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In the flavor basis there are seven cases of two vanishing minors in the neutrino mass matrix which can
accommodate the present neutrino oscillation data including the recent T2K data. It is found that two of
these cases, namely B5 and B6 predict near maximal atmospheric neutrino mixing in the limit of large
effective neutrino mass. This feature remains irrespective of the values of solar and reactor mixing angles.
A non-zero reactor mixing angle is naturally accommodated in these textures.

© 2011 Elsevier B.V. Open access under CC BY license.

1. Introduction

During the past decade there has been considerable experimental development in the determination of neutrino masses and mix-
ings [1]. Recently, T2K experiment [2] has given unambiguous hints of a relatively large 1–3 mixing angle. In this light, it is natural to look
for models which, naturally, accommodate a non-zero value of reactor mixing angle while the atmospheric mixing angle remains near its
maximal value. Recently many papers have appeared which reproduce the relatively large value of the reactor mixing angle [3].

There are mainly two approaches to explain neutrino mixings:

(1) Mass independent textures [4] which lead to mixing matrices independent of the eigenvalues. The most celebrated example of this
category is the tribimaximal (TBM) [5] scenario which has been derived from family symmetries and predicts a vanishing 1–3 mixing
angle θ13 = 0, maximal 2–3 mixing angle θ23 = π/4 and 1–2 mixing angle θ12 = sin−1(1/

√
3). Non-zero θ13 can be accommodated in

TBM and other similar models by considering deviations from symmetry.
(2) Mass dependent textures which induce relations between mixing matrix elements and mass eigenvalues. Such textures naturally

accommodate a non-zero θ13. Some examples of these are zero textures [6], vanishing minors [7,8], hybrid textures [9]. Zero textures
have been particularly successful in explaining both the quark and the lepton masses and mixings.

In this work we identify a class of mass dependent textures which supplemented with the assumption of a large value of effective
neutrino mass Mee naturally predict near maximal θ23 and non-zero θ13. Recently, it was shown by Grimus et al. [10] that near maximal
atmospheric mixing is predicted for classes B3 and B4 of two zero textures supplemented with the assumption of quasidegeneracy. We
consider two vanishing minors of the neutrino mass matrix in the flavor basis together with the assumption of large Mee . This assumption
is well motivated by the extensive search for this parameter in the ongoing experiments. We found that the two cases of two vanishing
minors viz. B5 and B6 (Table 1) in the limit of large Mee predict near maximal atmospheric mixing and this property holds irrespective of
the values of solar and reactor mixing angles. The seesaw mechanism [11] is regarded as the prime candidate for understanding the scale
of neutrino masses. In the framework of type-I seesaw mechanism, the effective Majorana mass matrix Mν is given by

Mν = −MD M−1
R MT

D (1)

where MD is the Dirac neutrino mass matrix and MR is the right-handed Majorana mass matrix. In the framework of type-I seesaw
mechanism Mν is a quantity derived from MD and MR . Therefore, zeros of MD and MR have a deeper theoretical meaning. In a basis
where MD is diagonal, the zeros of MR propagate as zero minors in Mν .

* Corresponding author.
E-mail addresses: dev5703@yahoo.com (S. Dev), shiroberts_1980@yahoo.co.in (S. Gupta), gautamrrg@gmail.com (R.R. Gautam), lalsingh96@yahoo.com (L. Singh).
0370-2693/© 2011 Elsevier B.V. Open access under CC BY license.

doi:10.1016/j.physletb.2011.11.005

https://core.ac.uk/display/82437374?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.physletb.2011.11.005
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/physletb
mailto:dev5703@yahoo.com
mailto:shiroberts_1980@yahoo.co.in
mailto:gautamrrg@gmail.com
mailto:lalsingh96@yahoo.com
http://dx.doi.org/10.1016/j.physletb.2011.11.005
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


S. Dev et al. / Physics Letters B 706 (2011) 168–176 169
Table 1
Experimentally allowed classes of two zero mi-
nors, here Cij denotes the zero minor corre-
sponding to the (i j)th element of Mν .

Class Zero minors

A1 C3,3, C3,2

A2 C2,2, C3,2

B3 C3,3, C3,1

B4 C2,2, C2,1

B5 C3,3, C1,2

B6 C2,2, C1,3

D C3,3, C2,2

2. Symmetry realization

In the basis where the charged lepton mass matrix is diagonal, there are fifteen possible two vanishing minors in Mν . Out of these
fifteen only seven patterns (Table 1) viz. A1, A2, B3, B4, B5, B6 and D can accommodate the neutrino oscillation data. Of all the allowed
two zero minors in the neutrino mass matrix only three cases B5, B6 and D provide non-trivial zero minors, all other cases reduce to
two zero textures when confronted with the neutrino oscillation data. We work in a basis where MD is diagonal (MD = diag(x, y, z)), and
the neutrino mixing arises solely from MR . In this basis, a zero entry in MR propagates as a vanishing minor in the effective neutrino
mass matrix Mν . Here, we focus on B5 and B6 class of vanishing minors. To obtain the classes B5 and B6 of neutrino mass matrices,
we extend the Standard Model (SM) by adding three right-handed neutrino singlets νRi and one scalar singlet χ . In order to enable the
seesaw mechanism for suppressing the neutrino masses MR must have the following structures for B5 and B6:

MR(B5) =
(a 0 c

0 d e
c e 0

)
, MR(B6) =

( a b 0
b 0 e
0 e f

)
(2)

leading to the following effective neutrino mass matrices through the seesaw mechanism

Mν(B5) = 1

c2d + ae2

⎛
⎝ e2x2 −cexy cdxz

−cexy c2 y2 aeyz

cdxz aeyz −adz2

⎞
⎠ , Mν(B6) = 1

b2 f + ae2

⎛
⎝ e2x2 bf xy −bexz

bf xy −af y2 aeyz

−bexz aeyz b2z2

⎞
⎠ . (3)

A general procedure for enforcing zero textures in arbitrary entries of the fermion mass matrices using abelian family symmetries has
been outlined in [12]. The symmetry realization of all the allowed one zero and two zero textures was recently presented in [13]. For the
symmetry realization of B5 and B6 textures of two zero minors we consider a small cyclic group Z3 which corresponds to the minimal
group since Z2 leads to a non-diagonal charged lepton and Dirac neutrino mass matrix. Under Z3 the SM Higgs doublet remains invariant
and the leptonic fields are assumed to transform as:

DL1 → DL1 , lR1 → lR1, νR1 → νR1 ,

DL2 → ωDL2 , lR2 → ωlR2, νR2 → ωνR2 ,

DL3 → ω2 DL3 , lR3 → ω2lR3, νR3 → ω2νR3 , (4)

where ω = ei2π/3. Hence the bilinears D L j lRk and D L j νRk , relevant for Ml and MD transform as

DL j lRk ∼ DL j νRk ∼
( 1 ω ω2

ω2 1 ω
ω ω2 1

)
. (5)

The SM Higgs doublet remains invariant under Z3 leading to diagonal Ml and MD . The bilinear νR j νRk relevant for MR transforms as

νR j νRk ∼
( 1 ω ω2

ω ω2 1
ω2 1 ω

)
. (6)

We assume a scalar singlet χ transforming as χ → ωχ for class B5 and χ → ω2χ for class B6 which leads to the following Z3
invariant Yukawa Lagrangians for classes B5 and B6:

−L(B5) = Y l
11 DL1φlR1 + Y l

22 DL2φlR2 + Y l
33 DL3φlR3 + Y D

11 DL1 φ̃νR1 + Y D
22 DL2 φ̃νR2

+ Y D
33 DL3 φ̃νR3 + Y M

13

2
νT

R1
C−1νR3χ + Y M

22

2
νT

R2
C−1νR2χ + MM

11

2
νT

R1
C−1νR1 + MM

23

2
νT

R2
C−1νR3 + H.c. (7)

−L(B6) = Y l
11 DL1φlR1 + Y l

22 DL2φlR2 + Y l
33 DL3φlR3 + Y D

11 DL1 φ̃νR1 + Y D
22 DL2 φ̃νR2

+ Y D
33 DL3 φ̃νR3 + Y M

12 νT
R1

C−1νR2χ + Y M
33 νT

R3
C−1νR3χ + MM

11 νT
R1

C−1νR1 + MM
23 νT

R2
C−1νR3 + H.c. (8)
2 2 2 2
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where φ̃ = iτ2φ
∗ . Next, we show how a large effective neutrino mass can arise in such a model. We note that MR contains two types

of mass terms viz. (1) Bare mass term which does not need a scalar singlet and is invariant by itself. (2) Terms arising from Yukawa
couplings to χ . The scale of latter is restricted by the scale of Z3 breaking while there is no such restriction on the bare mass term which
can have a higher mass scale. It can be seen from Eq. (3) that the ee and μτ entries of Mν have contributions to their numerators from
ee and μτ entries of MR which arise from the bare mass term. We assume the mass eigenvalues of MD to have same order of magnitude
which leads to a large value of ee and μτ entries of Mν while the other elements of Mν are suppressed, thus, leading to a large value
of Mee . Since these textures are realized at the seesaw scale, the Renormalization Group (RG) evolution of the parameters of Mν from
the seesaw scale to the electroweak scale needs to be taken into account. It is well known that the RG effects are most prominent for
the quasidegenerate mass spectrum which is precisely the case here due to the assumption of large Mee . However, it is also known that
zero minors in Mν , at a given energy scale, remain zero at any other energy scale at the one loop level [7]. This is because the matrices
at any two energy scales μ1 and μ2 are related by Mν(μ1) = I Mν(μ2)I , where I is diagonal, positive and non-singular. The operation of
diagonal matrices from left and right on Mν does not alter the zero minors of Mν leading to zero minors in Mν at any other scale.

3. Formalism

We reconstruct the neutrino mass matrix in the flavor basis assuming neutrinos to be Majorana particles. In this basis, a complex
symmetric neutrino mass matrix can be diagonalized by a unitary matrix V as

Mν = V Mdiag
ν V T (9)

where Mdiag
ν = diag(m1,m2,m3). The matrix Mν can be parameterized in terms of three neutrino masses (m1,m2,m3), three neutrino

mixing angles (θ12, θ23, θ13) and the Dirac-type CP-violating phase δ. The two additional phases α and β appear if neutrinos are Majorana
particles. The matrix

V = U P (10)

where [14]

U =
( c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13
s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13

)
(11)

with si j = sin θi j and ci j = cos θi j and

P =
(1 0 0

0 eiα 0
0 0 ei(β+δ)

)

is the diagonal phase matrix with the two Majorana-type CP-violating phases α, β and Dirac-type CP-violating phase δ. The matrix V is
called the neutrino mixing matrix or the Pontecorvo–Maki–Nakagawa–Sakata (PMNS) matrix [15]. Using Eqs. (9) and (10), the neutrino
mass matrix can be written as

Mν = U P Mdiag
ν P T U T . (12)

The CP violation in neutrino oscillation experiments can be described through a rephasing invariant quantity, JCP [16] with JCP =
Im(Ue1Uμ2U∗

e2U∗
μ1). In the above parametrization, JCP is given by

JCP = s12s23s13c12c23c2
13 sin δ. (13)

The simultaneous existence of two vanishing minors in the neutrino mass matrix implies

Mν(pq)Mν(rs) − Mν(tu)Mν(v w) = 0, (14)

Mν(p′q′)Mν(r′s′) − Mν(t′u′)Mν(v ′ w ′) = 0. (15)

These two conditions yield two complex equations viz.

3∑
l,k=1

(V pl Vql Vrk V sk − Vtl V ul V vk V wk)mlmk = 0, (16)

3∑
l,k=1

(V p′l Vq′l Vr′k V s′k − Vt′l V u′l V v ′k V w ′k)mlmk = 0. (17)

The above equations can be rewritten as

m1m2 A3e2iα + m2m3 A1e2i(α+β+δ) + m3m1 A2e2i(β+δ) = 0, (18)

m1m2 B3e2iα + m2m3 B1e2i(α+β+δ) + m3m1 B2e2i(β+δ) = 0, (19)

where
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Ah = (U plUqlUrkUsk − UtlUulU vkU wk) + (l ↔ k),

Bh = (U p′lUq′lUr′kUs′k − Ut′lUu′lU v ′kU w ′k) + (l ↔ k), (20)

with (h, l,k) as the cyclic permutation of (1,2,3). These two complex equations (18) and (19) involve nine physical parameters m1, m2,
m3, θ12, θ23, θ13 and three CP-violating phases α, β and δ. The masses m2 and m3 can be calculated from the mass-squared differences
�m2

12 and |�m2
23| using the relations

m2 =
√

m2
1 + �m2

12, m3 =
√

m2
2 + |�m2

23| (21)

where m2 > m3 for Inverted Spectrum (IS) and m2 < m3 for Normal Spectrum (NS). Using the experimental inputs of the two mass-squared
differences and the three mixing angles we can constrain the other parameters. Thus, in the two complex equations (18) and (19) we are
left with four unknown parameters m1, α, β and δ which are, obviously, correlated. Simultaneously solving Eqs. (18) and (19) for the two
mass ratios, we obtain

m1

m2
e−2iα = A3 B1 − A1 B3

A2 B3 − A3 B2
(22)

and

m1

m3
e−2iβ = A2 B1 − A1 B2

A3 B2 − A2 B3
e2iδ. (23)

The mass ratios for class B5 to first order in s13 are given by

m1

m2
e−2iα ≈ 1 + s13s23(c2

23e−iδ + s2
23eiδ)

c12c3
23s12

(24)

and

m1

m3
e−2iβ ≈ − s2

23e2iδ

c2
23

− c12s13s3
23(c2

23e−iδ + s2
23eiδ)e2iδ

c5
23s12

. (25)

The mass ratios for class B6 to first order in s13 are

m1

m2
e−2iα ≈ 1 − s13c23(c2

23eiδ + s2
23e−iδ)

c12s3
23s12

(26)

and

m1

m3
e−2iβ ≈ −c2

23e2iδ

s2
23

+ c12s13c3
23(c2

23eiδ + s2
23e−iδ)e2iδ

s5
23s12

. (27)

In the case of zero textures there exists a permutation symmetry between different patterns [17]. Similarly, there exists a permutation
symmetry between patterns B5 and B6 of two zero minors which corresponds to the permutation in the 2–3 rows and 2–3 columns of
Mν . The corresponding permutation matrix is given by

P23 =
( 1 0 0

0 0 1
0 1 0

)
. (28)

The right-handed Majorana mass matrix MR for class B6 can be obtained from MR for class B5 by the transformation

M B6
R = P23M B5

R P T
23 (29)

which after the seesaw gives

M B6
ν = P23M B5

ν P T
23. (30)

This leads to the following relations between the parameters:

θ
B6
12 = θ

B5
12 , θ

B6
13 = θ

B5
13 , θ

B6
23 = π

2
− θ

B5
23 , δB6 = δB5 − π. (31)

The magnitude of the two mass ratios in Eqs. (22), (23), is given by

ρ =
∣∣∣∣m1

m3
e−2iβ

∣∣∣∣, (32)

σ =
∣∣∣∣m1

m2
e−2iα

∣∣∣∣ (33)

while the CP-violating Majorana phases α and β are given by
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Fig. 1. Correlation plots for class B5, plots (a), (b) correspond to Normal Spectrum (NS) and plots (c), (d) correspond to Inverted Spectrum (IS).

α = −1

2
arg

(
A3 B1 − A1 B3

A2 B3 − A3 B2

)
, (34)

β = −1

2
arg

(
A2 B1 − A1 B2

A3 B2 − A2 B3
e2iδ

)
. (35)

Since, �m2
12 and |�m2

23| are known experimentally, the values of mass ratios (ρ,σ ) from Eqs. (32) and (33) can be used to calculate
m1. This can be done by inverting Eqs. (21) to obtain the two values of m1 viz.

m1 = σ

√
�m2

12

1 − σ 2
, m1 = ρ

√
�m2

12 + |�m2
23|

1 − ρ2
. (36)

4. Numerical analysis

The experimental constraints on neutrino parameters at 1, 2 and 3σ [18] are given below:

�m2
12 = 7.58(+0.22,+0.41,+0.60)

(−0.26,−0.42,−0.59) × 10−5 eV2, |�m2
23| = 2.35(+0.12,+0.22,+0.32)

(−0.09,−0.18,−0.29) × 10−3 eV2,

sin2 θ12 = 0.312(+0.017,+0.035,+0.052)
(−0.016,−0.032,−0.047), sin2 θ23 = 0.42(+0.08,+0.18,+0.22)

(−0.03,−0.06,−0.08), sin2 θ13 = 0.025(+0.007,+0.016,+0.025)
(−0.007,−0.013,−0.020). (37)

The observation of neutrinoless double beta (NDB) decay would signal lepton number violation and imply Majorana nature of neutrinos,
for recent reviews see [19,20]. The effective Majorana mass of the electron neutrino Mee which determines the rate of NDB decay is given
by

Mee = ∣∣m1c2
12c2

13 + m2s2
12c2

13e2iα + m3s2
13e2iβ

∣∣. (38)

Part of the Heidelberg–Moscow collaboration claimed a signal in NDB decay corresponding to Mee = (0.11–0.56) eV at 95% C.L. [21]. This
claim was subsequently criticized in [22]. The results reported in [21] will be checked in the currently running and forthcoming NDB
experiments. There are large number of projects such as CUORICINO [23], CUORE [24], GERDA [25], MAJORANA [26], SuperNEMO [27],
EXO [28], GENIUS [29] which aim to achieve a sensitivity upto 0.01 eV for Mee . In the present work, we take the upper limit of Mee to be
0.5 eV [20]. We vary the oscillation parameters within their known experimental ranges. However, the Dirac-type CP-violating phase δ is
varied within its full range. The two values of m1 obtained from the mass ratios ρ and σ , respectively must be equal to within the errors
of the oscillation parameters for the simultaneous existence of two vanishing minors in Mν . The first step in the numerical analysis uses
the information of the two known mass squared differences along with the constraint of two zero minors and large Mee to get predictions
for the mixing angles. It is found that both the classes B5 and B6 predict a near maximal atmospheric mixing angle while the other two
mixing angles remain unconstrained. The atmospheric mixing angle θ23 moves towards π/4 with increasing Mee as seen in Fig. 1 for class
B5 and Fig. 2 for class B6. Thus classes B5 and B6 of two vanishing minors in Mν naturally predict a near maximal atmospheric mixing
angle.
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Fig. 2. Correlation plots for class B6, plots (a), (b) correspond to NS and plots (c), (d) correspond IS.

Fig. 3. Correlation plots for class B5, plots (a), (b) correspond to NS and plots (c), (d) correspond IS.

The second step takes into account the experimental input on the three mixing angles including the recent T2K results on the reactor
mixing angle. The results for θ23 are plotted in Fig. 3 for class B5 and Fig. 4 for class B6. Due to the relatively large value of θ13, the
Dirac-type CP violating phase is almost fixed near π/2 or 3π/2 predicting almost maximal CP violation for these textures. Figs. 5 and 6
show the correlation between the two Majorana-type phases and Mee: the phases α and β approach zero with increasing Mee . As an
example, we write the numerically estimated mass matrices for the pattern B5, the matrices are obtained for the best fit values of �m2

12,
|�m2

23|, θ12, θ13 given in Eq. (37). For NS we have Mee = 0.1129 eV, θ23 = 43.902◦ , δ = 269.463◦ and for IS we have Mee = 0.1272 eV,
θ23 = 46.058◦ , δ = 89.853◦
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Fig. 4. Correlation plots for class B6, plots (a), (b) correspond to NS and plots (c), (d) correspond IS.

Fig. 5. Correlation plots of Majorana phases with Mee for class B5 (IS).

Fig. 6. Correlation plots of Majorana phases with Mee for class B6 (IS).
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M B5
ν (NS) =

(0.112956 − 0.000905i 0.000205 − 0.002058i 0.000018 − 0.000166i
0.000205 − 0.002058i −0.000037 − 0.000008i −0.117485 + 0.002109i
0.000018 − 0.000166i −0.117485 + 0.002109i −0.009482 + 0.000114i

)
, (39)

M B5
ν (IS) =

( 0.127210 − 0.001176i 0.000147 − 0.002268i −0.000012 + 0.000177i
0.000147 − 0.002268i −0.000040 − 0.000006i −0.122682 + 0.002478i

−0.000012 + 0.000177i −0.122682 + 0.002478i 0.009575 − 0.000154i

)
. (40)

The numerical matrices for pattern B6 can be obtained from above matrices with the operation of 2–3 permutation symmetry. The
assumption of large Mee is testable in the ongoing and forthcoming experiments [23–29] for NDB decay which will either confirm or rule
out large Mee in the next few years.

5. Summary

The recent results of the T2K experiment suggest a relatively large reactor mixing angle. Therefore, it is important to look for models
naturally accommodating a non-zero value of reactor mixing angle while keeping the atmospheric mixing angle near maximal. In the
present work, we studied the implications of classes B5 and B6 of two zero minors in Mν for large effective neutrino mass. In the context
of type-I seesaw mechanism, taking Ml and MD to be diagonal, the zeros of MR propagate as zero minors of Mν and the origin of neutrino
mixing is solely from MR . We presented the symmetry realization of these patterns using a cyclic group Z3. It was found that classes
B5 and B6 predict a near maximal atmospheric mixing angle in the limit of large Mee . Furthermore, this prediction is independent of
the values of the reactor and the solar mixing angles. The assumption of large Mee is testable in the ongoing experiments for NDB decay
since the rate of NDB decay is proportional to Mee . These experiments will either confirm or rule out a large value of Mee in the next
few years. The atmospheric mixing angle approaches π/4 with the increasing value of Mee . A reactor mixing angle equal to zero is not
allowed in these textures, thus, naturally accommodating a non-zero θ13 as suggested by the recent results of the T2K experiment. Due to
the relatively large value of θ13 the Dirac-type CP violating phase is fixed near π/2 or 3π/2 predicting almost maximal CP violation for
these textures.
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