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In this note an idea of quasi-homogeneous normal form theory using new
grading functions is introduced, the definition of N th order normal form is given
and some sufficient conditions for the uniqueness of normal forms are derived.
A special case of the unsolved problem in a paper of Baider and Sanders for the
unique normal form of Bogdanov�Takens singularities is solved. � 1996 Academic

Press, Inc.

1. INTRODUCTION

Normal forms are basic and powerful tools in bifurcation theory of
vector fields. The classical normal form theory, known as Poincare� normal
form (see, e.g., Arnold [Ar]), however, may not give the simplest form
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since only linear parts are used for simplifying the nonlinear terms, and
hence one can not apply Poincare� normal form theory to vector fields
whose linear parts are identically zero. On the other hand, classical normal
forms are not unique in general. In order to get unique normal forms so
that formal classification could be made, further reduction of the classical
normal forms is necessary and the concept of normal forms should be
refined.

Many authors have discussed the further reduction of normal forms and
some of them have discussed uniqueness of normal forms, see, e.g., [SM]
and references therein. Ushiki [Us] introduced a systematic method by
which nonlinear parts are also used to simplify higher order terms. In
contrast to the classical method of normal form theory where only one Lie
bracket is used to simplify the higher order terms, the Ushiki's method
allows more Lie brackets for the simplification (see e.g. [CK] for examples
of calculation). In particular, Ushiki obtained unique normal forms
(simplest normal forms) up to some degree for given vector fields. Wang
[Wa] gave a method to calculate coefficients of normal forms, which needs
more parameters in the transformations due to the non-uniqueness of
transformations and hence which may give simplest normal forms (up to
some finite order) by suitable choice of parameters. In fact nonlinear terms
play also a role in the reduction. Baider introduced the notion of ``special
form'' [Ba], which is in fact a unique normal form in an abstract sense.
Baider and Sanders [BS1] introduced new grading functions to get further
reduction of normal forms. They introduced the concept of n th order nor-
mal forms related with the n th grading function and gave the definition of
infinite order normal forms (which is unique). They gave unique normal
forms for some nilpotent Hamiltonian vector field singularities. They also
obtained unique normal forms for some cases of Bogdanov�Takens
singularities ([BS2]), although some cases still remain unsolved. Results
concerning uniqueness of normal forms for some other cases can be found
in [BC2] and [SM].

In this paper we first introduce the concept of linear grading function in
Section 2 and we give a method to define new grading functions. Then in
Section 3 we develop a quasi-homogeneous normal form theory by using
grading functions and define n th order normal forms, in which we combine
methods of Ushiki and of Baider�Sanders. In fact we need only one grading
function, but the n th order normal forms relate to n Lie brackets in the
computation. In Section 4 we define infinite order normal forms and prove
that the infinite order normal forms must be unique. In Section 5 we give
a sufficient condition for a finite order normal form being unique. Finally
in Section 6 we prove the uniqueness of a first order normal form of the
special case +=2, &=1 of Bogdanov�Takens singularities, which solves a
special case of the remaining problem in [BS2].
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2. LINEAR GRADING FUNCTION

Let H be the linear space of all n dimensional real or complex formal
vector fields. We define a bilinear operator [ } , } ]: H_H � H by [u, v]=
Du } v&Dv } u for any u, v # H. Then [H, [ , ]] forms a Lie algebra. Now
let us define a ``grading function'' such that [H, [ , ]] becomes a graded
Lie algebra.

For the purpose of computing normal forms of formal vector fields, the
``grading function'' should satisfy the following properties:

(i) The degree of any monomial is defined to be an integer. The
dimension of the linear space Hk spanned by all monomials of degree k is
finite for any integer k (in the case when there is no monomials of degree
k for some integer k we define Hk=[0]);

(ii) [Hm , Hn]/Hm+n for any integers m, n;

(iii) The grading function should be bounded below.

Let

Dn={`
n

i=1

xli
i ej } li # Z+, xi # R (or C), i, j=1, ..., n= ,

where ej is the j th standard unit vector in Rn (or Cn). Consider the function
$: Dn � Z defined by

$ \`
n

i=1

xli
i e j+= :

n

i=1

aij li+dj , (1)

where aij , dj # Z, i, j=1, ..., n. From the definition of $, it is obvious that
condition (i) for a grading function is satisfied. Now we look for condi-
tions such that the function $ defined by (1) satisfies all other conditions
of grading functions.

Lemma 2.1. The function $ defined by (1) is bounded below if and only
if all [aij] are non-negative integers.

Lemma 2.2. Let the function $ be defined by (1) with non-negative coef-
ficients [aij] and let Hk be the linear space spanned by all monomials in
$&1(k). Then dim Hk is finite (or zero) for any integer k if and only if all
[aij] are natural numbers.

Lemma 2.3. Let the function $ be defined by (1) and Hk be defined as in
Lemma 2.2. Then [Hm , Hn]/Hm+n if and only if

ai1= } } } =ain=&di for any i=1, ..., n.
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Proof. Let u=>n
i=1 xli

i ej , v=>n
i=1 xl $i

i ek and $(u)=m, $(v)=n. Then

[u, v]=Du } v&Dv } u

=
lk

xk
`
n

i=1

xli
i } `

n

i=1

xl $i
i ej&

lj$
xj

`
n

i=1

xl $i
i } `

n

i=1

xli
i ek

=
lk

xk
`
n

i=1

xli+l $i
i ej&

l $j
xj

`
n

i=1

xli+l $i
i ek . (2)

We first assume that ai1=ai2= } } } =ain=&di , i, j=1, ..., n. Then

$ \ 1
xk

`
n

i=1

xli+l $i
i ej+= :

n

i=1

aij (li+l $i )&akj+dj

=\ :
n

i=1

aij li+dj++\ :
n

i=1

aikl $i+dk+=m+n,

and

$ \ 1
xj

`
n

i=1

xli+l $i
i ek+= :

n

i=1

aik(li+l $i )&ajk+dk

=\ :
n

i=1

aikli+dk++\ :
n

i=1

aij l $i+dj+=n+m.

Hence, from (2), we have [u, v] # Hm+n . Note that the operator [ } , } ] is
bilinear. Therefore [Hm , Hn]/Hm+n .

Conversely, we suppose that [Hm , Hn]/Hm+n holds for any integer
m, n. For any k # N, we fix a u # Hm with lk>0. Then from (2) we have

:
n

i=1

aij (li+li$)&akj+dj=\ :
n

i=1

aij li+dj++\ :
n

i=1

aikli$+dk+ .

Hence

:
n

i=1

(aik&aij) li$+dk+akj=0,

i.e.

dk+akj= :
n

i=1

(aij&aik) l $k .
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If we take

li$={l,
0,

i=k,
i{k,

where l # N, then

akj&akk=
dk+akj

l
. (3)

Letting l � +�, we have akj=akk . Note that j is arbitrary. Therefore
ak1= } } } =akk= } } } =akn , and hence from (3), dk=&ak1 follows.

Definition 2.4. Let

Dn={`
n

i=1

xli
i ej } li # Z+, xi # R (or C), i, j=1, ..., n= ,

where ej is the j th standard unit vector in Rn (or Cn). Then the function
$ : Dn � Z defined by

$ \`
n

i=1

xli
i ej+= :

n

i=1

aili&aj , (4)

where ai # N, i=1, ..., n, is called a linear grading function.

Remark 2.5. (1) Let $ be a linear grading function defined by a set of
natural numbers [ai]. If [ai] has a common factor c, then the function
(1�c) $ is also a linear grading function. So we may always assume that
every linear grading function is defined by a set of coprime natural
numbers [ai].

(2) Any linear grading function $ satisfies

$(xi ei)=0 for all i=1, ..., n.

Hence for any grading function $, minp $( p)�0.
(3) If the linear grading function $ is defined by a set of successive

natural numbers [a1 , ..., an], then for \k�1&n, dim Hk�1.

Example 2.6. If $(>n
i=1 xli

i ej)=�n
i=1 li&1, i.e. a1= } } } =an=1, then

$ is a linear grading function. Note that the usual definition of the degree
of >n

i=1 xli
i ej is �n

i=1 li and hence the grading function defined above shifts
by 1 with respect to the usual grading.

Example 2.7. In D2=[>2
i=1 xli

i ej , j=1, 2], define

$(xl1
1 xl2

2 ej)={2l1+3l2&2,
2l1+3l2&3,

j=1,
j=2.
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Then $(x2 e1)=$(x2
1 e2)=1. Note that x2 e1 is a linear term and x2

1 e2 is a
nonlinear term in the sense of usual grading.

3. N th ORDER NORMAL FORMS

Let $ be a linear grading function and Hk be the linear space spanned
by all monomials of degree k. Consider a formal vector field V defined by
the following formal series

X=X++X++1+ } } } +X++k+ } } } , (5)

where Xk # Hk , k�+ and X+{0. We call (5) a zeroth order normal form
and denote it as

V (0)=V (0)
+ +X++1+ } } } +X++k+ } } } . (6)

We may assume that X+ is already in some simple or satisfactory form (e.g.
X+ may have been changed to a simpler form by classical normal form
theory).

Let Yk # Hk and let 8Yk be its time one mapping given by the flow 8t
Yk

generated from the vector field corresponding to the equation x* =Yk(x),
x # Rn. Then the transformation y=8Yk(x), which is a near identity change
of variables, brings (5) to

(8Yk)*
X=exp(ad Yk) X

=X+(ad Yk) X+ } } } +
1
n!

(ad Yk)n X+ } } } ,

where (ad Yk) X=[Yk , X] and (ad Yk)n=(ad Yk)n&1 } (ad Yk), n=2, 3, ... .
For any k # N, define an operator

L (1)
k : Hk � H++k ; Yk [ [Yk , V (0)

+ ]. (7)

It is obvious that L (1)
k is linear. Note that L (1)

k depends on V (0)
+ and can be

denoted by L (1)
k =L (1)

k [V (0)
+ ].

Definition 3.1.

V=V++V++1+ } } } +V++k+ } } }

is called a first order normal form, if

V++k # N (1)
++k , k=1, 2, ...,
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where N (1)
++k is a complement subspace to Im L (1)

k in H++k and L (1)
k =

L(1)
k [V+].
It is easy to see that there is a sequence of near identity formal transfor-

mations such that (5) is transformed into a first order normal form which
is called the first order normal form of (5) and can be denoted by

V (1)=V (1)
+ +V (1)

++1+ } } } +V (1)
++k+ } } } . (8)

Note that V (1)
+ =V (0)

+ .

In order to make further reduction of a first order normal form, we
define a sequence of linear operators L (m)

k , m, k=1, 2, 3, ... as follows. Let

V=V++V++1+V++2+ } } } +V++k+ } } }

be a formal series, where Vm # Hm for each m�+. Then we define
L(1)

k =L (1)
k [V+] by (7) for any k # N; if L (m)

k =L (m)
k [V+ , V++1 , ..., V++m&1]

is defined already for an m�1 and any k # N, then we define L (m+1)
k =

L(m+1)
k [V+ , V++1 , ..., V++m] by

L (m+1)
k : Ker L (m)

k _Hm+k � H++m+k :

((Yk , Yk+1 , ..., Yk+m&1), Yk+m)

[ [Yk , V++m]+ } } } +[Yk+m&1 , V++1]+[Yk+m , V+].

Remark 3.2. By definition, it is obvious that

Ker L (m)
k =[(Yk , Yk+1 , ..., Yk+m&1) # Hk_ } } } _Hk+m&1 |

[Yk , V+]=0,

[Yk+1 , V+]+[Yk , V++1]=0,

b

[Yk+m&1 , V+]+ } } } +[Yk , V++m&1]=0].

Definition 3.3. A formal vector field

V=V++V++1+V++2+ } } } +V++N+ } } }

where Vm # Hm for each m�+, is called an Nth order normal form, if

V++i # N (i)
++i (1�i�N&1),

and

V++j # N (N)
++j ( j�N),
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where N (m)
++k is a complement to the image of L (m)

k&m+1[V+ , V++1, ..., V++m&1]
in H++k for each m�1 and k�1.

Theorem 3.4. For any N # N, every formal vector field can be changed
by a sequence of near identity formal transformations to an Nth order normal
form.

Proof. Consider a formal vector field (a zeroth order normal form)

V (0)=V (0)
+ +X++1+ } } } +X++k+ } } } . (9)

Define linear operator L (1)
1 =L (1)

1 [V (0)
+ ] and let

H++1=Im L (1)
1 �N (1)

++1.

Then there is a polynomial Y 1=Y (1)
1 # H1 such that (9) is converted to

V (1)=exp(ad Y 1) V (0)=V (0)
+ +V (1)

++1+X (1)
++2+ } } } , (10)

where V (1)
++1 # N (1)

++1 . We define linear operator L (2)
1 =L (2)

1 [V (0)
+ , V (1)

++1] and
let

H++2=Im L (2)
1 �N (2)

++2.

There is a polynomial Y 2=Y (2)
1 +Y (2)

2 , where Y (2)
1 # Ker L (1)

1 and
Y (2)

2 # H2 such that (10) is converted to

V (2)=exp(adY 2) V (1)=V (0)
+ +V (1)

++1+V (2)
++2+X (2)

++3+ } } } , (11)

where V (2)
++2 # N (2)

++2 . Step by step, for each m=2, 3, ..., N, we define a linear
operator L (m)

1 =L (m)
1 [V (0)

+ , ..., V (m&1)
++m&1] and then find a polynomial Ym=

Y (m)
1 + } } } +Y (m)

m , where (Y (m)
1 , ..., Y (m)

m&1) # Ker L (m&1)
1 and Y (m)

m # Hm

such that

V (m)=exp(ad Ym) V (m&1)

=V (0)
+ + } } } +V (m)

++m+X (m)
++m+1+ } } } ,

where V (k)
++k # N (k)

++k for k=1, ..., m, and where N (k)
++k is a complement to

Im L (k)
1 in H++k . Furthermore for V (N) (denoted also as V (N, 1)) and for each

k=2, 3, ..., we consider linear operator L(N)
k =L(N)

k [V (0)
+ , ..., V (N&1)

++N&1],
and find YN, k=Y (N, k )

k + } } } +Y (N, k )
k+N&1 where (Y (N, k)

k , ..., Y (N, k)
k+N&2) #

Ker L(N&1)
k [V (0)

+ , ..., V (N&2)
++N&2] and Y (N, k)

k+N&1 # Hk+N&1 such that

V (N, k)=exp(ad YN, k) V (N, k&1)

=V (0)
+ + } } } +V (N)

++N+V (N)
++N+1+ } } } +V (N)

++k+N&1+h.o.t. (12)
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where V (N)
++N+j # N (N)

++N+j for each j�1 and where N (N)
++N+j is a complement to

Im L (N)
j+1 in H++N+j . Now the sequence of time one mappings defined by the

sequence of polynomial vector fields Y 1, ..., YN(=YN, 1), YN, 2, ... change the
given vector fields to an N th order normal form. K

In what follows, we may always assume that all linear operators L (m)
k are

defined by the same sequence of homogeneous polynomials V+ , V++1 , ... .

Lemma 3.5.

(0, Yk+1, ..., Yk+m&1) # Ker L (m)
k � (Yk+1 , ..., Yk+m&1) # Ker L (m&1)

k+1

Lemma 3.6.

Im L (m)
k+1/Im L (m+1)

k , \k, m�1.

Proof. Note that

Im L (m)
k+1=[X++m+k | _(Yk+1, ..., Yk+m&1) # Ker L (m&1)

k+1

and Yk+m # Hk+m such that [Yk+1, V++m&1]+ } } }

+[Yk+m , V+]=X++m+k].

Take Yk=0. From Lemma 3.5, if

[Yk+1 , V++m&1]+ } } } +[Yk+m , V+]=X++m+k ,

then (0, Yk+1 , ..., Yk+m&1) # Ker L(m)
k and

[0, V++m]+[Yk+1 , V++m&1]+ } } } +[Yk+m , V+]

=[Yk+1 , V++m&1]+ } } } +[Yk+m , V+]

=X++m+k .

Hence X++m+k # Im L (m+1)
k . K

Corollary 3.7.

dim N (m+1)
++k+m�dim N (m)

++k+m , \k, m # N.

Remark 3.8. It is reasonable to set

N (m+1)
++k+m/N (m)

++k+m , \k, m # N.

Remark 3.9. It is obvious that for a given formal vector field its N th
order normal form is simpler than its m th order normal form if m<N.
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4. UNIQUE NORMAL FORMS

Definition 4.1.

V=V++V++1+ } } } +V++m+ } } }

is called an infinite order normal form, if V++m # N (m)
u+m for \m # N, where

N (m)
++m is a complementary subspace to Im L (m)

1 in H++m and where
L(m)

1 =L (m)
1 [V+ , V++1 , ..., V++m&1] for \m # N.

Though in general we have infinitely many choices for the complemen-
tary space to the image of L(m)

1 in H++m , in what follows, we assume that
the choice of the complementary space N (m)

++m to Im L (m)
1 is fixed.

Theorem 4.2. Let

V=V++V++1+ } } } +V++m+ } } }

and

W=V++W++1+ } } } +W++m+ } } }

be both infinite order normal forms. If there exists a formal series Y=
Y1+Y2+ } } } +Ym+ } } } with Ym # Hm (\m # N) such that (8Y)

*
V=W,

then

V++m=W++m \m # N.

Proof. Suppose it would not be the case. Then there exists an m # N
such that

V++k=W++k (1�k�m&1), V++m{W++m .

Recalling

W=exp(ad Y) V

=V+[Y, V]+
1
2!

[Y, [Y, V]]+ } } } +
1
n!

[Y, ..., [Y, V] ...]+ } } } ,

we have

Wk=Vk+[Y, V]k+
1
2!

[Y, [Y, V]]k+ } } } +
1
n !

[Y, ..., [Y, V] ...]k+ } } } ,
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where [Y, V]k=[Y, V] & Hk . Similarly for [Y, ..., [Y, V] ...]k . Notice
that this infinite sum has in fact only finitely many nontrivial terms, and
hence the summation is well-defined. Therefore we have

[Y, V]k+
1
2!

[Y, [Y, V]]k+ } } } +
1
n !

[Y, ..., [Y, V] ...]k+ } } } =0 (13)

for ++1�k�++m&1. It is easy to see that if [Y, V]{0 and if the
lowest degree of terms in [Y, V] is l, then the lowest degree of terms in
[Y, ..., [Y, V] ...] with n-fold bracket operations is l+n&1. Hence from
(13), we have

[Y, V]++1=0,

[Y, V]++2+
1
2!

[Y, [Y, V]]++2=0,

b

[Y, V]++m&1+
1
2!

[Y, [Y, V]]++m&1+ } } } +
1

m !
[Y, ..., [Y, V] ...]++m&1

=0.

By induction, we have

[Y, V]++1=[Y, V]++2= } } } =[Y, V]++m&1=0,

and therefore

[Y1 , V+]=0,

[Y2 , V+]+[Y1 , V++1]=0,

b

[Ym&1 , V+]+[Ym&2 , V++1]+ } } } +[Y1 , V++m&2]=0,

namely, from Remark 3.2,

(Y1 , Y2 , ..., Ym&1) # Ker L (m&1)
1 .

Thus

W++m=V++m+[Y, V]++m .

Note that

[Y, V]++m=[Y1 , V++m&1]+ } } } +[Ym , V1],

This means [Y, V]++m # Im L(m)
1 .

303LINEAR GRADING FUNCTION



File: 505J 319512 . By:CV . Date:27:11:96 . Time:10:11 LOP8M. V8.0. Page 01:01
Codes: 2234 Signs: 946 . Length: 45 pic 0 pts, 190 mm

On the other hand, V++m and W++m are both in the same complemen-
tary space N (m)

++m to Im L (m)
1 . Therefore

W++m&V++m=[Y, V]++m # N (m)
++m & Im L (m)

1 =[0],

and hence W++m=V++m . This contradiction shows that the conclusion of
the theorem is true. K

Corollary 4.3. If

V (N )=V (0)
+ +V (1)

++1+ } } } +V (N )
++N+V (N )

++N+1+ } } }

and

W (N )=V (0)
+ +W (1)

++1+ } } } +W (N )
++N+W (N )

++N+1+ } } }

are both Nth order normal form of (5), then

V (k)
++k=W (k)

++k , k=1, ..., N.

5. A SPECIAL CASE

In this section we assume that all linear operators L (m)
k are based on the

same sequence of polynomials V+ , V++1 , ... .

Proposition 5.1. If there exists an N # N such that

Ker L (N+1)
k =[0]_Ker L (N )

k+1, \k # N

holds, then

Ker L (N+m)
k =[0]_ } } } _[0]

m

_Ker L (N )
k+m , \k, m # N (14)

and

Im L (N+m+1)
k =Im L (N+1)

k+m , \k # N. (15)

Proof. By assumption, (14) with m=1 apparently holds. Suppose we
have X++k+N+1 # Im L (N+2)

k , namely, there exists (Yk , ..., Yk+N+1)
satisfying

(Yk , ..., Yk+N) # Ker L (N+1)
k , Yk+N+1 # Hk+N+1 ,

[Yk , V++N+1]+ } } } +[Yk+N+1 , V+]=X++k+N+1.
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From assumption, Yk=0 and (Yk+1 , ..., Yk+N) # Ker L (N)
k+N . Hence

[Yk+1, V++N]+ } } } +[Yk+N+1 , V+]=X++k+N+1.

This implies that X++k+N+1 # Im L (N+1)
k+1 and hence Im L (N+2)

k /Im L (N+1)
k+1 .

Conversely, if we assume X++k+N+1 # Im L (N+1)
k+1 , namely, there exists

(Yk+1, ..., Yk+N+1) satisfying

(Yk+1 , ..., Yk+N) # Ker L (N )
k+1 , Yk+N+1 # Hk+N+1,

[Yk+1, V++N]+ } } } +[Yk+N+1 , V+]=X++k+N+1.

Then taking Yk=0, it holds that (Yk , ..., Yk+N+1) # Ker L (N+1)
k and

apparently

[Yk , V++N+1]+[Yk+1 , V++N]+ } } } +[Yk+N+1 , V+]=X++k+N+1 .

This implies X++k+N+1 # Im L (N+1)
k , and hence Im L (N+1)

k+1 /Im L (N+2)
k .

Therefore

Im L (N+2)
k =Im L (N+1)

k+1 ,

namely (15) holds for m=1.
Suppose (14) and (15) hold for a fixed m�1. Let (Yk , ..., Yk+N+m) #

Ker L(N+m+1)
k . Then

[Yk , V++N+m]+ } } } +[Yk+N+m , V+]=0. (16)

Note that (Yk , ..., Yk+N+m&1) # Ker L (N+m)
k . By induction hypothesis,

Yk=0, ..., Yk+m&1=0 and (Yk+m , ..., Yk+m+N&1) # Ker L (N)
k+m . Hence

from (16),

L(N+1)
k+m (Yk+m , ..., Yk+N+m)=0,

or in other words,

(Yk+m , ..., Yk+N+m) # Ker L (N+1)
k+m .

By assumption, Yk+m=0 and (Yk+m+1 , ..., Yk+m+N) # Ker L (N)
k+m+1.

Hence

Ker L (N+m+1)
k /[0]_ } } } _[0]

m+1

_Ker L (N )
k+m+1 , \k # N.
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Conversely, take Yk=0, ..., Yk+m=0 and (Yk+m+1 , ..., Yk+m+N) #
Ker L(N )

k+m+1 . Then

L (N+m+1)
k (Yk , ..., Yk+m+N)

=[Yk+m+1 , V++N&1]+ } } } +[Yk+m+N , V+]

=0,

namely,

[0]_ } } } _[0]

m+1

_Ker L (N )
k+m+1/Ker L (N+m+1)

k .

Therefore (14) holds for m+1 and for any k # N. In a similar way, (15) can
be proved as in the case m=1. K

Corollary 5.2. If there exists an N such that

Ker L (N+1)
k =[0]_Ker L (N )

k+1 , \k # N,

then an (N+1) th order normal form must be an infinite order normal form.

Proof. From Proposition 5.1, we have

Im L (N+m+1)
k =Im L (N+1)

k+m , \k, m # N.

Hence we may set

N (N+m+1)
++k+N+m=N (N+1)

++k+N+m

as complementary subspaces to Im L (N+m+1)
k for \k, m # N. Thus, for any

m>N+1,

N (m)
++m=N (N+(m&N&1)+1)

++1+N+(m&N&1)=N (N+1)
++1+N+(m&N&1)=N (N+1)

++m

which implies that, if V (N+1)
++m # N (N+1)

++m , then V (N+1)
++m # N (m)

++m for any
m�N+1. The conclusion thus follows. K

Corollary 5.3. If there exists an N # N such that Im L (N+m)
k =

Im L (N)
k+m for any k, m # N, then the Nth order normal form is an infinite

order normal form.

Example 5.4. If Ker L (1)
k =[0], \k # N, then a first order normal form

is also an infinite order normal form, and hence it is unique normal form
of the original equation.
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6. THE BOGDANOV�TAKENS NORMAL FORM:
THE CASE +=2, &=1

Baider and Sanders [BS2] gave unique normal forms for cases +<2&
and +>2& of Bogdanov�Takens singularities. But the case +=2& is still
unsolved. In this section we consider a special case, i.e., +=2, &=1. By
using our method introduced above we give the unique normal form for
this case.

We consider the following equation:

x* =y+a11xy+a02 y2+O(3),
(17)

y* =:xy+;x3+b02 y2+O(3),

where :, ;{0.
Define $ : D2 � Z by

$ \xmyn

0 +=m+2n&1, $ \ 0
xmyn+=m+2n&2.

Then $ is a linear grading function with

$ \y
0+=$ \ 0

xy+=$ \ 0
x3+=1, and $ \x2

0 +=1.

Let

V (0)
1 =\ y

:xy+;x3+ .

Then the equation (17) can be written as

V (0)=V (0)
1 +V (0)

2 + } } } +V (0)
m + } } } (18)

where V (0)
m # Hm , m=1, 2, ... .

Lemma 6.1. The following vectors form a basis of the space Hm : For
m=2k+1,

\ 0
x2k+3+, \ 0

x2k+1y+ , ..., \ 0
x3yk+ , \ 0

xyk+1+ ,

\x2k+2

0 + , \x2ky
0 + , ..., \x2yk

0 + , \ yk+1

0 + ;
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For m=2k+2,

\ 0
x2k+4+ , \ 0

x2k+2y+ , ..., \ 0
x2yk+1+ , \ 0

yk+2+ ,

\x2k+3y
0 + , \x2k+1y

0 + , ..., \x3yk

0 + , \xyk+1

0 + .

In particular, dim Hm=m+3.

Lemma 6.2.

_\ 0
xmyn+ , V (0)

1 &=\ &xmyn

mxm&1yn+1+(n&1) :xm+1yn+n;xm+3yn&1+ ,

_\xmyn

0 + , V (0)
1 &=\mxm&1yn+1+n:xm+1yn+n;xm+3yn&1

&:xmyn+1&3;xm+2yn + .

Lemma 6.3. Let

Y2k+1= :
k+1

i=0

ai \ 0
x2k+3&2iyi++ :

k+1

i=0

bi \x2k+2&2iyi

0 + .

Then

[Y2k+1 , V (0)
1 ]= :

k+1

i=&1
\ 0

x2k+3&2iyi+1+ [(2k+3&2i) ai+iai+1:

+(i+2) ai+2 ;&bi :&3bi+1 ;]

+ :
k

i=&1
\x2k+1&2iyi+1

0 + [(2k+2&2i) bi+(i+1) bi+1 :

+(i+2) bi+2 ;&ai+1],

where ai=0, bj=0 if i, j<0 or i, j>k+2.

Lemma 6.4. Let

Y2k+2= :
k+2

i=0

ai \ 0
x2k+4&2iyi++ :

k+1

i=0

bi \x2k+3&2iyi

0 + ,
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Then

[Y2k+2 , V (0)
1 ]= :

k+1

i=&1
\ 0

x2k+3&2iyi+1+ [(2k+4&2i) ai+iai+1:

+(i+2) ai+2 ;&bi :&3bi+1 ;]

+ :
k+1

i=&1
\x2k+2&2iyi+1

0 + [(2k+3&2i) bi+(i+1) bi+1 :

+(i+2) bi+2 ;&ai+1],

where ai=0, bj=0 if i, j<0 or i>k+2, j>k+1.

Using these results, we have a matrix representation for the adjoint operator
ad(V (0)

1 ), i.e., L (1)
m . Note that L(1)

m : Hm � Hm+1 ; Ym [ [Ym , V (0)
1 ]. Hence the

matrix representation L of L (1)
m is given by an (m+4)_(m+3)-matrix. Let

L=\L1

L3

L2

L4+ ,

where the submatrix L3 is such that &L3 is the identity matrix of the size
l=[m�2]+2. Here [q] stands for the integer part of q. The other three
submatrices are (almost) tri-diagonal matrices. More specifically, they are
given as follows:

For m=2k+1,

&: ; 0
2k+3 0 2; 0

2k+1 : 3;
L1=\ . . .

. . .
. . . + ;

. . .
. . . (k+1) ;
3 k:

0 1

&3;
&: &3; 0

&: &3;
L2=\ . . .

. . . + ;

. . .
. . .
&: &3;

0 &:
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L4=\
0 ; 0

+ .

2k+2 : 2; 0
2k 2: 3;

. . .
. . .

. . .
. . .

. . . (k+1) ;
0 2 (k+1) :

For m=2k+2,

L1=\
&: ; 0

+ ;

2k+4 0 2; 0
2k+2 : 3;

2k 2: . . .
. . .

. . . (k+2) ;
0 2 (k+1) :

&3;
&: &3; 0

&: &3;
L2=\ . . .

. . . + ;

. . .
. . .
&: &3;

0 &:

L4=\
0 ; 0

+ .

2k+3 : 2; 0
2k+1 2: 3;

. . .
. . .

. . .
. . .

. . . (k+1) ;
(k+1) :

0 1

Remark 6.5. In order to simplify the expression, we may assume that
:=1 since we may make a suitable linear change of variables x, y, t in the
equation (17) such that the coefficient of xy is changed to 1 and the
coefficient of x3 is changed to ;�:2 accordingly.

Lemma 6.6. For both m=2k+1 and m=2k+2, the first k+3 rows of
matrix L can be reduced to the form

(0 M� )
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by a suitable row transformation. Here the matrix

M� =(Mij) (&1�i�k+1; 0�j�k+1)

be given, using :=1, as follows:

Case I. For m=2k+1,

Mi, i&1=(2k+3&2i)(2k+4&2i) (i=1, ..., k+1)

Mi, i=(4k+5&4i) i&1 (i=0, ..., k+1)

Mi, i+1=i(i+1)+[(4i+6) k&(4i+3) i] ; (i=&1, ..., k)

Mi, i+2=2(i+1)(i+2) ; (i=&1, ..., k&1)

Mi, i+3=(i+2)(i+3) ;2 (i=&1, ..., k&2)

and the other entries are all zero.

Case II. For m=2k+2,

Mi, i&1=(2k+4&2i)(2k+5&2i) (i=1, ..., k+1)

Mi, i=(4k+7&4i) i&1 (i=0, ..., k+1)

Mi, i+1=i(i+1)+[(4i+2) k&(4i 2+3i&9)] ; (i=&1, ..., k)

Mi, i+2=2(i+1)(i+2) ; (i=&1, ..., k&1)

Mi, i+3=(i+2)(i+3) ;2 (i=&1, ..., k&2)

and the other entries are all zero.

For convenience, we denote Mi, i&1=ai , Mi, i=bi , Mi, i+1=ci+di ;,
Mi, i+2=ei ;, Mi, i+3=fi ;2 for both cases.

Lemma 6.7. If ; is not an algebraic number, then

Ker L(1)
m =[0], \m # N.

To show the lemma, it is sufficient to show that

det M{0

where M=(Mij)0�i, j�k+1 is a submatrix of M� . Since det M is a polyno-
mial of ;, we only need to show that det M is not identically equal to zero,
because ; is not an algebraic number.

First we consider case II.

Lemma 6.8. In case II, we have

det M|;=0 {0
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Proof. Let Dl be the following subdeterminant:

Dl=det(Mij |;=0)1�i, j�l .

Then it is easy to see that

det(M|;=0)=(&1) } Dk+1 .

By induction we can show

Dl=
(l+1)! (2k+1)!!

(2k+1&2l )!!
.

In fact, it is true for l=1 and 2. Since M|;=0 takes a tri-diagonal form, we
have

Dl+1=bl+1 } Dl&clal+1 } Dl&1.

Therefore, using

al+1=(2k+2&2l )(2k+3&2l ),

bl+1=(4k+3&4l )(l+1)&1,

cl=l(l+1),

we have

Dl+1=[(4k+3&4l )(l+1)&1]
(l+1)! (2k+1)!!

(2k+1&2l )!!

&l(l+1)(2k+2&2l )(2k+3&2l )
l ! (2k+1)!!

(2k+3&2l )!!

=
(l+1)! (2k+1)!!

(2k+1&2l )!!
[(4k+3&4l ) l+(4k+2&4l )&l(2k+2&2l )]

=
(l+1)! (2k+1)!!

(2k+1&2l )!!
} (l+2)(2k+1&2l )

=
[(l+1)+1]! (2k+1)!!

[2k+1&2(l+1)]!!
.

The conclusion is thus obtained.
It follows that

det(M|;=0)=&Dk+1=&(k+2)! (2k+1)!!{0,

and hence the lemma is proved. K
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Next we consider case I. We introduce the same subdeterminant

Dl=det(Mij |;=0)1�i, j�l

for this case as well. Again, by induction, we can show

Lemma 6.9. For case I, we have

Dl=
(l+1)! (2k)!!

(2k&2l )!!
.

From the lemma, we have

det(M|;=0)=&Dk+1=0,

and hence we cannot conclude det M{0 immediately. We therefore
differentiate det M with respect to ; and will show that

�
�;

det M };=0

{0.

Let M (l ) be the matrix given by differentiating the l th column of the
matrix M with respect to ;. It thus takes the following form:

M (0)| ;=0=\
0 6k 4 0 . . . 0

+ ;

a1 b1 c1. . .
. . .

. . . 0
. . .

. . .
. . .

. . .
. . . ck

0 ak+1 bk+1

M (l)| ;=0=

&1 0 . . . . . . . . . . . . . . . 0

;

a1 b1 c1
. . .

. . .
. . . 0

. . .
. . .

. . .

al&1 bl&1 cl&1

0 0 dl el

al+1 bl+1 cl+1. . .
. . .

. . .
. . .

. . . ck

0 ak+1 bk+1
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M (k+1)| ;=0=\
&1 0 . . . . . . . . . 0

+ .

a1 b1 c1
. . .

. . .
. . . 0

. . .
. . .

. . .

0 ak bk ck

0 . . . . . . . . . 0 0

The determinants of these matrices are given as follows:

det(M (0)| ;=0)=(&a1)[6k $k&4a2$k&1],

det(M (l )| ;=0)=al+1Dl&1[dl $k&l&al+2 el$k&l&1], 1�l�k+1,

where

$m=det(Mij | ;=0)k+2&m�i, j�k+1 , 1�m�k&1,

and

$0=$&1=$&2=1.

By induction, we can show:

Lemma 6.10.

$m=
(2m&1)!! k!

(k&m)!
, 1�m�k.

From these formulas, we shall compute

�
�;

det M } ;=0

=(&a1)[6k$k&4a2$k&1]

+ :
k&1

l=1

(al+1Dl&1)[dl $k&l&al+2el $k&l&1]

+(ak+1Dk&1) dk .

First we compute the second term. Since

Dl&1=
l ! (2k)!!

(2k+2&2l )!!
=

l ! 2k k!
2k+1&l(k+1&l )!

=
2l&1 k! l !

(k+1&l )!
,

$k&l=
(2k&1&2l )!! k!

l !
=

(2k&1&2l )! k!
l ! 2k&1&l (k&1&l )!

=
(2k&2l )! k!

2k&ll ! (k&l )!
,
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$k&l&1=
(2k&3&2l )!! k!

(l+1)!
=

(2k&3&2l )! k!
(l+1)! 2k&2&l (k&2&l )!

=
(2k&2&2l )! k!

2k&1&l (l+1)! (k&1&l )!
,

we have

Dl&1(dl$k&l&al+2el $k&l&1)=&(2k&5l)
22l&1(k!)2 (2k&2l )!

(k+1&l )! (k&l )! 2k .

Hence

al+1Dl&1(dl$k&l&al+2 el $k&l&1)=&(2k&5l )
22l&1(k!)2 (2k+2&2l )!

(k+1&l )! (k&l )! 2k .

We need to compute

:
k&1

l=1

(2k&5l )
22l&1(2k+2&2l )!
(k+1&l )! (k&l )!

}
(k!)2

2k .

Let i=k+1&l and

Ap(i)=
(2i)!
i ! i !

i p } 4k&i, p=1, 2, 3,

for simplicity of notation. Then l=k+1&i and

(2k&5l )
22l&1(2k+2&2l )!
(k+1&l )! (k&l )!

}
(k!)2

2k =&
(3k+5)(k!)2

2k&1 A1(i)+
5(k!)2

2k&1 A2(i).

Therefore we need to compute

:
k

i=2

Ap(i) for p=1, 2.

Lemma 6.11. (1) A1(i+1)&A1(i)= 1
2A0(i)

(2) A2(i+1)&A2(i)= 3
2A1(i)+ 1

2A0(i)
(3) A3(i+1)&A3(i)= 5

2A2(i)+2A1(i)+ 1
2 A0(i)

Proof. A simple computation shows

Ap(i+1)&Ap(i)=
(2i)!
i ! i !

4k&i } {\i+
1
2+ (i+1) p&1&i p= .
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For p=1, 2, 3, we get

\i+
1
2+ (i+1)1&1&i 1=

1
2

i 0,

\i+
1
2+ (i+1)2&1&i 2=

3
2

i 1+
1
2

i 0,

\i+
1
2+ (i+1)3&1&i 2=

5
2

i 2+2i 1+
1
2

i 0,

and hence the lemma follows. K

Summing them up from i=2 to k, we have

:
k

i=2

A1(i)=
2
3

[A2(k+1)&A2(2)&A1(k+1)+A1(2)]

=
2
3 {

(2k+2)!
(k+1)! (k+1)!

}
k(k+1)

4
&3 } 4k&1= ;

:
k

i=2

A2(i)=
2
5 {A3(k+1)&

4
3

A2(k+1)+
1
3

A1(k+1)&A3(2)=
+

2
5 {

4
3

A2(2)&
1
3

A1(2)=
=

2
5 {

(2k+2)!
(k+1)! (k+1)!

}
k(k+1)(k+(2�3))

4
&5 } 4k&1= .

From these expressions, we have

&
(3k+5)(k!)2

2k&1 :
k

i=2

A1(i)+
5(k!)2

2k&1 :
k

i=2

A2(i)

=
(2k+2)!

2k&1 } {&
(3k+5) k
6(k+1)

+
k(3k+2)
6(k+1) =

&
(k!)2 } 4k&1

2k&1 } [&2(3k+5)+10]

=
(2k+1)!

2k&1 } (&k)+2k } (k!)2 } 3k.
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Therefore we finally obtain

�
�;

det M } ;=0

=&(2k+1)(2k+2) } [6k } (2k&1)!! k!&4(2k&1) } 2k } (2k&3)!! k!]

+k
(2k+1)!

2k&1 &2k(k!)2 } 3k+k! (2k)!! } 3k

=(2k+1)(2k+2) } 2k } (2k&1)!! k!+k
(2k+1)!

2k&1

&3k } 2k(k!)2+3k } k! (2k)!!

=
(2k+2)!

2k&1(k&1)!
k!+

(2k+1)! k
2k&1 &3k } 2k(k!)2+3k } k! } 2k } k!

=2k } k ! (2k+3)!! ,

and hence we conclude det M{0.

Theorem 6.12. If ;�:2 is not an algebraic number, then the first order
normal form of Eq. (17) with respect to the grading function $ is unique,
which is

x* =y, y* =:xy+;x3+ :
�

m=4

amxm. (19)

Proof. The uniqueness of the first order normal form follows from
Corollary 5.2, Example 5.4 and Lemma 6.7. A simple calculation shows
that span( ( 0

xm+3)) is a complement to Im L (1)
m for each m # N. Therefore the

first order normal form (19) is obtained. K

Remark 6.13. F. Dumortier pointed out to us that bifurcations from
the singularity treated in this paper was studied by [DRS] almost com-
pletely. They used different normal forms using notion of equivalence, not
conjugacy, for which the change of time variable is permitted as well as
changes of space variables. However, Eq. (19) can also be obtained under
equivalence, without assuming any condition on : and ;. Therefore our
results indicates that, if we assume non-algebraicity of ;�:2, the normal
form obtained in [DRS] under equivalence can be obtained only under
conjugacy.

Remark 6.14. By a similar argument, we can show that

det M� {0,
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if ; is not an algebraic number, where M� is the matrix which is made from
M� by removing the second row. Hence the unique normal form can be also
taken as

x* =y, y* =:xy+;x3+ :
�

m=2

bmxmy.

More generally, we can take the following form as a unique normal
form:

x* =y, y* =:xy+;x3+ :
�

m=2

cmXm ,

where Xm can be either xm+2 or xmy.
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