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Abstract 

Herbimycin A, a benzoquinonoid ansamycin antibiotic, reduces intracellular phosphorylation by some protein tyrosine kinases and 

inhibits the proliferation of malignant cells which express high tyrosine kinase activity. Herbimycin A inhibited the proliferation of human 
monoblastic leukemia U937 cells. but this inhibition was abrogated by the addition of granulocyte-macrophage colony-stimulating factor 
(GM-CSF). On the other hand, a derivative of herbimycin A, 19-allylaminoherbimycin A, inhibited the proliferation of such cells without 
interference by the addition of GM-CSF. Phosphorylation of MAP kinase and c-myc expression induced by GM-CSF in U937 cells were 
inhibited by both herbimycin A and 19-allylaminoherbimycin A. The time courses of growth inhibition showed that the growth-inhibitory 
activity of herbimycin A in U937 cells was initially potent, but gradually decreased in the presence of GM-CSF. Thiol compounds, 
glutathione (GSH) and 2-mercaptoethanol, abrogated the inhibition of the growth of U937 cells by herbimycin A, but not by 
19-allylaminoherbimycin A, like GM-CSF. Intracellular GSH content in U937 cells was increased by treatment with GM-CSF, and 
decreased with herbimycin A, but returned to the control level with the addition of GM-CSF to herbimycin A. In thin-layer 
chromatography, after in vitro incubation with herbimycin A and GSH, nothing could be detected at the position of intact herbimycin A, 
while I9-allylaminoherbimycin A was stably detected. These findings suggest that changes in the intracellular concentration of GSH play 
a role in the abrogation of the inhibition of U937 cell growth by herbimycin A. In the presence of GSH, 19-allylaminoherbimycin A 
inhibited the proliferation of U937 cells and Philadelphia chromosome-positive K562 cells more effectively than herbimycin A. Since 
GSH plays a role in detoxicating several anticancer drugs, 19-allylaminoherbimycin A may have therapeutic advantages over herbimycin 
A against some types of leukemia. 
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1. Introduction 

Herbimycin A is a benzoquinonoid ansamycin antibiotic 
isolated from Streptomyces hygroscopicus that is known to 
inhibit protein tyrosine kinase activities [1,2]. This com- 
pound reverses the V-SK transformation of rat kidney cells 
by inhibiting its kinase activity [2] and effectively inhibits 

Abbreviations: GSH, glutathione (reduced form); GM-CSF, granulo- 
cyte-macrophage colony-stimulating factor: NEM, N-ethylmaleimide; 

IC,,. concentration of drug required for 50% inhibition of cell growth 
* Corresponding author. Fax: + 81 48 722 1739; e-mail: 
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the growth of Philadelphia chromosome-positive leukemia 
cell lines, which exhibit bcr-abl rearrangement and ex- 
press its fusion product, ~210 or ~190, with high tyrosine 
kinase activity [3,4]. Administration of herbimycin A has 
prolonged the survival of mice inoculated with mouse 
myeloid leukemia Cl cells that highly expressed v-abl 
oncogene [5] and SCID mice inoculated with human 
Philadelphia chromosome-positive cells [6]. Thus, her- 
bimycin A might be useful in the chemotherapy of some 
types of leukemia. 

Herbimycin A is believed to inhibit tyrosine kinases by 
binding to sulfhydryl group(s) of the kinases [7,8]. 
Sulfhydryl compounds such as GSH counteract the in- 
hibitory effect of herbimycin A on v-src tyrosine kinase 
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Fig. I. Structures of herbimycin A and 19-allylaminoherbimycin A. The 

numbering system used in the present study is indicated. 

activity [7]. Since GSH is a major non-protein intracellular 
sulfhydryl compound that plays a role in the detoxication 
of several anticancer agents [9], it may interfere with the 
therapeutic efficacy of herbimycin A. In this study, we 
found that GM-CSF, as well as thiol compounds, abro- 
gated the inhibitory effect of herbimycin A on the growth 
of human monoblastic leukemia U937 cells, and that 1 g-al- 
lylaminoherbimycin A (Fig. 1) was resistant to this abroga- 
tion. 

2. Materials and methods 

2. I. Materials 

Herbimycin A and its derivatives [lO,ll] were gifts 
from Dr. Satoshi Omura, Kitasato Institute, Tokyo, Japan. 
Human recombinant GM-CSF was purchased from Gen- 
zyme (Boston, MA), GSH was from Sigma (St. Louis, 
MO), and 2-mercaptoethanol was from Wako (Osaka, 
Japan). 

2.2. Cells and cell cultures 

Human myeloid leukemia U937 [12], THP-1 [13] and 
K562 cells [ 141 were cultured in suspension in RPM1 1640 
medium supplemented with 10% fetal bovine serum and 
80 kg/ml gentamicin at 37°C in a humidified atmosphere 
of 5% CO, in air. 

2.3. Cell growth 

Suspensions of cells were cultured with or without 
compounds in multiple dishes. Cell numbers were counted 
in a Model ZM Coulter Counter (Coulter Electronics, 
Luton, UK). Cellular viabilities after all of the treatments 

in this study were more than 90%, as determined by 
exclusion of Trypan blue. 

2.4. Immunoblot analysis of MAP kinase 

Cells were lysed in lysis buffer [50 mM Tris-HCl (pH 
7.4), 150 mM NaCl, 0.1% SDS, 1% T&on-X, 0.5% 
sodium deoxycholate and 1 mM phenylmethylsulfonyl flu- 
oride]. The cell lysates were mixed with sample buffer and 
separated on 12.5% SDS-polyacrylamide gel. The proteins 
were electrophoretically transferred from the gel onto Im- 
mobilon-P Transfer Membrane (Millipore, Bedford, MA), 
immunoblotted with monoclonal anti-MAP kinase (erk 2) 
antibody (UBI, Lake Placid, NY) and visualized with a 
biotin-avidin-alkaline phosphatase system (Vectastain ABC 
system; Vector, Burlingame, CA). 

2.5. RNA extraction, Northern blotting, and hybridization 

RNA was extracted by modification of the method of 
Chomczynski and Sacchi [ 151, using Isogen (Nippon gene, 
Toyama, Japan). Total RNA (20 ,ug/lane) was separated 
on 1.2% agarose-formaldehyde gel and transferred to a 
nitrocellulose membrane (Schleicher and Schuell, Dassel, 
Germany). The membranes were hybridized with end- 
labeled probes as previously described [16]. Autoradiog- 
raphy was performed using a bioimage analyzer (Fujix 
BAS2000; Fuji Photo Film, Kanagawa, Japan). Amounts 
of individual mRNA were quantified using the bioimage 
analyzer, and were normalized to the amount of GAPDH 
mRNA. 

2.6. Probes 

A probe for GAPDH was purchased from Oncogene 
Science (Manhasset, NY). An oligonucleotide probe for 
c-myc was synthesized with a DNA synthesizer (Model 
392; Applied Biosystems, Foster City, CA) based on the 
antisense sequence (AGGTGATCCAGACTCTGACCTT- 
TTGCCAGGAGCCTGCCT) derived from exon 3 of the 
human c-myc gene. 

2.7. Cellular GSH content 

Intracellular GSH contents were assayed as previously 
described [ 17,181. Briefly, cell extracts were obtained with 
0.5 ml of 1 M perchloric acid, and were neutralized with 2 
M KOH/0.3 M MOPS buffer. The supematant from the 
cell extract was used in the reaction mixture for GSH 
assay. The reaction mixture consisted of 700 ~1 of 125 
mM sodium phosphate/6.3 mM Na-EDTA buffer, 100 ~1 
of 6 mM dithionitrobenzoic acid (Wake), 200 ~1 of test 
sample, and 10 ~1 of 50 units/ml glutathione reductase 
(Wake). The change in absorbance at 412 nm was mea- 
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sured with a spectrophotometer (U-2000; Hitachi, Tokyo) 
over 2 min or until it exceeded 2.0. 

2.8. Cellular thiol content 

The total cellular thiol content was measured by a 
previously described method [ 191. Briefly, lo6 cells were 
suspended in 150 ~1 phosphate-buffered saline with 4.44 
X lo3 Bq [ 14C]NEM (NEN Products, Boston, MA), which 
was adjusted to 3.7 X IO4 Bq/l*.mol. After a 15-min 
incubation at room temperature, the reaction was stopped 
by the addition of 12 ~1 of unlabeled 100 mM NEM. Cells 
were then washed three times with phosphate-buffered 
saline, and the. resulting cell pellet was solubilized with 
dimethyl sulfoxide and mixed with scintillation liquid. 
Incorporated radioactivity was counted in a scintillation 
counter (LS5800; Beckman, Fullerton, CA). 

2.9. In vitro reaction of herbimycin A with GSH 

Herbimycin A and 19-allylaminoherbimycin A were 
incubated with GSH in phosphate-buffered saline at 37°C 
for 2 h. Herbimycin A and its derivative were then ex- 
tracted with chloroform-methanol (1: 1) solution and sepa- 
rated by fluorescent thin-layer chromatography (Whatman, 
Clifton, NJ) as described previously [I I]. Materials on the 
chromatography plate were visualized under an ultraviolet 
lamp. 

2.10. Statistical evaluation 

Statistical analyses were performed using Student’s t- 
test. 

100 

3. Results 

Herbimycin A inhibited the proliferation of human 
monoblastic leukemia U937 cells in a concentration-depen- 
dent manner, with an IC,, of 108.9 ng/ml (190 nM). 
However, GM-CSF significantly reversed this growth inhi- 
bition concentration-dependently (Fig. 2). Whereas her- 
bimycin A inhibited the proliferation of another monoblas- 
tic leukemia THP-1 cells with an IC,, of 276.5 ng/ml 
(482 nM), GM-CSF also counteracted the inhibitory effect 
of herbimycin A on the proliferation of human monoblas- 
tic leukemia THP-1 cells (data not shown). Next, we 
examined the effect of several derivatives of herbimycin A 
on the growth of U937 cells in the absence or presence of 
GM-CSF. 19-Allylaminoherbimycin A inhibited the prolif- 
eration of U937 cells with an IC,, of 212.8 ng/ml (338 
nM) (Fig. 2). GM-CSF only slightly counteracted the 
growth inhibition induced by 19-allylaminoherbimycin A. 
Other herbimycin A derivatives (8,9_epoxyherbimycin A, 
17-cyclopropylaminoherbimycin A, 19-bromoherbimycin 
A, 2,3,4,5_tetrahydroherbimycin A and 4,5-dichloro- 
herbimycin A) also inhibited the proliferation of U937 
cells, with IC,, values of 960 ng/ml (1.62 PM), 679 
ng/ml (1.08 FM), 1700 ng/ml (2.60 PM), 1035 ng/ml 
(1.79 PM) and 1427 ng/ml (2.22 PM), respectively. 
GM-CSF did not reverse the inhibition of cell growth 
caused by 8,9_epoxyherbimycin A, 17-cyclopropylamino- 
herbimycin A or 2,3,4,5_tetrahydroherbimycin A (data not 
shown). 

GM-CSF has been reported to induce the proliferation 
of GM-CSF receptor-expressed mouse BaF3 cells by stim- 
ulating post-receptor signal transduction systems, such as 
those for MAP kinase and c-myc expression [20]. In U937 
cells, GM-CSF also stimulated the phosphorylation of 

A 

0 200 400 0 200 400 

Herbimycin A (ng/ml) ALA-HMA (ng/ml) 

Fig. 2. Effects of herbimycin A and 19-allylaminoherbimycin A (ALA-HMA) in combination with GM-CSF on the growth of U937 cells. Cells 
(2 X 105cells/ml) were cultured with herbimycin A (A) or ALA-HMA (B) in combination with 0 (0). 0.05 (7 ), 0.1 ( A ) or 1 ( ??) q/ml GM-CSF for 3 
days. The test compounds were added the medium once at the beginning of culture. Values are the means f S.D. of three separate experiments. 
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Fig. 3. Inhibition of GM-CSF-induced phosphorylation of MAP kinase 
(A) and expression of c-myc mRNA (B) by herbimycin A (HMA) and 
19-allylaminoherbimycin A (ALA-HMA). (A) U937 cells were pretreated 
with herbimycin A (lanes 3-5) and 19.allylaminoherbimycin A (lanes 
6-8) at concentrations of 200 (lanes 3,6), 400 (lanes 4, 7) and 800 (lanes 
5, 8) ng/ml for 4 h. Cells in lanes 1 and 2 were not pretreated with HMA 
or ALA-HMA. Cells were then stimulated with I ng/ml GM-CSF for 10 
min (lanes 2-S). MAP kinase was identified by immunoblot with anti- 

~42 MAP k’“d’c antibody, and its phosphorylated form is indicated with the 
arrow. The viabilities of the cells after all the treatments were more than 
90%. (B) U937 cells were pretreated with herbimycin A (0,~ 1 and 
19-allylaminoherbimycin A (0, A) for 4 h. Cells were then stimulated 
with I ng/ml GM-CSF (A, A) for 1 h, or left unstimulated (0.0 ). 
Relative amounts of mRNA of c-my were determined as described in 
Section 2. Values are the means f S.D. of three separate experiments. 

MAP kinase and expression of the c-myc gene (Fig. 3). 
However, pretreatment with herbimycin A, as well as with 
I9-allylaminoherbimycin A, inhibited the phosphorylation 
of MAP kinase and c-myc mRNA expression induced by 
GM-CSF (Fig. 3). Thus, pretreatment with herbimycin A 
was effective in inhibiting the short-term signal transduc- 
tion induced by GM-CSF. Fig. 4 shows the time courses of 
the growth inhibition in U937 cells induced by herbimycin 
A. At day 1, herbimycin A effectively inhibited the prolif- 
eration of cells despite the addition of GM-CSF. However, 
this inhibition induced by herbimycin A gradually de- 
creased in the presence of GM-CSF. Thus, in the presence 
of GM-CSF, herbimycin A was initially effective, but then 
gradually became ineffective. 

Days 

Fig. 4. Time courses of growth inhibition of U937 cells by herbimycin A 
in combination with GM-CSF. Cells (1 X IO’ cells/ml) were cultured 
with herbimycin A (200 ng/ml) in the absence (0) or presence ( A) of I 
ng/ml of GM-CSF. The test compounds were added to the medium at the 
beginning of culture. Growth inhibition (%F) was calculated by the 
formula, (C I - Tx)/(C x -I) X 100, where C x is the cell number of the 
control culture on day x, TX is that of the treated culture on day X, and I 
is the inoculum number on day 0. The number of cells in the control 
culture was 2.4kO.1, 6.6kO.2, 13.1 50.4 and 21.8+0.6x 10s cells/ml 
at days I, 2, 3 and 4, respectively. Values are the means5S.D. of three 
separate experiments. 

The inhibitory effect of herbimycin A on the prolifera- 
tion of v-src-transfected cells and Philadelphia-positive 
leukemia cells is abrogated by the addition of thiol com- 
pounds, such as GSH [7,8]. Therefore, we examined the 
effects of GSH and 2-mercaptoethanol in combination with 
herbimycin A. GSH and 2-mercaptoethanol abrogated the 
effect of herbimycin A, but not that of 19-allylaminoher- 
bimycin A (Fig. 5). Thus, 19-allylaminoherbimycin A 
stably inhibited the proliferation of monoblastic U937 cells 
in the presence of GM-CSF or thiol compounds. Her- 

Table I 
GSH and total thiol contents in U937 cells treated with GM-CSF and/or 
herbimycin A 

Treatment GSH content Ratio Thiol content Ratio 
(nmol/ lo7 cells) (o/o) (nmol/ 10’ cells) (%) 

None 44.0+2.8 100 61.7k2.5 100 
GM-CSF 49.5* 1.1 d 113 71.7k2.5 d 116 
HMA 37.1 f 1.4 b 84 59.1 f 1.6 96 
HMA+GM-CSF 43.lk3.1 ’ 98 61.8+ 1.1 loo 
ALA 37.7 f 5.2 86 NT 
ALA + GM-CSF 39.2 + 2.3 89 NT 

U937 cells were treated with I ng/ml GM-CSF and/or 400 ng/ml 
herbimycin A (HMA) or 400 ng/ml 19-allylaminoherbimycin A (ALA) 
for 6 h. Values are the means + S.D. of three separate experiments. NT, 
not tested. 
A significant increase comparing to the control (P < 0.04). 
h significant decrease comparing to the control (P < 0.02). 
’ significant increase comparing to the cells treated with HMA alone 
(P < 0.04). 
’ significant increase comparing to the control (P < 0.01). 
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Fig. 5. Effects of GSH and 2-mercaptoethanol on the growth of U937 cells inhibited by herbimycin A and 19-allylaminoherbimycin A. Cells (2 X IO’ 
cells/ml) were treated with GSH (A) or 2-mercaptoethanol (B) in combination with 0 (01, 200 (A 1, 400 ( ??) ng/ml of herbimycin A, or 200 ng/ml of 
19-allylaminoherbimycin A (0) for 3 days. Values are the means &- S.D. of three separate experiments. 

bimycin A has been reported to prolong the survival of 
SCID mice inoculated with Philadelphia chromosome- 
positive leukemia cells, such as K562 cells [6]. 19-Al- 
lylaminoherbimycin A inhibited the proliferation of K562 
cells, but was less effective than herbimycin A [4]. How- 
ever, in the presence of GSH, 19-allylaminoherbimycin A 
was a more effective inhibitor than herbimycin A (Fig. 6). 

We next investigated the effects of intracellular 
sullhydryl compounds in U937 cells treated with GM-CSF. 
The GSH and total thiol contents in U937 cells were 
slightly increased by treatment with GM-CSF, and the 
GSH content decreased with herbimycin A. When GM-CSF 
was combined with herbimycin A, these values were ele- 

7 

HMA or ALA-HMA (ng/ml) 

Fig. 6. Effects of GSH on the growth of K562 cells inhibited by 
herbimycin A or l9-allylaminoherbimycin A. Cells (5 X IO4 cells/ml) 
were treated with herbimycin A (HMA) (0, A ) or l9-allylaminoher- 
bimycin A (ALA-HMA) (0,~) in combination with 0 (0.0) or 20 
(A, A ) FM GSH for 4 days. Values are the means f S.D. of three 
separate experiments. 

vated to the control levels (Table 1). In U937 cells treated 
with 19-allylaminoherbimycin A, the decrease of GSH 
content was not significant (P = 0.1). Since herbimycin A 
has been reported to be inactivated by the formation of an 
adduct with a thiol compound [7], we next examined 
whether herbimycin A and the derivative conjugated with 
GSH. After in vitro incubation with GSH and extraction 
with chloroform/methanol solution, the amount of her- 
bimycin A eluted with chloroform was diminished (Fig. 7). 

A 

B 

1 2 3 4 

3 

Fig. 7. In vitro treatment with herbimycin A and l9-allylaminoherbimy- 
tin A. (A) Herbimycin A at 100 pg/ml (I74 PM) was incubated with 0 
(lane 1). 100 (lane 2). 300 (lane 3) and 3000 (lane 4) PM GSH in 
phosphate-buffered saline. (B) 19-Allylaminoherbimycin A at 100 pg/ml 
(159 PM) was incubated with 0 (lane I), 300 (lane 2) and 3000 (lane 3) 
/.LM GSH. Herbimycin A and l9-allylaminoherbimycin A were separated 
by thin-layer chromatography. The Rf values of herbimycin A and 
l9-allylaminoherbimycin A solubilized in phosphate-buffered saline and 
eluted with chloroform were 0.48 and 0.51, respectively, in a develop- 
ment solvent of benzene-acetone (7:3). 
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On the other hand, 19-allylaminoherbimycin A was stably 
detected in the presence of a high concentration of GSH. 
This result suggests that herbimycin A changes its solubil- 
ity in chloroform by conjugating with GSH but 19-al- 
lylaminoherbimycin A does not. 

4. Discussion 

Herbimycin A and 19-allylaminoherbimycin A inhibited 
the proliferation of human monocytic leukemia U937 cells. 
We previously reported that kinase inhibitors 
(staurosporine, genistein and methyl 2,5dihydroxycin- 
namic acid) inhibited the proliferation of U937 cells, and 
were more effective in the presence of GM-CSF [21]. In 
this study, GM-CSF effectively reversed the inhibition of 
proliferation induced by herbimycin A, but not that in- 
duced by 19-allylaminoherbimycin A. Modification of the 
chemical structure of tyrosine kinase inhibitors has been 
reported to change their specificity in inhibiting several 
kinases [22]. Therefore, we examined whether there were 
differences between herbimycin A and 19-allylaminoher- 
bimycin A with regard to inhibiting the intracellular signal 
transduction of GM-CSF. The membrane-proximal region 
of the cytoplasmic domain of GM-CSF receptor p has 
been reported to be associated with JAK2 kinase and to 
lead to c-myc induction, while the distal region of the 
receptor induces activation of MAP kinase pathway 120,231. 
Pretreatment with herbimycin A, as well as with 19-al- 
lylaminoherbimycin A, inhibited the induction of c-myc 
expression and phosphorylation of MAP kinase induced by 
GM-CSF (Fig. 3). These findings indicate that herbimycin 
A inhibited the main pathway of the post-receptor signal 
transduction of GM-CSF, as did 19-allylaminoherbimycin 
A. The time courses of growth inhibition showed that the 
activity of herbimycin A in inhibiting the proliferation of 
U937 cells was gradually decreased in the presence of 
GM-CSF (Fig. 4). These findings suggest that the presence 
of GM-CSF inactivates herbimycin A in U937 cells by 
degrees. 

The inhibitory effect of herbimycin A is abrogated by 
the addition of thiol compounds to the culture medium 
[7,8], and hematopoietic cytokines such as interleukin-3 
and interleukin-6 increase the intracellular GSH level in 
bone marrow cells [ 181. Therefore, we examined the intra- 
cellular thiol contents in U937 cells. GM-CSF increased, 
and herbimycin A decreased, intracellular GSH contents 
(Table I). The content of GSH in the culture with both 
GM-CSF and herbimycin A returned to control levels. 
Growth inhibition by herbimycin A was reversed by the 
addition of 2 /.LM GSH in U937 cells (Fig. 5), while 
v-src-transformed NIH/3T3 required 100 FM GSH for 
this reversal [7]. Thus, changes in the intracellular concen- 
tration of GSH may play a role in the abrogation of the 
inhibition of U937 cell growth by herbimycin A. Her- 
bimycin A associated with GSH in vitro and changed its 

solubility in chloroform, but 19-allylaminoherbimycin A 
did not (Fig. 7). This suggests that herbimycin A easily 
forms conjugate with the sulfhydryl compound and that the 
conjugate formation contributes to reducing the activity. 
Inhibition of the proliferation of U937 cells by 19-al- 
lylaminoherbimycin A was not abrogated by the addition 
of GSH or 2-mercaptoethanol (Fig. 5). These findings 
indicate that 19-allylaminoherbimycin A is a stable analog 
of herbimycin A in the presence of thiol compounds. 
19-Allylaminoherbimycin A inhibited the growth of Rous 
sarcoma virus-infected rat cells more effectively than her- 
bimycin A, and inhibited the tyrosine kinase activity of 
~210, a bcr-abf product, in Philadelphia chromosome- 
positive K562 cells [24,25]. The highly polarized double 
bonds at positions 17 and 19 (Fig. 1) of the benzoquinone 
moiety of herbimycin A are considered to be highly reac- 
tive to the sulfhydryl group of thiols and protein tyrosine 
kinases [7,8]. It is interesting that changing position 19 to 
an allylamine group contributes to its stability without 
interfering with its inhibitory activity on tyrosine kinases. 
In the presence of GSH, 19-allylaminoherbimycin A inhib- 
ited the proliferation of monoblastic U937 cells and bcr-ubl 
rearrangement-positive K562 cells more effectively than 
herbimycin A (Figs. 5 and 6). GSH, a major intracellular 
sulfhydryl, plays a role in the detoxication of several 
anticancer drugs and interferes with their therapeutic effi- 
cacy [9]. Therefore, the 19-allylamine derivative of her- 
bimycin A may be useful in the treatment of some types of 
leukemia. 
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