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1. INTRODUCTION 

The autonomous system 

dX 
x=A-(B+1)X+X2Y, 

dY -- 
dt 

=BX-X2Y 

proposed as the chemical kinetic description of a model biochemical reaction, 
has been the subject of several recent studies [l, 2, 3, 4; see 3 and 5 for a deriva- 
tion and discussion of these equations]; X, Y represent the concentrations of 
two intermediate product reactants, A, B constant (initial) concentrations, and t 

the time. 
The only’singular point of (1) is at X,, = A, Y, = B/A. One finds, after a 

standard calculation, that the singular point is unstable, but not a saddle point 
when B > A2 + 1. We thus consider only the first quadrant Q zf {X > 0, 
Y > 0} in the X-Y plane, and take A > 0, B > A2 + 1 throughout. 

We transform (1) to a system that has been investigated in considerable 
detail [6, 71. We show, for the first time to our knowledge, and as an immediate 
consequence of this earlier work, that (1) h as a unique stable limit cycle, when 
B > A2 + 1. Furthermore, the amplitude, period, and “wave shape” can also be 
given readily when B > 1 [7], thereby circumventing the elaborate asymptotic 
calculations of previous studies [2,4]. 
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2. THE TRANSFORMED SYSTEM 

Let 

A 
x= li(B-1)x 

and 

t = (B - lP2 T) 
A 

then (1) becomes, on eliminating Y, 

n+p 2x-11 
[ 

1 1 X 

pL2(x + Al2 
$!+-...--= 

x+x 
0, (2) 

where p = (B - 1)“12/A, )\ = l/(B - 1) and the dot indicates differentiation 
with respect to T. 

Equation (2) is a special case of 

2 + pf(x)* + g(x) = 0 (3) 

which, in turn, is equivalent to the first order Lienard system 

* = p[y - @)I, 

9 = --m/P 

with 

1 1 
F(x) = x2 - x + $ [$ - -1 = IS 

x+h o f (4 ds 

(4) 

g(x) = 2- 
3S-h 

for (2). 
The above functions satisfy the conditions listed in [6]; thus the proof given 

there of uniqueness and stability of the priodic orbit applies. One concludes that 
(1) has a unique stable periodic solution when B > A2 + 1. 

The values A = 8.2, B = 77 have been used in previous numerical calcula- 
tions [2,4] and we adopt them. One gets that p = 80.8 and X = 0.01316. A phase 
portrait of (4) using these values, is sketched in Fig. 1, which also portrays 
the limit cycle. 

Let the zeros of F’(x) = f(x) b e d enoted by a and b, as shown in Fig. 1, 
and let 01, p be defined by F(a) = F(b), F(p) = P(a), respectively. 
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-,y=Fix) 

b 

FIG. 1. FIG. 1. (a) A phase portrait of the solutions of (a) A phase portrait of the solutions of Eq. (4) is given in the x-y plane. The Eq. (4) is given in the x-y plane. The 
unique stable limit cycle is shown. The quantities unique stable limit cycle is shown. The quantities a, LI, b, b are defined in the text. The a, LI, b, b are defined in the text. The 
drawing is not to scale. (b) A plot of y = F(x) in drawing is not to scale. (b) A plot of y = F(x) in the second and third quadrants of the the second and third quadrants of the 
x-y plane is shown. The drawing is not to scale. x-y plane is shown. The drawing is not to scale. 

Expressions for the amplitude and period are, when TV > 1, [7]: 

Negative amplitude = 01 + ‘~~~~’ 
[ 

2iw 

-f’(b) 1 li3 @,3 + . . . . 

Period = --I-L 
s 

“f(x),- “f(x), 
(I g(x) p 8 ‘id4 s 

+ 2*33811 I[g(n)2f'(o) T3 + [ g(b);yb) r3 
+A&f?$9]1’3+&[-~]l’3~p-l:lt...* 

Using the above functions and numerical values one finds that a = -0.0008, 
01 = -0.01258, b = 0.4997, and /3 = 0.9884. 

Thus 

xrnin = Negative amplitude 5 -0.01258 

Period A 24.00. 

Converting to the original variables, one has 

X 
A 

max = 1 + (B - 1) Xmin 
and AT = (B - lY’247 

A 

or 

X max 2 186.7, AT = 25.5, 

in excellent agreement with the estimates given in [2,4]. 
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We observe, finally, that other biochemical models, or any autonomous system 
transformable to (4) and satisfying the conditions on F and g given in [6], may 
be treated similarly. A sketch of one such possibility is depicted in Fig. 2. 

FIG. 2. A possible set of nested limit cycles, the solid curves stable, and the dotted 
curve unstable, is shown in the x-y plane. 
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