METHODS: A decision analysis model was built on efficacy measures obtained from published clinical trials. Local direct costs were estimated from a payer perspective using 2009 listed rates of drugs, general ward daily stay and intensive care daily stay (with and without mechanical ventilation). The used exchange rate was Ca$1.68 per US$. (January 2009) analysis. ICER = incremental cost-effectiveness ratio. The time horizon was defined as a “censored discharge” time (first to happen among death, discharge or stay until day 35 after therapy finishing). Effectiveness was measured in terms of clinical cure rates. A multivariate probabilistic sensitivity analysis was done through 1000 Monte Carlo simulations. An additional random was done including costs associated to the risk of pseudo mushroom transmission and duremon. These costs were estimated through a Markov model based on the daily probability of transmission from an initial pseudo-momona state to contaminated or infected states with sensitive and resistant pseudomona strains. RESULTS:Average VAP direct costs were $20,520 for micafungin, US$ 10,190 for meropenem and US$ 19,650 for doremon. Costs differences were mainly related to differences in the ICU stay, particularly on mechanical ventilation (13, 13 and 10 days, respectively). Pseudo-momona transmission-related costs were US$ 333, US$ 332 and US$ 191, respectively. Meropenem was the most cost-effective alternative compared to other carbapenem as imipenem and meropenem. This advantage is related to its effect diminishing the intensive care unit stay due to a reduction in time on mechanical ventilation.

PIN16 COST-EFFECTIVE ANALYSIS OF MICAFUNGIN VERSUS LIPOSOMAL AMPHOTERICIN B IN THE TREATMENT OF PAEDIATRIC PATIENTS WITH SYSTEMIC CANDIDA INFECTIONS
Odeyemi A1, Hart WM1, Odeyemi II2, Musingarimi P3
1Ecolite Consulting Ltd., London, UK, 2Astellas Pharma Europe Ltd., Middlesex, UK, 3Astellas Pharma USA Inc., Statiest, UK
OBJECTIVES: To evaluate the cost-effectiveness of micafungin versus liposomal amphotericin B (L-AMB) for first-line treatment of invasive candidiasis and candidaei in paediatric patients in the intensive care unit (ICU) setting. METHODS: The economic model, designed to simulate a 2-week disease-management period from the perspective of the UK National Health Service, used data from a paediatric sub-study of a larger, double-blind, randomised trial of micafungin (2 mg/kg) versus L-AMB (3 mg/kg). Clinical outcomes included treatment success rates, mortality, treatment duration, dosing, discontinuations, and adverse events (AEs). Medical costs included acquisition of study drugs, treating drug-related AEs, and hospital length of stays. RESULTS: Overall treatment success rates were similar, 73% (35/48) and 76% (38/43) for micafungin and L-AMB arms, respectively. Treatment success rates among AEs were lower with micafungin, 4% (2/52) compared to 17% (9/54), for L-AMB. Average treatment costs were lower ($19,573) in the micafungin versus L-AMB ($22,913) groups; the vast majority of these costs were associated with hospitalisation ($18,466 and $22,073, respectively), driven by difference in ICU stay. Sensitivity analyses showed the results were robustly consistent over a wide range of variables but sensitive to length and cost of stay in a paediatric ICU and probability of survival. CONCLUSIONS: Micafungin is a cost-effective treatment option compared to L-AMB in the management of invasive candidiasis and candidaei in paediatric patients adherence associated with observed therapy and use of MEMS. This economic analysis can serve as a guide for clinicians and policymakers in determining cost-effective treatment strategies for patients with HIV.

PIN17 COST-EFFECTIVE ANALYSIS OF BEHAVIORAL INTERVENTIONS UTILIZING MEMS FOR ANTIRETROVIRAL MEDICATION ADHERENCE
Rau R1, Malewski D2, Thomson N3, Bardaris J4, Goggin K2
1University of Missouri Kansas City School of Pharmacy, Kansas City, MO, USA, 2University of Missouri Kansas City, Kansas City, MO, USA
OBJECTIVES: This study conducted cost-effective analysis of compliance-enhancing behavioral interventions for highly active antiretroviral therapy (HAART) patients. Behavioral interventions, especially concerning costs and adherence associated with observed therapy and use of medication event monitoring systems (MEMS), are currently poorly covered in the existing literature. METHODS: Cost-effective analysis of Project MOTIV8 (R01MH68197) was conducted on 204 HIV+ patients in Kansas City from 2004 to 2008. The study randomized patients into one of three arms: control, enhanced counseling (EC), and EC plus observed therapy (OT). This study identified and analyzed time, direct and indirect costs associated with conducting randomized clinical trials (RCT) of motivational interviewing for adherence interventions to enhance HAART adherence. Adherence cutoff was set at 80% compliance to HAART. The quality adjusted life values were adapted from previous published literature and public sources. No herd effects were considered. For a season’s intervention, ILI cases in that year and lifetime costs and QALYs lost were calculated for each policy and used to derive incremental cost-effectiveness ratios for the overall US population. One-way and probabilistic sensitivity analyses were performed using Monte Carlo Simulation. RESULTS: Base-case analysis, current policy led to 63 million ILI cases per year, resulting in loss of 8.87 million QALYs and costs of $113 billion (both discounted at 3% annually; costs in 2008 USD), while universal vaccination resulted in 61 million cases, $82,000 QALYs lost, and $112 billion in costs. Universal vaccination dominated current recommendations, costing $3 billion less and averting 2 million cases, resulting in 31,000 fewer QALYs lost. Results were most sensitive to the percentage of unvaccinated adults developing ILI and coverage assumptions with universal policy. PSA indicated considerable uncertainty of results, with universal coverage was dominant in 54%, and dominated in 20%, of iterations. CONCLUSIONS: Our results indicate that a recommendation of universal vaccination in the US is likely to result in lower costs and impacts in the scenario compared with current recommendation, and that this likelihood depends on seasonal attack rates and coverage assumptions.

PIN18 A PHARMACOECONOMICS ANALYSIS OF ERTAPENEM VS SEVERAL ANTIBIOTICS USED FOR THE TREATMENT OF COMMUNITY-ACQUIRED INTRA-ABDOMINAL INFECTIONS AT THE SOCIAL SECURITY MEXICAN INSTITUTE
Canales-Muñoz JL4, Balderas-Peña CA4, Aranza-Agular JL1, Canales-Muñoz JL1, Balderas-Peña CA1, Sat-Muñoz D2
1Instituto Mexicano del Seguro Social, Delegación Cuauhtémoc, Distrito Federal, México, 2Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, México, 3Social Security Mexican Institute, Mexico, Mexico, 4Social Security Mexican Institute, Guadalajara, Jalisco, México
OBJECTIVES: Community-acquired intra-abdominal infections are serious conditions and expensive events. The purpose of this study was to develop an economic model in order to evaluate the cost-effectiveness ratios between etrapenem and the patterns of antibiotics used routinely in the treatment of community-acquired intra-abdominal infections at the Social Security Mexican Institute (IMSS) from the health care payer’s perspective. METHODS: A cost-effectiveness analysis was developed using a Bayesian decision-tree model. The model simulates costs and effectiveness outcomes in a 4-week time horizon. The comparators were: etrapenem (1 daily injection of 1 g high-flow IV), amoxicillin (1g every 12 h), metronidazole (500 mg every 8 h) / cefotaxime (1g every 8 h) / cefepime (1g every 12 h), metronidazole (500 mg every 8 h) / ceftazidime (1g every 8 h) / cefotaxime (1g every 12 h). Resource use and cost data were obtained from clinical records (n = 53) of patients being treated at second-level hospitals at IMSS. Effectiveness measures were the percentage of clinical success without adverse events (AE) at the end of the follow-up period. Effectiveness data and transition probabilities were taken from international pharmacoeconomics guidelines. One-way and probabilistic sensitivity analyses were performed using Monte Carlo Simulation second-order approach. RESULTS: Patients who received etrapenem experienced 74.4% of clinical success without AE, followed by metronidazole/amikacin (52.6%) and metronidazole /ciprofloxacin/cefotaxime (40.6%). Mean cost per patient was lower for etrapenem (US$62,93.98) followed by metronidazole/amikacin (US$6,830.78) and metronidazole/cefotaxime (US$8,511.03). Regarding the ICER’s, etrapenem resulted the dominant therapy. Acceptability curves showed etrapenem was the most cost-effective therapy analysis, ICER = 100% independently of IMSS willingness to pay. CONCLUSIONS: The results showed that in Mexico, etrapenem was the most cost-effective antibiotic therapy for community-acquired intra-abdominal infections. These results should be taken into account by Mexican decision makers.