
l

ap

e

er, the
th the
ewicz

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Topology and its Applications 150 (2005) 213–221

www.elsevier.com/locate/topo

On regularly branched maps

H. Murat Tuncali∗,1, Vesko Valov2

Department of Computer Science and Mathematics, Nipissing University,
100 College Drive, PO Box 5002, North Bay, ON P1B 8L7, Canada

Received 15 September 2004; accepted 19 November 2004

Dedicated to Professor S. Nedev for his 60th birthday

Abstract

Let f :X → Y be a perfect map between finite-dimensional metrizable spaces andp � 1. It is
shown that the spaceC∗(X,R

p) of all bounded maps fromX into R
p with the source limita-

tion topology contains a denseGδ-subset consisting off -regularly branched maps. Here, a m
g :X → R

p is f -regularly branched if, for everyn � 1, the dimension of the set{z ∈ Y × R
p: |(f ×

g)−1(z)| � n} is � n · (dimf + dimY ) − (n − 1) · (p + dimY ). This is a parametric version of th
Hurewicz theorem on regularly branched maps.
 2004 Elsevier B.V. All rights reserved.
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1. Introduction

All spaces are assumed to be metrizable and all maps continuous. Moreov
function spaces in this paper, if not explicitely stated otherwise, are equipped wi
source limitation topology. The paper is devoted to a parametric version of the Hur
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theorem [8] on regularly branched maps. Recall that a mapg :X → Z is called reg-
ularly branched (this term was introduced by Dranishnikov et al. [4]) if dimBn(g) �
n · dimX − (n − 1) · dimZ for anyn � 1, whereBn(g) = {z ∈ Z: |g−1(z)| � n}.

Hurewicz’s Theorem. Let X be a finite-dimensional compactum andp � 1. Then the
set of all regularly branched mapsg :X → R

p contains a denseGδ-subset of the spac
C(X,R

p).

We say that a mapg :X → Z is regularly branched with respect to a fixed m
f :X → Y (briefly, f -regularly branched) if

dimBn(f × g) � n · (dimf + dimY) − (n − 1) · (dimZ + dimY)

for everyn � 1, where dimf = sup{dimf −1(y): y ∈ Y }. Obviously, whenf is a constan
map, i.e.,Y is a point, the notions off -regularly branched and regularly branched m
coincide. Next theorem is our main result.

Theorem 1.1. Let f :X → Y be aσ -perfect map between finite-dimensional spaces
p � 1. Then the spaceC∗(X,R

p) contains a denseGδ-subsetH consisting off -regularly
branched maps.

Here,C∗(X,R
p) is the set of all bounded maps fromX into R

p andf is said to be
σ -perfect ifX is the union of its closed subsetsXi, i = 1,2, . . . , such thatf (Xi) ⊂ Y are
closed and each restrictionf |Xi is perfect.

Corollary 1.2. Let the integersk, p, m and n satisfy the inequalityk + m + 1 � (p −
k)n. Then, for anyσ -perfect mapf :X → Y with dimf � k and dimY � m, the space
C∗(X,R

p) contains a denseGδ-subset of mapsg such that|(f × g)−1(z)| � n for every
z ∈ Y × R

p.

Corollary 1.2 follows directly from Theorem 1.1. Indeed, under the hypotheses o
corollary, if g ∈ C∗(X,R

p) is f -regularly branched, then dimBn+1(f × g) � (n + 1)×
(k +m)−n(p +m) � −1. So,f ×g is � n-to-one for allf -regularly branched maps. L
us also mention next corollary of Theorem 1.1 (it follows, actually, from Corollary
established by the authors in [19] and providing positive solutions of two hypothes
Bogatyi et al. [2].

Corollary 1.3. Let f :X → Y be aσ -perfect map withdimf � k anddimY � m. Then,
for any p � 1, C∗(X,R

p+k) contains a denseGδ-subset consisting of mapsg such that
|(f × g)−1(z)| � max{k + m − p + 2,1} for all z ∈ Y × R

p.

If p � 2k + m + 1, then Corollary 1.2 (as well as, Corollary 1.3) yields the existe
of a dense andGδ-subsetG of C∗(X,R

p) such thatf × g is one-to-one for everyg ∈ G.
Hence, allf × g, g ∈ G, are embeddings providedf is a perfect map. So, we obtain
parametric version of the Nöbeling–Pontryagin embedding theorem which was estab
in [13,14,20].
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The question if the setH from Theorem 1.1 can consist of mapsg such that dimBn(f ×
g) � n · dimX − (n− 1) · (p + dimY) for everyn � 1 was raised in the first version of th
paper. The reviewer and S. Bogatyi independently provided a negative answer. Her
example suggested by Bogatyi: LetT be a metrizable compactum not embeddable inR

2m,
m � 2, such that dimT � m. Take the disjoint sumX = I

m ⊕ T and the mapf :X → I
m,

f (x) = x if x ∈ I
m andf (x) = x0 ∈ I

m if x ∈ T . The existence of a mapg :X → R
m+2

with the above property would imply thatg embedsT into R
m+2 which is impossible

becausem + 2� 2m.
Let us also note that, by [1, Corollary 11], for everym there exists a polyhedronX

with dimX = m such that every mapg ∈ C(X,R
m+1) has a fiber containing at leastm+ 1

points. Therefore, the inequality in the definition of a regularly branched map dimBn(f ×
g) � n · (dimf + dimY) − (n − 1) · (dimZ + dimY) cannot be improved.

The original proof of Theorem 1.1 was quite complicated. Based on our previous r
from [17,19], the referee of this paper found very elegant proof of Theorem 1.1 an
proof is presented here. Moreover, we provide a unified method for proving the result
in the proof of Theorem 1.1. This method is extracted from our previous papers [17
It is based on selection theorems established by the second author and Gutev in [6,

2. Some preliminary results

First, we provide some information about the source limitation topology. This topo
can be described as follows: If(M,d) is a metric space, then a setU ⊂ C(X,M) is open if
for everyg ∈ U there exists a continuous functionα :X → (0,∞) such thatB(g,α) ⊂ U .
Here,B(g,α) denotes the set{h ∈ C(X,M): d(g(x),h(x)) � α(x) for eachx ∈ X}. The
source limitation topology does not depend on the metricd if X is paracompact [9]. More
over,C(X,M) with this topology has the Baire property provided(M,d) is a complete
metric space [12]. Obviously, the source limitation topology coincides with the uni
convergence topology generated byd in caseX is compact. One can show thatC∗(X,R

p)

is open inC(X,R
p) with respect to the source limitation topology when the Euclid

metric onR
p is considered. Therefore,C∗(X,R

p) equipped with this topology also ha
the Baire property.

We are going to establish a background of the general method discussed in
troduction. Throughout this sectionK is a closed and convex subset of a given Ban
spaceE and f :X → Y a perfect surjective map between metrizable spaces. Sup
for every y ∈ Y , we are given a setC(y) ⊂ C∗(X,K) such that ifh ∈ C∗(X,K) and
h|f −1(y) = g|f −1(y) for someg ∈ C(y), thenh ∈ C(y). The last property means th
the setC(y) is determined by the restrictionsg|f −1(y). That is why, sometimes, we co
siderC(y) as a class of functions onf −1(y). Let C(H) = ⋂

y∈H C(y), whereH ⊂ Y . We
also consider the set-valued mapψ :Y → C∗(X,K), defined byψ(y) = C∗(X,K)\C(y).

Lemma 2.1. Suppose for everyy ∈ Y and everyg ∈ C(y) there exists a neighborhoodVy of
y in Y andδy > 0 such thath ∈ C(Vy) providedh|f −1(Vy) is δ-close tog|f −1(Vy). Then
C(Y ) is open inC∗(X,K). Moreover,ψ has a closed graph whenC∗(X,K) is equipped
with the uniform convergence topology.
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Proof. We follow some ideas from [3]. Let(y0, g0) ∈ Y × C∗(X,K)\Gψ , where
C∗(X,K) possesses the uniform convergence topology andGψ is the graph ofψ . Hence,
g0 /∈ ψ(y0), sog0 ∈ C(y0). TakeVy0 andδy0 > 0 satisfying the hypotheses of the lemm
and letW denote theδy0-neighborhood ofg0 in C∗(X,K). ThenVy0 × W is a neighbor-
hood of(y0, g0) disjoint fromGψ . Thus,Gψ is closed.

To show thatC(Y ) is open inC∗(X,K) with respect to the source limitation topo
ogy, we fixg0 ∈ C(Y ). Since, for everyy ∈ Y , g0 ∈ C(y), we choose neighborhoodsVy

and positive numbersδy � 1 satisfying the conditions of the lemma. We can assume
{Vy : y ∈ Y } is a locally finite cover ofY , and consider the set-valued mapϕ :Y → (0,1],
ϕ(y) = ⋃{(0, δz]: y ∈ Vz}. Then, by [15, Theorem 6.2],ϕ admits a continuous sele
tion β :Y → (0,1], and letα = β ◦ f . It remains only to show that ifg ∈ C∗(X,K) with
d(g0(x), g(x)) < α(x) for all x ∈ X, whered is the metric onE generated by its norm
theng ∈ C(Y ). So, we take such ag and fixy ∈ Y . Then, there existsz ∈ Y with y ∈ Vz and
such thatα(x) � δz for all x ∈ f −1(y). Now, select a maph ∈ C∗(X,K) coinciding with
g on f −1(y) and satisfying the inequalityd(h(x), g0(x)) � δz for eachx ∈ X. According
to the choice ofVz, h ∈ C(y). Hence,g ∈ C(y) becauseg|f −1(y) = h|f −1(y). Therefore,
C(Y ) is open inC∗(X,K). �

Recall that a closed subsetF of the metrizable spaceM is said to be aZm-set inM , if the
setC(Im,M\F) is dense inC(Im,M) with respect to the uniform convergence topolo
whereI

m is them-dimensional cube. IfF is aZm-set inM for everym ∈ N, we say that
F is aZ-set inM .

Lemma 2.2. Let y ∈ Y and C(y), considered as a subset ofC(f −1(y),K), satisfy the
following condition:

For everyk ∈ N (respectively,k = m) the set of all mapsh ∈ C(Ik × f −1(y),K) with
h|({z} × f −1(y)) ∈ C(y) for eachz ∈ I

k , is dense inC(Ik × f −1(y),K) with respect to
the uniform convergence topology.

Then, for everyα :X → (0,∞) andg ∈ C∗(X,K), ψ(y)∩B(g,α) is aZ-set(respectively,
Zm-set) in B(g,α) providedB(g,α) is considered as a subset ofC∗(X,K) equipped with
the uniform convergence topology andψ(y) ⊂ C∗(X,K) is closed.

Proof. See the proof of [17, Lemma 2.8].�
Lemma 2.3. Let Y be a C-space(respectively,dimY � m) and the family{C(y)}y∈Y

satisfies the following conditions:

(a) the mapψ has a closed graph;
(b) ψ(y)∩B(g,α) is aZ-set(respectively,Zm-set) in B(g,α) for any continuous function

α :X → (0,∞), y ∈ Y andg ∈ C∗(X,K), whereB(g,α) is considered as a subspa
of C∗(X,K) with the uniform convergence topology.

ThenC(Y ) is dense inC∗(X,K) with respect to the source limitation topology.
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Proof. It suffices to show that, for fixedg0 ∈ C∗(X,K) and a continuous functio
α :X → (0,∞), there existsg ∈ B(g0, α) ∩ C(Y ). We equipC∗(X,K) with the uniform
convergence topology and consider the constant convex-valued mapφ :Y → C∗(X,K),
φ(y) = B(g0, α1), whereα1(x) = min{α(x),1}. Because of the conditions (a) and (b),
can apply the selection theorem [6, Theorem 1.1] (respectively, [7, Theorem 1.1]) to
a continuous maph :Y → C∗(X,K) such thath(y) ∈ φ(y)\ψ(y) for everyy ∈ Y . Ob-
serve thath is a map fromY into B(g0, α1) such thath(y) ∈ C(y) for everyy ∈ Y . Then
g(x) = h(f (x))(x), x ∈ X, defines a bounded mapg ∈ B(g0, α) such thatg|f −1(y) =
h(y)|f −1(y), y ∈ Y . Therefore,g ∈ C(y) for all y ∈ Y , i.e.,g ∈ B(g0, α) ∩ C(Y ). �

3. Finite-to-one maps

In this section we provide a non-compact version, see Proposition 3.1 below,
Levin–Lewis result [10, Proposition 4.4]. Note that, for separable metrizable sp
Proposition 3.1 follows from [16, Lemma 2].

Proposition 3.1. Let f :X → Y be a perfect0-dimensional map withdimY � m. Then
C∗(X) contains a denseGδ-subset of mapsg with each fiber off × g containing at mos
m + 1 points.

Proof. We take a mapθ :X → Q such thatf × θ :X → Y × Q is an embedding (suc
a θ exists by [14] or [20]) withQ being the Hilbert cube, a countable base{Wi}i∈N of
open sets inQ. LetA be the collection of the closures ofθ−1(Wi) in X, i � 1. There are
countably many familiesΓ = {A1,A2, . . . ,Am+2} consisting ofm + 2 disjoint elements
of A. For any suchΓ andy ∈ Y let CΓ (y) denote the set of allg ∈ C∗(X) such that each
g−1(z) ∩ (f −1(y), z ∈ R, meets at mostm + 1 elements ofΓ . Following Section 2, for
H ⊂ Y , let CΓ (H) = ⋂{CΓ (y): y ∈ H }. Since the intersection of allCΓ (Y ) consists of
mapsg such that each fiber off × g contains at mostm + 1 points, it suffices to show tha
anyCΓ (Y ) is open and dense inC∗(X).

Lemma 3.2. LetΓ = {G1, . . . ,Gm+2} andy ∈ Y be fixed. Then, for everyg ∈ CΓ (y) there
exists a neighborhoodV of y in Y andδ > 0 such thath ∈ CΓ (V ) providedh|f −1(V ) is
δ-close tog|f −1(V ).

Proof. Assume this is not true for someg0 ∈ CΓ (y). Then, there exist neighborhoodsVi ,
i � 1, of y in Y , functionsgi ∈ C∗(X), pointsyi ∈ Vi andzi ∈ R such thatgi |f −1(Vi)

is 1/i-close tog0|f −1(Vi) but g−1
i (zi) ∩ f −1(yi) meets all� m + 2 elements ofΓ .

Sincef is closed, we can suppose thatUi = f −1(Vi) ⊂ g−1
0 (Wi) with Ui and Wi be-

ing 1/i neighborhoods off −1(y) andg0(f
−1(y)) in X andR, respectively, andzi ∈ Wi .

Passing to subsequences, we may also suppose that limzi = z0 ∈ g0(f
−1(y)). Then

g−1
0 (z0) ∩ f −1(y) intersects at mostm + 1 elements ofΓ , let say the firstm + 1. Take

pointsai ∈ g−1
i (zi)∩f −1(yi) andbi ∈ f −1(y) such thatai ∈ Gm+2 and dist(ai, bi) � 1/i

for all i. Again, we can assume that limbi = b0 for someb0 ∈ f −1(y). Then limai =
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b0 ∈ g−1
0 (z0) ∩ f −1(y), sob0 /∈ Gm+2. This implies thatai /∈ Gm+2 for almost alli which

contradicts the choice of the pointsai .

Therefore, combining Lemmas 3.2 and 2.1, we may conclude that eachCΓ (Y ) is open
in C∗(X) and the set-valued mapψΓ :Y → C∗(X), ψΓ (y) = C∗(X)\CΓ (y), has a closed
graph whenC∗(X) carries the uniform convergence topology.

Lemma 3.3. For anyΓ andy ∈ Y , the set of all functionsg ∈ C(Im × f −1(y)) such that
g|({z} × f −1(y)) ∈ CΓ (y) for eachz ∈ I

m, is dense inC(Im × f −1(y)).

Proof. By the Levin–Lewis result [10, Proposition 4.4], everyh ∈ C(Im ×f −1(y)) can be
approximated by functionsg ∈ C(Im × f −1(y)) such that eachg−1(t) ∩ ({z} × f −1(y)),
z ∈ I

m andt ∈ R, contains at mostm+1 points. This implies thatg|({z}×f −1(y)) ∈ CΓ (y)

for eachz ∈ I
m, and we are done.�

Finally, the combination of Lemma 3.3 and Lemma 2.1–2.3, yields that everyCΓ (Y ) is
dense inC∗(X). This completes the proof of Proposition 3.1.�

4. Proof of Theorem 1.1

One of the components of the proof of Theorem 1.1 is Theorem 4.1 below. It is a
metric version of the Hurewicz result [8] that everyn-dimensional compactum admits
0-dimensional map intoIn. For finite-dimensional compact spaces this version was pr
by Pasynkov [13] (announced in 1975). Torunczyk [16] also established such a theor
finite-dimensional separable spaces. In the present form, Theorem 4.1 was obtained
authors [17]. The proof presented here follows the general method from Sections 2
Pasynkov’s theorem, mentioned above, is also used, but we provide an easy proof
theorem.

Theorem 4.1. Let f :X → Y be aσ -perfectn-dimensional map withY being aC-space.
Then, for every0 � k � n, C∗(X,R

k) contains a denseGδ-subset of mapsg such that
f × g is (n − k)-dimensional.

Proof. It is easily seen that the proof is reduced to the case whenf is perfect. Following
the general schem from Section 2, for everyε > 0 andy ∈ Y , letCε(y) be the set of all map
g ∈ C∗(X,R

k) satisfying the following condition: every setf −1(y) ∩ g−1(z), z ∈ R
k , can

be covered by a finite familyγ of open sets inX each of diameter� ε and any point ofX
is contained in at mostn − k + 1 elements ofγ . We need to show that everyCε(Y ) is open
and dense inC∗(X,R

k). The proof of next lemma is similar to that one of Lemma 3.2.

Lemma 4.2. Let ε > 0 and y ∈ Y be fixed. Then, for everyg ∈ Cε(y) there exists a
neighborhoodV of y in Y and δ > 0 such thath ∈ Cε(V ) providedh|f −1(V ) is δ-close
to g|f −1(V ).
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As above, Lemma 4.2 implies that allCε(Y ) are open inC∗(X,R
k) and the set-value

mapψε :Y → C∗(X,R
k), ψε(y) = C∗(X,R

k)\Cε(y), has a closed graph whenC∗(X,R
k)

is equipped with the uniform convergence topology.
The density of the setsCε(Y ) in C∗(X,R

k) follows from the lemma below:

Lemma 4.3. For anyε > 0, m � 1 andy ∈ Y , the set of all mapsg ∈ C(Im × f −1(y),R
k)

such thatg|({z} × f −1(y)
) ∈ Cε(y) for eachz ∈ I

m, is dense inC(Im × f −1(y),R
k).

Proof. The proof of this lemma is the same as the proof of Lemma 3.3. The only differ
now is that, instead of the Levin–Lewis theorem, we use the Pasynkov result formula
Proposition 4.4 below. �

Combining all lemmas in Sections 2 and 3, we can complete the proof of Theorem
Therefore, we need only to provide a proof of Proposition 4.4.

Proposition 4.4. Let K be a compactum of dimension� n and0 � k � n. Then, for every
m � 1, the set of all mapsg ∈ C(Im × K,R

k) such thatπ × g is (n − k)-dimensional, is
dense inC(Im × K,R

k) (hereπ : Im × K → I
m denotes the projection).

Observe that the validity of the casek = n implies the validity of all other cases. Indee
if h ∈ C(Im ×K,R

k) andη > 0, we lift h to a maph1 : Im ×K → R
n such thath = p ◦h1,

wherep :Rn → R
k is the canonical projection. Next, takeg1 ∈ C(Im × K,R

n) η-close to
h1 and such thatπ × g1 is 0-dimensional. Then,g = p ◦ g1 is η-close toh andπ × g is
(n − k)-dimensional. So, we can suppose thatk = n.

Since dimK � n, by the Hurewicz theorem [8], there exists a 0-dimensional m
g :K → I

n. Thenπ ×g, whereg is the composition of the projectionπK : Im×K → K and
g, is also 0-dimensional. According to [11, (ii)⇔ (iii)], almost all mapsg ∈ C(Im×K,R

n)

have the property dim(π × g) � 0. This completes the proof of Proposition 4.4. Fina
let us note that Levin’s result [11, (ii)⇔ (iii)], which was used in this proof, has a ve
short proof. As a result, we obtain a proof of Proposition 4.4 which is quite easier tha
original one from [13]. �
Proof of Theorem 1.1. Let show first that the proof of Theorem 1.1 can be reduce
the casef is perfect. SupposeX is the union of an increasing sequence of its clo
sets Xi such that each restrictionfi = f |Xi is perfect withYi = f (Xi) ⊂ Y being
closed. Then, applying Theorem 1.1 for every mapfi :Xi → Yi , and using that the map
πi :C∗(X,R

p) → C∗(Xi,R
p), πi(g) = g|Xi , are surjective and open, we conclude t

there exists a denseGδ-setG ⊂ C∗(X,R
p) consisting of mapsg such thatgi = g|Xi is

fi -regularly branched for everyi. Let g ∈ G andn � 1. For anyi the setBn(fi × gi) is
Fσ in (fi × gi)(Xi) [5] and (fi × gi)(Xi) ⊂ Y × R

p is closed (recall that eachYi ⊂ Y is
closed and the mapfi ×gi :Xi → Yi ×R

p is perfect). So, all of the setsBn(fi ×gi) areFσ

in Y × R
p. Moreover, dimBn(fi × gi) � n · (dimfi + dimYi) − (n − 1) · (p + dimYi) �

n ·(dimf +dimY)−(n−1) ·(p+dimY). Therefore, dim
⋃∞

i=1 Bn(fi ×gi) � n ·(dimf +
dimY) − (n − 1) · (p + dimY). On the other hand,Bn(f × g) ⊂ ⋃∞

i=1 Bn(fi × gi). Con-
sequently, dimBn(f × g) � n · (dimf + dimY) − (n − 1) · (p + dimY) for everyg ∈ G
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and n � 1. Hence,G consists off -regularly branched maps. Thus, everywhere be
we may assume thatf is perfect. Moreover, we can also assume thatp > dimf be-
cause, according to the definition, everyg ∈ C(X,R

p) is f -regularly branched provide
p � dimf .

The remaining part of the proof, presented below, was suggested by the referee
paper.

It is easily seen that, by Theorem 4.1, we can assume dimf = 0. So, everywhere below
f is a perfect 0-dimensional map,p � 1 and dimY = m. Let l = l(m,p) = [m/p] + 1,
where[m/p] denotes the integer part ofm/p.

We show by induction onp that f × g is at mostl-to-1 for almost all mapsg ∈
C∗(X,R

p). For p = 1, it follows from Proposition 3.1. Assumep > 1 and letm =
(l − 1)p + t , 0� t < p. DecomposeY = Y1 ∪ Y2 such thatY1 is anFσ -subset ofY with
dimY1 � m − l = (l − 1)(p − 1) + t − 1 and dimY2 � l − 1. Let alsog = g1 × g2 :X →
R

p−1 × R. Since[(m − l)/(p − 1)] + 1= l, according to the induction hypothesis,g1 can
be approximated by a mapg∗

1 :X → R
p−1 such thatf × g∗

1 is at mostl-to-1 onf −1(Y1).
Denote byB the union of all fibers off × g∗

1 having more thanl points. ThenB is Fσ in
X and disjoint fromf −1(Y1), sof (B) ⊂ Y2. Once again by induction hypothesis,g2 can
be approximated by a mapg∗

2 :X → R such thatf × g∗
2 is at mostl-to-1 onf −1(f (B)).

Thus,g can be approximated by the mapg∗ = g∗
1 × g∗

2 such thatf × g∗ is at mostl-to-1.
This implies that the mapsg ∈ C∗(X,R

p) such thatf × g is at mostl-to-1 form a dense
subset ofC∗(X,R

p). To complete the induction, we need to show that this set is alsoGδ in
C∗(X,R

p). To this end, following the proof of Proposition 3.1, we take a mapθ :X → Q

such thatf × θ :X → Y × Q is an embedding, and a countable base{Wi}i∈N of open sets
in Q. We also consider the collectionA of all closures ofθ−1(Wi) in X, i � 1. There
are countably many familiesΓ = {A1,A2, . . . ,Al+1} consisting ofl + 1 disjoint elements
of A and for any suchΓ andy ∈ Y let CΓ (y) denote the set of allg ∈ C∗(X,R

p) such
that eachg−1(z) ∩ f −1(y), z ∈ R

p, meets at mostl elements ofΓ . As in Section 3, we
can show that any setCΓ (Y ) = ⋂{CΓ (y): y ∈ Y } is open inC∗(X,R

p). Therefore, the
mapsg ∈ C∗(X,R

p) with f × g being at mostl-to-1 form aGδ-set inC∗(X,R
p) as the

intersection of allCΓ (Y ).
Now, we can finish the proof of Theorem 1.1. LetYi ⊂ Y , 0� i � m, beFσ -subsets of

Y such thatY0 ⊂ Y1 ⊂ · · · ⊂ Ym, dimYi � i and dimY\Yi � m− i−1. Then, from what we
proved above, it follows thatC∗(X,R

p) contains a denseGδ-subsetG of mapsg such that
f × g is at mostl(i,p)-to-1 onf −1(Yi) for every 0� i � m. Moreover, in addition, we
may require by [18] thatg(f −1(y)) is 0-dimensional for ally ∈ Y and allg ∈ G. It remains
only to show that everyg ∈ G is f -regularly branched. So, we fixg ∈ G andn � 1, and
let πY :Y × R

p → Y be the projection ontoY . SinceBn(f × g) is Fσ in (f × g)(X)

andπY |(f × g)(X) is a perfect map,πY (Bn(f × g)) is Fσ in Y . Moreover, since eac
g(f −1(y)) is 0-dimensional, dimBn(f × g) is at most the dimension ofπY (Bn(f × g)).
On the other hand, if(f × g)−1(y, z) contains� n points, theny /∈ Yp(n−1)−1. Hence,
πY (Bn(f × g)) is contained inY\Yp(n−1)−1. Consequently, dimπY (Bn(f × g)) � m −
(n− 1)p, so is dimBn(f × g). Sincen(dimf + dimY)− (n− 1)(p + dimY) = m− (n−
1)p, the last inequality shows thatg is regularlyf -branched. �
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