On solutions of the matrix equations
 $X-A X B=C$ and $X-A \bar{X} B=C^{\text {s }}$

Tongsong Jiang, Musheng Wei*
Department of Mathematics, East China Normal University, Shanghai 200062, China
Department of Mathematics, Linyi Teacher's University, Shandong 276005, China

Received 28 May 2002; accepted 3 October 2002
Submitted by P. Lancaster

Abstract

This paper studies the solutions of complex matrix equations $X-A X B=C$ and $X-$ $A \bar{X} B=C$, and obtains explicit solutions of the equations by the method of characteristic polynomial and a method of real representation of a complex matrix respectively. © 2003 Elsevier Science Inc. All rights reserved.

AMS classification: 15A24
Keywords: Matrix equation; Solution; Characteristic polynomial; Real representation

1. Introduction

The matrix equations $A X-X B=C$ and $X-A X B=C$ play important roles in the theories and applications of stability and control [1,2]. When $A=B^{\mathrm{H}}$ (the conjugate transpose of B), the equations are the well-known Lyapunov and Stein equations respectively.

In [3], Jameson studied the matrix equation $A X-X B=C$ by the method of characteristic polynomial, and derived explicit solution of the equation as follows.

[^0]Lemma 1.1 (Jameson). Let $A \in \mathbf{C}^{m \times m}, B \in \mathbf{C}^{n \times n}, C \in \mathbf{C}^{m \times n}$. Then:
(1) If X is a solution of $A X-X B=C$, then

$$
X f_{A}(B)=-\sum_{k=1}^{m} \sum_{j=1}^{k-1} p_{k} A^{j} C B^{k-j-1}
$$

where $f_{A}(\lambda)=\operatorname{det}(\lambda I-A)=p_{m} \lambda^{m}+p_{m-1} \lambda^{m-1}+\cdots+p_{0}$.
(2) If X is the unique solution of $A X-X B=C$, then

$$
X=-\left(\sum_{k=1}^{m} \sum_{j=1}^{k-1} p_{k} A^{j} C B^{k-j-1}\right)\left(f_{A}(B)\right)^{-1}
$$

In [4, Chapter 12.3] Lancaster and Tismenetsky studied the matrix equation $X-$ $A X B=C$, and derived that the equation has a unique solution $X=\sum_{j=0}^{\infty} A^{j} C B^{j}$ when A and B have spectral radii μ_{A} and μ_{B} respectively with $\mu_{A} \mu_{B}<1$.

In this paper, we extend the result of [4] concerning the matrix equation $X-$ $A X B=C$, and obtain explicit solutions of matrix equation $X-A X B=C$ by the method of characteristic polynomial, and then we characterize the existence of solution to the equation $X-A \bar{X} B=C$, derive the solution of matrix equation $X-$ $A \bar{X} B=C$ in explicit form by means of real representation, where \bar{X} denotes the conjugate of the complex matrix X.

Let \mathbf{R} denote the real number field, \mathbf{C} the complex number field. $\mathbf{F}^{m \times n}$ denotes the set of $m \times n$ matrices on a field \mathbf{F}, and for any $A \in \mathbf{C}^{m \times n}, \operatorname{rank}(A), A^{\mathrm{T}}$ and $A^{(1)}$ denote the rank, the transpose and $\{1\}$-inverse of matrix A respectively. Let $f_{A}(\lambda)$ denote the characteristic polynomial of matrix A.

2. Matrix equation $X-A X B=C$

In this section, we discuss the solution of the matrix equation

$$
\begin{equation*}
X-A X B=C \tag{2.1}
\end{equation*}
$$

by the method of characteristic polynomial of matrix, where $A \in \mathbf{C}^{m \times m}, B \in \mathbf{C}^{n \times n}$ and $C \in \mathbf{C}^{m \times n}$.

By [4, Chapter 12], we have the following result.
Lemma 2.1. Let $A \in \mathbf{C}^{m \times m}, B \in \mathbf{C}^{n \times n}$ and $C \in \mathbf{C}^{m \times n}$. Then:
(1) Eq. (2.1) has a solution if and only if

$$
\operatorname{rank}\left(I_{m n}-A \otimes B^{\mathrm{T}}\right)=\operatorname{rank}\left(I_{m n}-A \otimes B^{\mathrm{T}}, \operatorname{vec}(C)\right),
$$

where \otimes denotes the Kronecker product and vec is the "vec" operation.
(2) Eq. (2.1) has a unique solution if and only if $\lambda_{i} \mu_{j} \neq 1$, where $\lambda_{1}, \ldots, \lambda_{m}$ and μ_{1}, \ldots, μ_{n} are the characteristic values of A and B respectively.
(3) Eq. (2.1) has a unique solution if and only if $f_{A}(B)$ is nonsingular.

For $A \in \mathbf{C}^{m \times m}, B \in \mathbf{C}^{n \times n}$, define linear operators δ and $\rho: \mathbf{C}^{m \times n} \rightarrow \mathbf{C}^{m \times n}$ with $\delta(X)=A X$ and $\rho(X)=X B, X \in \mathbf{C}^{m \times n}$. Clearly $\delta \rho(X)=A X B=\rho \delta(X)$, and the Eq. (2.1) is equivalent to

$$
\begin{equation*}
(1-\delta \rho) X=C \tag{2.2}
\end{equation*}
$$

It is easy to verify the following.

Lemma 2.2

(1) $\delta \rho=\rho \delta$.
(2) If $q(\lambda, \mu)=\sum_{i, j} a_{i j} \lambda^{i} \mu^{j} \in \mathbf{C}[\lambda, \mu]$, then for any $X \in \mathbf{C}^{m \times n}$,

$$
q(\delta, \rho) X=\sum_{i, j} a_{i j} A^{i} X B^{j}
$$

(3) If $f(\lambda)$ is a polynomial of λ, then $f(\delta) X=f(A) X$ and $f(\rho) X=X f(B)$.

For $A \in \mathbf{C}^{m \times m}$, let the characteristic polynomial of A be

$$
\begin{equation*}
f_{A}(\lambda)=\lambda^{m}+a_{m-1} \lambda^{m-1}+\cdots+a_{0} \tag{2.3}
\end{equation*}
$$

and define

$$
\begin{equation*}
h_{A}(\lambda)=\lambda^{m} f_{A}\left(\lambda^{-1}\right)=1+a_{m-1} \lambda+\cdots+a_{0} \lambda^{m} \tag{2.4}
\end{equation*}
$$

then

$$
\begin{equation*}
q(\lambda, \mu) \equiv \mu^{m-1} \frac{f_{A}(\lambda)-f_{A}\left(\mu^{-1}\right)}{\lambda-\mu^{-1}}=\sum_{k=1}^{m} \sum_{s=1}^{k} a_{k} \lambda^{k-s} \mu^{m-s} \tag{2.5}
\end{equation*}
$$

in which $a_{m}=1$ and

$$
\begin{equation*}
q(\lambda, \mu)(1-\lambda \mu)=-\mu^{m}\left(f_{A}(\lambda)-f_{A}\left(\mu^{-1}\right)\right)=-\mu^{m} f_{A}(\lambda)+h_{A}(\mu) . \tag{2.6}
\end{equation*}
$$

Lemma 2.3. $q(\delta, \rho)(1-\delta \rho)=h_{A}(\rho)$.
Proof. By Lemma 2.2 and the Cayley-Hamilton theorem of matrices, for any $X \in$ $\mathbf{C}^{m \times n}, f_{A}(\delta) X=f_{A}(A) X=0$, i.e. $f_{A}(\delta)=0$. So the Lemma 2.3 follows from (2.6).

Proposition 2.4. Let $f_{A}(\lambda)$ and $h_{A}(\lambda)$ be given in Eqs. (2.3) and (2.4). Then:
(1) $\left(h_{A}(\lambda), f_{B}(\lambda)\right)=1$ if and only if $\lambda_{i} \mu_{j} \neq 1$, where $\lambda_{1}, \ldots, \lambda_{m}$ and μ_{1}, \ldots, μ_{n} are the characteristic values of A and B respectively.
(2) Eq. (2.1) has a unique solution if and only if $\left(h_{A}(\lambda), f_{B}(\lambda)\right)=1$.
(3) Eq. (2.1) has a unique solution if and only if $h_{A}(B)$ is nonsingular.

Proof. It is easy to see that (1) follows from the construction of $h_{A}(\lambda)$ in Eq. (2.4), and by Lemma 2.1, (2) and (3) come from (1).

Theorem 2.5. Let $A \in \mathbf{C}^{m \times m}, B \in \mathbf{C}^{n \times n}$ and $C \in \mathbf{C}^{m \times n}$. Then:
(1) If Eq. (2.1) has a solution X, then

$$
X h_{A}(B)=\sum_{k=1}^{m} \sum_{s=1}^{k} a_{k} A^{k-s} C B^{m-s}
$$

where $h_{A}(\lambda)$ is given in Eq. (2.4), and

$$
X=F h_{A}^{(1)}(B)+Y\left(I_{n}-h_{A}(B) h_{A}^{(1)}(B)\right)
$$

in which $h_{A}^{(1)}(B)=\left(h_{A}(B)\right)^{(1)}$, and $F=\sum_{k=1}^{m} \sum_{s=1}^{k} a_{k} A^{k-s} C B^{m-s}$, some $Y \in \mathbf{C}^{m \times n}$.
(2) If Eq. (2.1) has a unique solution X, then

$$
X=\left(\sum_{k=1}^{m} \sum_{s=1}^{k} a_{k} A^{k-s} C B^{m-s}\right)\left(h_{A}(B)\right)^{-1} .
$$

Proof. Since Eq. (2.1) has a solution X if and only if Eq. (2.2) has a solution X, and by Lemma 2.3 we have

$$
\begin{aligned}
X h_{A}(B) & =h_{A}(\rho) X=q(\delta, \rho)(1-\delta \rho) X \\
& =q(\delta, \rho) C=\sum_{k=1}^{m} \sum_{s=1}^{k} a_{k} A^{k-s} C B^{m-s} .
\end{aligned}
$$

So by [5, Chapter 2.1], we easily know that (1) holds, and (2) follows clearly from (3) in Proposition 2.4.

3. Real representation

Let $A \in \mathbf{C}^{m \times n}$, then A can be uniquely written as $A=A_{1}+A_{2} \mathrm{i}, A_{1}, A_{2} \in$ $\mathbf{R}^{m \times n}, \mathrm{i}^{2}=-1$. Define real representation σ

$$
A_{\sigma}=\left(\begin{array}{cc}
A_{1} & A_{2} \\
A_{2} & -A_{1}
\end{array}\right) \in \mathbf{R}^{2 m \times 2 n}
$$

A_{σ} is called the real representation matrix of A.

For a $m \times m$ complex matrix A, define $A_{\sigma}^{i}=\left(A_{\sigma}\right)^{i}$, and

$$
P_{j}=\left(\begin{array}{cc}
I_{j} & 0 \\
0 & -I_{j}
\end{array}\right), \quad Q_{j}=\left(\begin{array}{cc}
0 & I_{j} \\
-I_{j} & 0
\end{array}\right),
$$

where I_{j} is the $j \times j$ identity matrix.

Proposition 3.1

(1) If $A, B \in \mathbf{C}^{m \times n}, a \in \mathbf{R}$, then

$$
(A+B)_{\sigma}=A_{\sigma}+B_{\sigma},(a A)_{\sigma}=a A_{\sigma}
$$

(2) If $A \in \mathbf{C}^{m \times n}, B \in \mathbf{C}^{n \times r}$, then

$$
(A B)_{\sigma}=A_{\sigma} P_{n} B_{\sigma}=A_{\sigma}(\bar{B})_{\sigma} P_{r}
$$

(3) If $A \in \mathbf{C}^{m \times m}$, then A is nonsingular if and only if A_{σ} is nonsingular.
(4) If $A \in \mathbf{C}^{m \times m}$, then $A_{\sigma}^{2 k}=\left((A \bar{A})^{k}\right)_{\sigma} P_{m}$.
(5) If $A \in \mathbf{C}^{m \times m}, B \in \mathbf{C}^{n \times n}, C \in \mathbf{C}^{m \times n}$, and $k+l$ is even, then

$$
A_{\sigma}^{k} C_{\sigma} B_{\sigma}^{l}= \begin{cases}\left((A \bar{A})^{s}(A \bar{C} B)(\bar{B} B)^{t}\right)_{\sigma}, & k=2 s+1, l=2 t+1 \\ \left((A \bar{A})^{s} C(\bar{B} B)^{t}\right)_{\sigma}, & k=2 s, l=2 t\end{cases}
$$

(6) If $A \in \mathbf{C}^{m \times n}$, then $Q_{m} A_{\sigma} Q_{n}=A_{\sigma}$.

Proof. By direct calculation, we easily know (1) and (2) hold, and (3) follows from (2). By (2), $A_{\sigma}^{2 k}=\left(A_{\sigma}\right)^{2 k}=\left(A_{\sigma}\right)^{2(k-1)}\left(A_{\sigma}\right)^{2}=\left(A_{\sigma}\right)^{2(k-1)}(A \bar{A})_{\sigma} P_{m}$, so (4) is proved by induction. Finally (5) follows clearly from (2) and (4).

$$
\text { For } A \in \mathbf{C}^{m \times m} \text {, if }
$$

$$
A_{\sigma}\binom{\alpha_{1}}{\alpha_{2}}=\lambda\binom{\alpha_{1}}{\alpha_{2}},
$$

then by the definition of real representation A_{σ} we easily have

$$
\begin{aligned}
& A_{\sigma}\left(\alpha_{2} \alpha_{1}\right)=-\lambda\left(\alpha_{2} \alpha_{1}\right), \quad A_{\sigma}\binom{\bar{\alpha}_{1}}{\bar{\alpha}_{2}}=\bar{\lambda}\binom{\bar{\alpha}_{1}}{\bar{\alpha}_{2}}, \\
& A_{\sigma}\left(\bar{\alpha}_{2} \bar{\alpha}_{1}\right)=-\bar{\lambda}\left(\bar{\alpha}_{2} \bar{\alpha}_{1}\right),
\end{aligned}
$$

so we have following result.
Proposition 3.2. If λ is a characteristic value of A_{σ}, then so are $\pm \lambda, \pm \bar{\lambda}$.
For any $A \in \mathbf{C}^{m \times m}$, let $f_{A_{\sigma}}(\lambda)=\operatorname{det}\left(\lambda I_{2 m}-A_{\sigma}\right)=\sum_{k=0}^{2 m} a_{k} \lambda^{k}$ be the characteristic polynomial of the real matrix A_{σ}, we have

Proposition 3.3. Let $A \in \mathbf{C}^{m \times m}, B \in \mathbf{C}^{n \times n}$. Then
(1) $f_{A_{\sigma}}(\lambda)$ is a real polynomial, and $f_{A_{\sigma}}(\lambda)=\sum_{k=0}^{m} a_{2 k} \lambda^{2 k}$;
(2) ${h_{A_{\sigma}}}^{(\lambda)}$ is a real polynomial, and $h_{A_{\sigma}}(\lambda)=\sum_{k=0}^{m=0} a_{2 k} \lambda^{2(m-k)}$;
(3) $h_{A_{\sigma}}\left(B_{\sigma}\right)=\left(g_{A_{\sigma}}(B \bar{B})\right)_{\sigma} P_{n}, f_{A_{\sigma}}\left(B_{\sigma}\right)=\left(p_{A_{\sigma}}(B \bar{B})\right)_{\sigma} P_{n}$
in which $g_{A_{\sigma}}(\lambda)=\sum_{k=0}^{m} a_{2 k} \lambda^{m-k}, p_{A_{\sigma}}(\lambda)=\sum_{k=0}^{m} a_{2 k} \lambda^{k} \in \mathbf{R}[\lambda]$.
Proof. By Proposition 3.2, we know a_{k} are real numbers, and $a_{2 k+1}=0$, so (1) and (2) follow from Eqs. (2.3) and (2.4). For any k, by Proposition 3.1, we know $B_{\sigma}^{2 k}=\left((B \bar{B})^{k}\right)_{\sigma} P_{n}$, so (3) is valid.

4. The matrix equation $X-A \bar{X} B=C$

In this section, we study the solution of matrix equation

$$
\begin{equation*}
X-A \bar{X} B=C \tag{4.1}
\end{equation*}
$$

by the method of real representation, where $A \in \mathbf{C}^{m \times m}, B \in \mathbf{C}^{n \times n}$ and $C \in \mathbf{C}^{m \times n}$. We first define the real representation matrix equation of Eq. (4.1) by

$$
\begin{equation*}
Y-A_{\sigma} Y B_{\sigma}=C_{\sigma} . \tag{4.2}
\end{equation*}
$$

By (2) in Proposition 3.1, Eq. (4.1) is equivalent to the equation

$$
\begin{equation*}
X_{\sigma}-A_{\sigma} X_{\sigma} B_{\sigma}=C_{\sigma} . \tag{4.3}
\end{equation*}
$$

Proposition 4.1. Eq. (4.1) has a solution X if and only if its real representation Eq. (4.2) has a real matrix solution $Y=X_{\sigma}$.

Theorem 4.2. Let $A \in \mathbf{C}^{m \times m}, B \in \mathbf{C}^{n \times n}$ and $C \in \mathbf{C}^{m \times n}$. Then Eq. (4.1) has a solution $X \in \mathbf{C}^{m \times n}$ if and only if Eq. (4.2) has a solution $Y \in \mathbf{R}^{2 m \times 2 n}$, in which case, if Y is a solution to Eq. (4.2), then the following matrix

$$
\begin{equation*}
X=\frac{1}{4}\left(I_{m}, \mathrm{i} I_{n}\right)\left(Y+Q_{m} Y Q_{n}\right)\binom{I_{m}}{\mathrm{i} I_{n}} \tag{4.4}
\end{equation*}
$$

is a solution to Eq. (4.1).
Proof. We only show that if

$$
Y=\left(\begin{array}{ll}
Y_{11} & Y_{12} \tag{4.5}\\
Y_{21} & Y_{22}
\end{array}\right), \quad Y_{u v} \in \mathbf{R}^{m \times n}, u, v=1,2
$$

is a solution to Eq. (4.2), then the matrix given in Eq. (4.4) is a solution to Eq. (4.1). In fact, according to Proposition 3.1, since $Q_{m} A_{\sigma} Q_{n}=A_{\sigma}$, so

$$
\begin{equation*}
Q_{m} Y Q_{n}-A_{\sigma} Q_{m} Y Q_{n} B_{\sigma}=C_{\sigma} \tag{4.6}
\end{equation*}
$$

This equation shows that if Y is a solution to Eq. (4.2), then $Q_{m} Y Q_{n}$ is also a solution to Eq. (4.2). Thus the following real matrix

$$
\begin{equation*}
\hat{Y}=\frac{1}{2}\left(Y+Q_{m} Y Q_{n}\right) \tag{4.7}
\end{equation*}
$$

is also a solution to Eq. (4.2). Now substituting Eq. (4.5) in Eq. (4.8) and then simplifying the expression, we easily get

$$
\hat{Y}=\left(\begin{array}{cc}
Z_{0} & Z_{1} \tag{4.8}\\
Z_{1} & -Z_{0}
\end{array}\right)
$$

where

$$
Z_{0}=\frac{1}{2}\left(Y_{11}-Y_{22}\right), \quad Z_{1}=\frac{1}{2}\left(Y_{12}+Y_{21}\right)
$$

From Eq. (4.8) we construct a complex matrix as follows

$$
\begin{equation*}
X=Z_{0}+Z_{1} \mathrm{i}=\frac{1}{2}\left(I_{m}, \mathrm{i} I_{n}\right) \hat{Y}\binom{I_{m}}{\mathrm{i} I_{n}} . \tag{4.9}
\end{equation*}
$$

clearly the real representation of complex matrix X is \hat{Y}, i.e. $X_{\sigma}=\hat{Y}$. By Proposition 4.1, X is a solution to Eq. (4.1).

Remark. Theorem 4.2 gives a practical technique for us to find a solution to Eq. (4.1) by a solution to Eq. (4.2) by means of real representation matrices.

By Lemma 2.1 and Theorem 4.2 we have
Theorem 4.3. Let $A \in \mathbf{C}^{m \times m}, B \in \mathbf{C}^{n \times n}$ and $C \in \mathbf{C}^{m \times n}$. Then Eq. (4.1) has a solution if and only if

$$
\operatorname{rank}\left(I_{m n}-A_{\sigma} \otimes B_{\sigma}^{\mathrm{T}}\right)=\operatorname{rank}\left(I_{m n}-A_{\sigma} \otimes B_{\sigma}^{\mathrm{T}}, \operatorname{vec}\left(C_{\sigma}\right)\right),
$$

where \otimes denotes the Kronecker product and vec is the "vec" operation.
Theorem 4.4. Let $A \in \mathbf{C}^{m \times m}, B \in \mathbf{C}^{n \times n}, C \in \mathbf{C}^{m \times n}$. Then:
(1) If Eq. (4.1) has a solution X, then

$$
\begin{gathered}
X g_{A_{\sigma}}(\bar{B} B)=\sum_{k=1}^{m} a_{2 k}\left[\sum_{j=0}^{k-1}(A \bar{A})^{k-j-1}(A \bar{C} B)(\bar{B} B)^{m-j-1}\right. \\
\left.+\sum_{j=1}^{k}\left[(A \bar{A})^{k-j} C(\bar{B} B)^{m-j}\right]\right]
\end{gathered}
$$

and

$$
X=F g_{A_{\sigma}}^{(1)}(\bar{B} B)+Y\left(I_{n}-g_{A_{\sigma}}(\bar{B} B) g_{A_{\sigma}}^{(1)}(\bar{B} B)\right)
$$

in which

$$
\begin{aligned}
& g_{A_{\sigma}}^{(1)}(\bar{B} B)=\left(g_{A_{\sigma}}(\bar{B} B)\right)^{(1)}, \\
& F=\sum_{k=1}^{m} a_{2 k}\left[\sum_{j=1}^{k-1}(A \bar{A})^{k-j-1}(A \bar{C} B)(\bar{B} B)^{m-j-1}\right. \\
& \\
& \left.\quad+\sum_{j=1}^{k}\left[(A \bar{A})^{k-j} C(\bar{B} B)^{m-j}\right]\right]
\end{aligned}
$$

and some $Y \in \mathbf{C}^{m \times n}$.
(2) If Eq. (4.1) has a solution X, and $h_{A_{\sigma}}(\lambda)$ and $f_{B_{\sigma}}(\lambda)$ are relatively prime, then Eq. (4.1) has a unique solution

$$
\begin{aligned}
X= & F\left(g_{A_{\sigma}}(\bar{B} B)\right)^{-1} \\
= & \sum_{k=1}^{m} a_{2 k}\left[\sum_{j=1}^{k-1}(A \bar{A})^{k-j-1}(A \bar{C} B)(\bar{B} B)^{m-j-1}\right. \\
& \left.+\sum_{j=1}^{k}(A \bar{A})^{k-j} C(\bar{B} B)^{m-j}\right]\left(g_{A_{\sigma}}(\bar{B} B)\right)^{-1} .
\end{aligned}
$$

Proof. (1) If Eq. (4.1) has a solution X, then Eq. (4.2) has a solution $Y=X_{\sigma}$. By Lemma 1.1 and Proposition 3.3, we have

$$
\begin{equation*}
X_{\sigma} h_{A_{\sigma}}\left(B_{\sigma}\right)=\sum_{k=1}^{m} \sum_{s=1}^{2 k} a_{2 k} A_{\sigma}^{2 k-s} C_{\sigma} B_{\sigma}^{2 m-s}, \tag{4.10}
\end{equation*}
$$

where $h_{A_{\sigma}}(\lambda)$ is given in Eq. (2.4).
By Proposition 3.3, $g_{A_{\sigma}}(\lambda)$ is a real polynomial and $h_{A_{\sigma}}\left(B_{\sigma}\right)=\left(g_{A_{\sigma}}(B \bar{B})\right)_{\sigma} P_{n}$. So from Proposition 3.1 and Eq. (4.10), we have

$$
\begin{aligned}
{\left[X g_{A_{\sigma}}(\bar{B} B)\right]_{\sigma}=} & X_{\sigma}\left(\overline{g_{A_{\sigma}}(\bar{B} B)}\right)_{\sigma} P_{n}=X_{\sigma}\left(g_{A_{\sigma}}(B \bar{B})\right)_{\sigma} P_{n}=X_{\sigma} h_{A_{\sigma}}\left(B_{\sigma}\right) \\
= & \sum_{k=1}^{m} \sum_{s=1}^{2 k} a_{2 k} A_{\sigma}^{2 k-s} C_{\sigma} B_{\sigma}^{2 m-s} \\
= & \sum_{k=1}^{m} a_{2 k}\left(\sum_{j=0}^{k-1} A_{\sigma}^{2(k-j-1)+1} C_{\sigma} B_{\sigma}^{2(m-j-1)+1}\right. \\
& \left.\quad+\sum_{j=1}^{k} A_{\sigma}^{2(k-j)} C_{\sigma} B_{\sigma}^{2(m-j)}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{k=1}^{m} a_{2 k}\left\{\sum_{j=0}^{k-1}\left[(A \bar{A})^{k-j-1}(A \bar{C} B)(\bar{B} B)^{m-j-1}\right]_{\sigma}\right. \\
& \left.\quad+\sum_{j=1}^{k}\left[(A \bar{A})^{k-j} C(\bar{B} B)^{m-j}\right]_{\sigma}\right\} \\
& =\left\{\sum _ { k = 1 } ^ { m } a _ { 2 k } \left[\sum_{j=0}^{k-1}(A \bar{A})^{k-j-1}(A \bar{C} B)(\bar{B} B)^{m-j-1}\right.\right. \\
& \left.\left.\quad+\sum_{j=1}^{k}\left[(A \bar{A})^{k-j} C(\bar{B} B)^{m-j}\right]\right]\right\}
\end{aligned}
$$

so we have

$$
\begin{aligned}
X g_{A_{\sigma}}(\bar{B} B)= & \sum_{k=1}^{m} a_{2 k}\left[\sum_{j=0}^{k-1}(A \bar{A})^{k-j-1}(A \bar{C} B)(\bar{B} B)^{m-j-1}\right. \\
& \left.+\sum_{j=1}^{k}\left[(A \bar{A})^{k-j} C(\bar{B} B)^{m-j}\right]\right]
\end{aligned}
$$

so by [5, Chapter 2.1], we know that (1) holds.
(2) Since $h_{A_{\sigma}}(\lambda)$ and $f_{B_{\sigma}}(\lambda)$ are relatively prime, so by Proposition 2.4, Eq. (4.2) has a unique solution, this implies that Eq. (4.1) has a unique solution, and $h_{A_{\sigma}}\left(B_{\sigma}\right)$ is a nonsingular matrix. Because $\left(g_{A_{\sigma}}(B \bar{B})\right)_{\sigma} P_{n}=h_{A_{\sigma}}\left(B_{\sigma}\right)$, so by (3) in Proposition 3.1, $g_{A_{\sigma}}(\bar{B} B)$ is a nonsingular matrix, and (2) follows directly from (1).

References

[1] S. Barnett, C. Storey, Matrix Methods in Stability Theory, Nelson, London, 1970.
[2] S. Barnett, Matrices in Control Theory with Applications to Linear Programming, Van Nostrand Reinhold, New York, 1971.
[3] A. Jameson, Solution of the equation $A X-X B=C$ by inversion of an $M \times M$ or $N \times N$ matrix, SIAM J. Appl. Math. 16 (1968) 1020-1023.
[4] P. Lancaster, M. Tismenetsky, The Theory of Matrices with Applications, second ed., Academic Press, New York, 1985.
[5] A. Ben-Israel, T.N.E. Greville, Generalized Inverses: Theory and Applications, Wiley, New York, 1974.

[^0]: ${ }^{\text {® }}$ Supported by Shanghai Priority Academic Discipline Foundation, Shanghai, China.

 * Corresponding author.

 E-mail address: mwei@euler.math.ecnu.edu.cn (M. Wei).

