A Note on Groups with "Large Extraspecial" Subgroups of Width 4

TRAN VAN TRUNG*

Department of Mathematics, University of Heidelberg, Heidelberg, West Germany Communicated by Walter Feit Received February 29, 1978

Recently, F. Timmesfeld investigated finite simple groups G in which the generalized Fitting group of the centralizer M of some involution is extraspecial [3]. The purpose of this paper is to eliminate a special configuration of M which occurs in the case of width 4. More precisely, we prove the following

PROPOSITION. There exists no nonabelian simple group G which has an involution z such that the centralizer M of z in G satisfies the following conditions:

(i) $Q = F^{\times}(M)$ is extraspecial of width 4.

(ii) $\overline{M} = M/Q = (\overline{F}_0 \times \overline{F}_1) \cdot \overline{I}$ with $F_9 \simeq Z_3$, $\overline{F}_1 \simeq A_6$, $\overline{F}_9 \cdot \overline{I} \simeq \Sigma_3$ and $\overline{F}_1 \cdot \overline{I} \simeq \Sigma_6$.

According to [3] we set $\tilde{M} = M/\langle z \rangle$ and $\overline{M} = M/Q$ and we use the bar conventions. In addition we write $C(X) = C_G(X)$ and $N(X) = N_G(X)$ for any subset X of G.

From now on we assume G is simple. Let $\overline{F}_0 = \langle \hat{\rho}_0 \rangle$ and let $X = N_M(\rho_0)$. Then X covers \overline{M} . As \overline{M} acts irreducibly on \widetilde{Q} by [2], so $X \cap Q = \langle z \rangle$. We have $\widetilde{X} \simeq \overline{M}$. Set $\widetilde{X} = (\widetilde{F}_0 \times \widetilde{F}_1) \cdot \widetilde{I}$. By [1] there is an involution $a \in Q - \langle z \rangle$ with $a \sim_G z$. Let $L = Q(Q_a \cap M)$ where $Q_a = F^*(C(a))$. Then by [3, (3.11)] we have $\widetilde{L} \simeq E_{2^3}$ and $C_{\widetilde{Q}}(\widetilde{L}) = \langle \widetilde{a} \rangle$. This implies that we can assume $[\widetilde{\rho}_1, \widetilde{a}] = 1$ for an element $\widehat{\rho}_1$ of order 3 of $C_{\widetilde{F}_0 \times \widetilde{F}_1}(\widetilde{\tau}) = C_{\widetilde{F}_1}(\widetilde{\tau})$ where $\widetilde{\tau}$ is some involution in $(\widetilde{F}_3 \times \widetilde{F}_1) \cdot \widetilde{I} - (\widetilde{F}_0 \times \widetilde{F}_1)$. In other words $C_{\widetilde{Q}}(\rho_1) \simeq Q_8 \times Q_8$ or $Q_8 \times Q_8 \times Q_8 \times Q_8$. Suppose $C_O(\rho_1) \simeq Q_8 \times Q_8 \times Q_8$, then $[Q, \rho_1] \simeq Q_8$. As $\widetilde{\tau}$ inverts $\widetilde{F}_0 = \langle \widetilde{\rho}_0 \rangle$ and $C_{\widetilde{O}}(\widetilde{\rho}_0) = 1$, so $|C_{\widetilde{O}}(\widetilde{\tau})| = 2^4$. On the other hand $\widetilde{\tau}$ centralizes $[Q, \langle \rho_1 \rangle \rangle$ and $C_{\widetilde{O}}(\rho_1) \approx 2^3$, so $[C_{\widetilde{O}}(\widetilde{\tau}) \geqslant 2^5$, a contradiction. Thus $C_Q(\rho_1) \simeq Q_8 \times Q_8$. Let $\widetilde{P}_1 = \langle \widetilde{\rho}_1, \widetilde{\rho}_2 \rangle$ be an S_9 -subgroup of \widetilde{F}_1 with $\widetilde{\rho}_1 \sim_{\widetilde{F}_1} \widetilde{\rho}_2$. Then $C_Q(\rho_2) \simeq Q_8 \times Q_8 \times Q_8$. Suppose $C_O(\rho_1) \cap C_Q(\rho_2) \neq \langle z \rangle$. As $|C_M(a)|_3 = 3$, so $C_O(\rho_1) \cap C_O(\rho_2) \simeq Q_8$.

* This work was supported by the "Deutsche Forschungsgemeinschaft."

563

0021-8693.79/100563-04\$02.00 0 Copyright © 1979 by Academic Press, Inc. All rights of reproduction in any form reserved. Then $\tilde{\tau}_0$ induces an outer automorphism on $C_{[Q,\langle \delta_1 \rangle]}(\rho_2) \simeq Q_8$. Since $\tilde{\rho}_1$ acts fixed-point-free on $[Q,\langle \rho_1 \rangle]$, thus $|C_{[Q,\langle \rho_1 \rangle]}(\tilde{\tau}_0)| = 2^2$ and $\tilde{\tau}_0$ induces an outer automorphism on Q_1 and on Q_2 where $[Q,\langle \rho_1 \rangle] = Q_1 * Q_2$ and $Q_1 \simeq Q_2 \simeq Q_8$. Hence $C_{[Q,\rho_1\rangle]}(\tilde{\tau}_0) \simeq E_{2^2}$, contradicting the fact that $C_{[Q,\langle \rho_1 \rangle]}(\tilde{\tau}_0)$ is $\tilde{\rho}_0$ -invariant and $C_{\tilde{Q}}(\tilde{\rho}_0) = 1$. Thus we have $C_Q(\rho_1) \cap C_Q(\rho_2) = \langle z \rangle$. Therefore $\rho_1 \rho_2$ and $\widetilde{\rho_1^2 \rho_2}$ act fixed-point-free on \tilde{Q} . Let $\tilde{\tau}_1$ be an involution in $\tilde{F}_1 \cdot \tilde{I} \simeq \Sigma_6$.

Case (1). $\tilde{\tau}_1 \in \tilde{F}_1$. Then we may assume $\tilde{\tau}_1$ inverts $\tilde{P}_1 = \langle \tilde{\rho}_1, \tilde{\rho}_2 \rangle$. In particular $\tilde{\tau}_1$ inverts $\tilde{\rho}_1 \tilde{\rho}_2$. As $C_{\vec{O}}(\rho_1 \rho_2) = 1$, it follows that $C_{\vec{O}}(\tilde{\tau}_1)| = 2^4$. Acting on Q with $\langle \tilde{\rho}_0, \tilde{\rho}_1 \tilde{\rho}_2 \rangle$, we see that $Q = C_Q(\rho_0 \rho_1 \rho_2) \cdot C_Q(\rho_0 \rho_1^2 \rho_2^2)$ and so $C_Q(\rho_0 \rho_1 \rho_2) \simeq^2 C_Q(\rho_0 \rho_1^2 \rho_2^2) \simeq Q_8 \times Q_8$ and thus $C_Q(\tau_1) \simeq E_{2^5}$.

Case (2). $\tau_1 \in \tilde{F}_1 \cdot \tilde{I} - \tilde{F}_1$. Then $\tilde{\rho}_0^{\tilde{\tau}_1} = \tilde{\rho}_0^2$. Let $\tilde{\rho} \in C_{\tilde{F}_1}(\tilde{\tau}_1)$ be an element of order 3. We have either $C_{\tilde{Q}}(\hat{\rho}) = 1$ or $C_Q(\tilde{\rho}) \simeq Q_8 * Q_8$.

(a) $C_{\hat{O}}(\tilde{\rho}) = 1$. Then $C_{O}(\tau) \simeq E_{2^{5}}$ by arguing as above.

(b) $C_Q(\tilde{\rho}) \simeq Q_8 \times Q_8$. Acting with $\langle \tilde{\rho}_0, \tilde{\rho} \rangle$ on $[Q, \tilde{\rho}] \simeq Q_8 \times Q_8$, we get $[Q, \tilde{\rho}] = C_{[Q, \langle \bar{\rho} \rangle]}(\tilde{\rho}_0 \tilde{\rho})$. $C_{[Q, \langle \bar{\rho} \rangle]}(\tilde{\rho}_0^2 \tilde{\rho})$. As $(\tilde{\rho}_0 \tilde{\rho})^{\tilde{\tau}_1} = \tilde{\rho}_0^2 \tilde{\rho}$, so $C_{[Q, \langle \bar{\rho} \rangle]}(\tilde{\rho}_0 \tilde{\rho}) \simeq C_{[Q, \langle \bar{\rho} \rangle]}(\tilde{\rho}_0 \tilde{\rho}) \simeq Q_8$. This implies that $C_{[Q, \langle \bar{\rho} \rangle]}(\tau_1) \simeq E_{2^3}$. From the structure of $\Sigma_6 \tilde{\tau}_1$ inverts an element $\tilde{\rho}^* \sim_{\tilde{F}_1, I} \tilde{\rho}$ and $\langle \tilde{\rho}, \tilde{\rho}^* \rangle \in \text{Syl}_3(\tilde{F}_1 \cdot \tilde{I})$. So $C_Q(\tilde{\rho}) = [Q, \tilde{\rho}^*]$. Acting with $\langle \tilde{\rho}_0, \tilde{\rho}^* \rangle$ on $C_Q(\tilde{\rho})$ we have $C_Q(\tilde{\rho}) = C_{C_Q(\beta)}(\tilde{\rho}_0 \tilde{\rho}^*) C_{C_Q(\beta)}(\tilde{\rho}_0^2 \tilde{\rho}^*)$ and $C_{C_Q(\beta)}(\tilde{\rho}_0 \tilde{\rho}^*) \simeq C_{C_Q(\beta)}(\tilde{\rho}_0^2 \tilde{\rho}^*) \simeq Q_8$. Thus $\tilde{\tau}_1$ induces an outer automorphism on $C_{C_Q(\beta)}(\tilde{\rho}_0 \tilde{\rho}^*)$ and on $C_{C_Q(\beta)}(\tilde{\rho}_0^2 \tilde{\rho}^*)$ and so $C_{C_Q(\beta)}(\tau_1) \simeq E_{2^2}$. Hence $C_Q(\tau_1) \simeq E_{2^4}$.

Now we remark that there are involutions in the coset $Q\tau_1$. Suppose $o(\tau_1) = 4$. Then there exists an element $u \in Q$ with $o(\tau_1 u) = 2$, so $\tau_1 u \tau_1 u = \tau_1 \tau_2 \tau_1^{-1} u \tau_1 u = zu^{\tau_1} \cdot u = 1$ and then $u^{\tau_1} = zu^{-1}$, contradicting the fact that the inverse image of $C_{\bar{Q}}(\bar{\tau}_1)$ in Q is isomorphic either to E_{2^5} or (2, 2, 2, 4). Thus we have $o(\tau_1) = 2$. Hence X splits over Q and M splits also over Q. We have proved the following result

LEMMA 1. The group M is a splitting extension of Q by $(F_0 \times F_1) \cdot I$ with $F_0 \simeq Z_3$, $F_1 \simeq A_6$, $I \simeq Z_2$, $F_0 \cdot I \simeq \Sigma_3$ and $F_1 \cdot I \simeq \Sigma_6$. Let $F_0 = \langle \rho_0 \rangle$. Then $C_Q(\tilde{\rho}_0) = 1$. Let P_1 be an S_3 -subgroup of F_1 . Then $P_1 = \langle \rho_1, \rho_2 \rangle$ such that $C_Q(\rho_1) \simeq C_Q(\rho_2) \simeq Q_8 \times Q_8$ and $C_Q(\rho_1\rho_2) = C_Q(\rho_1^2\rho_2) = 1$. Furthermore $C_Q(\rho_0\rho_1) \simeq C_Q(\rho_0\rho_2) \simeq Q_8$ and $C_Q(\rho_0\rho_1\rho_2) \simeq C_Q(\rho_1^2\rho_2) \simeq Q_8 \times Q_8$. Let τ be an involution in $F_0 \times F_1$. Then $C_Q(\tau) \simeq E_{2^5}$. Thus $Q\tau$ contains exactly 32 involutions with $|\tau^0| = (\tau z)^{0!} = 16$ and $\tau \not\prec_M \tau z$. Let τ_1 be an involution in $(F_0 \times F_1) \cdot I - F_0 \times F_1$ such that $[\tau_1, \rho_1\rho_2] = 1$. Then $C_Q(\tau_1) \simeq E_{2^5}$. Thus $Q\tau_1$ contains 32 involutions with $|\tau_1^0| = |(\tau z)^{0!} = 16$ and $\tau_1 \not\prec_M \tau_1 z$. Let τ_2 be an involution in $(F_0 \times F_1) \cdot I - F_0 \times F_1$ such that $[\tau_2, \rho_1] = 1$. Then $C_Q(\tau_2) \simeq E_{2^4}$. Thus $Q\tau_2$ contains 32 involutions which are all conjugate under Q. Let $P = F_0 \times P_1$ be an S_8 -subgroup of M. We have $C_Q(\rho_1) \simeq Q_8 \times Q_8$ and $P(\langle \rho_1 \rangle)$ acts faithfully on $C_Q(\rho_1)$ hence QP acts transitively on 18 noncentral involutions of $C_Q(\rho_1)$. Similarly $C_Q(\rho_0\rho_1\rho_2) \simeq C_Q(\rho_0\rho_1^2\rho_2^{-2}) \simeq Q_8 \times Q_8$ and $P(\langle \rho_0\rho_1\rho_2 \rangle)$ acts faithfully on $C_Q(\rho_0\rho_1\rho_2)$, so QP acts transitively on 18 noncentral involutions of $C_Q(\rho_0\rho_1\rho_2)$. On the other hand $\rho_0\rho_1 \sim_M \rho_0\rho_1^{-2}$ and $C_Q(\rho_0\rho_1) \simeq C_Q(\rho_0\rho_1^{-2}) \simeq Q_8$. Thus $9 \notin C_M(u)$ for every involution $u \in Q - \langle x \rangle$. Further as Q has 270 noncentral involutions and as $C_Q(\lambda) = 1$ for an element λ of order 5 of M, it follows that $3 \mid C_M(u)$. Since M has exactly 2 conjugacy subgroups of order 3 with the representatives ρ_1 and $\rho_0\rho_1\rho_2$ which centralize some noncentral involutions of Q, thus M has precisely 2 conjugacy classes of involutions with the representatives a and b where $[a, \rho_1] = [b, \rho_0\rho_1\rho_2] = 1$. By [3, (3.11)], we have $M: C_M(a) = 2 \cdot 3^2 \cdot 5 = 90$ and $|M|: C_M(b) = 2^2 \cdot 3^2 \cdot 5 = 180$ and $a \sim_G z$. By $[3, (3.13)] a \prec_G b$. We have proved

LEMMA 2. M has precisely 2 conjugacy classes of involutions contained in $Q - \langle z \rangle$ with the representatives a and b. We have $|a^M| = 2 \cdot 3^2 \cdot 5 = 90$ and $b^M = 2^2 \cdot 3^2 \cdot 5 = 180$. Furthermore $a \sim_G z$ and $b \not\sim_G z$.

Let $L = Q(Q_a \cap M)$ with $a \in Q - \langle z \rangle$ and $a \sim_G z$. Let $T = Q \cdot S \supseteq L$ be an S_2 -subgroup of M where $S \in Syl_2((F_0 \times F_1) \cdot I)$. Set $V = S \cap L$. Then $V \simeq E_{2^3}$ and $Z(S) \subseteq V$. Let $\tau \in Z(S)^{\neq} \cap F_1$ and put $A = C_Q(\tau) \times \langle \tau \rangle$. Then $A \simeq E_{2^6}$ and $A \leq T$. Further C(A) = A. Let $x \in Q_{0z} - M$, then $z^n = a$. Hence $A^x \subseteq L^x = (Q \cdot (Q_a \cap M)^x = Q_a \cdot (Q \cap M_a)$ where $M_g = C(a)$. On the other hand $A^x \subseteq M$, thus $A^x \subseteq L$. It follows that $A^x \cap Q \simeq E_{2^5}$ and $A^x \cap V = \langle v \rangle$. Now there is an element $y \in N_{(F_n \times F_n)}(V)$ such that $v^y \in Z(S)$. Thus $A^{xy} \leq T$. Since T is self-normalizing, so $A = A^{xy}$. As $xy \notin M$, so we have proved $N(A) \not\subseteq M$. It is easy to see that A contains 6 classes of involutions under the action of $N_{\mathcal{M}}(A)$ with the representatives z (1 conjugate), a (6 conj.), a_1 (12 conj.) $(a_1 \sim_M a)$, b (12 conj.), (16 conj.) and z (16 conj.). Let d = $N(A): N_M(A)$, the length of the orbit of z in N(A). Since N(A)/A is isomorphic to a subgroup of GL(6, 2), so we have d = 7 or $5 \cdot 7$. Assume d = 7. Then $z \sim_{N(A)} a$ and $|a_1^{N(A)}| = 28$. Furthermore $b^{N(A)}| = 28$, since otherwise $b^{N(A)} = 12$ and $|\tau z^{N(A)}| = 16$ (say); let R be a subgroup of order 7 of N(A)then $C_d(R) \simeq E_{2^3}$ contains 5 conjugates of b and 2 conjugates of πz ; on the other hand 3 $|N_{N(A)}(R)|$; let P be a subgroup of order 3 of $N_{N(A)}(R)$, then P centralizes $C_A(R)$, contradicting the fact that $C_A(P) \simeq E_{2^2}$, as $P \sim_{N(A)} F_0 =$ $\langle \rho_0 \rangle$. It follows that an S_7 -subgroup of N(A) acts fixed-point-free on A. As $C_A(F_0) = \langle z, \tau \rangle$ so $C_{N(A)}(F_0) = C_{N_M(A)}(F_0)$ thus $C_{N(A)}(F_0) \simeq Z_{\mathfrak{s}} \times D_{\mathfrak{s}}$. Now let \overline{H} be a minimal normal subgroup of $\overline{N} = N(A) | A$. Suppose \overline{H} is solvable, then \overline{H} is either 2-group or 7-group. If \overline{H} is a 2-group, then $C_A(\overline{H}) = A_0 \simeq E_{23}$. Let $\overline{W} = C_{\Sigma}(A_0)$, then $\overline{W} \leq \overline{N}$. As $Z(T) = \langle z \rangle$, so $\overline{W} \leq 2^5$. Now $\overline{N} \cdot \overline{W}$ is isomorphic to a subgroup of GL(3, 2). Since 2, 3, 7 $_{-}N\overline{W}$, so $N\overline{W}\simeq$ GL(3, 2). Thus $|\overline{W}| = 2^4$. Let $R_0 \cdot F_0$ be a subgroup of order 21 of \overline{N} , where $|R_0| = 7$, then $C_{\overline{W}}(R_0 \cdot F_0) = 1$. Let $\overline{w} \in C_{\overline{W}}(R_0 \cdot F_0)$ be an involution, then $C_A(\overline{w}) \simeq E_{2^4}$, contradicting $C_A(R_0) = 1$. If $|\overline{H}| = 7$, then $|C_{\overline{N}}(\overline{H}) \cap C_{\overline{N}}(F_0)|_2 \neq 1$ and we get a contradiction as above. Thus \overline{H} is not solvable. Hence $\overline{H} \simeq L_3(2)$, but then $1 \neq C_{\overline{N}}(\overline{H}) \leq \overline{N}$, a contradiction. Thus we have $d = 5 \cdot 7$, so $|z_{\overline{N}}| = 35$ and \overline{N} acts irreducibly on A. Ley \overline{H} be a minimal normal subgroup of \overline{N} . Then \overline{H} is either 7-group of \overline{H} is simple. If $|\overline{H}| = 7$ then $C_A(\overline{H}) = 1$ but \overline{H} centralizes a subgroup K of order 5 of \overline{N} and $C_A(K) \simeq E_{2^2}$, a contradiction. Hence \overline{H} is simple and $\overline{H} \simeq A_5$ or $L_3(2)$. In any case $C_{\overline{N}}(\overline{H}) \neq 1$, a contradiction.

The proof of the proposition is complete.

REFERENCES

- M. ASCHBACHER, On finite groups in which the generalized Fitting group of the centralizer of some involution is extraspecial, *Illinois J. Math.* 21 (1977), 347-364.
- U. DEMPWOLFF AND S. K. WONG, On finite groups whose centralizer of an involution has normal extraspecial and Abelian subgroups, I, J. Algebra 45 (1977), 247-253; II, 52 (1978), 210-217.
- 3. F. TIMMESFELD, Finite groups in which the generalized Fitting group of the centralizer of some involution is extraspecial, to appear.