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SUMMARY

Marijuana has been used for thousands of years as a
treatment for medical conditions. However, unto-
ward side effects limit its medical value. Here, we
show that synaptic and cognitive impairments
following repeated exposure to D9-tetrahydrocan-
nabinol (D9-THC) are associated with the induction
of cyclooxygenase-2 (COX-2), an inducible enzyme
that converts arachidonic acid to prostanoids in
the brain. COX-2 induction by D9-THC is mediated
via CB1 receptor-coupled G protein bg subunits.
Pharmacological or genetic inhibition of COX-2
blocks downregulation and internalization of gluta-
mate receptor subunits and alterations of the
dendritic spine density of hippocampal neurons
induced by repeated D9-THC exposures. Ablation
of COX-2 also eliminates D9-THC-impaired hippo-
campal long-term synaptic plasticity, spatial, and
fear memories. Importantly, the beneficial effects of
decreasing b-amyloid plaques and neurodegenera-
tion by D9-THC in Alzheimer’s disease animals are
retained in the presence of COX-2 inhibition. These
results suggest that the applicability of medical mari-
juana would be broadened by concurrent inhibition
of COX-2.
INTRODUCTION

Marijuana has been used for thousands of years to treat chronic

pain, multiple sclerosis, cancer, seizure disorders, nausea,

anorexia, and inflammatory and neurodegenerative diseases

(Robson, 2001; Russo, 2007). However, the undesirable neuro-

psychological and cognitive side effects greatly limit the medical

use of marijuana (Carlini, 2004). The major intoxicating effects of

cannabis are the impairments in synaptic and cognitive function
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(Pope et al., 2001; Solowij et al., 2002; Messinis et al., 2006).

These untoward effects are also the primary consequences of

cannabis abuse. However, there are no currently FDA-approved

effective medications for prevention and treatment of these

cannabis-related disorders.

As it is clear now, D9-tetrahydrocannabinol (D9-THC) is the

major psychoactive ingredient of marijuana (Gaoni and Mechou-

lam, 1964), and its effects are largely mediated through cannabi-

noid receptors (CB1R or CB2R), which are pertussis toxin

(PTX)-sensitive G-protein-coupled receptors (Howlett, 1998;

Pertwee et al., 2010). Previous studies demonstrate that

deficits in long-term synaptic plasticity, learning, and memory

by D9-THC exposure are primarily mediated through CB1R

expressed in the brain (Lichtman and Martin, 1996; Hoffman

et al., 2007; Puighermanal et al., 2009; Fan et al., 2010; Han

et al., 2012). However, the molecular mechanisms underlying

the synaptic and cognitive deficits elicited by repeated D9-THC

exposure are largely unknown.

In the present study, we unexpectedly observed that D9-THC

increases expression and activity of cyclooxygenase-2 (COX-2),

an inducible enzyme that converts arachidonic acid to prosta-

noids both in vitro and in vivo via a CB1R-dependent mecha-

nism. This action is opposite to the observations where the

endogenous cannabinoid 2-arachidonylglycerol (2-AG) induces

a CB1R-dependent suppression of COX-2 activity and expres-

sion in response to proinflammatory and excitotoxic insults

(Zhang and Chen, 2008). The differential modulation of COX-2

by the exogenous cannabinoid D9-THC and endogenous canna-

binoid 2-AG appears to result from intrinsic properties of the

CB1R-coupled G protein. The COX-2 induction by D9-THC is

mediated via Gbg subunits, whereas COX-2 suppression by

2-AG is mediated through the Gai subunit. Interestingly, the

impairments in hippocampal long-term synaptic plasticity,

spatial, and fear memories induced by repeated D9-THC expo-

sure can be occluded or attenuated by pharmacological or ge-

netic inhibition of COX-2. Finally, the beneficial effects of

reducing Ab and neurodegeneration by D9-THC are retained in

the presence of COX-2 inhibition. Our results reveal a signaling

pathway that is linked to synaptic and cognitive deficits induced

mailto:chen502@gmail.com
http://dx.doi.org/10.1016/j.cell.2013.10.042
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cell.2013.10.042&domain=pdf


Figure 1. D9-THC In Vivo Exposure In-

duces CB1R-Dependent Activation and

Elevation of COX-2 Expression in the Hippo-

campus

(A and B) D9-THC induces a dose- and time-

dependent increase in hippocampal COX-2 ex-

pression (n = 5).

(C) D9-THC increases synthesis of PGE2, and

the increase is blocked by Celebrex (Celeb)

or genetic inhibition of COX-2 (COX-2 knock-

out). PGE2 was detected 4 hr after D9-THC

injection (10 mg/kg). Celebrex (10 mg/kg) was

injected 30 min prior to D9-THC injection (n = 10/

group).

(D) COX-2 is persistently elevated in animals that

received repeated injections ofD9-THC (10mg/kg,

i.p.) once a day for 7 consecutive days. COX-2

was analyzed 24 hr after secession of the last

injection (n = 3).

(E) COX-2 induction by D9-THC (10 mg/kg) is

blocked by Rimonabant (RIM, 5 mg/kg). Hippo-

campal COX-2 was detected 4 hr after D9-THC

injection (n = 3). RIM was injected 30 min prior to

D9-THC injection.

(F) D9-THC fails to increase COX-2 in CB1R

knockout mice (n = 3).

(G)D9-THC increases COX-2 both in neurons and astroglial cells in culture, and the increase is blocked by RIM. COX-2 was assayed 12 hr after treatments (n = 6).

All the data are presented as mean ± SEM; *p < 0.05, **p < 0.01 compared with the vehicle controls, #p < 0.05, and ##p < 0.01 compared with D9-THC (one-way

ANOVA, Fisher’s PLSD). See also Figures S1 and S7.
by D9-THC exposure, suggesting that D9-THC would display its

beneficial properties with fewer undesirable side effects when its

COX-2 induction effect is inhibited, which may form a therapeu-

tic intervention for medical treatments.

RESULTS

D9-THC Induces Dose- and Time-Dependent Increase in
COX-2 Expression
Identification of CBRs led to discovery of several endogenous

cannabinoids, including anandamide (AEA) and 2-arachidonyl-

glycerol (2-AG), which are the most-studied endocannabinoids

involved in a variety of physiological, pharmacological, and path-

ological processes (Kano et al., 2009; Pertwee et al., 2010).

2-AG, the most abundant endocannabinoid, plays significant

roles in synaptic modification, resolution of neuroinflammation,

and neuronal survival (Alger, 2009; Chevaleyre et al., 2006;

Lovinger, 2008; Panikashvili et al., 2001; Zhang and Chen,

2008). In particular, its anti-inflammatory and neuroprotective

effects in response to proinflammatory and neurotoxic insults

appear to be through limiting COX-2 signaling (Chen et al.,

2011; Du et al., 2011; Zhang and Chen, 2008). Because acute

inhibition of COX-2 by selective COX-2 inhibitors has been

shown to decrease hippocampal long-term potentiation (LTP)

and impairs memory consolidation (Chen et al., 2002; Teather

et al., 2002; Cowley et al., 2008), we thus wondered whether

impairments of synaptic plasticity and memory by marijuana

result from a COX-2 suppressive effect. To assess this, we first

analyzed hippocampal expression and activity of COX-2 in

mice that received D9-THC. Unexpectedly, in vivo exposure to

D9-THC produced a dose- and time-dependent induction of

COX-2 in the brain, rather than suppression (Figures 1A and
C

1B), whereas expression of COX-1 was unaffected by D9-THC

(Figure S1A available online). The increase in COX-2 expression

induced byD9-THCwas accompanied by elevated production of

prostaglandin E2 (PGE2), which could be inhibited by the selec-

tive COX-2 inhibitor Celebrex or genetic inhibition of COX-2

(Figures 1C and S1B). To confirm the ability of exogenous canna-

binoids to induce COX-2, we assessed COX-2 expression and

PGE2 production in animals injected with the synthetic cannabi-

noid CP55,940 (CP). As expected, CP produced more pro-

nounced effects on COX-2 expression and PGE2 synthesis

(Figures S1C–S1E). The increase in PGE2 could be blocked

by NS398, another selective COX-2 inhibitor. In addition, we

observed that COX-2 expression was steadily elevated in ani-

mals injected with D9-THC once daily for 7 consecutive days,

although the magnitude of increase in COX-2 was not as intensi-

fied as that of a single injection (Figure 1D). This indicates that

expression of COX-2 is persistently elevated upon repeated

exposure to D9-THC (Figure S7).

COX-2 Induction by D9-THC Is CB1R Dependent
Because undesirable side effects elicited by cannabinoids are

primarily mediated by CB1R (Lichtman and Martin, 1996; Hoff-

man et al., 2007; Han et al., 2012), we wondered whether

COX-2 induction by D9-THC is mediated via CB1R. As shown

in Figures 1E and1F, D9-THC-induced increase in COX-2 in the

hippocampus was blocked either by Rimonabant (RIM), a selec-

tive CB1R antagonist, or by genetic deletion of CB1R. To deter-

mine whether the increase in COX-2 by D9-THC occurs in

neurons or astroglial cells, we made different conditions in cul-

tures as described previously (Zhang and Chen, 2008). We found

that, although D9-THC induced a CB1R-dependent increase in

COX-2 expression both in neuronal and astroglial cell-enriched
ell 155, 1154–1165, November 21, 2013 ª2013 Elsevier Inc. 1155



cultures, the increase was more pronounced in astroglial cell-

enriched cultures than in neuronal culture (Figure 1G). Our data

provide convincing evidence that COX-2 induction by D9-THC

both in vivo and in vitro is mediated via CB1R.

COX-2 Induction by D9-THC Is via CB1R-Coupled
G Protein bg Subunits
Because the suppression of COX-2 by 2-AG in response to

proinflammatory stimuli occurs via a CB1R-dependent mecha-

nism (Zhang and Chen, 2008), we questioned why the exoge-

nous cannabinoid D9-THC increases COX-2 and why the

endogenous cannabinoid 2-AG suppresses COX-2 acting

through the same CB1R-dependent mechanism, and we specu-

lated that CB1R may not be the key molecule responsible for

differential regulation of COX-2 expression upon exposure to

cannabinoids. CB1R is coupled to a PTX-sensitive Gi/o protein,

and activation of CB1R releases Gbg subunits from the GTP-

bound Gai subunit (Howlett, 1998; Pertwee et al., 2010). Earlier

studies show that activation of CB1R is capable of inducing

Gbg-mediated response (Guo and Ikeda, 2004; Wilson et al.,

2001; Yao et al., 2003). We hypothesized that Gbg and Gai

may differentially mediate COX-2 induction or suppression by

exogenousD9-THC or endogenous 2-AG. To test this prediction,

we first overexpressed Gbg subunits by transfection with plas-

mids carrying b1 and g2 subunits in NG108-15 cells, which ex-

press native CB1R (Figures S2A and S2B). Whereas D9-THC still

increased expression of COX-2mRNA in culture transfectedwith

the control vector, it did not increase COX-2 in culture overex-

pressing b1 and g2 subunits (Figure 2A). In subsequent experi-

ments, b1 and g2 subunits were silenced by small hairpin RNA

(shRNA). Knockdown of b1g2 by shRNA suppressing endoge-

nous b1g2 also blocked COX-2 induction by D9-THC in

NG108-15 cells, and the blockade was rescued by concurrently

expressing shRNA-resistant b1g2 (Figures 2A and S2E). This in-

dicates that COX-2 induction by D9-THC is likely mediated

through Gbg. To further confirm that Gbg mediates COX-2 in-

duction by D9-THC, we treated mixed culture of hippocampal

neurons and astroglial cells (�5%–10%) with a membrane-

permeable Gbg-binding peptide mSIRK to disrupt the function

of Gbg (Delaney et al., 2007; Goubaeva et al., 2003). As a nega-

tive control, we used a variant mSIRK with a point mutation of

Leu9 to Ala (L9A-mSIRK). As shown in Figure 2B, disruption of

Gbg activity by mSIRK also blocked COX-2 induction by

D9-THC, whereas it failed to block the suppression of COX-2

by 2-AG in response to LPS, a commonly used COX-2 inducer

(Zhang and Chen, 2008). PTX treatment also blocked D9-THC-

induced increase in COX-2. Interestingly, application of 2-AG

failed to suppress D9-THC-induced increase in COX-2 (Figures

2B and S2I). To test the prediction that Gai mediates COX-2 sup-

pressive effect by 2-AG, we silenced Gai using a lentiviral vector

in mixed culture of neurons and astroglial cells (Figure S2C). As

illustrated in Figures 2C and S2D, silencing Gai1, but not Gai2

or Gai3, blocked the suppression of COX-2 by 2-AG in response

to the LPS stimulus, and this blocking effect was rescued by

concurrently expressing shRNA-resistant Gai1 (Figures 2C and

S2E). Knockdown of Gai1, Gai2, or Gai3 did not block COX-2 in-

duction by D9-THC (Figures 2C and S2D). These results indicate

that COX-2 induction by D9-THC is likely mediated via Gbg,
1156 Cell 155, 1154–1165, November 21, 2013 ª2013 Elsevier Inc.
whereas COX-2 suppression by 2-AG is likely mediated through

Gai1 (Figure S7).

Akt, ERK, p38MAPK, and NF-lB Are Downstream
Signaling of Gbg

To determine downstream signaling pathways of Gbg, we de-

tected phosphorylation of Akt, ERK, and p38MAPK by overex-

pression or knockdown of Gbg in the presence and absence of

D9-THC. As shown in Figures 2D and S2F, D9-THC induced

phosphorylation of these signaling molecules, and the phos-

phorylation was inhibited by knockdown or overexpression of

Gb1g2. Inhibition of phosphorylation of these mediators by

shRNA was rescued by concurrently expressing shRNA-resis-

tant Gb1g2 (Figure 2D). These data indicate that COX-2 induc-

tion by D9-THC is likely through signaling of these downstream

molecules of Gbg. To further characterize this signaling pathway

that regulates COX-2 expression by D9-THC, we targeted

NF-lB, which is a transcription factor regulating expression of

genes, including the COX-2 gene (ptgs2). We observed that

D9-THC induced NF-lB phosphorylation in NG-108-15 cells,

and this phosphorylation was inhibited by overexpression or

knockdown of Gbg and was rescued by concurrently expressing

shRNA-resistant G b1g2 (Figures 2E and S2G). To determine

regulation of COX-2 transcription by NF-lB, we performed a

chromatin immunoprecipitation (ChIP) analysis in mixed culture

of neurons and astroglial cells. As shown in Figure 2E, a binding

activity of NF-lB p65 was detected in the promoter positions

(�419 to �428 bp) of ptgs2, and this interaction was enhanced

by D9-THC and inhibited by SC-514, a specific IKKb inhibitor

that inhibits p65-associated transcriptional activation of the

NF-lB pathway. To further confirm the involvement of NF-lB
in D9-THC-induced increase in COX-2, COX-2 expression and

NF-lB phosphorylation by D9-THC were determined in the

absence and presence of SC-514. Inhibition of IKKb blocked

D9-THC-induced COX-2 and NF-lB phosphorylation (Figure 2E).

Phosphorylation of Akt, ERK, p38MAPK, and NF-lB was

confirmed in the hippocampus of animals that received D9-

THC (Figure S2H).

Inhibition of COX-2 Eliminates Impairments in
Hippocampal Long-Term Synaptic Plasticity
If sustained elevation of COX-2 expression and activity following

repeated D9-THC exposure contribute to impairments in long-

term synaptic plasticity and cognitive function, then inhibition

of COX-2 should be able to eliminate or attenuate the impair-

ments. To test this hypothesis, we recorded hippocampal LTP

in mice receiving daily injections of D9-THC (10 mg/kg, the

dosage used by other studies such as Fan et al. [2010], Hoffman

et al. [2007], Puighermanal et al. [2009], and Tonini et al. [2006]),

NS398, D9-THC+NS398, or vehicle for 7 consecutive days. We

found that COX inhibition by NS398 rescued decreased hippo-

campal LTP induced by repeated in vivo exposure to D9-THC

for 7 days both at CA3-CA1 synapses (Figure 3A) and perforant

path synapses in the dentate gyrus (Figure S3A). Similarly,

genetic inhibition of COX-2 also prevented LTP deterioration

induced by D9-THC at both CA3-CA1 synapses (Figure 3B)

and the perforant path (Figure S3B). To verify whether persistent

overexpression of COX-2 impairs LTP, we recorded LTP in



Figure 2. Gbg Subunits Mediate D9-THC-Elevated COX-2 Expression

(A) Overexpression or knockdown of b1 and g2 subunits eliminatesD9-THC-increased COX-2mRNA detected by qPCR in NG108-15 cells. Error bars represent ±

SEM; **p < 0.01 compared with the vehicle control (ANOVA, Fisher’s PLSD, n = 6). NG108-15 cells were transfected with pcDNA3.1 plasmids encoding Gb1 and

Gg2 subunits, the pLL3.7 vector expressing Gb1 and Gg2 shRNA, or the vector expressing shRNA-resistant Gb1g2 in the absence and presence of D9-THC.

(B) Disruption of Gbg subunits blocks D9-THC-elevated COX-2 but does not prevent suppression of COX-2 by 2-AG in response to LPS stimulus in mixed culture

of hippocampal neurons and astroglial cells (�10%). The culture was treated with a membrane-permeable Gbg-binding peptide mSIRK or a single point mutated

(Leu 9 to Ala) Gbg-binding peptide mSIRK (L9A-mSIRK) in the absence and presence of D9-THC, LPS, PTX, 2-AG.

(C) Silencing the Gai1 subunit blocks 2-AG-suppressed COX-2 but does not affect the elevation of COX-2 by D9-THC in mixed culture of neurons and astroglial

cells treated with the lentiviral vector expressing Gai1 shRNA or shRNA-resistant Gai1.

(D) D9-THC induces phosphorylation of Akt, ERK, and p38MAPK. The phosphorylation is inhibited by knockdown of Gbg2, and the inhibition is rescued by

expressing shRNA-resistant Gb1g2.

(E) Left: D9-THC induces phosphorylation of NF-lB, and the effect is blocked by Gb1g2 shRNA in NG108-15 cells. Middle: binding of NF-lB p65 in the promoter

region of the COX-2 gene (ptgs2) by ChIP analysis. Right:D9-THC-induced NF-lBphosphorylation andCOX-2 expression are blocked by IKKb inhibition inmixed

culture of neurons and astroglial cells.

See also Figures S2 and S7.
animals repeatedly treated with LPS, which increases COX-2. As

we expected, repeated injection of LPS significantly reduced

LTP, and this decrease was prevented by inhibition of COX-2

(Figure S3C). These data suggest that persistent elevation of

COX-2 in the brain will be detrimental to integrity of synaptic

structure and plasticity. Because a single dose of D9-THC pro-

duced an increase in COX-2 expression, we wondered whether

this increase alters synaptic function. To this end, we recorded

long-term depression (LTD) induced by low-frequency stimula-

tion (LFS) at hippocampal CA3-CA1 synapses and found that

LTD is impaired by a single D9-THC exposure. However, LTD is

normal in COX-2 knockout animals that received a single injec-

tion of D9-THC (Figure S4). This information suggests that a

single D9-THC exposure induces a COX-2-associated impair-

ment in LTD (Mato et al., 2004, 2005).
C

Impairments in Spatial and Fear Memories by D9-THC
Are Occluded by COX-2 Inhibition
Administration of marijuana or D9-THC impairs learning and

memory. If this impairment is associated with COX-2 induction,

then inhibition of COX-2 would prevent or attenuate the deficits.

To test this prediction, we determined the effect of COX-2 inhibi-

tion on spatial learning and memory using theMorris water maze

test in mice that received repeated D9-THC exposure in wild-

type (WT) and COX-2 KO mice. As shown in Figures 4B and

4C, pharmacological or genetic inhibition of COX-2 prevented

D9-THC-impaired spatial learning and memory. To further

determine the role of COX-2 in D9-THC-impaired memory,

hippocampus-dependent contextual memory was determined

using the fear conditioning protocol (Chen et al., 2006a). As

seen in Figure 4A, repeated D9-THC exposure impaired fear
ell 155, 1154–1165, November 21, 2013 ª2013 Elsevier Inc. 1157



Figure 3. Inhibition of COX-2 Eliminates

Deficits in LTP by Repeated D9-THC

Exposure

(A) Top: representative field excitatory post-

synaptic potentials (fEPSPs) recorded at hippo-

campal CA3-CA1 synapses from WT animals

repeatedly injected with vehicle, D9-THC (10 mg/

kg), NS398 (10 mg/kg), or D9-THC+NS398 once

daily for 7 consecutive days. LTP was measured

24 hr after cessation of the last injection. Left: time

courses of changes in fEPSP slope under different

treatment. Right: mean values of the potentiation

of fEPSPs averaged from 56 to 60 min following

TBS (n = 6– 8 slices/5–6 animals).

(B) Top: representative fEPSPs recorded from

COX-2 knockout (KO) mice injected with vehicle or

D9-THC (10 mg/kg) once daily for 7 consecutive

days. Left: time courses of changes in fEPSP slope

induced by D9-THC. Right: mean values of the

potentiation of fEPSPs averaged from 56 to 60 min

following TBS (n = 8–12 slices/6–8 animals).

Error bars represent ± SEM; **p < 0.01 compared

with vehicle controls; ##p < 0.01 compared with

D9-THC (ANOVA with Bonferronni post hoc test).

Scale bars in (A1) and (B1), 0.3mV/10 ms. See also

Figures S3 and S4.
memory, and this impairment was attenuated by COX-2 inhibi-

tion. These results suggest that COX-2 plays a critical role in

synaptic and cognitive function deterioration consequent to

repeated in vivo D9-THC exposure (Figure S7).

Cataleptic effect and hypomotility are behavioral responses

upon administering D9-THC (Burstein et al., 1989; Long et al.,

2009). We observed that the cataleptic and locomotor depres-

sive effects ofD9-THCwere attenuated or prevented by pharma-

cological or genetic inhibition of COX-2 (Figure S5). This means

that cannabis-elicited catalepsy and locomotor depression are

associated with the COX-2 induction.

Functional Synaptic Integrity in D9-THC-Treated
Animals Is Maintained by COX-2 Inhibition
Impaired long-term synaptic plasticity and memory induced by

D9-THC are largely associated with altered expression and func-

tion of glutamate receptors (Fan et al., 2010; Han et al., 2012).

Recent evidence shows that adolescent chronic treatment with

D9-THC results in reduced density of dendritic spines and

lowered length and number of dendrites in the hippocampus

(Rubino et al., 2009). We used Thy1-GFP-expressing transgenic

mice to detect morphology of dendritic spines (Chen et al.,

2012). As seen in Figure 5A, repeated D9-THC exposure signifi-

cantly reduced density of dendritic spines of CA1 pyramidal neu-

rons, especially mushroom spines in which AMPA and NMDA

receptors are expressed. We found that the reduction in spines

was prevented by pharmacological or genetic inhibition of

COX-2. (We should mention here that the comparatively low
1158 Cell 155, 1154–1165, November 21, 2013 ª2013 Elsevier Inc.
number of mushroom-type spines in

Figure 5A may be due to the scoring

criteria.) Meanwhile, D9-THC-reduced

expression of PSD-95, an important post-
synaptic marker, was rescued by COX-2 inhibition (Figure 5B).

However, D9-THC did not alter expression of synaptophysin

(Syn), a presynaptic marker. This information indicates that

increased COX-2 by repeatedD9-THC exposure decreases den-

dritic spines and postsynaptic density. We show previously that

repeatedD9-THC exposure for 7 days induces CB1R-dependent

decreases in functional and surface expression of AMPA and

NMDA receptor subunits (Fan et al., 2010). We speculated that

reduced expression of glutamate receptor subunits in the hippo-

campus of animals that received repeated in vivo D9-THC

exposure is likely regulated by a homeostatic mechanism. D9-

THC increased synthesis of COX-2 and its reaction product

PGE2, which stimulates glutamate released from presynaptic

nerve terminals and astroglial cells, resulting in an extracellular

accumulation of glutamate (Figure S6A). The increased extracel-

lular glutamate may also result from the reduced uptake of gluta-

mate by glutamate transporters because expression of these

transporters was downregulated by repeated exposure to D9-

THC (Figure S6B). To this end, we used immunostaining to deter-

mine expressions of synaptic and extrasynaptic GluA1, GluN2A,

and GluN2B in the hippocampal CA1 area. As shown in Fig-

ures 5C and 5D, hippocampal expressions of both synaptic

and extrasynaptic GluA1, GluN2A, and GluN2B were signifi-

cantly reduced by repeatedD9-THC exposure, and the reduction

was attenuated or prevented by COX-2 inhibition. This was

consistent with the observations where total and surface

expressions of GluA1, GluN2A, and GluN2B detected by immu-

noblot in WT mice were significantly decreased following



Figure 4. Impaired Spatial and Fear Mem-

ories by Repeated D9-THC Exposure Are

Occluded by COX-2 Inhibition

(A) Impaired fear memory is attenuated by

COX-2 inhibition. 24 hr after a footshock con-

ditioning, animals were administered with D9-

THC (10 mg/kg) or NS398 (10 mg/kg) once

a day for 7 days. Freezing behavior was

recorded 24 hr after the cessation of the last

injections.

(B) COX-2 KO and WT mice received training

in the Morris water maze for 5 days without

any treatments (naive). Starting at day 6,

WT animals received vehicle, D9-THC (10 mg/

kg), NS398 (10 mg/kg), D9-THC+NS398, once

a day for 7 days. COX-2 KO mice received

vehicle or D9-THC (10 mg/kg) for 7 days.

Tests were performed 30 min following the in-

jections.

(C) Probe trial test, which was conducted 24 hr

after the cessation of the last D9-THC injection.

Left: the number of times crossed the target

zone. Middle: the amount of time stayed in the target quadrant. Right: swim speed in different treatments in probe trial tests.

Error bars represent ± SEM; **p < 0.01 compared with the vehicle control; #p < 0.05 and ##p < 0.01 compared with D9-THC (n = 9–12 animals/group, two-way

ANOVA, Bonferronni post hoc test). See also Figures S5 and S7.
exposure to D9-THC for 7 days, but the decreases were not seen

in COX-2 knockout mice (Figure 6). These results indicate that

reduced expression of glutamate receptor subunits and density

of dendritic spines are associated with the COX-2 induction ef-

fect of D9-THC (Figure S7).

The Beneficial Effects of Decreasing Ab and
Neurodegeneration by D9-THC Are Preserved in the
Presence of COX-2 Inhibition
A critical issue is whether COX-2 inhibition would eliminate the

beneficial effects of marijuana. To answer this question, we

used 5XFAD APP transgenic mice, an animal model of

Alzheimer’s disease (AD) as described previously (Chen et al.,

2012), to determine whether D9-THC is capable of reducing Ab

and neurodegeneration and whether these effects are retained

when COX-2 is inhibited. As shown Figures 7A and 7B, treatment

of D9-THC once daily for 4 weeks significantly reduced the

numbers of Ab plaques and degenerated neurons in the absence

and presence of Celebrex in AD animals. This information indi-

cates that the beneficial effects of D9-THC are preserved while

COX-2 is inhibited. Meanwhile, we revealed that the reduction

of Ab by D9-THC is not through inhibiting expression of b-site

amyloid precursor protein cleaving enzyme 1 (BACE1), an

enzyme responsible for synthesis of Ab, but is likely through

elevating neprilysin, an important endopeptidase that degrades

Ab (Figure 7C).

DISCUSSION

The results presented here demonstrate that impaired synaptic

and cognitive function induced by repeated D9-THC exposure

is associated with a previously unrevealed CB1R-Gbg-Akt-

ERK/MAPK-NF-lB-COX-2 signaling pathway. It has been long

known that use of marijuana induces neuropsychiatric and

cognitive deficits, which greatly limit medical use of marijuana.
C

Synaptic and memory impairments are also the consequence

of cannabis abuse. However, the molecular mechanisms under-

lying undesirable effects by cannabis are largely unknown. We

discovered in this study that pharmacological or genetic inhibi-

tion of COX-2 eliminates or attenuates synaptic and memory

impairments elicited by repeated D9-THC exposure, suggesting

that these major adverse effects of cannabis on synaptic and

cognitive function can be eliminated by COX-2 inhibition, which

would broaden the use of medical marijuana.

CB1R is the primary target of cannabinoid exposures causing

synaptic and memory impairments (Lichtman and Martin, 1996;

Hoffman et al., 2007; Puighermanal et al., 2009; Fan et al., 2010;

Han et al., 2012). Previous studies show that the endocannabi-

noid 2-AG suppresses COX-2 via a CB1R-depedent mechanism

in response to proinflammatory and excitotoxic insults (Zhang

and Chen, 2008). Surprisingly, we found in the present study

that the exogenous cannabinoidD9-THC increases COX-2 activ-

ity and expression, which are also mediated via CB1R. We

demonstrate that COX-2 induction by D9-THC is mediated via

Gbg subunits, whereas COX-2 suppression by 2-AG is mediated

via the Gai1 subunit, suggesting that activation of the same

CB1 receptor may induce opposite biological effects. Indeed,

previous studies showed that endogenous cannabinoids and

exogenous D9-THC exhibit different behavioral responses via

CB1R (Long et al., 2009). However, it is still not clear how activa-

tion of CB1R and its coupled Gi/o by the endogenous cannabi-

noid 2-AG results in Gai-mediated suppression of COX-2 in

response to proinflammatory insults but by the exogenous

cannabinoid D9-THC leads to Gbg-mediated induction of

COX-2. Activation of CB1R/Gi/o either by 2-AG or D9-THC

should induce both Gai- and Gbg-mediated effector responses

through different downstream signaling events. For example,

inhibition of N type calcium channel currents by 2-AG appears

to be mediated via Gbg (Guo and Ikeda, 2004), suggesting that

2-AG is also capable of triggering Gbg-mediated responses in
ell 155, 1154–1165, November 21, 2013 ª2013 Elsevier Inc. 1159



Figure 5. Decreases in Dendritic Spine Den-

sity and Glutamate Receptor Expression

by D9-THC Are Prevented by Inhibition of

COX-2

(A) Two-photon imaging of dendritic spines in CA1

hippocampal pyramidal neurons expressing GFP

of transgenic mice. Top left: representative image

of a CA1 pyramidal neurons. Scale bar, 20 mm. Top

right: representative images of dendritic spine

segments from animals received different treat-

ments. Scale bars, 3 mm. Lower left: spine density

in WT animals, and lower right: in COX-2 knockout

(KO) mice (n = 5 animals/group).

(B) Expression of PSD-95 and synaptophysin (Syn)

in animals treated with D9-THC or NS398 for

7 days (n = 3 animals).

(C) Immunostaining analysis of synaptic and

extrasynaptic glutamate receptor subunits. Left:

schematic of a hippocampal section. The red

dashed-line box marks the sampling field of

immunostaining analysis. Scale bar, 200 mm.

Right: representative GluA1, GluN2A, GluN2B, and

Syn immunoreactivities (scale bar, 5 mm).

(D) Left: enlarged immunosignals of GluA1,

GluN2A, GluN2B, Syn, and their overlay. Scale

bars, 1.5 mm. Right: quantification of synaptic

(colocalized with Syn) and extrasynaptic (no-

colocalized) GluA1, GluN2A, and GluN2B (n = 5

animals/group).

Error bars represent ± SEM; **p < 0.01 compared

with the vehicle control, #p < 0.05, and ##p < 0.01

compared with D9-THC (ANOVA with Fisher’s

PLSD or Bonferronni post hoc tests).
addition to Gai-mediated responses. In the case of COX-2

induction, the Gbg-mediated COX-2 induction by D9-THC may

be predominant, which may mask Gai-mediated COX-2 sup-

pression. In addition, our results showing that the beneficial

effects of D9-THC are retained in the presence of COX-2 inhibi-
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tion further suggest that activation of

CB1R by D9-THC may have both Gai-

and Gbg-mediated effector responses. It

is likely that COX-2 induction by D9-THC

may be just one of several Gbg-mediated

effects, and we cannot exclude the possi-

bility that other biological effects are

mediated via Gbg. The divergent roles of

G protein subunits in mediating endoge-

nous and exogenous cannabinoids may

be a consequence the intrinsic mecha-

nisms of CB1R/G protein coupling, such

as the agonist binding sites in the recep-

tor, the efficacy of binding, or different

conformational changes in the receptor/

G protein upon binding with different

agonists.

Synaptic and cognitive impairments

by D9-THC are apparently associated

with alterations in glutamatergic synaptic

transmission and functional expression of
glutamate receptor subunits (Fan et al., 2010; Han et al., 2012;

Monory et al., 2007; Tonini et al., 2006). It has been demon-

strated that cannabinoid exposure leads to downregulation,

internalization, and endocytosis of glutamate receptor subunits

(Fan et al., 2010; Han et al., 2012; Suárez et al., 2004). In this



Figure 6. Reduced Expression of Glutamate

Receptor Subunits and Phosphorylation of

CREB by D9-THC Is Rescued by COX-2

Inhibition

(A) Immunoblot analysis of hippocampal expres-

sion of GluR1, NR2A, and NR2B subunits in WT

and COX-2 KO mice treated with vehicle or

D9-THC for 7 days (n = 3).

(B) Surface expression of GluR1, NR2A, and NR2B

in WT and COX-2 KO mice treated with vehicle or

D9-THC for 7 days (n = 4).

(C) Phosphorylation of hippocampal CREB in WT

and KO mice treated with vehicle or D9-THC for

7 days (n = 3).

Error bars represent ± SEM; *p < 0.05 and **p <

0.01 compared with the vehicle control (ANOVA

with Fisher’s PLSD). See also Figures S6 and S7.
study, we also demonstrate that density of dendritic spines in

hippocampal neurons is reduced in animals that received D9-

THC for 7 days. The reduced expressions of synaptic and extra-

synaptic of glutamate receptor subunits as well as PSD-95 by

D9-THC are likely associated with elevated extracellular gluta-

mate levels. Indeed, it has been shown that cannabinoids elevate

extracellular glutamate levels, which may result from increased

synaptic and astrocytic release of glutamate or reduced uptake

of glutamate by glutamate transporters (Fan et al., 2010; Ferraro

et al., 2001; Han et al., 2012; Navarrete and Araque, 2008;

Tomasini et al., 2002; Suárez et al., 2004; Tonini et al., 2006).

We detected that expression of glutamate transporters is sig-

nificantly decreased in D9-THC exposed animals, and this

decrease is attenuated by COX-2 inhibition (Figure S6). These

previous studies, together with our results, suggest that accu-

mulation of glutamate in the extracellular apartment by repeated

D9-THC exposure contributes to reductions in total and surface

expression of the glutamate receptors and the density of den-

dritic spines.

Earlier studies showed that the levels of the eicosanoid PGE2

in circulation and the brain are elevated in humans and animals

exposed to marijuana or D9-THC, and the elevation could be

antagonized by indomethacin, a nonsteroidal anti-inflammatory

drug (NSAID) (Burstein et al., 1989; Fairbairn and Pickens,

1979, 1980; Perez-Reyes et al., 1991). NSAIDs are nonselective

inhibitors for both COX-1 and COX-2. This suggests that COX-1

and/or COX-2may be involved in marijuana- or D9-THC-induced
Cell 155, 1154–1165, No
increase in PGE2. Although both COX-1

and COX-2 are capable of converting

arachidonic acid (AA) into five primary

prostanoids and prostaglandins (PGD2,

PGE2, PGF2a, PGI2, and TXA2), they

exhibit preferences in synthesizing these

substances. It is evident that PGE2 is

primarily derived from the COX-2 path-

way (Brock et al., 1999; Sang et al.,

2005). Because COX-1 expression is not

affected by D9-THC (Figure S1) and

because COX-2 is expressed both in

constitutive and inducible forms in the
brain, it is likely that COX-2 is responsible for the marijuana- or

D9-THC-induced elevation of PGE2. Our data showing that

D9-THC increases PGE2 in the brain and that this increase is

blocked by COX-2 inhibition support this speculation. Interest-

ingly, D9-THC-induced cataleptic response can be eliminated

by NSAIDs and mimicked by direct administration of PGE2 (Bur-

stein et al., 1989; Fairbairn and Pickens, 1979). We also provide

convincing evidence that pharmacological or genetic inhibition

of COX-2 prevents or attenuates cataleptic and locomotor

depressive responses by D9-THC. Importantly, synaptic and

cognitive deficits following repeated D9-THC exposure are elim-

inated or attenuated by COX-2 inhibition.

The elevated levels of extracellular glutamate byD9-THC result

likely from induction of COX-2, which makes PGE2. It has been

shown that PGE2 stimulates or facilitates both synaptic and

astrocytic release of glutamate (Bezzi et al., 1998; Chen et al.,

2002; Dave et al., 2010; Sang et al., 2005; Sanzgiri et al.,

1999). In fact, COX-2 and PGE2 signaling have been shown to

regulate glutamatergic synaptic transmission and plasticity via

EP2 or EP3 receptors (Akaneya and Tsumoto, 2006; Chen

et al., 2002; Cowley et al., 2008; Sang et al., 2005). It is possible

that D9-THC exposure stimulates COX-2 expression and activity

through CB1R-coupled Gbg subunits and the downstream Akt-

ERK/MAPK-NF-lB signaling pathway, resulting in increase of

COX-2 transcription, expression, and activity, which in turn

enhance the release of PGE2 from neurons and astroglial cells.

Our results show that D9-THC-induced COX-2 expression in
vember 21, 2013 ª2013 Elsevier Inc. 1161



Figure 7. The Beneficial Effects of Reducing

Ab and Neurodegeneration by D9-THC Are

Preserved in the Presence of COX-2

Inhibition

(A) D9-THC significantly reduces Ab plaques de-

tected using anti-4G8 antibody in 4-month-old

5XFAD APP transgenic (TG) mice in the absence

and presence of COX-2 inhibition. TG mice

received D9-THC (3 mg/kg) or Celebrex (1 mg/kg)

once daily for 4 weeks starting at 3 months of age.

(B) D9-THC significantly reduces degenerated

neurons detected by Fluoro-Jade C (FJC) staining

in 6-month-old TGmice treated with/out Celebrex.

TG mice received D9-THC (3 mg/kg) or Celebrex

(1 mg/kg) once daily for 4 weeks starting at

5 months of age.

(C) D9-THC increases expression of neprilysin

(NEP), but not b-site amyloid precursor protein

cleaving enzyme 1 (BACE1) in TG mice.

Error bars represent ± SEM; **p < 0.01 compared

with the vehicle control (n = 3 to 5 animals/group;

one-way ANOVA, Bonferronni post hoc tests).

Scale bars in (A) and (B), 400 mm.
astroglial cells is more pronounced than in neurons. A recent

study also shows that CB1R expressed in astroglial cells is

responsible for LTD and working memory impairment in animals

exposed to cannabinoids (Han et al., 2012). This suggests that

glutamate released from astroglial cells triggered by COX-2-

derived PGE2 and reduced uptake of glutamate by glutamate

transporters in astrocytes resulting from repeated D9-THC expo-

sure may play an important role in extracellular glutamate accu-

mulation. Sustained elevation and accumulation of extracellular

glutamate upon repeated exposure to D9-THC induce downre-

gulation and internalization of glutamate receptor subunits and

reduction in the density of dendritic spines in hippocampal neu-

rons, leading to the deficits in long-term synaptic plasticity and

cognitive function (Figure S7).

It has been well recognized that cannabinoids possess antiox-

idant, anti-inflammatory, and neuroprotective properties (Bahr

et al., 2006; Campbell and Gowran, 2007; Centonze et al.,

2007; Chen et al., 2011; Du et al., 2011; Gowran et al., 2011;

Marchalant et al., 2008; Marsicano et al., 2003; Zhang and

Chen, 2008). Also, cannabis has been used for thousands

of years as medical treatments. However, neuropsychiatric

and cognitive side effects limit medical use of marijuana, espe-

cially for a long-term treatment. The results presented here
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suggest that the unwanted side effects

of cannabis could be eliminated or

reduced—while retaining its beneficial

effects—by administering a COX-2 inhib-

itor or NSAID along with D9-THC for treat-

ments of intractable medical conditions

such as AD. In the present study, we did

observe that brain Ab and neurodegener-

ation in 5XFAD transgenic mice are signif-

icantly reduced by D9-THC, and these

beneficial effects are preserved in the

presence of COX-2 inhibition. We also
discovered that D9-THC significantly elevates expression of

neprilysin, an important endopeptidase for Ab degradation.

This suggests that D9-THC is capable of reducing Ab and neuro-

degeneration in an animal model of AD and that the Ab-reducing

effect is likely through elevating expression of neprilysin. This

suggests that D9-THC (brand name: Marinol) may have thera-

peutic potential for prevention and treatment of AD if its undesir-

able side effects (e.g., synaptic and cognitive impairments) can

be eliminated by COX-2 inhibition. In particular, there are no

effective medications currently available for preventing and

treating AD or halting disease progression. Our results also sug-

gest that selective COX-2 inhibitors or NSAIDs may be useful for

treating the neuropsychological and cognitive side effects of

cannabis abuse.

EXPERIMENTAL PROCEDURES

Animals

C57BL/6, CB1 knockout, Thy1-EGFP transgenic, COX-2 knockout, and

5XFAD APP transgenic mice were used in the present study.

Cell Culture

Relative pure hippocampal neurons (astroglial cells < 2%), mixed neurons

and astroglial cells (astroglial cells �10%), astroglial cell-enriched (astroglial



cells > 95%), and NG108-15 cell cultures were made as described previously

(Sang et al., 2005; Zhang and Chen, 2008).

Electrophysiological Recordings

Hippocampal LTP both at CA3-CA1 and perforant path synapses were re-

corded in acutely hippocampal slices and induced by a q-burst stimulation

(TBS) as described previously (Hoffman et al., 2007).

Immunoblots

Western blot assay was conducted using specific antibodies (Table S1) to

determine expressions of COX-2, glutamate receptor subunits, PSD-95, G

protein subunits, phosphoproteins, BACE1, and neprilysin in hippocampal tis-

sue and/or in cultured cells as described previously (Chen et al., 2012). Surface

biotinylation assays were performed to determine surface expression of gluta-

mate receptor subunits in hippocampal slices as described previously (Fan

et al., 2010).

Transfection of Plasmid and Lentiviral Vectors

NG108-15 cells were used for transfection of the pcDNA3.1 plasmid encoding

Gb1 and Gg2 subunits or the pLL3.7 vector expressing scramble, Gb1 and

Gg2 shRNA, and shRNA-resistant Gb1g2. Mixed culture of neurons and astro-

glial cells was used for transfection of the pLL3.7 lentiviral vector expressing

scramble, Gai1 shRNA, and shRNA-resistant Gai1.

qRT-PCR

The iScript complementary (cDNA) synthesis kit (BioRad) was used for

the reverse transcription reaction. Real-time RT-PCR specific primers for

COX-2, b1, g2, and GAPDH were synthesized by IDT. Samples were

compared using the relative CT method as described previously (Zhang and

Chen, 2008).

ChIP Analysis

ChIP analysis was performed to determine the binding activity of NF-lB in the

promoter of the COX-2 gene.

PGE2 Assay

PGE2 in hippocampal tissue was detected using PGE2 enzyme immunoassay

kit (Cayman Chemical) according to the procedure described by the manufac-

turer (Zhang and Chen, 2008).

Immunostaining and Histochemistry

Ab plaques, degenerated neurons, and glutamate receptor subunits in cryo-

stat sectioning brain slices were performed as described previously (Chen

et al., 2012; Li et al., 2011).

Two-Photon Imaging

Morphology of dendritic spines in hippocampal CA1 pyramidal neurons was

determined in GFP-expressing transgenic mice using a two-photon laser

scanning microscope as described previously (Chen et al., 2012). Shape,

size, and density of spines were measured from the three-dimensional recon-

structions using NeuronStudio version 0.9.92.

Behavioral Tests

The classic Morris water maze and fear conditioning tests were performed

to determine spatial and fear memory as described previously (Chen

et al., 2006a, 2012). The ‘‘open field’’ test was conducted to detect the loco-

motor activity, and the bar test was used to detect catalepsy (Egashira et al.,

2007).
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Centonze, D., Finazzi-Agrò, A., Bernardi, G., and Maccarrone, M. (2007). The

endocannabinoid system in targeting inflammatory neurodegenerative dis-

eases. Trends Pharmacol. Sci. 28, 180–187.

Chen, C., Magee, J.C., and Bazan, N.G. (2002). Cyclooxygenase-2 regulates

prostaglandin E2 signaling in hippocampal long-term synaptic plasticity.

J. Neurophysiol. 87, 2851–2857.

Chen, X., Zhang, J., and Chen, C. (2011). Endocannabinoid 2-arachidonoylgly-

cerol protects neurons against b-amyloid insults. Neuroscience 178, 159–168.
ell 155, 1154–1165, November 21, 2013 ª2013 Elsevier Inc. 1163

http://dx.doi.org/10.1016/j.cell.2013.10.042
http://dx.doi.org/10.1016/j.cell.2013.10.042


Chen, C., Hardy, M., Zhang, J., LaHoste, G.J., and Bazan, N.G. (2006a).

Altered NMDA receptor trafficking contributes to sleep deprivation-induced

hippocampal synaptic and cognitive impairments. Biochem. Biophys. Res.

Commun. 340, 435–440.

Chen, R., Zhang, J., Wu, Y., Wang, D., Feng, G., Tang, Y.P., Teng, Z., and

Chen, C. (2012). Monoacylglycerol lipase is a therapeutic target for Alzheimer’s

disease. Cell Rep. 2, 1329–1339.

Chevaleyre, V., Takahashi, K.A., and Castillo, P.E. (2006). Endocannabinoid-

mediated synaptic plasticity in the CNS. Annu. Rev. Neurosci. 29, 37–76.

Cowley, T.R., Fahey, B., and O’Mara, S.M. (2008). COX-2, but not COX-1,

activity is necessary for the induction of perforant path long-term potentiation

and spatial learning in vivo. Eur. J. Neurosci. 27, 2999–3008.

Dave, K.A., Platel, J.C., Huang, F., Tian, D., Stamboulian-Platel, S., and

Bordey, A. (2010). Prostaglandin E2 induces glutamate release from subven-

tricular zone astrocytes. Neuron Glia Biol. 6, 201–207.

Delaney, A.J., Crane, J.W., and Sah, P. (2007). Noradrenaline modulates

transmission at a central synapse by a presynaptic mechanism. Neuron 56,

880–892.

Du, H., Chen, X., Zhang, J., and Chen, C. (2011). Inhibition of COX-2 expres-

sion by endocannabinoid 2-arachidonoylglycerol is mediated via PPAR-g.

Br. J. Pharmacol. 163, 1533–1549.

Egashira, N., Koushi, E., Mishima, K., Iwasaki, K., Oishi, R., and Fujiwara, M.

(2007). 2,5-Dimethoxy-4-iodoamphetamine (DOI) inhibits Delta9-tetrahydro-

cannabinol-induced catalepsy-like immobilization in mice. J. Pharmacol. Sci.

105, 361–366.

Fairbairn, J.W., and Pickens, J.T. (1979). The oral activity of delta’-tetrahydro-

cannabinol and its dependence on prostaglandin E2. Br. J. Pharmacol. 67,

379–385.

Fairbairn, J.W., and Pickens, J.T. (1980). The effect of conditions influencing

endogenous prostaglandins on the activity of delta’-tetrahydrocannabinol in

mice. Br. J. Pharmacol. 69, 491–493.

Fan, N., Yang, H., Zhang, J., and Chen, C. (2010). Reduced expression of

glutamate receptors and phosphorylation of CREB are responsible for in vivo

D9-THC exposure-impaired hippocampal synaptic plasticity. J. Neurochem.

112, 691–702.

Ferraro, L., Tomasini, M.C., Gessa, G.L., Bebe, B.W., Tanganelli, S., and Anto-

nelli, T. (2001). The cannabinoid receptor agonist WIN 55,212-2 regulates

glutamate transmission in rat cerebral cortex: an in vivo and in vitro study.

Cereb. Cortex 11, 728–733.

Gaoni, Y., and Mechoulam, R. (1964). Isolation, structure and partial synthesis

of an active constituent of hashish. J. Am. Chem. Soc. 86, 1646–1647.

Goubaeva, F., Ghosh, M., Malik, S., Yang, J., Hinkle, P.M., Griendling, K.K.,

Neubig, R.R., and Smrcka, A.V. (2003). Stimulation of cellular signaling and

G protein subunit dissociation by G protein betagamma subunit-binding pep-

tides. J. Biol. Chem. 278, 19634–19641.

Gowran, A., Noonan, J., and Campbell, V.A. (2011). Themultiplicity of action of

cannabinoids: implications for treating neurodegeneration. CNS Neurosci.

Ther. 17, 637–644.

Guo, J., and Ikeda, S.R. (2004). Endocannabinoids modulate N-type calcium

channels and G-protein-coupled inwardly rectifying potassium channels via

CB1 cannabinoid receptors heterologously expressed in mammalian neurons.

Mol. Pharmacol. 65, 665–674.

Han, J., Kesner, P., Metna-Laurent, M., Duan, T., Xu, L., Georges, F., Koehl,

M., Abrous, D.N., Mendizabal-Zubiaga, J., Grandes, P., et al. (2012). Acute

cannabinoids impair working memory through astroglial CB1 receptor modu-

lation of hippocampal LTD. Cell 148, 1039–1050.

Hoffman, A.F., Oz, M., Yang, R., Lichtman, A.H., and Lupica, C.R. (2007).

Opposing actions of chronic Delta9-tetrahydrocannabinol and cannabinoid

antagonists on hippocampal long-term potentiation. Learn. Mem. 14, 63–74.

Howlett, A.C. (1998). The CB1 cannabinoid receptor in the brain. Neurobiol.

Dis. 5(6 Pt B), 405–416.
1164 Cell 155, 1154–1165, November 21, 2013 ª2013 Elsevier Inc.
Kano, M., Ohno-Shosaku, T., Hashimotodani, Y., Uchigashima, M., andWata-

nabe, M. (2009). Endocannabinoid-mediated control of synaptic transmission.

Physiol. Rev. 89, 309–380.

Li, S., Jin, M., Koeglsperger, T., Shepardson, N.E., Shankar, G.M., and Selkoe,

D.J. (2011). Soluble Ab oligomers inhibit long-term potentiation through a

mechanism involving excessive activation of extrasynaptic NR2B-containing

NMDA receptors. J. Neurosci. 31, 6627–6638.

Lichtman, A.H., and Martin, B.R. (1996). Delta 9-tetrahydrocannabinol impairs

spatial memory through a cannabinoid receptor mechanism. Psychopharma-

cology (Berl.) 126, 125–131.

Long, J.Z., Nomura, D.K., Vann, R.E., Walentiny, D.M., Booker, L., Jin, X., Bur-

ston, J.J., Sim-Selley, L.J., Lichtman, A.H., Wiley, J.L., and Cravatt, B.F.

(2009). Dual blockade of FAAH and MAGL identifies behavioral processes

regulated by endocannabinoid crosstalk in vivo. Proc. Natl. Acad. Sci. USA

106, 20270–20275.

Lovinger, D.M. (2008). Presynaptic modulation by endocannabinoids. Hand-

book Exp. Pharmacol. 184, 435–477.

Marchalant, Y., Brothers, H.M., and Wenk, G.L. (2008). Inflammation and

aging: can endocannabinoids help? Biomed. Pharmacother. 62, 212–217.

Marsicano, G., Goodenough, S., Monory, K., Hermann, H., Eder, M., Cannich,

A., Azad, S.C., Cascio, M.G., Gutiérrez, S.O., van der Stelt, M., et al. (2003).

CB1 cannabinoid receptors and on-demand defense against excitotoxicity.

Science 302, 84–88.

Mato, S., Chevaleyre, V., Robbe, D., Pazos, A., Castillo, P.E., and Manzoni,

O.J. (2004). A single in-vivo exposure to delta 9THC blocks endocannabi-

noid-mediated synaptic plasticity. Nat. Neurosci. 7, 585–586.

Mato, S., Robbe, D., Puente, N., Grandes, P., and Manzoni, O.J. (2005). Pre-

synaptic homeostatic plasticity rescues long-term depression after chronic

Delta 9-tetrahydrocannabinol exposure. J. Neurosci. 25, 11619–11627.

Messinis, L., Kyprianidou, A., Malefaki, S., and Papathanasopoulos, P. (2006).

Neuropsychological deficits in long-term frequent cannabis users. Neurology

66, 737–739.

Monory, K., Blaudzun, H., Massa, F., Kaiser, N., Lemberger, T., Schütz, G.,
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