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A Novel Two-Dimensional Echocardiographic Image
Analysis System Using Artificial Intelligence-Learned
Pattern Recognition for Rapid Automated Ejection Fraction
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Objectives We sought to test the hypothesis that a novel 2-dimensional echocardiographic image analysis system using
artificial intelligence-learned pattern recognition can rapidly and reproducibly calculate ejection fraction (EF).

Background Echocardiographic EF by manual tracing is time consuming, and visual assessment is inherently subjective.

Methods We studied 218 patients (72 female), including 165 with abnormal left ventricular (LV) function. Auto EF incor-
porated a database trained on �10,000 human EF tracings to automatically locate and track the LV endocar-
dium from routine grayscale digital cineloops and calculate EF in 15 s. Auto EF results were independently com-
pared with manually traced biplane Simpson’s rule, visual EF, and magnetic resonance imaging (MRI) in a
subset.

Results Auto EF was possible in 200 (92%) of consecutive patients, of which 77% were completely automated and 23%
required manual editing. Auto EF correlated well with manual EF (r � 0.98; 6% limits of agreement) and re-
quired less time per patient (48 � 26 s vs. 102 � 21 s; p � 0.01). Auto EF correlated well with visual EF by ex-
pert readers (r � 0.96; p � 0.001), but interobserver variability was greater (3.4 � 2.9% vs. 9.8 � 5.7%, respec-
tively; p � 0.001). Visual EF was less accurate by novice readers (r � 0.82; 19% limits of agreement) and
improved with trainee-operated Auto EF (r � 0.96; 7% limits of agreement). Auto EF also correlated with MRI EF
(n � 21) (r � 0.95; 12% limits of agreement), but underestimated absolute volumes (r � 0.95; bias of �36 �

27 ml overall).

Conclusions Auto EF can automatically calculate EF similarly to results by manual biplane Simpson’s rule and MRI, with less
variability than visual EF, and has clinical potential. (J Am Coll Cardiol 2007;49:217–26) © 2007 by the
American College of Cardiology Foundation

ublished by Elsevier Inc. doi:10.1016/j.jacc.2006.08.045
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wo-dimensional (2D) echocardiography is widely used
linically to assess left ventricular (LV) ejection fraction
EF) (1–5). Because EF has become an important crite-
ion for pharmacologic, defibrillator, and resynchroniza-
ion therapy, an accurate and reproducible EF has be-
ome increasingly important (1,6 –10). Recent advances
n 3-dimensional echocardiography have improved the
ccuracy of LV volumes and EF (11–13); however, 2D
maging currently remains most widely used in main-
tream clinical practice (14). Because previous automated
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b
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ccepted August 21, 2006.
F approaches were affected by gain-dependence and
ndocardial dropout (15–20), quantitative EF usually
equires manual endocardial tracing of end-diastolic and
nd-systolic frames, which requires experience and may
e time consuming. Consequently, visual estimation of
F is most popular in clinical practice, even though it is

nherently subjective (21–25). A new approach applied to
outine 2D images, known as Auto EF, has been devel-
ped using artificial intelligence-learned pattern recogni-
ion programming trained on several thousand human
ndocardial tracings to mimic steps such as bridging gaps
n endocardial dropout and excluding papillary muscles.
he objectives of this study were to test the hypotheses

hat Auto EF can: 1) rapidly and reproducibly calculate
F similar to results by manually traced biplane Simp-

on’s rule; 2) perform with less variability than visual EF

y expert readers; 3) perform more accurately than visual
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EF by novice trainee readers;
and 4) correlate favorably with
EF by magnetic resonance im-
aging (MRI).

Methods

The study group of 218 patients
referred for routine transthoracic
echocardiography consisted of

65 consecutive patients with LV dysfunction (aged 65 �
4 years, 50 women) and 53 consecutive patients with
reserved LV function (aged 51 � 20 years, 22 women).
he protocol was approved by the Institutional Review
oard for Biomedical Research of the University of Pitts-
urgh, and patients gave informed consent consistent with
his protocol. Routine echocardiography (Acuson Sequoia;
iemens, Mountain View, California) was performed using
armonic imaging and routine gain settings with a standard
linical protocol including parasternal, apical, and subcostal
iews. Contrast for LV opacification (Definity; Bristol-

yers Squib Imaging, North Billerica, Massachusetts) was
sed in 10% of studies with suboptimal endocardial defini-
ion. Digitally captured cineloops were exported in DI-
OM format to a digital workstation (KinetDx; Siemens)

nd also to a separate off-line personal computer for Auto
F analysis (Siemens). Data were analyzed in 3 separate
ays (visual EF, manual EF, and Auto EF) by readers
linded to the results from the alternative approaches.
First, EF was determined by visual assessment by 1 of 6

xpert readers using all recorded views, including the subset
ith contrast injections. The EFs were reported in a range of
% EF units, from 5–10% to 65–70%, which is the clinical
outine for our laboratory and was the EF that appeared on the
atient’s clinical report. To test the hypothesis that Auto EF
ay aid less experienced readers, 2 cardiology fellows, who just

ompleted their first month of echocardiography training and
ere blinded to the other EF results, interpreted 60 randomly

elected cases. The novice readers recorded visual assessments
f EF in 5% ranges, similar to the expert readers, and then
ubsequently reanalyzed the same cases with Auto EF, oper-
ting the program for their first time.

Second, all digital cineloops from apical 4- and 2-chamber
iews were analyzed by a group of experienced investigators
linded to the other EF results using routine manual endocar-
ial border tracing from end-diastolic and -systolic frames with
omputer application of Simpson’s rule for biplane EF (26).
ime necessary from the beginning of the tracing to the
etermination of the biplane EF was recorded.
Third, the same digital apical 4- and 2-chamber view

ineloops used for manual tracing were analyzed by the
uto EF program (Auto EF Version 0.9, Siemens) on a

eparate personal computer by an independent operator
linded to the visual and manual EF results.
uto EF. Auto EF is unique from previous echocardio-

Abbreviations
and Acronyms

2D � 2-dimensional

EF � ejection fraction

LV � left ventricle/
ventricular

MRI � magnetic resonance
imaging
raphic image analysis approaches, because it applies the f
oncept of learned pattern recognition from artificial intel-
igence theory, which generically seeks to mimic human
ehavior and learn from past experiences (27,28).

TEP 1: CREATING A DATABASE. An extensive database was
reviously created from expert manual LV tracing of
10,000 apical 4- and 2-chamber view images, including

atients with cardiomyopathies, wall motion abnormalities,
nd dyssynchrony (29). Each cineloop was manually con-
oured frame by frame to train the system and create a
atabase of learned LV shapes and patterns.

TEP 2: IDENTIFYING THE LV CAVITY. The program would
egin by searching the first frame of the entire digital
ICOM grayscale image for a pattern consistent with an
V cavity. This input image was automatically compared
ith the database of learned LV patterns for shared com-
on characteristics. Unlike previous border detection at-

empts that used pixel video intensity or backscatter, match-
ng was done by shape and pattern recognition of pixel
ocation. The LV shape typically consisted of an inverted
U” with the ends anchored in the echo-bright mitral
nnulus and could be identified by the system at different
epths and orientations.

TEP 3: TRACING THE ENDOCARDIAL BORDER. A unique
V shape model and endocardial contour for the current case
eing analyzed was then created using the database of normal
nd abnormal LV shapes as a guide. Segments from the
urrent case were compared to the database to find 1 or more
ases that were similar (27). For example, there were cases in
he database where the border was manually drawn to exclude
he papillary muscle. If the presently analyzed case had a
rominent papillary muscle, the system would search the
atabase for cases with similarly appearing prominent papillary
uscles and automatically cut the papillary muscle.

TEP 4: TRACKING THE LV BORDER THROUGHOUT THE

ARDIAC CYCLE. The location of a point of the LV contour
as tracked from frame to frame by matching the patterns

rom the database combined with learned models of motion
27). This process, called information fusion, used multiple
andidate contours that were tracked in parallel, and the one
hat matched the current frame best was chosen (28). This
llowed for motion detection even in frames with endocar-
ial dropout. For example, if the lateral wall would dropout
n mid-systole, the manual user could “imagine” its motion
y interpolating traces between frames where the lateral wall
as seen, and this system would mimic the clinical expert.

n addition, a previously learned a priori shape model
onstrained the possible location of the endocardium within
he uncertainty detected by the system.

TEP 5: CALCULATING LV VOLUMES. The EF was calculated
rom LV volumes using a modified Simpson’s rule method of
isks (26) with LV length determined as the maximal distance

rom the mid-mitral annulus to the LV apex. A time–volume
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urve was generated with EF determined as (maximum �
inimum)/maximum volume � 100%. The Auto EF endocar-

ial contour appeared as a moving green line on the cineloop in
utoplay mode, giving the operator instant visual feedback of
ndocardial tracking (Fig. 1, Videos 1 and 2 [see Appendix]).

Figure 1 Auto EF Automated Time–Volume Curves

Examples of left ventricular (LV) endocardial tracings by Auto ejection fraction (EF)
and EF (right). (A) A patient with normal ventricular function. (B) A heart failure pa

Please see the Appendix for accompanying videos.
Manual editing of endocardial tracking was possible using
click-and-drag feature of the contour. This was performed
nly when the automated endocardial tracing was judged to
e �80% of the endocardial border using visual feedback
17). The entire Auto EF process took �15 s per view. The

apical 4- chamber and 2-chamber views (left) and corresponding volume curves
with LV dysfunction.
of the
tient
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nvestigator recorded the frequency and additional time
equired for any manual editing. The EF results from 4- and
-chamber views were averaged for biplane EF.

agnetic resonance imaging. Twenty-one consecutive
atients were included who also underwent cardiac MRI with
1.5-T scanner (Echospeed Excite 11.0, GE, Milwaukee,
isconsin) within 24 h of echocardiography for comparison.

riefly, steady-state free-precession 2-chamber, 4-chamber,
nd short-axis cine views were acquired during end-
xpiration with 8-mm slice thickness and frame rates of 14
o 24 Hz. Off-line calculation of end-diastolic and end-
ystolic LV volumes and EF were derived from manual
ndocardial tracing of the short-axis stack from the mitral
nnulus to the LV apex using the methods of disks (Medical
maging Systems, Leiden, the Netherlands) (30). Papillary
uscles and trabeculations were included as blood volume

n the cavity trace.
tatistical analysis. Group data (mean � SD) were com-
ared using paired 2-tailed Student t test within groups and
npaired 2-tailed Student t test between groups. Compar-
sons were assessed using least square linear regression
nalysis with 95% confidence intervals determined by a
isher r-to-z transformation and agreement determined by
land-Altman analysis (31). Intraobserver and interobserver
ariability for EF by all 3 echocardiography methods were
nalyzed in 20 randomly selected studies and expressed as
bsolute difference � SD. A p value of �0.05 was consid-
red to be significant.

esults

f 218 consecutive echocardiographic studies analyzed, 18
8%) with the poorest routine noncontrast image quality
rohibiting manual endocardial tracing were prospectively
xcluded. Although visual EF was possible with contrast on
hese studies, they were excluded because the version of
uto EF was incapable of analyzing contrast images. No
ther echocardiographic or clinical exclusion criteria were
sed. Accordingly, the study group consisted of 200 patients

Clinical Characteristics of Study Patient Groups

Table 1 Clinical Characteristics of Study Pa

Abnormal Ejectio
(n �

Age (yrs) 65

Gender 45 women, 105 m

Indication for echocardiography Ischemic heart dise

Idiopathic cardiom

Valvular heart dise

Chemotherapy card

Alcoholic cardiomy

Cocaine cardiomyo

Viral cardiomyopat
Table 1). A wide range of abnormalities were included, l
uch as regional wall motion abnormalities, apical aneu-
ysms, paced rhythm or left bundle branch block, prosthetic
alve replacement, pericardial effusion, and apical thrombus.
uto EF appeared unaffected by these scenarios. Auto EF

orrectly tracked �80% of the endocardium for acceptable
etermination of EF in 77% of attempted cases in approx-
mately 15 s. Manual editing of the endocardial tracing was
equired in 23% of cineloops. This usually consisted of
xpanding the endocardial tracing near the apex and re-
uired �30 s per view in cases where editing was necessary.
omparison with manual biplane Simpson’s rule. End-
iastolic volumes ranged from 41 to 421 ml, end-systolic
olumes ranged from 15 to 357 ml, and EF ranged from 9%
o 71%. Overall, biplane EF by Auto EF and manual
ethods were closely related: r � 0.98; p � 0.01 (Fig. 2).
he relationship was also favorable for single-plane EF in

pical 4- and 2-chamber views (r � 0.95 and r � 0.92,
espectively; p � 0.01). Absolute volumes by Auto EF also
orrelated with those by manual tracings (biplane LV
nd-diastolic volume: r � 0.94; p � 0.01; biplane LV
nd-systolic volume: r � 0.96; p � 0.01) (Fig. 3). Bland-
ltman analysis revealed a bias of �15 � 24 ml for LV

nd-diastolic volume and �10 � 18 ml for LV end-systolic
olume, suggesting an underestimation of LV volumes by
uto EF compared with manual tracing. The bias and

greement for biplane EF was favorable, however (mean �
0.02 � 2.89%), suggesting that this underestimation of

bsolute volume did not significantly affect the EF calcula-
ion. The relationship of Auto EF to manual EF was similar
n the 97 patients with ischemic disease and regional wall

otion abnormalities (r � 0.96; limits of agreement � 5%)
s in 53 patients with nonischemic cardiomyopathy (r �
.97; limits of agreement � 6%) (Fig. 4). Despite requiring
ome manual editing in 23% of Auto EF cases, the overall
ime requirement for biplane Auto EF was significantly
ower than manual tracing of biplane EF: 48 � 26 s versus
02 � 21 s, respectively (p � 0.01).
omparison with visual estimation. Auto EF also corre-

Groups

tion Patients Normal Ejection Fraction Patients
(n � 50)

51 � 20

22 women, 28 men

7 (65%) Hypertension, 8 (16%)

y, 30 (20%) Syncope, 8 (16%)

(11%) Chest pain, 8 (16%)

pathy, 3 (2%) Normal volunteer, 5 (10%)

, 2 (1%) Stroke, 5 (10%)

1 (0.7%) Murmur, 5 (10%)

0.7%) Dyspnea, 5 (10%)

Palpitations, 4 (8%)

Brugada’s syndrome, 1 (2%)

Marfan’s syndrome, 1 (2%)
tient

n Frac
150)

� 14

en

ase, 9

yopath

ase, 16

iomyo

opathy

pathy,

hy, 1 (
ated well with visual EF by expert readers (r � 0.96; p �



0
w
o
t
n
e

w
0
o
r
a
p

221JACC Vol. 49, No. 2, 2007 Cannesson et al.
January 16, 2007:217–26 Auto EF
.001), with a bias of 2%, although limits of agreement were
ider at 10% (Fig. 5). Of interest, the widest variability
ccurred in the 30% to 35% EF range, which is the
hreshold used for determining defibrillator and resynchro-
ization therapy (1). Novice readers with 1 month of
chocardiography training performed well for their level

Figure 2 Auto EF Versus Manual Biplane Simpson’s Rule

Ejection fraction (EF) scatter plots with linear regression (left) and Bland-Altman (r
tracings using Simpson’s rule, demonstrating a close correlation and narrow limits

Figure 3 Auto EF Versus Manual Biplane Simpson’s Rule Volum

Scatter plots with linear regression (left) and Bland-Altman (right) analyses of ass
Auto EF versus manual tracings using Simpson’s rule, demonstrating a close corre
ith a significant correlation with manual biplane EF (r �
.82; p � 0.01) (Fig. 6). The novice readers had wider limits
f agreement than expert readers, as expected (19% vs. 10%,
espectively; p � 0.05). The novice readers, however,
chieved similar favorable results with Auto EF (r � 0.96;
� 0.001), with 7% limits of agreement, even though they

nalyses of assessment of biplane left ventricular EF by Auto EF versus manual
reement.

nt of left ventricular end-diastolic (top) and end-systolic (bottom) volumes by
with a tendency for slight underestimation of volume by Auto EF.
ight) a
of ag
es

essme
lation
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perated Auto EF for their first time. Respective variability
nalyses for these methods appear in Table 2, demonstrating
ignificantly lower interobserver and intraobserver variability
y Auto EF.
omparison with MRI. End-diastolic volumes ranged

rom 102 to 368 ml, end-systolic volumes ranged from 33 to

Figure 4 Comparison of Auto EF in Patients With Ischemic Hea

Scatter plots with linear regression (left) and Bland-Altman (right) analyses of ass
patients with ischemic disease (top) and regional wall abnormalities and 53 patie
tions and narrow limits of agreement.

Figure 5 Auto EF Versus Visual EF by Expert Readers

Scatter plots with linear regression (left) and Bland-Altman (right) analyses of ass
assessment by expert readers, demonstrating a significant correlation but wider lim
horizontal bars.
75 ml, and EF ranged from 9% to 72% in the 21 patients
ith both imaging studies. A favorable correlation was
bserved between Auto EF and MRI EF: r � 0.95; 95%
onfidence interval 0.88 to 0.98, bias �0.3%, and limits of
greement 12% (Fig. 7). End-diastolic and end-systolic vol-
mes were also significantly correlated: r � 0.92 (95% confi-

sease Versus Others

nt of biplane ejection fraction (EF) by Auto EF versus manual tracings in 97
h nonischemic cardiomyopathy (bottom), demonstrating similar close correla-

nt of biplane left ventricular ejection fraction (EF) by Auto EF versus visual
agreement. The EF was visually estimated by 5% ranges, which appear as
rt Di

essme
nts wit
essme
its of
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ence interval 0.81 to 0.97) and r � 0.96 (95% confidence
nterval 0.90 to 0.98), respectively (p � 0.001). Auto EF,
owever, underestimated absolute LV volumes, with a bias of
45 � 29 ml for end-diastolic volumes, �26 � 22 ml for

nd-systolic volumes, and �36 � 27 ml when combined.

iscussion

his is the first study to demonstrate the utility of Auto EF,
hich uses a unique artificial intelligence pattern recogni-

ion program to rapidly and reproducibly determine EF
rom routine 2D echocardiographic images. Unlike previous
utomated border-detection methods that were highly de-
endent on gain settings (15–20), Auto EF operates on
outine grayscale images with routine gain settings to
apidly determine LV volumes and EF in a high percentage

Figure 6 Auto EF Versus Visual EF by Novice Readers

Results of linear regression (top) and Bland-Altman (bottom) analyses of assessm
manual biplane tracing by expert readers. Their visual assessment (left) was in 5%
(right) demonstrate a closer correlation and more favorable limits of agreement.

ariability of Ejection Fractioneterminations (EF Units)

Table 2 Variability of Ejection Fraction
Determinations (EF Units)

Interobserver
Variability

Intraobserver
Variability

Visual EF by expert readers 9.8 � 5.7% 3.4 � 2.9%

Manual EF by biplane Simpson’s rule 2.9 � 2.1%* 2.0 � 1.3%

Auto EF 1.3 � 1.7%*† 0.5 � 1.2%*†
V
alues expressed as absolute difference � SD (EF units). *p � 0.05 versus visual ejection fraction
EF) by expert readers. †p � 0.05 versus manual EF by biplane Simpson’s rule.
f consecutive patients with a variety of pathologies. Auto
F values closely correlated with manual endocardial trac-

ng of EF by biplane Simpson’s rule EF in a large group of
atients and MRI EF in a smaller subgroup of patients who
ad both studies. Auto EF was significantly less time
onsuming than the manual method, including when man-
al editing of the Auto EF contour was required. Although
uto EF underestimated absolute LV volumes when com-
ared with MRI, EF was similar. Auto EF also correlated
ell with visual EF by expert readers with less variability.
inally, visual EF was less accurate by trainee readers, as
xpected, but trainee-operated Auto EF had favorable
esults similar to those of experienced operators.

Ejection fraction is of major importance to clinical
anagement of patients with cardiac disease, in particular,

eart failure (1,2–5,7). Ejection fraction has been used as an
utcome variable in several clinical studies (32,33) and is a
rincipal selection criterion for implantable cardioverter-
efibrillator (6) and resynchronization therapy (8,9). Two-
imensional echocardiography is currently the most com-
only used technique for EF, with manual 2D tracing of

iplane EF accepted as the quantitative standard (26).
owever, the extra time required for manual tracing makes

isual assessment of EF popular in busy clinical practices.

f left ventricular ejection fraction (EF) by novice trainee readers compared with
es and appear as vertical bars. Their results operating Auto EF for the first time
ent o
rang
isual assessment, however, is highly dependent on training
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nd experience. Amico et al. (23) previously showed supe-
iority of visual EF to computer-assisted manual tracing of
ideotaped images. However, marked improvements in 2D
maging have occurred since that publication, including
armonic imaging (34), digital acquisition and archiving
35), and continued refinements in transducer design and
ignal processing. The results of the present study demon-
trate that visual EF by expert readers was highly correlated
ith manual biplane EF within clinically acceptable limits
f agreement. However, variability was reduced and agree-
ent improved with Auto EF, in particular for novice

eaders, with minimal added time.
Previous methods of automated or semi-automated EF

etermination have been proposed for angiography (36),
omputerized tomography (37), positron emission tomog-
aphy (38), MRI (11,12,30,39), and echocardiography (15–
7,40,41). Auto EF differs markedly from previous auto-
ated echocardiographic methods that used backscatter

ignal analysis to detect the blood-tissue interface and
onstructed time-area and time-volume curves on-line.
15–20). Although useful for trained operators, previous
ethods were highly dependent on gain settings and image

uality, which limited widespread clinical use. Auto EF,
niquely, applied concepts of learned pattern recognition
rom artificial intelligence theory to identify LV shapes and

Figure 7 Auto EF Versus Magnetic Resonance Imaging

Scatter plots with linear regression (left) and Bland-Altman (right) analyses of ass
imaging (MRI) (top) and combined end-systolic and end-diastolic volumes from the
absolute volumes.
atterns. It mimicked human tracing by using an extensive a
atabase of prior manual tracings. Our correlations of
iplane Auto EF to MRI volumetric EF are similar to
revious findings. Limits of agreement were 13% by Jenkins
t al. (12) and 17.7% to 19.9 % by Chuang et al. (30) for 2D
cho biplane EF and MRI EF. Jenkins et al. (12) reported
imilar underestimation of volumes by 2D echocardiography
ompared with MRI (end-diastolic volumes �54 ml, end-
ystolic volumes �28 ml), which improved with
-dimensional imaging (11,12), usually because of more
omplete imaging of the LV apex. Another reason for
reater volumes by MRI appears to be inclusion of tra-
eculations in the blood volume (11,12,30). Echocardio-
raphic Auto EF is easier to accomplish, requires shorter
can times and significantly less post-processing, and was
erformed portably in several cases.
tudy limitations. A limitation was that 3-dimensional
chocardiography was not part of the study. However, EF
orrelated favorably with MRI EF in a subset of patients
ith both imaging techniques, although an underestimation
f absolute volumes was observed. Underestimation of LV
olumes by 2D imaging may occur from foreshortening
f the LV apex and may be improved with either 3-
imensional echocardiography or MRI (11,12,30). The
light but consistent underestimation of absolute LV vol-
mes by Auto EF compared with manual 2D tracing may

nt of left ventricular ejection fraction (EF) by Auto EF versus magnetic resonance
patients (bottom), demonstrating significant correlations but underestimation of
essme
same
ugment this limitation. However, Auto EF was in close



a
w
r
g
t
a
l
c
w
m
(
d

A
T
a
A
t
P
t
a

R
U
b

R

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

225JACC Vol. 49, No. 2, 2007 Cannesson et al.
January 16, 2007:217–26 Auto EF
greement with manual tracing by biplane Simpson’s rule,
hich is an accepted standard for EF in many important

esearch trials (6–10,26). Another limitation is with variable
ating from the electrocardiogram for the start and end of
he cardiac cycle. Improvements in frame rates, triggering,
nd beat averaging will likely overcome this. A potential
imitation of this method is that it is off line and analyzes 1
ardiac cycle at a time, unlike automated border detection,
hich has a continuous on-line output. This favors auto-
ated border detection for pressure-volume loop analysis

20) during rapid alterations in loading, but rapid off-line
etermination of EF is suitable for practical purposes.
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APPENDIX

o view videos that accompany Figure 1,

lease see the online version of this article.
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