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ABSTRACT 

For a matrix A which is diagonally dominant both by rows and by columns, we 
give bounds for IIA-‘lll and IIA-rllW, which then can be used to give a lower bound 
for the smallest singular value. We also show that these bounds can be attained, and 
show how the result can be extended to block matrices. 

Very often in numerical analysis, one needs a bound for the condition 
number of a square n X n matrix A, K(A)= [[All * IIA-‘Il, for some norm. 
Bounding IIA )I is not usually difficult, but a bound for IIA-‘ll is not usually 
available in any norm unless A -r is known explicitly. For the 1, norm, this is 
equivalent to finding a lower bound for u,(A); here we denote the singular 
values of A by a,(A) > o,(A) > . . . > u,(A) > 0. 

However, if A is diagonally dominant by rows (i.e., lakkl >Zifklakil, 
1 < k < n), we can bound the I, norm of A -’ quite easily by the following 
theorem, the proof of which is a generalization of a proof of Keller [2, p. 771. 

THEOREM 1. Assume A is diagonally dominant by rows and set cr 

=min,(lakkl-cizkla~(). Then ~~A-‘~lm<l/a. 

Proof. Since 

we need only show that allxllrn < llAxlloo for all X. Take some vector x and let 
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COROLLARY 1. If A is diagonally dominant by columns, and 

fi= “p (bkkl- x la,,+ 
i#k 

then IIA-‘lll < l/p. 

COROLLARY 2. If A is diagonally dominant both by rows and by 
columns, 

Proof. Immediate, usingthe inequality ]]B]]t< ]]B]]l]]B]]m. 

Notice that for A a real symmetric matrix, this bound on a,, is the same as 
that obtained by the Gerschgorin disks for the smallest eigenvalue of A. Also 
notice that the bound is independent of n, and is attained (asymptotically) 
for the matrix 

( 
1 x 

1 x *.* *I 1 x 

7IXVI 

for (xl < 1, as n-00. 
Now assume A is partitioned into blocks A, with the diagonal blocks 

square. Then A is block diagonally dominant by rows if for all k, ]]Aki’]]&’ 
> 2 i_+k I( A4 1 I m. See, for example, Feingold and Varga [ 11. 

THEOREM 2. ASSURE A is block diagonally dominant by rows, and set 
a=mink(]]A&‘]]~‘- ~iZAIA~llm). men IV-‘llm (l/a. 
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The proof follows that of Theorem 1, replacing ]uki] by [[Akill m and ]ukk] 
by llA&‘ll,’ and using the fact that 

COROLLARY 3. Again, if B=min(llAkk’llocl-Ci+kllAjklIoc)>O, 
u,(A) > a. 

TO show how we can again get equality, consider the block Toeplitz 
matrix 

with B = BT. For n large, the eigenvalues (and singular values) approach 
those of the infinite matrix, namely X(B + Ceie+ Cre-“), 0 < 8 < 271. Thus 

a,(A)+mjnh[B+(C+Cr)cosB+i(C-CT)sin6’], 

which for C= cZ gives 

u,(A)+minh(B)-2c= ((B-‘)l,‘-2c. 

Since (Y= (IB-‘(I~‘-2~~C~J,, we have u,,(A)+cx as n--+cc if IIB-‘l12 

= IIB % and C= cZ. 
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