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SUMMARY

A recent study has suggested that fibroblasts can be
converted into mouse-induced neural stem cells
(miNSCs) through the expression of defined factors.
However, successful generation of human iNSCs
(hiNSCs) has proven challenging to achieve. Here,
using microRNA (miRNA) expression profile ana-
lyses, we showed that let-7 microRNA has critical
roles for the formation of PAX6/NESTIN-positive
colonies from human adult fibroblasts and the prolif-
eration and self-renewal of hiNSCs. HMGA2, a let-
7-targeting gene, enables induction of hiNSCs that
displayed morphological/molecular features and
in vitro/in vivo differentiation potential similar to
H9-derived NSCs. Interestingly, HMGA2 facilitated
the efficient conversion of senescent somatic cells
or blood CD34+ cells into hiNSCs through an interac-
tionwith SOX2, whereas other combinations or SOX2
alone showed a limited conversion ability. Taken
together, these findings suggest that HMGA2/let-7
facilitates direct reprogramming toward hiNSCs
in minimal conditions and maintains hiNSC self-
renewal, providing a strategy for the clinical treat-
ment of neurological diseases.

INTRODUCTION

Direct lineage conversion strategies have been developed for the

conversion of animal and human somatic cells into other lineage-

specific cells to overcome the issues of induced pluripotent stem
C

cells (iPSCs). However, these direct reprogramming technolo-

gies have limitations, as these lineage-specific cells are fully

differentiated with limited proliferation potential and are difficult

to use for transplantation or clinical trials. Recently, it has been

reported that neural stem cells can be successfully generated

through defined factors in mouse fibroblasts (Han et al., 2012;

Thier et al., 2012). Because directly converted neuronal cell pop-

ulations are heterogeneous and unable to proliferate, the deriva-

tion of neural stem cells (NSCs) is desired to obtain sufficient

amounts of cells with relatively safe and homogeneous cell pop-

ulations. More recently, Ring et al. (2012) reported that SOX2 is

sufficient to generate mouse induced NSCs (iNSCs) frommouse

embryonic fibroblasts. However, the direct conversion of human

adult somatic cells into human iNSCs (hiNSCs) has not been well

characterized yet.

High-mobility group A2 (HMGA2) is an architectural transcrip-

tion factor that potentiates the effects of transcription factors

through alterations of chromatin structures, reflecting binding

to the minor groove of AT-rich DNA sequences (Reeves, 2001).

Hmga2 overexpression elevates self-renewal activity in purified

hematopoietic stem cells (Copley et al., 2013) and rescues the

in vitro aging process of mesenchymal stem cells (MSCs) (Yu

et al., 2013). Hmga2 is highly expressed in fetal NSCs, but its

expression gradually declines with age. Hmga2 promotes the

self-renewal of NSCs through the repression of p16Ink4a and

p19Arf (Nishino et al., 2008). Furthermore, HMGA2 is essential

for the open chromatin state of neural precursor cells (NPCs)

at early developmental stages and facilitates the reprogramming

of late-stage NPCs into cells with early stage-specific capacities

(Kishi et al., 2012).

Lethal-7 (let-7) microRNAs (miRNAs) target HMGA2, which

contains seven target sites in its 30 UTR, and these miRNAs

show inverse expression patterns during fetal development
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and adult aging (Fusco and Fedele, 2007). Recent studies have

shown that let-7 miRNAs are involved in the regulation of the

nervous system, including neural cell specification and self-

renewal regulation in NSCs (Rybak et al., 2008; Zhao et al.,

2010). However, the effects of HMGA2 and let-7 on the direct

reprogramming of human fibroblasts into hiNSCs remain

unknown. Here, we report that overexpressing HMGA2/anti-

let-7b in combination with SOX2 facilitated direct reprogram-

ming of human somatic cells toward hiNSCs.

RESULTS

Expression Profiling and Validation of miRNAs in hiNSCs
hiNSCs were generated from adult human dermal fibroblasts

(hDFs) using methods described previously with modifications

(Ring et al., 2012). Briefly, hDFs cultured with STO feeder cells

on poly-L-ornithine (PLO) and fibronectin (FN)-coated glass

coverslips were infected with retroviral SOX2. NSC-like col-

onies were generated from SOX2-transduced hDFs within 2

or 3 weeks of infection. These colonies were collected and

cultured as neurospheres for three or four passages. The

neurospheres were seeded and grown as a monolayer, and

the neurosphere culture procedures were repeated at least

three times to generate a homogenous population of hiNSCs.

SOX2-transduced hiNSCs expressed NSC-specific markers,

such as PAX6, NESTIN, VIMENTIN, and SOX2, and had a

morphology similar to H9-derived NSCs (H9-NSCs) (Figures

1A–1E and S2A).

We next determined the miRNA profiles of hDFs, H9-NSCs,

and SOX2-transduced hiNSCs through microarray analyses.

To examine whether SOX2-transduced hiNSCs exhibit a

neuronal identity, we selected brain-specific miRNAs from the

microarray data set. The brain-specific miRNA expression

pattern of SOX2-transduced hiNSCs was more similar to that

of H9-NSCs than hDFs (Figure 1F); however, a subset of miRNAs

expressing similar patterns in hiNSCs and hDFs was also de-

tected, likely reflecting residual epigenetic memory. Previously,

a role for let-7, miR-9, and miR-124 in the control of NSC main-

tenance and direct reprogramming process has been reported

(Kawahara et al., 2012; Yoo et al., 2011; Zhao et al., 2010). There-
Figure 1. Role of let-7b in hDF-iNSC Derivation

(A and B) Morphology of human dermal fibroblasts (hDFs) (A) and iNSCs deriv

represents 100 mm.

(C) Bright-field image of early neurosphere-like colonies generated through SOX2

multiple passages for rounds of neurosphere generation, and grown in PLO/FN-

(D and E) Immunocytochemistry analysis of NSC-specific marker proteins in hDF

Nuclei were counterstained with DAPI. The scale bar represents 100 mm.

(F and G) Heatmap of brain-specific miRNAs (F) and reprogramming-related miR

(H) qRT-PCR analysis of let-7/miR-98 family expression in hDFs, H9-NSCs, and h

(I and J) qRT-PCR validation of miR-124-3p (I) and miR-9-5p/miR-9-3p (J) in hD

reactions. **p < 0.01.

(K) Relative expression levels of the ESC-specific miR-302/miR-367 family were m

Error bars denote the SD of triplicate reactions. **p < 0.01.

(L) The efficiency of PAX6- and NESTIN-positive colony formation was measure

let-7b into SOX2-transduced hDFs. Error bars denote the SD of seven separate

(M and N) Relative expression levels of MYC, LIN28, and HMGA2 were measu

miR-CTL-, and let-7b-transfected hDFs. Error bars denote the SD of triplicate re

See also Figure S1.
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fore, we extracted reprogramming-related miRNAs from the

microarray data set and validated them via quantitative real-

time RT-PCR (qRT-PCR) (Figures 1G–1K). Interestingly, all let-

7/miR-98 family members were downregulated in H9-NSCs

and SOX2-transduced hiNSCs compared with hDFs (Figure 1H).

It has been reported that neural lineage-specific miRNAs, such

as miR-9-5p, miR-9-3p, and miR-124, play key roles in the con-

version of fibroblasts into functional neurons (Xue et al., 2013;

Yoo et al., 2011). The expression levels of miR-9-5p, miR-9-3p,

and miR-124 were upregulated in H9-NSCs and SOX2-

transduced hiNSCs compared with hDFs (Figures 1I and 1J).

However, significant alterations in the expression levels of the

embryonic-stem-cell-specific miR-302/miR-367 family were

not detected between hDFs, H9-NSCs, and hiNSCs, whereas

the abundant expression of these miRNAs was detected in

human embryonic stem cells (hESCs) (Figure 1K).

Let-7b Regulates iNSC Reprogramming Efficiency
and Self-Renewal
To determine whether miRNA activity promotes the reprogram-

ming of hDFs into hiNSCs, we transfected miR-124, miR-9-

5p, miR-9-3p, anti-let-7b, let-7b, or miR-CTL into SOX2-trans-

duced cells. The overexpression of miR-124, miR-9-5p, and

miR-9-3p did not enhance the production of PAX6/NESTIN-pos-

itive colonies. In the presence of these miRNAs, SOX2-trans-

duced hDFs were converted into neuron-like cells rather than

NSC-like colonies (data not shown). However, let-7b inhibition

increased reprogramming efficiency approximately 3.5-fold

over anti-miR-CTL, whereas let-7b overexpression significantly

decreased reprogramming efficiency (Figure 1L). To gain insight

into let-7 target genes, we analyzed let-7-relevant genes using

ingenuity pathway analysis (IPA) software (Figures S1A–S1C).

Among the top 15 IPA findings, we selected MYC, LIN28, and

HMGA2, which are known NSC-related genes. To further assess

the role of SOX2 and let-7 regulators on the expression of

MYC, LIN28, and HMGA2, we transduced SOX2 into hDFs and

investigated expression levels on days 3 and 7. We found that

the expression of MYC, LIN28, HMGA2, and let-7b was not

altered by the transduction of hDFs with SOX2 (Figures S1D

and S1E). Furthermore, transfection with let-7b or anti-let-7b
ed from SOX2-transduced hDFs; (B) bright-field microscopy. The scale bar

transduction. Neurosphere-like colonies were manually isolated, subjected to

coated culture dishes. The scale bar represents 100 mm.

-iNSCs using antibodies against PAX6, NESTIN (D), and VIMENTIN, SOX2 (E).

NAs (G) in hDFs, H9-NSCs, and hDF-iNSCs (SOX2).

DF-iNSCs (SOX2). Error bars denote the SD of triplicate reactions. **p < 0.01.

Fs, H9-NSCs, and hDF-iNSCs (SOX2). Error bars denote the SD of triplicate

easured through qRT-PCR in hDFs, H9-NSCs, hDF-iNSCs (SOX2), and hESCs.

d after the transfection of miR-124-3p, miR-9-5p, miR-9-3p, anti-let-7b, and

assays. *p < 0.05; **p < 0.01.

red by qRT-PCR (M) and western blotting (N) in anti-miR-CTL-, anti-let-7b-,

actions. **p < 0.01.
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significantly regulated the expression level of HMGA2, but not

MYC and LIN28, in hDFs, suggesting that HMGA2 expression

was increased during the SOX2/anti-let-7b-mediated hiNSC re-

programming process (Figures 1M and 1N).

We next transfected let-7b into hiNSCs and measured cell

proliferation through 5-bromodeoxyuridine (BrdU) labeling of

dividing cells to determine whether let-7b regulates hiNSC prolif-

eration. The transfection of let-7b decreased hiNSC proliferation

in a dose-dependent manner, confirmed by the reduced per-

centage of BrdU-positive cells (Figures S1F and S1G). To assess

whether let-7b regulates the self-renewal of hiNSCs, we per-

formed a neurosphere-forming assay. Let-7b-transfected

hiNSCs were smaller than miR-CTL-transfected hiNSCs and

generated significantly fewer secondary neurospheres upon

subcloning in response to increasing concentrations of let-7b

(Figures S1H–S1J). These results demonstrated roles for let-7b

in promoting reprogramming efficiency toward hiNSCs in com-

bination with SOX2 and in regulating hiNSC proliferation and

self-renewal.

The let-7b Target HMGA2 Promotes hiNSC
Reprogramming
Previous studies and our IPA data have shown that let-7 expres-

sion inversely correlates with expression of MYC, LIN28, and

HMGA2 (Mayr et al., 2007; Rybak et al., 2008; Sampson et al.,

2007). Here, we demonstrated that the overexpression of

MYC, LIN28, and HMGA2 in combination with SOX2 increased

cell proliferation compared with the overexpression of SOX2

alone. Among these factors, HMGA2 had the slightest effect

on proliferation (Figure 2A). We examined whether MYC,

LIN28, and HMGA2 in combination with SOX2 could promote

reprogramming toward hiNSCs. Surprisingly, the expression of

HMGA2 with SOX2 significantly increased reprogramming effi-

ciency toward hiNSCs, as confirmed by PAX6/NESTIN-positive

colony formation (Figure 2C). Furthermore, expressing HMGA2

with SOX2 shortened the time required for PAX6/NESTIN-

positive colonies to appear from 17 days with SOX2 alone to

7.4 days with SOX2/HMGA2 overexpression (Figure 2B).

Immunophenotyping screens have revealed that a population

of CD184+/CD271�/CD44�/CD24+ NSCs could be derived

from human pluripotent stem cells (Yuan et al., 2011). Therefore,

we used fluorescence-activated cell sorting to determine

whether immunophenotyping alterations were induced at an

early stage of reprogramming. Consistent with the data for the
Figure 2. Role of HMGA2 in hDF-iNSC Derivation

(A) The MTT cell proliferation assay was performed in hDF control, SOX2-, SOX2

the SD of triplicate assays. **p < 0.01.

(B and C) The time of appearance (B) and efficiency of PAX6- and NESTIN-pos

SOX2/LIN28-, and SOX2/HMGA2-transduced hDFs. Error bars denote the SD o

(D) Flow cytometry analyses were performed with a negative cell surface marker o

MYC-, SOX2/LIN28-, and SOX2/HMGA2-transduced hDFs at 7 days after virus

(E) Flow cytometry analysis for the negative NSC cell surface marker, CD44, and t

(SOX2/HMGA2), and H9-NSCs.

(F) Characterization of SOX2/HMGA2-transduced hDF-iNSCs. Morphology of

nofluorescence images of hiNSCs using antibodies against PAX6, NESTIN, SOX

(G) Methylation patterns of SOX2 gene promoters were analyzed after bisulfi

SOX2/HMGA2). Filled and empty circles represent methylated and unmethylated

See also Figure S2.
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appearance of PAX6/NESTIN-positive colonies, only SOX2/

HMGA2-overexpressing cells showed alterations in the cell pop-

ulation from CD44 positive to CD44 negative in approximately

10%of the total cells at 7 days postinfection. In addition, approx-

imately 7% of the cell population was shifted from CD184 nega-

tive to CD184 positive (Figure 2D). The majority of hiNSCs and

H9-NSCs showed CD44-negative and CD184-positive cell pop-

ulations (Figure 2E). SOX2/HMGA2-transduced hiNSCs showed

morphological features and NSC-specific marker expression

that was similar to SOX2-transduced hiNSCs or H9-NSCs

(Figure 2F). Next, we further examined NSC features

among H9-NSCs, SOX2-transduced hiNSCs, SOX2/HMGA2-

transduced hiNSCs, and SOX2/anti-let-7b-transduced hiNSCs.

H9-NSCs and hiNSCs with different combinations showed

similar expression patterns for PAX6, NESTIN, SOX2, Ki67, and

HMGA2, which was confirmed by immunostaining (Figure S2A).

At the transcriptional level, SOX2, HMGA2, PAX6, NESTIN,

MSI1, andGLASTwere induced in hiNSCs at a comparable level

as H9-NSCs (Figure S2B). Under neuronal or glial differentiation

conditions, H9-NSCs, SOX2-transduced hiNSCs, SOX2/

HMGA2-transduced hiNSCs, and SOX2/anti-let-7b-transduced

hiNSCs differentiated into neurofilament (NF)-positive neurons

or glial fibrillary acidic protein (GFAP)-positive astrocytes, and

a quantitative analysis demonstrated that the differentiation

potential of SOX2/HMGA2-transduced hiNSCs was relatively

higher for neurons and lower for astrocytes compared with

H9-NSCs or hiNSCs in other combinations (Figure S2C).

We confirmed that SOX2/HMGA2-transduced hiNSCs could

be stably maintained for more than 40 passages. The character-

istic profile of late-passage SOX2/HMGA2-transduced hiNSCs

(passage 48) was unchanged compared with early-passage

SOX2/HMGA2-transduced hiNSCs (passage 8), as judged by

NSCmarker expression, nuclear size, and nuclear abnormalities

(Figures S2D–S2F). Furthermore, NF-positive neurons or GFAP-

positive astrocytes could be generated from both early- and

late-passage SOX2/HMGA2-transduced hiNSCs, suggesting

that these cells maintain a stable differentiation capability during

continuous passaging. However, the neuronal differentiation

potential was slightly decreased in late-passage hiNSCs,

whereas the glial differentiation potential was slightly increased

(Figures S2G and S2H).

We next assessed the SOX2 DNA methylation status in hDFs,

H9-NSCs, and SOX2- and SOX2/HMGA2-transduced hiNSCs.

The methylation analysis of bisulfite-treated DNA showed that
/MYC-, SOX2/LIN28-, and SOX2/HMGA2-transduced hDFs. Error bars denote

itive colony formation (C) were measured in control and SOX2-, SOX2/MYC-,

f six or nine separate assays. **p < 0.01.

f NSC, CD44, and a positive marker, CD184, in hDF control and SOX2-, SOX2/

transduction.

he positive NSC cell surface marker, CD184, in hDF-iNSCs (SOX2), hDF-iNSCs

hDF-iNSCs (SOX2/HMGA2) assessed using bright-field microscopy. Immu-

2, Ki67, and HMGA2. The scale bars represent 100 or 50 mm.

te treatment of the DNA from hDFs, H9-NSCs, and hDF-iNSCs (SOX2 and

CpGs, respectively.
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the hypomethylation of theSOX2 promoter in hiNSCswas similar

to that in H9-NSCs, suggesting that SOX2 is transcriptionally

activated (Figure 2G). These data indicate that the let-7b target

HMGA2 significantly increases the efficiency and time of

SOX2-induced reprogramming into hiNSCs, and SOX2/

HMGA2-transduced hiNSCs showed characteristics similar to

H9-NSCs in cell surface marker signatures, gene transcription

levels, and methylation patterns.

Downregulation of HMGA2 Inhibits hiNSC Proliferation
and Self-Renewal
To examine whether HMGA2 regulates hiNSC proliferation, we

transfected hiNSCs with HMGA2-targeting small interfering

RNA (siRNA) (siHMGA2) and measured cell proliferation using

BrdU labeling of dividing cells. Downregulation of HMGA2

dramatically reduced the percentage of BrdU-positive cells (Fig-

ures S1K and S1L). Furthermore, siHMGA2-transfected hiNSCs

showed a significantly reduced neurosphere size, confirmed by

the diameter of neurospheres, and decreased self-renewal,

confirmed by the number and percentage of cells generating

secondary neurospheres among primary neurosphere (Figures

S1M–S1O). Taken together, these results showed that the down-

regulation of HMGA2 with a siRNA against HMGA2 inhibits

hiNSC proliferation and self-renewal.

hiNSCs Differentiate into Neurons, Astrocytes,
and Oligodendrocytes
To examine the multipotency of hiNSCs, SOX2/HMGA2-

transduced hiNSCs were differentiated into three main neural

lineages: neurons, astrocytes, and oligodendrocytes. Subse-

quently, lineage-related markers were confirmed using immuno-

cytochemistry. After 10–15 days of neuronal induction, immature

neuronal markers; neuron-specific class III beta-tubulin (TUJ1)

and doublecortin (DCX); and neuronal intermediate filaments,

alpha-internexin (a-internexin) and NF, were detected (Fig-

ure 3A). Clonal analysis was performed to assess the self-

renewal potential of hiNSCs. Neuronal differentiation was

induced, and NF and alpha-internexin were stained in clones at

multiple passages. After 10–25 days of neuronal induction, the

mature neuronal marker, MAP2; the dopaminergic and norad-

renergic neuron marker, tyrosine hydroxylase (TH); and the

cholinergic neuron marker, choline acetyltransferase (ChAT),

were expressed at similar levels compared with H9-NSCs (Fig-

ures 3A and S3A). The astrocytic differentiation of hiNSCs

yielded GFAP-positive cells. Furthermore, cells double positive

for the oligodendrocyte markers, O4 and OLIG2, were detected
Figure 3. Functional Characterization of SOX2/HMGA2-Transduced hD

(A) Immunocytochemical analysis of hDF-iNSCs (SOX2/HMGA2) after differentiatio

and TUJ1), astrocytes (GFAP), and oligodendrocytes (OLIG2 and O4). The scal

dendrocyte generation was measured according to the NF+, GFAP+, and O4+ c

triplicate images.

(B) Representative images of sodium currents and action potential of hiNSC-der

(C) Voltage-clamp recording after blocking sodium currents using lidocaine (0.1%

(D) Voltage-clamp recording of sodium current restoration after washout.

(E) Transplantation of CM-DiI-labeled hiNSCs into the hippocampal region of 4

(GFAP), and oligodendrocytes (MBP) and colocalized with CM-DiI (arrows). Som

scale bars represent 50 mm.

See also Figure S3.

C

after 20–35 days of induction toward oligodendroglial fate.

The various differentiation potentials of SOX2/HMGA2-

transduced hiNSCs were measured by the percentages of NF-,

GFAP-, and O4-positive cells among the total number of nuclei

(Figure 3A).

To evaluate the functionality of the hiNSCs, we examined the

electrophysiological properties. We observed that hiNSCs

generated neurons expressing sodium currents, resulting in mul-

tiple action potentials. The sodium current (or inward current)

and action potentials were inhibited using the sodium channel

blocker lidocaine and restored to normal status after washout

(Figures 3B–3D and S3B–S3D). These data revealed that hiNSCs

aremultipotent, and neurons from hiNSCs showed the functional

membrane properties and activities of normal neurons.

Moreover, to investigate whether hiNSCs could also differen-

tiate into three lineages in vivo, CM-DiI-labeled hiNSCs were

transplanted into the hippocampal region of 4-week-old mice,

followed by immunohistochemical analysis at 3 weeks after

transplantation. As expected, some of the grafted hiNSCs

differentiated into neurons (CM-Dil+TUJ1+), astrocytes (CM-

DiI+GFAP+), or oligodendrocytes (CM-DiI+MBP+) within the brain

(indicated with arrows; Figure 3E). We also observed that a few

CM-DiI fluorescent cells were negative for these lineage markers

(indicated with asterisks), implying that these cells either main-

tained theNSC status or differentiated into cells positive for other

lineage markers, such as PSA-NCAM or DCX (Figures 3E and

S3E). Taken together, these results suggest that transplanted

hiNSCs survive and differentiate into neurons, astrocytes, and

oligodendrocytes in vivo and in vitro.

HMGA2 Facilitates the Efficient Reprogramming
of Various Somatic Cells into hiNSCs
We next assessed whether human umbilical cord blood cells

(hUCB) could be used as a source for iNSC reprogramming,

as, in contrast to fibroblasts, these cells are acquired without

invasive procedures and they retain minimal genetic mutations

(Broxmeyer et al., 2011; Giorgetti et al., 2012). MSC populations

were isolated from hUCBs as previously described (Kim et al.,

2013). Following SOX2/HMGA2 transduction, hUCB-MSCs

formed networks with colonies at the intersections. hUCB-

MSC-derived iNSC colonies appeared at 7–12 days postinfec-

tion, and these cells were immunocytochemically demonstrated

to be iNSCs through positive staining for PAX6 and NESTIN (Fig-

ure 4A). It has been reported that MSCs are positive for CD73

and CD105 but negative for the hematopoietic markers CD34,

CD45, and HLA-DR (Dominici et al., 2006). hUCB-MSC-derived
F-iNSCs In Vitro and In Vivo

n into threemajor cell types: neurons (a-internexin, TH, DCX, ChAT, NF,MAP2,

e bars represent 50 or 10 mm. Quantification of neuron, astrocyte, and oligo-

ells, respectively, over the total number of cells. Error bars denote the SD of

ived neurons recorded using voltage-clamp readings.

).

-week-old mice. hiNSCs were differentiated into neurons (TUJ1), astrocytes

e hiNSCs showed CM-DiI fluorescence without colocalization (asterisks). The
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iNSCs were negative for CD73 and CD105, suggesting that the

cell surface marker signature had changed (Figure S4A). We

observed that HMGA2 expression was significantly higher

in hUCB-MSCs compared with hDFs (Figure S4B). SOX2/

HMGA2-transduced hUCB-MSCs generated 3- to 4-fold more

PAX6/NESTIN-positive colonies compared with SOX2-trans-

duced hUCB-MSCs (Figure S4C). To examine the proliferation

of H9-NSCs and hiNSC lines derived from different cell sources

and combinations of transgenes, we measured the cellular

growth rate. We observed that the cellular growth rates of

H9-NSCs and hiNSCs were not significantly different, indicating

that H9-NSCs and hiNSCs had similar proliferation capacities

(Figure S4D).

To explore whether senescent hUCB-MSCs could be induced

into neural stem cells, we transduced SOX2 alone or in com-

bination with let-7-targeting factors. To this end, senescent

hUCB-MSCs with senescence-associated-b-galactosidase ac-

tivity were transduced with SOX2, SOX2/MYC, SOX2/LIN28,

and SOX2/HMGA2 (Figure 4B). Strikingly, only SOX2/HMGA2

overexpression promoted the formation of hiNSC colonies,

whereas SOX2/MYC and SOX2/LIN28 induced morphological

changes but did not generate hiNSC colonies (Figure 4B).

SOX2/HMGA2 overexpression induced the appearance of two

to four colonies from 1 3 105 senescent hUCB-MSCs (conver-

sion efficiency of 0.004–0.008%) at 3 weeks after infection (Fig-

ure 4C). Senescent hUCB-MSC-derived iNSCs showed high

SOX2, MASH1, BLBP, and NESTIN expression, comparable to

H9-NSCs (Figure S4F).

We next attempted to generate hiNSCs from the CD34+

fraction of hUCB cells through transduction with SOX2/

HMGA2. hUCB CD34+ cells were purified using standard

immunomagnetic selection, showing 84.15% purity (Figure 4D).

For the stimulation of mitotic division, hUCB CD34+ cells were

cultured with cytokines (SCF, Flt3L, TPO, and interleukin-6) for

3 days before retrovirus infection. The cells were subsequently

plated onto feeder cells, and 10–14 days after infection, iNSC

colonies appeared (Figure 4E). hUCB CD34+ cells did not

significantly express NSC or neuron-specific markers, indi-

cating the absence of a neural precursor-like population (Fig-

ure S4E). Immunocytochemical staining and RT-PCR revealed

that hUCB CD34+ iNSCs were established, showing the posi-
Figure 4. Efficient Conversion of Various Somatic Cells with HMGA2

(A) Generation of iNSCs from human-umbilical-cord-blood-derived mesenchym

after virus transduction. hUCB-MSC-derived iNSCs were immunostained wit

250 or 100 mm.

(B) Morphology of replicative senescent hUCB-MSCs transduced with SOX2, SO

hUCB-MSCs were assessed for b-galactosidase activity. Early iNSC clusters we

(C) Quantification of the amount of PAX6- and NESTIN-positive colony forma

transduced replicative senescent hUCB-MSCs. Error bars denote the SD of tripl

(D) Representative dot plot images for the purity of CD34+ cells through a flow c

mononuclear cells. FSC, forward scatter; SSC, side scatter.

(E) Schematic presentation of the strategy for reprogramming hUCB-CD34+ cell

(F) Characterization of hUCB-CD34+ iNSCs (SOX2/HMGA2) using immunocytoc

NESTIN, and SOX2 and a proliferation marker, Ki67. The scale bars represent 50

(G) Immunocytochemical analysis of hUCB-CD34+ iNSCs (SOX2/HMGA2) after d

oligodendrocytes (O4). The scale bars represent 50 mm.

(H) The efficiency of PAX6- and NESTIN-positive colony formation was meas

hUCB-CD34+ cells. Error bars denote the SD of six separate assays. **p < 0.01.

See also Figure S4.

C

tive expression of PAX6, SOX2, Ki67, HMGA2, MASH1, BLBP,

and NESTIN (Figures 4F and S4F). Furthermore, these

hUCB CD34+ iNSCs developed into neurons, astrocytes

and oligodendrocytes (Figure 4G). SOX2 alone was sufficient

to generate hUCB CD34+ iNSCs but with low efficiency.

Coexpressing SOX2 and HMGA2 in hUCB CD34+ cells

increased the frequency of PAX6/NESTIN-positive colony for-

mation 10- to 20-fold (Figure 4H). In summary, efficient direct

reprogramming through the synergistic interaction of SOX2

and HMGA2 facilitates the conversion of various somatic cells

into hiNSCs.

DISCUSSION

The results obtained in the present study provide compelling

evidence that HMGA2/let-7 plays an important role in the direct

reprogramming of hDFs, hMSCs, and hUCB CD34+ cells toward

hiNSCs and in the maintenance of hiNSC self-renewal. Impor-

tantly, the coexpression of SOX2 and HMGA2 significantly

shortened the turnaround time and enhanced reprogramming

efficiency; thus, cord blood cells or senescent cells can be re-

programmed into hiNSCs. Recent studies have shown that

cord-blood-derived CD133+ progenitor cells are converted

into neuronal-like cells (CB-iNCs) through the ectopic expression

of SOX2 and MYC (Giorgetti et al., 2012). However, CB-iNCs

showed limited neuronal differentiation, whereas in the present

study, hUCB CD34+ iNSCs showed trilineage neural differentia-

tion potential.

Senescence has been associated with physiological aging,

and it has been suggested that this process is a barrier to reprog-

ramming, reflecting a loss of replicative potential and upregula-

tion of cell-cycle-dependent kinase inhibitors (Banito and Gil,

2010). We observed that HMGA2 could overcome senes-

cence-induced barriers, potentially providing a clinical strategy

for the production of neural-disease-specific hiNSCs. Because

hiNSCs acquire a rejuvenated state and self-renewal, retained

toxic or pathogenic metabolites in patient-specific hiNSCs can

be diluted, leading to a healthy status more suitable for trans-

plantation (Liu et al., 2012). Therefore, the generation of

patient-specific hiNSCs using this protocol might represent a

powerful tool for elucidating the molecular mechanisms
al stem cells with SOX2/HMGA2. Neurosphere-like colonies appeared 7 days

h PAX6 (red), NESTIN (green), and DAPI (blue). The scale bars represent

X2/MYC, SOX2/LIN28, or SOX2/HMGA2 after 21 days. Replicative senescent

re generated only through SOX2/HMGA2 transduction.

tion in control and SOX2-, SOX2/MYC-, SOX2/LIN28-, and SOX2/HMGA2-

icate assays.

ytometric analysis. The cells were 84.15% positive for CD34 after sorting from

s into hiNSCs.

hemistry. The cells were stained for the NSC-specific markers PAX6, HMGA2,

mm.

ifferentiation into three major cell types: neurons (NF); astrocytes (GFAP); and

ured in control hUCB-CD34+ cells, SOX2-, and SOX2/HMGA2-transduced
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underlying neural diseases and might have implications for

therapeutic applications.

To obtain deeper insight into the role of let-7, known targets of

let-7, MYC, LIN28, and HMGA2 were overexpressed together

with SOX2 (Mayr et al., 2007; Rybak et al., 2008; Sampson

et al., 2007). Although these factors showed a positive regulation

of colony formation, the effect of each factor on proliferation was

inconsistent with colony formation (Figure 2), suggesting that

each factor has a different mechanistic function in reprogram-

ming in addition to the increase in proliferation. This idea is sup-

ported by other reports that MYC, a well-known proliferation

stimulator (Dang, 2012), promotes the transcription of active

genes (Lin et al., 2012; Nie et al., 2012). LIN28 assists iPSC

formation, depending on the acceleration of the division rate

(Hanna et al., 2009). Nonetheless, HMGA2 showed the most-

efficient reprogramming into iNSCs, although it showed the

least-proliferative potential, suggesting that HMGA2 retains far

more mechanistic potential for iNSC reprogramming than other

factors.

HMGA2 can be a potent regulator of higher-order chromatin

compaction during reprogramming. Indeed, the compact chro-

matin structure induced through the linker histone H1 interferes

with the pluripotency of embryonic stem cells (ESCs) and effi-

ciency of iPSC reprogramming (Gaspar-Maia et al., 2009; Zhang

et al., 2012). The conversion of the chromatin structure into a

global open state through competition with the linker histone

H1 might be closely associated with the positive effect of

HMGA2 on hiNSC derivation (Catez et al., 2004; Kishi et al.,

2012). Moreover, we found that HMGA2 facilitates a high self-

renewal and neurogenic capacity in hiNSCs, consistent with

the reports that HMGA2 is a key factor for sustaining early-stage

neural stem cells during development (Kishi et al., 2012; Miller

and Gauthier, 2007).

Furthermore, in the present study, we showed that hUCB-

derived MSCs express substantially higher levels of HMGA2

than hDFs and are more prone to reprogramming into iNSCs

(Figure S4). Upregulated HMGA2 levels might reflect the higher

reprogramming efficiency of MSCs into iPSCs (Sugii et al.,

2010; Sun et al., 2009) or iNSCs compared with fibroblasts.

These reports suggest that HMGA2 is a contributor to SOX2-

mediated iNSC reprogramming through mechanistic regulation.

Thus, it will be worthwhile to determine the mechanism underly-

ing the regulatory role of HMGA2 during reprogramming in future

studies.
EXPERIMENTAL PROCEDURES

Cell Derivation, Generation, and Viral Infection

hUCB-MSCs and hUCB CD34+ cells were isolated as previously described

(Kim et al., 2013). Briefly, hUCB-MSCs were obtained from the umbilical

cord blood (UCB) of 20- to 30-year-old mothers immediately after full-term

delivery; the mothers were informed of the UCB procedure. Blood samples

collected within 24 hr were used. After the UCB samples were mixed with

HetaSep solution (Stem Cell Technology) at a ratio of 5:1 (v/v), the mixture

was incubated at room temperature until the red blood cells were depleted.

The supernatant was carefully collected, and the mononuclear cells were

isolated through a Ficoll (GE Healthcare Life Sciences) density-gradient centri-

fugation at 2,500 rpm for 20 min. The cells were washed twice with PBS and

seeded onto culture dishes containing growth media. The isolation and
450 Cell Reports 10, 441–452, January 20, 2015 ª2015 The Authors
research protocols were approved by the Boramae Hospital Institutional

Review Board (IRB) and the IRB of Seoul National University (1109/001-006).

The commercial cell line hDFs (Life Technologies) were purchased. Retro-

virus was produced as previously described (Yu et al., 2012). To generate

iNSCs, retroviral factors, SOX2, HMGA2, MYC, and LIN28 were transduced

into hDFs, hUCB-MSCs, and hUCB CD34+ cells. After expansion of the cells,

medium was changed to the NSC maintenance medium with growth factors.

NSC-like colonies were collected and transferred to neurosphere culture con-

dition. Cells were cultured as neurosphere and grown as attached cells on

PLO/FN-coated dishes, repeatedly. More detailed information can be found

in the Supplemental Experimental Procedures.

microRNA Microarray Analysis

Total RNA was extracted from the cells using Trizol reagent; 100 ng of total

RNA was labeled and hybridized using the Agilent miRNA Complete Labeling

and Hyb Kit to generate fluorescently labeled miRNAs according to the man-

ufacturer’s instructions. The labeled miRNA signals were scanned using an

Agilent microarray scanner. Raw data (GEO accession number: GSE59301)

were extracted using the software provided by Agilent Feature Extraction Soft-

ware (v11.0.1.1). The raw data for the same gene were then summarized auto-

matically in Agilent feature extraction protocol to generate Gene view file,

which provided expression data for each gene probed on the array.

Array data were filtered by gIsGeneDetected = 1 in all samples (1: detected).

Selected miRNA gtotalGeneSignal value was transformed by logarithm and

normalized by quantile method. The comparative analysis between test

sample and control sample was carried out using fold change.

All data analysis and visualization of differentially expressed genes was

conducted using R statistical language v. 2.15.0.

Quantitative Real-Time PCR

Total RNAwas extracted from cells using TRIzol reagent according to theman-

ufacturer’s instructions. cDNA was synthesized using the Superscript III First-

Strand Synthesis System (Invitrogen). Real-time PCR was performed using

SYBR Green PCR Master Mix (Applied Biosystems). ABI 7300 sequence

detection system with supplied software (Applied Biosystems) was used to

quantify gene expression. Each gene was normalized to GAPDH as a house-

keeping control, and gene expression levels were measured in at least three

independent analyses. Primers used for qRT-PCR are provided in Table S1.

In Vitro Differentiation

For neural differentiation, iNSCs were seeded at a density of 1,000 cells/well

onto poly-L-ornithine/fibronectin-coated coverslips in 24-well plates contain-

ing iNSC maintenance medium (ReNcell NSC maintenance media; Millipore).

After 24 hr, the medium was changed to Neurocult (Stem Cell Technology)

for random differentiation. After 1 week of differentiation in Neurocult, the

medium was changed for the induction of three specific lineages (neuron,

astrocyte, and oligodendrocyte). The neuronal induction medium contained

a 1:1 mixture of Neurobasal medium (GIBCO BRL) and Dulbecco’s modified

Eagle’s medium (DMEM)/F12 medium (GIBCO BRL) supplemented with B27

(GIBCO BRL), Gmax (GIBCO BRL), retinoic acid (RA) (Sigma), ascorbic acid

(Sigma), brain-derived neurotrophic factor (Peprotech), glial-cell-line-derived

neurotrophic factor (Peprotech), and forskolin (Sigma). The astrocyte induction

medium contained DMEM (high glucose) supplemented with N2 (GIBCOBRL),

Gmax, and 1% fetal bovine serum. Two types of oligodendrocyte induction

media were used as previously described (Hu et al., 2009). DMEM/F12 supple-

mented with N2, MEM nonessential amino acids solution (MEMNEAA)(GIBCO

BRL), heparin (Sigma), RA, sonic hedgehog (Peprotech), and B27 was used for

2 weeks and was subsequently changed to DMEM/F12 supplemented with

N2, B27, MEM NEAA, T3, cyclic AMP (Sigma), platelet-derived growth factor

(Peprotech), insulin-like growth factor (R&D Systems), and neurotrophin-3

(Sigma) for 2 weeks.

Patch-Clamp Reading

Whole-cell patch-clamp recordings in neurons derived from iNSCs were per-

formed using an EPC 10 USB amplifier (HEKA Electronik) at room temperature

(22�C ± 1�C). The recording chamber was filled with continuously flowing

Tyrode solution (flow rate: 10 ml/min). Patch electrodes were generated



from borosilicate glass capillaries using a PC-10 puller (Narishige Company).

The resistance of the electrode was 4–7 MU when filled with pipette solution.

The data were acquired and analyzed using the Pulse program version 8.67

(HEKA Electronik) and Origin 6.1 software (MicroCal). The current was filtered

at 3 kHz using a four-pole Bessels filter and digitized at 10 kHz. Tyrode solution

contained 143 mM NaCl, 5.4 mM KCl, 0.5 mMMgCl2, 1.8 mM CaCl2, 0.5 mM

NaHPO4, 10 mM glucose, and 5 mM 4-(2-hydroxyethyl)-1-piperazineethane-

sulfonic acid (HEPES), and the pH was adjusted to 7.5 with NaOH. The pipette

solution contained 150 mM KCl, 1.0 mM MgCl2, 10 mM HEPES, 5 mM EGTA,

and 2 mM Mg-ATP, and the pH was adjusted to 7.2 with NaOH. Lidocaine

(0.1%) was used to block the Na current.

Transplantation of the hiNSCs into Mice

The hiNSCs were detached from culture dishes by using Accutase. The

hiNSCs were labeled and suspended in PBS. Balb/c mice were obtained

from Jackson Laboratory. Mice were group housed in the animal facility of

Seoul National University. All experiments were approved by and followed

the regulations of the Institute of Laboratory Animals Resources (SNU-

120821-5). Four-week-old mice were anesthetized, and labeled cells were

transplanted into hippocampal regions. After 3 weeks, mice were sacrificed

and brain was isolated. After cryosectioning, immunohistochemistry was

performed to trace the transplanted hiNSCs and differentiated hiNSCs that

integrated into mice brain. More detailed information can be found in the

Supplemental Experimental Procedures.

ACCESSION NUMBERS

The human miRNA microarray data are available in the Gene Expression

Omnibus database (http://www.ncbi.nlm.nih.gov/gds) under the accession

number GSE59301.
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M.J., Zaehres, H., Wu, G., Frank, S., Moritz, S., et al. (2012). Direct reprogram-

ming of fibroblasts into neural stem cells by defined factors. Cell Stem Cell 10,

465–472.

Hanna, J., Saha, K., Pando, B., van Zon, J., Lengner, C.J., Creyghton, M.P.,

van Oudenaarden, A., and Jaenisch, R. (2009). Direct cell reprogramming is

a stochastic process amenable to acceleration. Nature 462, 595–601.

Hu, B.Y., Du, Z.W., and Zhang, S.C. (2009). Differentiation of human oligoden-

drocytes from pluripotent stem cells. Nat. Protoc. 4, 1614–1622.

Kawahara, H., Imai, T., and Okano, H. (2012). MicroRNAs in neural stem cells

and neurogenesis. Front. Neurosci. 6, 30.

Kim, H.S., Shin, T.H., Lee, B.C., Yu, K.R., Seo, Y., Lee, S., Seo, M.S., Hong,

I.S., Choi, S.W., Seo, K.W., et al. (2013). Human umbilical cord blood mesen-

chymal stem cells reduce colitis inmice by activating NOD2 signaling to COX2.

Gastroenterology 145, 1392–1403.

Kishi, Y., Fujii, Y., Hirabayashi, Y., and Gotoh, Y. (2012). HMGA regulates the

global chromatin state and neurogenic potential in neocortical precursor cells.

Nat. Neurosci. 15, 1127–1133.

Lin, C.Y., Lovén, J., Rahl, P.B., Paranal, R.M., Burge, C.B., Bradner, J.E., Lee,

T.I., and Young, R.A. (2012). Transcriptional amplification in tumor cells with

elevated c-Myc. Cell 151, 56–67.

Liu, G.H., Yi, F., Suzuki, K., Qu, J., and Izpisua Belmonte, J.C. (2012). Induced

neural stem cells: a new tool for studying neural development and neurological

disorders. Cell Res. 22, 1087–1091.

Mayr, C., Hemann, M.T., and Bartel, D.P. (2007). Disrupting the pairing

between let-7 and Hmga2 enhances oncogenic transformation. Science

315, 1576–1579.

Miller, F.D., and Gauthier, A.S. (2007). Timing is everything: making neurons

versus glia in the developing cortex. Neuron 54, 357–369.

Nie, Z., Hu, G., Wei, G., Cui, K., Yamane, A., Resch, W., Wang, R., Green, D.R.,

Tessarollo, L., Casellas, R., et al. (2012). c-Myc is a universal amplifier of

expressed genes in lymphocytes and embryonic stem cells. Cell 151, 68–79.

Nishino, J., Kim, I., Chada, K., and Morrison, S.J. (2008). Hmga2 promotes

neural stem cell self-renewal in young but not old mice by reducing

p16Ink4a and p19Arf Expression. Cell 135, 227–239.
ell Reports 10, 441–452, January 20, 2015 ª2015 The Authors 451

http://www.ncbi.nlm.nih.gov/gds
http://dx.doi.org/10.1016/j.celrep.2014.12.038
http://dx.doi.org/10.1016/j.celrep.2014.12.038


Reeves, R. (2001). Molecular biology of HMGA proteins: hubs of nuclear func-

tion. Gene 277, 63–81.

Ring, K.L., Tong, L.M., Balestra, M.E., Javier, R., Andrews-Zwilling, Y., Li, G.,

Walker, D., Zhang, W.R., Kreitzer, A.C., and Huang, Y. (2012). Direct reprog-

ramming of mouse and human fibroblasts into multipotent neural stem cells

with a single factor. Cell Stem Cell 11, 100–109.

Rybak, A., Fuchs, H., Smirnova, L., Brandt, C., Pohl, E.E., Nitsch, R., andWulc-

zyn, F.G. (2008). A feedback loop comprising lin-28 and let-7 controls pre-let-7

maturation during neural stem-cell commitment. Nat. Cell Biol. 10, 987–993.

Sampson, V.B., Rong, N.H., Han, J., Yang, Q., Aris, V., Soteropoulos, P.,

Petrelli, N.J., Dunn, S.P., and Krueger, L.J. (2007). MicroRNA let-7a down-

regulates MYC and reverts MYC-induced growth in Burkitt lymphoma cells.

Cancer Res. 67, 9762–9770.

Sugii, S., Kida, Y., Kawamura, T., Suzuki, J., Vassena, R., Yin, Y.Q., Lutz, M.K.,
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