We will use the classical L? inequalities due to Holder, Young, Hausdorff—Young and
Riesz—Thorin without further mention.

Lemma 30. If a € LY(RY) then the operator A on L%(RY) defined by A¢p = a x ¢ lies in the
standard C*-algebra A.

Proof. If

a4y (x) = {a(x) if [x| < n,

0 otherwise

and A,¢ = a, * ¢ then
lim ||A, — Al < llan —all1 =0
n—o00

by Lemma 43. We combine this with the observation that A, € A,, because the support of A, ¢
must lie within a distance n of the support of ¢. O

Let C; denote the set of operators A on L*>(R?, dx) given by A¢ =a % ¢, where 0 < a €
LY(R?, dx).

Lemma 31.If A €Cj and a € L? for some 1 < p <2 then LY C V4, where 1/p+1/q = 1.
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Proof. If V € LY then
[Vaxo)|, <IVligllall¢lo.
SO
IVIa<IViglal,. ©

Lemma 32. If A € Cy and a € LP where a denotes the Fourier transform of a and 2 < p < 00,
then LP C V4.

Proof. This uses the bound
VAN <capllVIplallp. 2D
See, for example, [5, Theorem 5.7.3]. O

There are many other results of a similar type in which both of the L? norms in (21) are
replaced by other choices. See [21, Chapter 4] for details.

The following type of bound is used when analyzing multi-body Schroédinger operators. The
decomposition of R? used below may be combined with a Euclidean rotation of R¢, since this
amounts to a change of coordinate system.

Theorem 33. Ler x = (x1, x2) € R% x R®2 where d = d + da and suppose that |V (x1, x2)| <

W (x1) for all x € R? where W € LP(R%) and 2 < p < oo. Suppose also that A € Cg, B € Cq,
and

lacer, &)| <|bE)|

forall £ € RY, where 0 < b e L'(RY) and b € LP(R%). Then V € Va.
Proof. We may write V=XW where | X| < 1. We may also write A = BC where ||C|| < 1; in
fact C = F~!MF where F is the Fourier transform and M is the operator of multiplication by
a function m with |m| < 1. Therefore

VA =IXWBC|| < [WB| <cllWl,
by applying Lemma 32 in R¥. O
Example 34. If H = —A acting in L*>(R?) with the usual domain then A = (I + H)™! is of the

form A¢ = a x ¢ where 0 <a € L'(R?) and a(&) = (1 + |£]*)~! for all £ € R?. Theorem 33 is
applicable in this context because

1+ED) " <(+1EP) ™

whenever & = (£, &2). One needs to assume that p > 2 and p > d; /2.
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7. Applications to differential operators

In this section we show that the C*-algebra methods developed above can be used to study the
spectra of certain differential operators. Instead of trying to study o (A) directly we may redirect
our attention to the spectrum of one of its resolvent operators by virtue of the results in Section 5.
We say that the closed, unbounded operator A is affiliated to the C*-subalgebra A of L(H) if the
conditions of the following lemma are satisfied.

Lemma 35. Let A be a C*-subalgebra of L(H) and let R(z, A) € A for some 7 ¢ o (A). Then
R(w, A) € Aforall w ¢ o (A).

Proof. If X =1+ (w — z)R(z, A) then X € A and

U(X):{I}U{l—i—w_zz SEG(A)}
Z—S

w—_ys

={1}u{ :sea(A)}.

Since this does not contain 0 we deduce that X is invertible in £(), and hence also invertible
in A. Since R(w, A) = R(z, A)X " as in [5, Theorem 1.2.10], we deduce that R(w, A) € A. O

We say that a one-parameter group or semigroup 7; is affiliated to A if its generator is af-
filiated in the above sense, i.e. if the associated resolvent family lies in A. If H is a typical
Schrédinger operator acting in LZ(R?), then the unitary operators e "*//* do not lie in the stan-
dard C*-algebra A, but we will see they are affiliated to it.

Let H = L?>(R?) and let Hy be a constant coefficient differential operator whose symbol is
the polynomial p, so that Hyg = F~! pF¢ where F is the Fourier transform operator and p is
regarded as an unbounded multiplication operator. It is immediate that Hy is a closed operator
on

Dom(Hp) ={¢p € H: pF¢ € H}.
Theorem 36. Suppose that limjs | | p(§)| = +00 and that there exists a real constant b such
that Re(p(§)) < b forall & € R?. Then o (Hy) C {z: Re(z) < b}. If Re(z) > b then R(z, Hyp) lies
in the standard C*-algebra A.
Proof. We have R(z, Hy) = F ' pF where p € Co(R?) is defined by
-1
p@E) =(z—p®&) .
If n > 1 we define
g2 -1
pn&) = Mz = p©) .
Putting R = R(z, Hy) and R, = .7_1,0,,.7-' we see that

lim [|R, — R[| = lim [lpp — pllooc =0
n—00 n—>00
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so it is enough to prove that R, € A for all n > 1. Since p, lies in the Schwartz space S it is
enough to observe that R,¢ =k, % ¢ for all ¢ € L> where k, € S C L!; we may then apply
Lemma 30. O

Before starting applications we change conventions so as to conform to the standard practice
in quantum theory, writing —H where one might expect to see H.

Example 37. The differential operator

P ¢
(Hop)(x,y) = _W - w

acting in L2(R?) has symbol p(£,n) = £2 + in® and is highly non-elliptic. Nevertheless the
conditions of Theorem 36 are satisfied. The same applies to the non-negative, self-adjoint, dif-
ferential operator acting in L?(R?) with real symbol

pEm =6+ (n—¢&")"
where n > 2.

The following hypothesis is valid for a variety of second order elliptic differential operators
with variable coefficients; see [4].

Hypothesis 1. The operator — Hy is the generator of a strongly continuous one-parameter semi-

group e~ o’ on L2(R?). Moreover there exist positive constants ¢, « and an integral kernel
K (¢, x, y) such that

0< K@, x,y) < ct=2emalx=yP/1 (22)

forallr >0and x,y € R? and
—Hyt _
(em™g)x) = f K, x,y)p(y)dy (23)
R4
for all ¢ € L2(R?) and x € R?.
Lemma 38. Under Hypothesis 1
o (Hp) € {z: Re(z) > 0}

and (M + Ho)™' has an integral kernel G(A,x,y) for every A > 0. There exists a function
2. € L' (R?) and a constant ¢\ > 0 such that

0<GM, x,y) <glx—y)
and

|1+ Hy) ™' < llgalli = eid™" < 0.
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Proof. If we put
ki(x) = ct—4/2e—alx?/1

then there exists ¢; > 0 such that ||k, ||; = ¢; for all # > 0. Therefore [le 0" || < ¢ forall t > 0
and o (Hp) C {z: Re(z) = 0}. If A > 0 the kernel G satisfies

e¢]

ogcawdo=/KaJJk4mt
0

o0

< /kt (x — y)e_)‘t dr
0
=g (x —y),

where the positivity of the functions involved implies that

o0
llgallt =/ ke ll1e™* dt = ¢y /A
0

Note finally that

C1

gk(é:) = )\.+C2|%—|2

for some ¢, > 0, all A >Oanda]1.§eRd. O

Example 39. A bound of the type (22) is not valid for fractional powers of the Laplacian, i.e.
Hy = (—A)* where 0 < « < 1. However, in this case the one-parameter semigroup e~ 0’ has
the kernel

K, x,y)=kx—y)>0

for all 7 > 0, where [k |l; = 1 and & (§) = e~"¥™ for all > 0 and & € RY. The construc-
tion of k; uses the theory of fractional powers of generators of one-parameter semigroups; see
[22, Chapter 9.11]. The resolvent operator (Al + Hp)~! has the kernel

G, x,y)=gx—-y)>0

for all A > 0, where

o0

&.(x) z/‘k,(x)e_M dr > 0.
0
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One deduces that ||g; || =A~! < oo and
G =0+ 1)
for all » > 0 and & € R?. The methods developed in this paper still apply.
The above results allow us to reformulate our problem.
Hypothesis 2. Let K : R? x R? — R and k € L' (R?) satisfy
0< K(x,y) <k(x—y)

for all x, y € RY. Let Ry be the positive operator associated with K (x, y) and let B be the
positive operator associated with k(x — y), so that 0 < Ry < B. Lemma 29 now implies that
Vg C VRO.

If Ry = (A + Hp) ™! in the following theorem then R = (A1 + Hy+ V)~! and the assumption
IVIgr, <1 states that V has relative bound less than 1 with respect to Hy in the conventional
language of perturbation theory.

Lemma 40. Given Hypothesis 2, let the potential V € Vg, satisfy |V g, < 1 and put

R=Ro(I+VRy) '=Ry Z(—VRO)". (24)
n=0

Then the operators Ry and R both lie in the standard C*-algebra A.

Proof. Given ¢ > 0 there exists ¢ € Z such that f‘ . |k(x)|dx < e. If we put

1|>C

Ko(x.y) K(x,y) if|x -yl <c,
. _x, = )
oy 0 otherwise,

and define the operator T on H by

@mm=/muwmw®

R4

then || Ry — T || < € and T, Ps(n) = Ps(n+c)Tc Ps(n) forevery S € Fandn > 1, hence 1. € Dy and
Ry € D. Applying the same argument to R yields Ry € A by virtue of Lemma 3. Defining v
as in Lemma 28, the identities V(’)Ps(n) = Ps(n) V@) for all S, n and r imply that V" Ry € A.
Hence V Ry € A. The norm convergence of the series in (24) now implies that R € A. O

We conclude with two applications to quantum theory. In the first we consider with the
Schrodinger operator H = Hy + V acting in L2(R?), where Hy = —A and V =W + X is a
sum of possibly complex-valued potentials satisfying the conditions specified below. Passing to
the resolvent operators we actually consider Ry = (al + Ho)~', Ri = (al + Hy+ W)~ ! and
R = (al + H)~!, where a > 0 is large enough to ensure that all the inverses exist.
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Theorem 41. Suppose that V and W lie in the space Vg, defined just before Lemma 28 and
that Vg, <1, [Wllr, < 1. Suppose that W is periodic in the x| direction. Let S = {x € RY:
Ix1] < 1}, so that S(n) = {x € R%: |x1| <n + 1} for all n > 1. Suppose that X has support in
S(c) for some ¢ > 1. Finally define the ideal Js C A as in Theorem 18. Then
o (Ho+ W) =o0ess(Ho + W) = os(Ho + W)
=o05(H) C oess(H) S o (H) (25)

where o5(A) = o (m 7,(A)) for every A € A.

Proof. The operators Rg, R; and R all lie in A for large enough a > 0 by Lemma 40. Eq. (25)
is equivalent, by definition, to

0 (R1) = 0ess(R1) = 05(R1) = 05(R) C 0ess(R) S o (R). (26)

The proof of the first two equalities in (26) uses the periodicity of R in the x; direction as in the
proof of Theorem 9. We next observe that
I+VRy=1+WRo+ XRo
={I+ XRo(1 +WRo)™"'}(I + WRo)
= +XR)U + WRo).

Since I + V Rg and I + W R are invertible, it follows that / + X R; is invertible. Therefore
R=Ro(I+VRy)™!

=Ro(I + WRy) "I + XR)™!
=Ri(I+XR)™ "

Since X € Vg, has support in S(c) and Js is an ideal we can use Lemma 28 to deduce that
XR; € Js. Therefore

-1
ng,(R) =ngy(R){I +n73(XR)} =mg5(R1).
The inclusions in (26) now follow by applying Lemma 1. O

Example 42. We next point out the relevance of the above results to multi-body Schrodinger
operators. Let H = L?(R® x R?) and put x = (x1, x2) where x; € R®. Let Hy = —A and define

H = Hy+ Vi(x1) + Va(x2) + V3(x1 — x2)

where all three potentials lie in L2(R3) 4+ Cy(R3). By allowing Vi, V» and V3 to be complex-
valued we include in our analysis the non-self-adjoint Schrédinger operators that arise in when
discussing resonances via complex scaling. For suitable choices of V; this operator might be
regarded as describing two (spinless) electrons orbiting around a fixed nucleus (a simplified
Helium atom). Standard estimates imply that V; all have relative bound 0 with respect to Hy and
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that they all lie in Vg, with || V;|| g, < 1/3 provided Ry = (al + Hp)~! and a > 0 is large enough.
Lemma 40 implies that all of the relevant resolvent operators lie in the standard C*-algebra .A.

One can produce several asymptotic sets from {x: |x1| < 1}, {x: |x2]| < 1}, {x: |x1 —x2]| < 1},
and we will concentrate on two of these. If one puts

S= {x: |x1] < 1} U {x: [x2] < 1} U {x: |x1 —x2| < 1},
it is evident that S € F and that V| + V, + V3 € Js. Hence
os(H) = os(Hp) = [0, 00).

This set relates to the states in which both particles move away to infinity and they also separate
from each other. On the other hand if one puts

T = {x: lx2| < 1} U {x: |x1 — x2] < 1},
it is evident that T € F and that V, 4+ V3 € J7. Hence
or(H)=o0r(Ho+ V1) =0 (Ho + V1).

This set relates to the states in which particle 2 moves away to infinity and also separates from
particle 1, which may or may not stay close to the nucleus. If A = —A + V; acting in L2(R?)
then by taking Fourier transforms with respect to x; it is seen that

o(Hy+ Vi) =0(A)+[0,00)

where o (A) = [0, o0) U {A,}, where A, are the possibly complex-valued discrete eigenvalues of
the operator A.

8. Hyperbolic space

Let (X, d, u) denote a complete non-compact Riemannian manifold X with bounded geom-
etry, Riemannian metric d (in the sense of the triangle inequality) and Riemannian measure (.
The Laplace—Beltrami operator H = —A on L2(X, ) is essentially self-adjoint of C2°(X) and
the spectrum of its closure is contained in [0, 00). The one-parameter semigroup {e ' }i>0 1s
associated with a positive C* heat kernel K by

e )= / K(t,x,y)f () m(dy).
X
The kernel K satisfies

/K(t,x,y)u(dy):l

X

for all x € X and ¢ > 0. We wish to show that e #" and (A\I + H)~! lie in the C*-algebra A
for all ¢, & > 0. Rather than proving this under the weakest possible conditions, we consider the
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hyperbolic space H?, in which all of the expressions involved may be written down explicitly.
The proof that we given may be extended to H? for arbitrary d > 2 with minimal effort.

The geometry of hyperbolic space is well-studied; see [18, Section 4.6] for the results listed
below. In the upper half space model H" is the set {x € R": x,, > 0} with the local Riemannian
metric

dle +--~+d2xn

2
X

ds? =

The global metric d is given by

v —yP?
cosh(d(x,y)) =1+ ———
( ) 2XnYn
and the volume element is given by
dxy---dx,

p(dx) = o

The area of the unit sphere S(x, r) of radius r > 0 does not depend on x € X and is given by
p(r) = ¢y sinh™ ' (r)

where c3 =4n. If f: (0, 00) — R is any positive, measurable function then
o0
ff@u»»u@w=/fvmvmr
X 0

forall x € X.

If X =H", the spectrum of H = —A acting in L%(X, W) is equal to [(n — 1)2/4, 00), but the
L? spectrum depends on p; see [8]. The heat kernel may be written in the form K (¢, x, y) =
k:(d(x,y)), where for n = 3 we have

kt (r) — (47Tt)_n/2 ;e—t—d(){,)y)z/m"
sinh(r)

See [9]; see also [6] for relevant upper and lower bounds when n # 3. One verifies directly that

[e¢]

/K(t,x,y)u(dy)=/kz(r)p(r)dr

X

0
o0

= /(4n)’1/2t*3/2r sinh(r)e*’*rz/‘” dr
0

o
_ / (47{)71/%73/2271 rer7t7r2/4l dr

—00
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o0
_ /(4n)—1/2t—3/22—lre—(r—21)2/4tdr
—00

=1

forall t > 0.
If A > O the operator (H + Al )*1 has a Green function G given explicitly by G(A, x, y) =
&.(d(x, y)), where

) —rAFT
g.(r) =/e*“k,(r)dt= prepevs
0
A direct calculation establishes that
00
/G(k,x,y),u(dy)=/gx(r)p(r)dr=1/l 27
X 0

for all A > 0. We will need the following lemma.

Lemma 43. If

(RfXX)=t/r(n)0fCWﬁddy)

X

forall x € X and f € L*(X, 1), then

IRIZ > x 1 < { sug/lr(x,y)lpt(dy)” su§/|r(y,X)|M(dy)}-
xXe % Xe %

See [5, Corollary 2.2.15] for the proof.

Theorem 44. If > > 0 and t > 0 then e =" and (H + A1)~ both lie in the standard C*-alge-
bra A.

Proof. The proof is almost the same in both cases so we only treat the resolvent operators. We
have (A\I + H)~! = A, + B, where

(Mﬁm=/%mwﬂwmwx
X
an(x,y) =C~ln(d(xa y)):
. {gx(r) ifr <n,
an(r) =

0 otherwise,
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and

(Bo f)(x) = / b, 1) £ () (dy),

X
bu(x,y) =ba(d(x,y)),

3 ) = {gx(r) ifr >n,
8 0 otherwise.

It follows from its definition that A, € A, and from (27) and Lemma 43 that
limy,o0 |Bxl|=0. O

Example 45. The ideas in the second part of Section 4 can be applied in the setting of hyperbolic
space. In the upper half space model the natural compactification has 9H” ~ (R"~! x {0}) U {o0}.
Ewe put S ={x e H*: 0 < x, < 1} then S(m) = {x € H": 0 < x,, < "}. Moreover 5% =
S =R x {0} for all m > 1. Therefore the quotient map 7 : B — B/(Js N B) >~ C is given by
7 (f) = f(o0).
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