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On solutions of the matrix equations
X − AXB = C and X − AXB = C�
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Abstract

This paper studies the solutions of complex matrix equations X − AXB = C and X −
AXB = C, and obtains explicit solutions of the equations by the method of characteristic
polynomial and a method of real representation of a complex matrix respectively.
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1. Introduction

The matrix equations AX − XB = C and X − AXB = C play important roles
in the theories and applications of stability and control [1,2]. When A = BH (the
conjugate transpose of B), the equations are the well-known Lyapunov and Stein
equations respectively.

In [3], Jameson studied the matrix equation AX − XB = C by the method of
characteristic polynomial, and derived explicit solution of the equation as follows.
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Lemma 1.1 (Jameson). Let A ∈ Cm×m, B ∈ Cn×n, C ∈ Cm×n. Then:

(1) If X is a solution of AX − XB = C, then

XfA(B) = −
m∑

k=1

k−1∑
j=1

pkA
jCBk−j−1,

where fA(λ) = det(λI − A) = pmλm + pm−1λ
m−1 + · · · + p0.

(2) If X is the unique solution of AX − XB = C, then

X = −

 m∑

k=1

k−1∑
j=1

pkA
jCBk−j−1


 (fA(B))−1.

In [4, Chapter 12.3] Lancaster and Tismenetsky studied the matrix equation X −
AXB = C, and derived that the equation has a unique solution X = ∑∞

j=0 AjCBj

when A and B have spectral radii µA and µB respectively with µAµB < 1.
In this paper, we extend the result of [4] concerning the matrix equation X −

AXB = C, and obtain explicit solutions of matrix equation X − AXB = C by the
method of characteristic polynomial, and then we characterize the existence of so-
lution to the equation X − AXB = C, derive the solution of matrix equation X −
AXB = C in explicit form by means of real representation, where X denotes the
conjugate of the complex matrix X.

Let R denote the real number field, C the complex number field. Fm×n denotes
the set of m × n matrices on a field F, and for any A ∈ Cm×n, rank(A), AT and A(1)

denote the rank, the transpose and {1}-inverse of matrix A respectively. Let fA(λ)

denote the characteristic polynomial of matrix A.

2. Matrix equation X − AXB = C

In this section, we discuss the solution of the matrix equation

X − AXB = C (2.1)

by the method of characteristic polynomial of matrix, where A ∈ Cm×m, B ∈ Cn×n

and C ∈ Cm×n.

By [4, Chapter 12], we have the following result.

Lemma 2.1. Let A ∈ Cm×m, B ∈ Cn×n and C ∈ Cm×n. Then:

(1) Eq. (2.1) has a solution if and only if

rank(Imn − A ⊗ BT) = rank(Imn − A ⊗ BT, vec(C)),

where ⊗ denotes the Kronecker product and vec is the “vec” operation.
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(2) Eq. (2.1) has a unique solution if and only if λiµj /= 1, where λ1, . . . , λm and
µ1, . . . , µn are the characteristic values of A and B respectively.

(3) Eq. (2.1) has a unique solution if and only if fA(B) is nonsingular.

For A ∈ Cm×m, B ∈ Cn×n, define linear operators δ and ρ : Cm×n → Cm×n

with δ(X) = AX and ρ(X) = XB, X ∈ Cm×n. Clearly δρ(X) = AXB = ρδ(X),

and the Eq. (2.1) is equivalent to

(1 − δρ)X = C. (2.2)

It is easy to verify the following.

Lemma 2.2
(1) δρ = ρδ.
(2) If q(λ, µ) = ∑

i,j aij λ
iµj ∈ C[λ,µ], then for any X ∈ Cm×n,

q(δ, ρ)X =
∑
i,j

aijA
iXBj .

(3) If f (λ) is a polynomial of λ, then f (δ)X = f (A)X and f (ρ)X = Xf (B).

For A ∈ Cm×m, let the characteristic polynomial of A be

fA(λ) = λm + am−1λ
m−1 + · · · + a0 (2.3)

and define

hA(λ) = λmfA(λ−1) = 1 + am−1λ + · · · + a0λ
m (2.4)

then

q(λ, µ) ≡ µm−1 fA(λ) − fA(µ−1)

λ − µ−1
=

m∑
k=1

k∑
s=1

akλ
k−sµm−s (2.5)

in which am = 1 and

q(λ, µ)(1 − λµ) = −µm
(
fA(λ) − fA(µ−1)

) = −µmfA(λ) + hA(µ). (2.6)

Lemma 2.3. q(δ, ρ)(1 − δρ) = hA(ρ).

Proof. By Lemma 2.2 and the Cayley–Hamilton theorem of matrices, for any X ∈
Cm×n, fA(δ)X = fA(A)X = 0, i.e. fA(δ) = 0. So the Lemma 2.3 follows from
(2.6). �

Proposition 2.4. Let fA(λ) and hA(λ) be given in Eqs. (2.3) and (2.4). Then:
(1) (hA(λ), fB(λ)) = 1 if and only if λiµj /= 1, where λ1, . . . , λm and µ1, . . . , µn

are the characteristic values of A and B respectively.
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(2) Eq. (2.1) has a unique solution if and only if (hA(λ), fB(λ)) = 1.
(3) Eq. (2.1) has a unique solution if and only if hA(B) is nonsingular.

Proof. It is easy to see that (1) follows from the construction of hA(λ) in Eq. (2.4),
and by Lemma 2.1, (2) and (3) come from (1). �

Theorem 2.5. Let A ∈ Cm×m, B ∈ Cn×n and C ∈ Cm×n. Then:

(1) If Eq. (2.1) has a solution X, then

XhA(B) =
m∑

k=1

k∑
s=1

akA
k−sCBm−s ,

where hA(λ) is given in Eq. (2.4), and

X = Fh
(1)
A (B) + Y (In − hA(B)h

(1)
A (B))

in which h
(1)
A (B) = (hA(B))(1), and F = ∑m

k=1
∑k

s=1 akA
k−sCBm−s , some

Y ∈ Cm×n.
(2) If Eq. (2.1) has a unique solution X, then

X =
(

m∑
k=1

k∑
s=1

akA
k−sCBm−s

)
(hA(B))−1.

Proof. Since Eq. (2.1) has a solution X if and only if Eq. (2.2) has a solution X,

and by Lemma 2.3 we have

XhA(B) = hA(ρ)X = q(δ, ρ)(1 − δρ)X

= q(δ, ρ)C =
m∑

k=1

k∑
s=1

akA
k−sCBm−s .

So by [5, Chapter 2.1], we easily know that (1) holds, and (2) follows clearly from
(3) in Proposition 2.4. �

3. Real representation

Let A ∈ Cm×n, then A can be uniquely written as A = A1 + A2i, A1, A2 ∈
Rm×n, i2 = −1. Define real representation σ

Aσ =
(
A1 A2
A2 −A1

)
∈ R2m×2n,

Aσ is called the real representation matrix of A.
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For a m × m complex matrix A, define Ai
σ = (Aσ )

i, and

Pj =
(
Ij 0
0 −Ij

)
, Qj =

(
0 Ij

−Ij 0

)
,

where Ij is the j × j identity matrix.

Proposition 3.1
(1) If A,B ∈ Cm×n, a ∈ R, then

(A + B)σ = Aσ + Bσ , (aA)σ = aAσ .

(2) If A ∈ Cm×n, B ∈ Cn×r , then

(AB)σ = AσPnBσ = Aσ (B)σPr .

(3) If A ∈ Cm×m, then A is nonsingular if and only if Aσ is nonsingular.
(4) If A ∈ Cm×m, then A2k

σ = (
(AA)k

)
σ
Pm.

(5) If A ∈ Cm×m, B ∈ Cn×n, C ∈ Cm×n, and k + l is even, then

Ak
σCσB

l
σ =

{(
(AA)s(ACB)(BB)t

)
σ
, k = 2s + 1, l = 2t + 1,(

(AA)sC(BB)t
)
σ
, k = 2s, l = 2t.

(6) If A ∈ Cm×n, then QmAσQn = Aσ .

Proof. By direct calculation, we easily know (1) and (2) hold, and (3) follows
from (2). By (2), A2k

σ = (Aσ )
2k = (Aσ )

2(k−1)(Aσ )
2 = (Aσ )

2(k−1)(AA)σPm, so (4)
is proved by induction. Finally (5) follows clearly from (2) and (4). �

For A ∈ Cm×m, if

Aσ

(
α1
α2

)
= λ

(
α1
α2

)
,

then by the definition of real representation Aσ we easily have

Aσ

(
α2 α1

) = −λ
(
α2 α1

)
, Aσ

(
α1
α2

)
= λ

(
α1
α2

)
,

Aσ

(
α2 α1

) = −λ
(
α2 α1

)
,

so we have following result.

Proposition 3.2. If λ is a characteristic value of Aσ , then so are ±λ,±λ.

For any A ∈ Cm×m, let fAσ (λ) = det(λI2m − Aσ ) = ∑2m
k=0 akλ

k be the charac-
teristic polynomial of the real matrix Aσ , we have

Proposition 3.3. Let A ∈ Cm×m, B ∈ Cn×n. Then

(1) fAσ (λ) is a real polynomial, and fAσ (λ) = ∑m
k=0 a2kλ

2k;
(2) hAσ (λ) is a real polynomial, and hAσ (λ) = ∑m

k=0 a2kλ
2(m−k);
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(3) hAσ (Bσ ) = (gAσ (BB))σPn, fAσ (Bσ ) = (pAσ (BB))σPn

in which gAσ (λ) = ∑m
k=0 a2kλ

m−k, pAσ (λ) = ∑m
k=0 a2kλ

k ∈ R[λ].

Proof. By Proposition 3.2, we know ak are real numbers, and a2k+1 = 0, so (1)
and (2) follow from Eqs. (2.3) and (2.4). For any k, by Proposition 3.1, we know
B2k

σ = ((BB)k)σPn, so (3) is valid. �

4. The matrix equation X − AXB = C

In this section, we study the solution of matrix equation

X − AXB = C (4.1)

by the method of real representation, where A ∈ Cm×m, B ∈ Cn×n and C ∈ Cm×n.

We first define the real representation matrix equation of Eq. (4.1) by

Y − AσYBσ = Cσ . (4.2)

By (2) in Proposition 3.1, Eq. (4.1) is equivalent to the equation

Xσ − AσXσBσ = Cσ . (4.3)

Proposition 4.1. Eq. (4.1) has a solution X if and only if its real representation Eq.
(4.2) has a real matrix solution Y = Xσ .

Theorem 4.2. Let A ∈ Cm×m, B ∈ Cn×n and C ∈ Cm×n. Then Eq. (4.1) has a
solution X ∈ Cm×n if and only if Eq. (4.2) has a solution Y ∈ R2m×2n, in which
case, if Y is a solution to Eq. (4.2), then the following matrix

X = 1

4
(Im, iIn)(Y + QmYQn)

(
Im
iIn

)
(4.4)

is a solution to Eq. (4.1).

Proof. We only show that if

Y =
(
Y11 Y12
Y21 Y22

)
, Yuv ∈ Rm×n, u, v = 1, 2 (4.5)

is a solution to Eq. (4.2), then the matrix given in Eq. (4.4) is a solution to Eq. (4.1).
In fact, according to Proposition 3.1, since QmAσQn = Aσ , so

QmYQn − AσQmYQnBσ = Cσ . (4.6)

This equation shows that if Y is a solution to Eq. (4.2), then QmYQn is also a solution
to Eq. (4.2). Thus the following real matrix
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Ŷ = 1
2 (Y + QmYQn) (4.7)

is also a solution to Eq. (4.2). Now substituting Eq. (4.5) in Eq. (4.8) and then sim-
plifying the expression, we easily get

Ŷ =
(
Z0 Z1
Z1 −Z0

)
, (4.8)

where

Z0 = 1
2 (Y11 − Y22), Z1 = 1

2 (Y12 + Y21).

From Eq. (4.8) we construct a complex matrix as follows

X = Z0 + Z1i = 1

2
(Im, iIn)Ŷ

(
Im
iIn

)
. (4.9)

clearly the real representation of complex matrix X is Ŷ , i.e. Xσ = Ŷ . By Proposition
4.1, X is a solution to Eq. (4.1). �

Remark. Theorem 4.2 gives a practical technique for us to find a solution to Eq.
(4.1) by a solution to Eq. (4.2) by means of real representation matrices.

By Lemma 2.1 and Theorem 4.2 we have

Theorem 4.3. Let A ∈ Cm×m, B ∈ Cn×n and C ∈ Cm×n. Then Eq. (4.1) has a
solution if and only if

rank
(
Imn − Aσ ⊗ BT

σ

) = rank
(
Imn − Aσ ⊗ BT

σ , vec(Cσ )
)
,

where ⊗ denotes the Kronecker product and vec is the “vec” operation.

Theorem 4.4. Let A ∈ Cm×m, B ∈ Cn×n, C ∈ Cm×n. Then:

(1) If Eq. (4.1) has a solution X, then

XgAσ (BB) =
m∑

k=1

a2k


k−1∑

j=0

(AA)k−j−1(ACB)(BB)m−j−1

+
k∑

j=1

[
(AA)k−jC(BB)m−j

]
and

X = Fg
(1)
Aσ

(BB) + Y
(
In − gAσ (BB)g

(1)
Aσ

(BB)
)



232 T. Jiang, M. Wei / Linear Algebra and its Applications 367 (2003) 225–233

in which

g
(1)
Aσ

(BB) = (
gAσ (BB)

)(1)
,

F =
m∑

k=1

a2k


k−1∑

j=1

(AA)k−j−1(ACB)(BB)m−j−1

+
k∑

j=1

[
(AA)k−jC(BB)m−j

] ,

and some Y ∈ Cm×n.

(2) If Eq. (4.1) has a solution X, and hAσ (λ) and fBσ (λ) are relatively prime, then
Eq. (4.1) has a unique solution

X = F(gAσ (BB))−1

=
m∑

k=1

a2k


k−1∑

j=1

(AA)k−j−1(ACB)(BB)m−j−1

+
k∑

j=1

(AA)k−jC(BB)m−j


 (gAσ (BB))−1.

Proof. (1) If Eq. (4.1) has a solution X, then Eq. (4.2) has a solution Y = Xσ . By
Lemma 1.1 and Proposition 3.3, we have

XσhAσ (Bσ ) =
m∑

k=1

2k∑
s=1

a2kA
2k−s
σ CσB

2m−s
σ , (4.10)

where hAσ (λ) is given in Eq. (2.4).
By Proposition 3.3, gAσ (λ) is a real polynomial and hAσ (Bσ ) = (gAσ (BB))σPn.

So from Proposition 3.1 and Eq. (4.10), we have

[
XgAσ (BB)

]
σ

= Xσ

(
gAσ (BB)

)
σ
Pn = Xσ

(
gAσ (BB)

)
σ
Pn = XσhAσ (Bσ )

=
m∑

k=1

2k∑
s=1

a2kA
2k−s
σ CσB

2m−s
σ

=
m∑

k=1

a2k


k−1∑

j=0

A2(k−j−1)+1
σ CσB

2(m−j−1)+1
σ

+
k∑

j=1

A2(k−j)
σ CσB

2(m−j)
σ



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=
m∑

k=1

a2k




k−1∑
j=0

[
(AA)k−j−1(ACB)(BB)m−j−1

]
σ

+
k∑

j=1

[
(AA)k−jC(BB)m−j

]
σ




=



m∑
k=1

a2k


k−1∑

j=0

(AA)k−j−1(ACB)(BB)m−j−1

+
k∑

j=1

[
(AA)k−jC(BB)m−j

]



σ

so we have

XgAσ (BB) =
m∑

k=1

a2k


k−1∑

j=0

(AA)k−j−1(ACB)(BB)m−j−1

+
k∑

j=1

[
(AA)k−jC(BB)m−j

]
so by [5, Chapter 2.1], we know that (1) holds.

(2) Since hAσ (λ) and fBσ (λ) are relatively prime, so by Proposition 2.4, Eq. (4.2)
has a unique solution, this implies that Eq. (4.1) has a unique solution,
and hAσ (Bσ ) is a nonsingular matrix. Because

(
gAσ (BB)

)
σ
Pn = hAσ (Bσ ), so by

(3) in Proposition 3.1, gAσ (BB) is a nonsingular matrix, and (2) follows directly
from (1). �
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