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Abstract

This paper studies the solutions of complex matrix equations X — AXB = C and X —
AXB = C, and obtains explicit solutions of the equations by the method of characteristic
polynomial and a method of real representation of a complex matrix respectively.
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1. Introduction

The matrix equations AX — XB = C and X — AXB = C play important roles
in the theories and applications of stability and control [1,2]. When A = BH (the
conjugate transpose of B), the equations are the well-known Lyapunov and Stein
equations respectively.

In [3], Jameson studied the matrix equation AX — X B = C by the method of
characteristic polynomial, and derived explicit solution of the equation as follows.
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Lemma 1.1 (Jameson). Let A € C"*™ B € C"™*" C € C"*", Then:

(1) If X is a solution of AX — XB = C, then
m k—1

XfaB)y=—Y_ Y pAlCBI,

k=1 j=I

where fa(L) = detOl — A) = puA™ + p_ i A" L4 + po.
(2) If X is the unique solution of AX — XB = C, then

m k—1

X=—|>> " pmAICB I (faB) .

k=1 j=I

In [4, Chapter 12.3] Lancaster and Tismenetsky studied the matrix equation X —
AXB = C, and derived that the equation has a unique solution X = Z;io A/CB/
when A and B have spectral radii ;4 and pp respectively with papup < 1.

In this paper, we extend the result of [4] concerning the matrix equation X —
AXB = C, and obtain explicit solutions of matrix equation X — AXB = C by the
method of characteristic polynomial, and then we characterize the existence of so-
lution to the equation X — AXB = C, derive the solution of matrix equation X —
AXB = C in explicit form by means of real representation, where X denotes the
conjugate of the complex matrix X.

Let R denote the real number field, C the complex number field. F”"*"* denotes
the set of m x n matrices on a field F, and for any A € C"™*", rank(A), AT and A(D
denote the rank, the transpose and {1}-inverse of matrix A respectively. Let f4 ()
denote the characteristic polynomial of matrix A.

2. Matrix equation X — AXB =C

In this section, we discuss the solution of the matrix equation
X—-AXB=C 2.1

by the method of characteristic polynomial of matrix, where A € C"*™", B € C"*"
and C € C"*".
By [4, Chapter 12], we have the following result.

Lemma2.1. Let A € C"*" B ¢ C"*" and C € C™*", Then:

(1) Eq. (2.1) has a solution if and only if
rank(Zy, — A ® BY) = rank(,;, — A ® BT, vec(C)),

where ® denotes the Kronecker product and vec is the “vec” operation.
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(2) Eq. (2.1) has a unique solution if and only if Ajiuj # 1, where Ay, ..., Ay and
Ui, ..., Iy are the characteristic values of A and B respectively.
(3) Eq. (2.1) has a unique solution if and only if f4(B) is nonsingular.

For A € C"*" B e C"*", define linear operators § and p : C"*" — C™*"
with §(X) = AX and p(X) = XB, X € C™*". Clearly p(X) = AXB = p§(X),
and the Eq. (2.1) is equivalent to

(1-38p)X =C. 2.2)
It is easy to verify the following.

Lemma 2.2
(1) ép = pé. o
Q) Ifqg(h, p) = Zi’j aijA'u! € Clr, ul, then for any X € C™*",

g, p)X = ZaiinXB~/.

iJj

) If f(A) is a polynomial of A, then f(8)X = f(A)X and f(p)X = Xf(B).

For A € C"™*™, let the characteristic polynomial of A be

FaQ) = A" 4 @y X" 4t ag (2.3)
and define
ha(l) = A" fa ™) = 1+ am_th + -+ ah™ (2.4)
then
S fa) = fawT) O e
)\7 — lfA( — )Lk s m—s 2.5
g, 1) = p P ;;ak Iz 2.5)

in which a,, = 1 and
qOL A = ap) = =" (fa) — faw™) = =™ fa) + ha(p).  (2.6)

Lemma 2.3. ¢(5, p)(1 — 8p) = ha(p).

Proof. By Lemma 2.2 and the Cayley—Hamilton theorem of matrices, for any X €
C™ . fa(B)X = fa(A)X =0, ie. f4(8) =0. So the Lemma 2.3 follows from
(2.6). O

Proposition 2.4. Let f4 (L) and h 4 (X)) be given in Egs. (2.3) and (2.4). Then:

(D) (ha), fBAV) = Lifand only if hjpe; # 1, where Ay, ..., Ay and ju1, ..., iy
are the characteristic values of A and B respectively.
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(2) Eq. (2.1) has a unique solution if and only if (ha(X), fp(A)) = L.
(3) Eq. (2.1) has a unique solution if and only if h o (B) is nonsingular.

Proof. It is easy to see that (1) follows from the construction of z4 (1) in Eq. (2.4),
and by Lemma 2.1, (2) and (3) come from (1). U

Theorem 2.5. Let A € C"*™ B € C"*" and C € C™*" Then:

(1) IfEq. (2.1) has a solution X, then

m k

Xha(B) = Z ZakA"—SCB’"—S,

k=1 s=1
where h o () is given in Eq. (2.4), and

X = Fh'V(B) + Y (I, — ha(B)h (B))

in which hg)(B) = (haB)HW, and F =37, Zle agr AK=SCB™=S | some
Y e CX1, ‘
(2) If Eq. (2.1) has a unique solution X, then

m k
X = (ZzakAkSCBmS> (ha(B))~\.

k=1 s=1

Proof. Since Eq. (2.1) has a solution X if and only if Eq. (2.2) has a solution X,
and by Lemma 2.3 we have

Xha(B)=ha(p)X =q (8, p)(1 —5p)X
m k

=q6.pC =YY aA"*CB".

k=1 s=1

So by [5, Chapter 2.1], we easily know that (1) holds, and (2) follows clearly from
(3) in Proposition 2.4. [J

3. Real representation

Let A € C"*" then A can be uniquely written as A = A| + Azi, A, Ay €

R"*" i = —1. Define real representation &
_ Al A2 2mx2n
Ay = <A2 —A1> eR ,

A is called the real representation matrix of A.
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For am x m complex matrix A, define Af, = (Ay)!, and

_ (L 0 _ (0 I
P’_(O —IJ')’ Q’_<—1j 0)’

where [; is the j x j identity matrix.

Proposition 3.1
(1) IfA, B e C"™", a € R, then

(A+B)s = As + By, (aA)s = aAs.
2) IfA e C"*", B € C", then

(AB)O' = AO'PnBO' = AU(E)O'PF'
(3) If A € C"™*™, then A is nonsingular if and only if A, is nonsingular.
) If A € C™*™  then AZ* = ((AA)X)_ Py
B)IfAeC™m BeC™, CeC™" andk +1 is even, then
((AA)*(ACB)(BB)") k=2s+1,1=2t+1,
((AA)*C(BB)"),. k=2s, | =2t
(6) If A € C"™*", then QyAs On = Ao

o’

k !
Akc,BL = {

Proof. By direct calculation, we easily know (1) and (2) hold, and (3) follows
from (2). By (2), A = (Ag)* = (A5)**"V(45)* = (A4,)**"V(AA); P, 50 (4)
is proved by induction. Finally (5) follows clearly from (2) and (4). U
For A € C™*™ if
ar (o1

()-1(0).

then by the definition of real representation A, we easily have
o 3

Ay (O(z 051) = —A (0{2 O(]) , Ay <EZ> =A <&2> ,

Ay (&2 51) =—A (52 &1) ,
so we have following result.

Proposition 3.2. If A is a characteristic value of A, , then so are £A, £A.

For any A € C"™*", let fa,(X) = det(Alyy — Ay) = ,%ZO agA¥ be the charac-
teristic polynomial of the real matrix A,, we have

Proposition 3.3. Let A € C"*" B € C"*", Then

(1) fa,(A) is a real polynomial, and fa,(A) = ZZ’ZO agkAZk;
(2) ha, (X) is a real polynomial, and ha, (X) = ZZ;() ay A2m=k).
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(3) ha, (Bs) = (84,(BB))s Pu, fa,(Bs) = (pa,(BB))o Py
in which ga, (\) = Y 1 ay "k, pa, (M) =371 an Ak € R[AL

Proof. By Proposition 3.2, we know ay are real numbers, and azr4+1 = 0, so (1)
and (2) follow from Egs. (2.3) and (2.4). For any k, by Proposition 3.1, we know
B2 = ((BB)*)4 Py, 50 (3) is valid. [

4. The matrix equation X — AXB = C

In this section, we study the solution of matrix equation
X—-AXB=C 4.1)

by the method of real representation, where A € C"*™, B € C"*" and C € C"™*".
We first define the real representation matrix equation of Eq. (4.1) by

Y — AsY By = Cs. 4.2)
By (2) in Proposition 3.1, Eq. (4.1) is equivalent to the equation
Xo —AsXsBs = Cy. 4.3)

Proposition 4.1. Eq. (4.1) has a solution X if and only if its real representation Eq.
(4.2) has a real matrix solution Y = X, .

Theorem 4.2. Let A € C"*™, B € C"" and C € C"*", Then Eq. (4.1) has a
solution X € C"™*™" if and only if Eq. (4.2) has a solution Y € R¥ %" in which
case, if Y is a solution to Eq. (4.2), then the following matrix

1 . L
X = Z(Im’ il,)(Y + QY On) <i1n> 4.4

is a solution to Eq. (4.1).

Proof. We only show that if

y= (Y Y2} oy gm0 4.5)
Yo Y»

is a solution to Eq. (4.2), then the matrix given in Eq. (4.4) is a solution to Eq. (4.1).
In fact, according to Proposition 3.1, since Q,,A; On = Aq, SO

QmYQn - A(T QmYQn Bo = Cm (4-6)

This equation shows that if Y is a solution to Eq. (4.2), then Q,,,Y Q,, is also a solution
to Eq. (4.2). Thus the following real matrix
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% 1
Y =3+ 0nY0n) 4.7
2

is also a solution to Eq. (4.2). Now substituting Eq. (4.5) in Eq. (4.8) and then sim-
plifying the expression, we easily get

5 _ (2o Zi
(2 7) as

where
Zo=3(Y11 — Yn). Zi=3(Yi2 + Ya)).

From Eq. (4.8) we construct a complex matrix as follows

| o In
X =2Zo+ Zii= =y, il)7 (7). (4.9)
2 il

clearly the real representation of complex matrix X is Y,ie. Xo=7Y. By Proposition
4.1, X is a solution to Eq. (4.1). O

Remark. Theorem 4.2 gives a practical technique for us to find a solution to Eq.
(4.1) by a solution to Eq. (4.2) by means of real representation matrices.

By Lemma 2.1 and Theorem 4.2 we have

Theorem 4.3. Let A € C"*™, B € C"" and C € C"™*", Then Eq. (4.1) has a
solution if and only if

rank(lmn —As ® Bg) = rank(lmn —As ® Bg, vec(C(,)),
where @ denotes the Kronecker product and vec is the “vec” operation.

Theorem 4.4. Let A € C"*™", B € C"", C € C"™*". Then:

(1) If Eq. (4.1) has a solution X, then

m k—1
Xga, (BB) :Zazk Z(AZ)k—j—l(AfB)(EB)m—j—l
k=1 j=0

e
+j=1 [(AA) ic(BB) f]

and

X = Fg\)(BB) + Y (I, — g, BB)g' (BB))
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in which
- = (D

g\ (BB) = (g4, (BB))"
m k—1

F=Y ay (AA—I=Y(ACB)(BB)" /!
k=1 j=1

+3° [(AK)"—J' C(EB)’"—f] ,
=1
and some Y € C"*",

(2) If Eq. (4.1) has a solution X, and h 4, (L) and fp (A) are relatively prime, then
Eq. (4.1) has a unique solution

X =F(ga, (BB)™!

m k—1
=D ax | ) (ADI"H(ACB)(BB)" /!
k=1 j=1
k . .
+Y (ADICBB)" | (g4,(BB) .
j=1

Proof. (1) If Eq. (4.1) has a solution X, then Eq. (4.2) has a solution ¥ = X,. By
Lemma 1.1 and Proposition 3.3, we have

m 2k
Xoha,(Bo) =) > anA) " CoB}"™, (4.10)
k=1 s=1
where A 4, (1) is given in Eq. (2.4). _
By Proposition 3.3, g4, (A) is a real polynomial and /14, (Bs) = (g4, (BB))o Py.
So from Proposition 3.1 and Eq. (4.10), we have

[Xga, (BB)] =Xo(g4,(BB))_ Py = Xo(ga,(BB)) Py = Xsha,(Bs)
o o o
2k
ZQZkA(zyk_SCo Bgm—s

m
k=1 s=1
m
k=1

k-1
an ZA(Zy(kfjfl)JrlCUBg(mf]fl)Jrl
j=0

k
+3 426D, g2
j=1
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m k—1
=S ax Y [(AZ)"—J'—I(AEB)(EB)’"—J'—I]
k=1 =0 7
k
+3° [(AZ)"—J' C(EB)’"—J']
j=1 7
m k—1
=12 ax | D _(AD /N ACB)BB)" !
k=1 j=0
k
+ [(AZ)k’jC(EB)’”’f]
j=1 "
so we have
m k—1
Xga,(BB) =) ax | ) (AAY/~'(ACB)(BBYy" /™!
k=1 j=0

+ Xk: [(AZ)"‘J’ C(EB)’"—J']
j=1

so by [5, Chapter 2.1], we know that (1) holds.

(2) Since h 4, (1) and fp, (1) are relatively prime, so by Proposition 2.4, Eq. (4.2)
has a unique solution, this implies that Eq. (4.1) has a unique solution,
and 4, (B, ) is a nonsingular matrix. Because (g4, (BB)), P, = ha,(Bs), so by

(3) in Proposition 3.1, ga, (EB) is a nonsingular matrix, and (2) follows directly
from (1). O
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