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Recently, F. Timmesfeld investigated finite c!m}ie groups G in
generalized Fitting group of the centralizer 31 of some
3]. 'The purpose of this paper is to eliminate 2 specia
occurs in the case of width 4. More precisely, we pro

Provosttion.  There exists no nonabelian simple gr'*ui) G wh
= suck that the centralizer M of z in G satisfies the f

iy O =F<(M)is extmspecz'al of width 4.

According to [3] we set M = (2} and W
onventions. In addition we write C(X) = C¢(
ay subset X of G.

From now on we assume G is simple. Le
hen A covers M. As A acts 1rred4c1 bly
X~ Set X = (F, xF) 1L BV'I]
Y a No 2. Lat L = Q(Qa N Jd) where Q

(')

»
'J

; ; ’F x F). In 'her words CQ
Suppose Cyf ul) ~ Qg > Qg = Qg , then [Q, p4]

and Cp(B,) = 1, so | Cy(¥)i — 2% On the other Q, <{g-":
and " Co=m(7)i = 2%, s0 [ C5(7) = 25, a contradictior. Thus Cy{p;) ~= Gy = Os.
Let P, = {p;, P>y be an Sy-subgroup of F, with

s

<
Qg =0y . There is an involution 7, € such thet
Colp) N Colps) #+ (2>. As 1 Cylay, = 3,
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Then %, induces an outer automorphism on Cig,¢s >i(pe) = Qs . Since p; acts

fixed-point-free on [Q, {p;}], thus | Cigo—y(T): = 22 and 7, induces an outer

automorphism on Q, and on Q, where [Q, {p,>] = O; * Qpand Q) =~ Q, ~ Q.
Hence Cig,,,51(To) = Ee, contradicting the fact that Cig, ¢, ;1(7o) is fe-invariant

and Cgs(f,) = 1. Thus we have Cq(p;) N Cofpg) = <3>. Therefore pip, and
p12p, act fixed-point-free on (. Let #, be an involution in F; - I ~ Z;.
Case (1). #,€F,. Then we may assume # inverts P, = (p;,po>- In

particular 7, inverts §;f,. As Cg(;;;) =1, it follows that Cy(F) = 2L
Acting on Q with {3, , p192), we see that O = Co(pep1ps) * Colpopi®.?) and so
Colpoprpe) =*Colpops®pa®) =2 Qg Qg and thus Co(ry) = Eys .

Case (2). m ek, -I—F,. Then pi: = p2 Let fe Cr (71) be an element
of order 3. We have either C3(p) = 1 or Cy(p) ~ Qg % Os .

(@) Cu(p) = 1. Then Cy(7) =~ E,;s by arguing as above.

(b) Co(p) =~ Qg = Qs . Acting with (g, , ) on [O, p] 0 = Oy, we get

[0, ] = Clo.c>i(PoP)- Cio.oi(PoP)- As (Pop)r = PP, 50 Cio.c>1(Pof) =
Cio.¢z>1(o?p) =~ Qg . This implies that Cig,(z1(r1) = Es . From the structure
of Z; 7, inverts an element §> ~p ;1 and {p,p*> € SyL(F, - I). So Cu(p) =
[Q, 5*]. Acting with {3y, 5> on C () we have Co(3) = Co,_ (AP Ceyn(Fp™)
and C. (5)(p0p )~ C¢ (5)([’0 26*) ~ Qg. Thus 7, induces an outer auto-
morphlsm on Cc (5)(POP*) and on Cc (p)(Po p*) and so Cc (5)("'1) o~ Ep.
Hence Cy(r;) =~ E24

Now we remark that there are involutions in the coset O, . Suppose o(;) = 4.
Then there exists an element u € Q with o(riu) = 2, s0 mytiru = Ty7yry UrU =
zu™ - u = | and then ut = 21!, contradicting the fact that the inverse image
of C(#,) in Q is isomorphic either to E,s or (2, 2, 2, 4). Thus we have o(r,) = 2.
Hence X splits over Q and 31 splits also over Q. We have proved the following
result

Levima 1. The group M is a splitting extension of Q by (Fy, X Fy) - I with
Fp~Z, , Fi~A,, I~Z,, Fy: I =2, and F; - I ~Xg. Let Fy = {py).
Then Cz(py) = 1. Let P, be an S -subgroup of F, . Then P1 = {py , po) Such that

Colp) =~ Colps) ~ Qg =~ Qs and CG(P1P2) = CG(P1 ps) = 1. Furthermore

Colpors) = Colpops) = Qs and Colpepipe) = Colo’prpe) = O < Qg . Let 7 be
an involution in Fy X Fy. Then Cy(7v) ~ Eys . Thus Qr contains exactly 32

involutions with | 72 | = (72)2' = 16 and 7 Ay 2. Let v, be an involution in
(Fo X Fy) - I — Fy X F; such that [y , p1p;] = 1. Then Cy(ry) =~ Egs . Thus Qr,;
contains 32 involutions with | 7,2 = |(1,2)2' = 16 and 7, %y 7,2. Let 7, be an

involution in (Fy X F,) - I — Fy X F, such that [, , p;] = 1. Then Cy(7y) =~ E,:.
Thus Qr, contains 32 involutions which are all conjugate under Q.
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Let P = Fy X P; be an Sg-subgroup of A, We have Cy(p,) =~ @, < G 2nd
Pi{p> ects faithfully on Cg(p,) hence QP acts transitively on 18 noncentral
involutions of Cy(p;). Similarly Cglpepips) = Colpepi®e,?, = Qs = Qs and
P {pyp.psy acts faithfully on Cg(pgpsps), s0 OP acts transitively on 18 noacentra!
involutions of Cg(pgp1ps). On the other hand pye; ~;f pop-2 and Cy(pyey, =
Col00,%) >~ Qg . Thus 9t C(u), for everv involution u e § — (2. Further
zs O has 270 noncentral involutions and as C é(i) = | for an element A of
order 5 of M, it follows that 3 | C,f{u). Since 3 has exactly 2 conjugacy
subgroups of order 3 with the representatives p; and pyp,p, which centraiize
some noncertrai involutions of Q, thus W has precisely 2 coniugacy classes of
inveolutions with the representatives a4 and & where [a, p,] = [B, pyp1pa] = ©-
By {3, (3.11);, we have M:C\fa) =2-32-5=290 and | 3[: Cyy(h) =
22325 =180 and g ~; 2. By [3, (3.13)] @ ~4; b. We have proved

Lexava 20 M has precisely 2 conjugacy classes of involuiions contained in
O — (&) with the representatives a and b. We have |a¥ =2 -3%-5 =90 and
M =22 -32.5 = 180. Furthermore a ~ z and b L 2.

LetL =Q(Q,Nn M) withaeQ —(danda~2. Lt T =0 -8
an S,-subgroup of 3 where SeSyl((Fy X Fy} - I). Set = Sf\L. Then
¥V ~ Ey; and Z(S)C V. Let 7€ Z(S)* r\F1 and put 4 = Cg(r) X {75, Then
A ~Eys and A< T. Further C(4) = 4. Let x¢ O,,- — 1M, tqen 7’ = &.
Hence A*CL* =(0 - (Q. N M)* =0, - (0N i) where M, = Cla;. Cn
the other hand 4*C I, thus 4* CL. It follows that 4* N Q ~ E : and
A* N T = (t). Now there is an element y € V(y xz.(}") suck thar «¥ € Z{S}.
Thus A4%¥ << T. Since T is self-normalizing, so 4 = A4*¥. As ay & 1], so we havs
proved N(A) & M. It is easy to see that 4 conrtains 6 classes of invclutions under
the action of N,{(d) with the representatives z (1 conjugate), ¢ (€ conj.),
a; {12 conj.} (a, ~ypa), b (12 conj.), (16 conl.}and z {16 conj.). Let 4 ==
N(4) : Ny(d), the length of the orbit of = in ¥(A). Since N{dj:d is iso-
morghic to a subgroup of GL(6, 2), so we have d = 7 or 5 - 7. Assume d = 7.

Ther 2 ~ypaand i@y = 28. Furthermore &Y' = 28, since otherwise
BV4 = 12 and "7V | = 16 (say); let R be a subgroup of order 7 of A4}

then C.(R) ~ E,s contains 5 conjugates of 4 and 2 conjugates of =z; on he
other hand 3 | Ny((R) ; let P be 2 subgroup of order 3 of I\ \( MR), then F
centrzlizes C,(R), contradicting the fact that C (P) ~ E,., 2 ~vinFg =
{pos- It foilows that an S,-subgroup of iV (a) acts ‘ixed—pom-—rree on 4. As

CiFo; = <&, 7) 30 Cria(Fy) = Cy (A)(F) thus Cy \A)('FO) >~ Zg X Dg. Now
iet H be a minimal normal subgroup of N = N{d);A. Suppose H is soivable,
then H is either 2-group or 7-group. If H is a 2-group, then C(H) = Ay~ Eq.
Let W = Cg(dy), then W<G N. As Z(T) = (2>, s0 T7' <25 Now N0iF i3
isomorphic to a subgroup of GL(3,2). Since 2,3,7 N7, so V¥ ~
GL(3,2). Thus | W = 2% Let R, - F, be a subgroup of crder 21 of N, wheze
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i Ryl =17, then Cy(R, - Fy) = 1. Let @we Cp(R, - Fy) be an involution, then
C (@) ~ Ey, contradicting C,(Ry) = 1. If | H| = 7, then | Cx(H) N Cx(Fy) 2
7 1 and we get a contradiction as above. Thus H is not solvable. Hence
H ~ L,(2), but then 1 5= Cx(H)<1 N, a contradiction. Thus we haved = 5 - 7,
s0 | 25 | = 35and N acts itreducibly on 4. Ley H be a minimal normal subgroup
of N. Then H is either 7-group of H is simple. If | H' = 7 then C,(H) = 1
but H centralizes a subgroup K of order 5 of N and C(K) ~ E,:, a contradic-
tion. Hence H is simple and H ~ Aj or Ly(2). In any case Cg(H) # 1, a con-
tradiction.
The proof of the proposition is complete.
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