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Abstract

Let f:X — Y be a perfect map between finite-dimensional metrizable spaceg andl. It is
shown that the spac€*(X,RR”) of all bounded maps fronX into R” with the source limita-
tion topology contains a denggs-subset consisting of -regularly branched maps. Here, a map
g:X — RP is f-regularly branched if, for eveny > 1, the dimension of the sg¢t € Y x R”: |(f x
2 Y@ =n}is<n-(imf+dimY) - —1) - (p+dimY). This is a parametric version of the
Hurewicz theorem on regularly branched maps.
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1. Introduction

All spaces are assumed to be metrizable and all maps continuous. Moreover, the
function spaces in this paper, if not explicitely stated otherwise, are equipped with the
source limitation topology. The paper is devoted to a parametric version of the Hurewicz
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theorem [8] on regularly branched maps. Recall that a maf — Z is called reg-
ularly branched (this term was introduced by Dranishnikov et al. [4]) if Bifg) <
n-dimX — (n —1)-dimZ for anyn > 1, whereB, (g) = {z € Z: |g1(z)| > n}.

Hurewicz's Theorem. Let X be a finite-dimensional compactum apd> 1. Then the
set of all regularly branched maps: X — RP? contains a densé s-subset of the space
C(X,RP).

We say that a mag: X — Z is regularly branched with respect to a fixed map
f:X — Y (briefly, f-regularly branched) if

dimB,(f x g) <n-dimf +dimY)—n—1) - (dimZ +dimY)

for everyn > 1, where dimf = sup{dim f~1(y): y € Y}. Obviously, whenyf is a constant
map, i.e.,Y is a point, the notions of -regularly branched and regularly branched maps
coincide. Next theorem is our main result.

Theorem 1.1. Let f: X — Y be ao-perfect map between finite-dimensional spaces and
p > 1. Then the spac€™* (X, R?) contains a dens€&s-subset consisting off -regularly
branched maps.

Here,C*(X, RP) is the set of all bounded maps frok into R” and f is said to be
o-perfect if X is the union of its closed subseXs, i =1, 2, ..., such thatf(X;) C Y are
closed and each restrictigfi X; is perfect.

Corollary 1.2. Let the integers, p, m and n satisfy the inequalitg +m + 1< (p —
k)n. Then, for any-perfect mapf : X — Y with dim f < k anddimY < m, the space
C*(X,RP) contains a densé&s-subset of mapg such that|(f x g)~1(z)| < n for every
ze€Y xRP,

Corollary 1.2 follows directly from Theorem 1.1. Indeed, under the hypotheses of this
corollary, if g € C*(X,RP) is f-regularly branched, then diB),11(f x g) < (n + 1) x
(k+m)—n(p+m)<—1.So,f x gis < n-to-one for all f-regularly branched maps. Let
us also mention next corollary of Theorem 1.1 (it follows, actually, from Corollary 1.2)
established by the authors in [19] and providing positive solutions of two hypotheses of
Bogatyi et al. [2].

Corollary 1.3. Let f : X — Y be ao-perfect map withldim f < k anddimY < m. Then,
for any p > 1, C*(X, RP+k) contains a dens&s-subset consisting of magssuch that
I(f x &) @) <maxk+m—p+21)forall zeY x RP.

If p>2k+m+ 1, then Corollary 1.2 (as well as, Corollary 1.3) yields the existence
of a dense andis-subsetG of C*(X, R?) such thatf x g is one-to-one for every € G.
Hence, allf x g, g € G, are embeddings providef is a perfect map. So, we obtain a
parametric version of the Nébeling—Pontryagin embedding theorem which was established
in [13,14,20].



H.M. Tuncali, V. Valov / Topology and its Applications 150 (2005) 213—-221 215

The question if the sé from Theorem 1.1 can consist of mapsuch that dinB,, (f x
g <n-dimX—®m—1) - (p+dimY) for everyn > 1 was raised in the first version of this
paper. The reviewer and S. Bogatyi independently provided a negative answer. Here is the
example suggested by Bogatyi: LEtbe a metrizable compactum not embeddablR4f,

m > 2, such that dinT' < m. Take the disjoint sunX =1" @ T and the mapf : X — I',
f(x)=xif x eI"™ and f(x) = xp € I if x € T. The existence of a map: X — R”*2
with the above property would imply that embedsT" into R”+2 which is impossible
becausen + 2 < 2m.

Let us also note that, by [1, Corollary 11], for everythere exists a polyhedrok
with dim X = m such that every map € C (X, R”*1) has a fiber containing at least+ 1
points. Therefore, the inequality in the definition of a regularly branched maBgish x
g)<n-(dimf+dmY)— -1 - (dimZ +dimY) cannot be improved.

The original proof of Theorem 1.1 was quite complicated. Based on our previous results
from [17,19], the referee of this paper found very elegant proof of Theorem 1.1 and this
proof is presented here. Moreover, we provide a unified method for proving the results used
in the proof of Theorem 1.1. This method is extracted from our previous papers [17-20].
It is based on selection theorems established by the second author and Gutev in [6,7].

2. Somepreliminary results

First, we provide some information about the source limitation topology. This topology
can be described as follows:(#/, d) is a metric space, then a détc C(X, M) is open if
for everyg e U there exists a continuous function X — (0, co) such thatB(g, «) C U.

Here, B(g, o) denotes the sdh € C(X, M): d(g(x), h(x)) < a(x) for eachx € X}. The
source limitation topology does not depend on the metifcX is paracompact [9]. More-
over, C(X, M) with this topology has the Baire property providéd, d) is a complete
metric space [12]. Obviously, the source limitation topology coincides with the uniform
convergence topology generateddin caseX is compact. One can show that (X, R?)

is open inC (X, R?) with respect to the source limitation topology when the Euclidean
metric onR? is considered. Therefor&™* (X, R?) equipped with this topology also has
the Baire property.

We are going to establish a background of the general method discussed in the in-
troduction. Throughout this sectioki is a closed and convex subset of a given Banach
spaceE and f: X — Y a perfect surjective map between metrizable spaces. Suppose,
for everyy € Y, we are given a sef(y) C C*(X, K) such that if» € C*(X, K) and
hlf~Y(y) = gl f~1(y) for someg € C(y), thenh € C(y). The last property means that
the seiC(y) is determined by the restrictions f ~1(y). That is why, sometimes, we con-
siderC(y) as a class of functions ofi"1(y). LetC(H) = ﬂyeH C(y), whereH C Y. We
also consider the set-valued mapY — C*(X, K), defined byy (y) = C*(X, K)\C(y).

Lemma2.1. Suppose for every € Y and every e C(y) there exists a neighborhodd, of
y in Y ands, > 0 such thath € C(V,) providedh| f~1(Vy) is §-close tog| £ ~1(Vy). Then
C(Y) is open inC*(X, K). Moreover,yy has a closed graph whefi*(X, K) is equipped
with the uniform convergence topology.
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Proof. We follow some ideas from [3]. Le(yo, go) € ¥ x C*(X, K)\Gy, where
C*(X, K) possesses the uniform convergence topology@pds the graph of. Hence,
go ¢ ¥ (¥0), SOgo € C(yo). TakeV,, ands,, > O satisfying the hypotheses of the lemma,
and letW denote thes, -neighborhood oo in C*(X, K). ThenV,; x W is a neighbor-
hood of(yo, go) disjoint fromG,. Thus,G, is closed.

To show thatC(Y) is open inC*(X, K) with respect to the source limitation topol-
ogy, we fix gg € C(Y). Since, for everyy € Y, gg € C(y), we choose neighborhoods
and positive numbers, < 1 satisfying the conditions of the lemma. We can assume that
{Vy: y e Y} is alocally finite cover ofr, and consider the set-valued mapY — (0, 1],
o(y) = U{(0,8;]: y € V.}. Then, by [15, Theorem 6.2}y admits a continuous selec-
tion 8:Y — (0,1], and lete = B o f. It remains only to show that § € C*(X, K) with
d(go(x), g(x)) < a(x) for all x € X, whered is the metric onE generated by its norm,
theng e C(Y). So, we take such@and fixy € Y. Then, there existse Y with y € V, and
such thatx(x) < 8, for all x € £~1(y). Now, select a map € C*(X, K) coinciding with
g on f~1(y) and satisfying the inequaliy(h(x), go(x)) < 8, for eachx € X. According
to the choice o, h € C(y). Henceg € C(y) because|f~1(y) = k| f~1(y). Therefore,
C(Y)isopeninC*(X,K). O

Recall that a closed subsEtof the metrizable spacH is said to be &,,-setinM, if the
setC(I", M\ F) is dense inC (I, M) with respect to the uniform convergence topology,
wherel™ is them-dimensional cube. IF is aZ,,-set inM for everym € N, we say that
FisaZ-setinM.

Lemma 2.2. Let y € ¥ and C(y), considered as a subset 6% f~1(y), K), satisfy the
following condition

For everyk € N (respectivelyk = m) the set of all map& € C(I* x f~1(y), K) with
hl({z} x f~1(y)) € C(y) for eachz € T¥, is dense irC (I* x f~1(y), K) with respect to
the uniform convergence topology.

Then, forevery : X — (0, 00) andg € C*(X, K), V¥ (y)NB(g, a) is a Z-set(respectively,
Zn-sed in B(g, a) providedB (g, «) is considered as a subset©f (X, K) equipped with
the uniform convergence topology ady) C C*(X, K) is closed.

Proof. See the proof of [17, Lemma 2.8].0

Lemma 2.3. Let Y be aC-space(respectivelydimY < m) and the family{C(y)} ey
satisfies the following conditions

(a) the mapy has a closed graph

(b) ¥ (y)NB(g, ) is aZ-set(respectivelyZ,,-seb in B(g, o) for any continuous function
a:X — (0,00), y €Y andg € C*(X, K), whereB(g, o) is considered as a subspace
of C*(X, K) with the uniform convergence topology.

ThenC(Y) is dense inC*(X, K) with respect to the source limitation topology.
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Proof. It suffices to show that, for fixe¢g € C*(X, K) and a continuous function
a:X — (0,00), there existg € B(go, «) NC(Y). We equipC*(X, K) with the uniform
convergence topology and consider the constant convex-valuedmiap> C*(X, K),

¢ (y) = B(go, a1), Wherea1(x) = min{a(x), 1}. Because of the conditions (a) and (b), we
can apply the selection theorem [6, Theorem 1.1] (respectively, [7, Theorem 1.1]) to obtain
a continuous map ;Y — C*(X, K) such thath(y) € ¢(y)\v(y) for everyy € Y. Ob-

serve that: is a map fromY into B(go, 1) such thati(y) € C(y) for everyy € Y. Then

g(x) = h(f(x))(x), x € X, defines a bounded mape B(go, @) such thatg| f~1(y) =
h()|f~(y), y e Y. Thereforeg e C(y) forall y e Y, i.e.,g € B(go, ) NC(Y). O

3. Finite-to-one maps

In this section we provide a non-compact version, see Proposition 3.1 below, of the
Levin—Lewis result [10, Proposition 4.4]. Note that, for separable metrizable spaces,
Proposition 3.1 follows from [16, Lemma 2].

Proposition 3.1. Let f: X — Y be a perfecD-dimensional map witldimY < m. Then
C*(X) contains a densé&s-subset of mapg with each fiber off x g containing at most
m + 1 points.

Proof. We take a map : X — Q such thatf x 6:X — Y x Q is an embedding (such
a 0 exists by [14] or [20]) withQ being the Hilbert cube, a countable bd3$& };cn of
open sets inD. Let A be the collection of the closures 6fX(W;) in X, i > 1. There are
countably many familie§™ = {A1, Ap, ..., A2} consisting ofm + 2 disjoint elements
of A. For any such” andy € Y letCr(y) denote the set of alf € C*(X) such that each
g Y N (fy), z € R, meets at mosk + 1 elements of". Following Section 2, for
HcCY,letCr(H)={Cr(y): y € H}. Since the intersection of all-(Y) consists of
mapsg such that each fiber of x g contains at mosk + 1 points, it suffices to show that
anyCr(Y) is open and dense ifi*(X).

Lemma3.2. Letl" ={Gy,...,Gu+2} andy € Y be fixed. Then, for evegye Cr-(y) there
exists a neighborhoott of y in ¥ ands > 0 such thath e Cr (V) providedh| f~1(V) is
s-close tog| f~1(V).

Proof. Assume this is not true for somgg € Cr(y). Then, there exist neighborhootfs
i >1,0of yinY, functionsg; € C*(X), pointsy; € V; andz; € R such thatgi|f‘1(‘/i)
is 1/i-close togol f~1(Vi) but g7 1(z;) N f~1(y:) meets all< m + 2 elements off".
Since f is closed, we can suppose tHat= f~1(V;) C g5 *(W;) with U; and W; be-
ing 1/i neighborhoods of ~1(y) andgo(f~1(y)) in X andR, respectively, and; € W;.
Passing to subsequences, we may also suppose that 4img € go(f~1(y)). Then
gal(zO) N f~1(y) intersects at mostk + 1 elements of", let say the firstn + 1. Take
pointsa; € g7 *(z;) N f~X(y) andb; € f~(y) such thaw; € G+ and dista;, b;) < 1/i
for all i. Again, we can assume that lim= bg for somebg € f~1(y). Then lima; =
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bo € gal(m) N £~1(y), s0bg ¢ G ni2. This implies that; ¢ G,,.» for almost alli which
contradicts the choice of the points

Therefore, combining Lemmas 3.2 and 2.1, we may conclude that(gg@h is open
in C*(X) and the set-valued mafp: Y — C*(X), ¥ (y) = C*(X)\Cr(y), has a closed
graph whenC*(X) carries the uniform convergence topology.

Lemma 3.3. Forany I" andy € Y, the set of all functiong € C(I"” x f~1(y)) such that
gldz} x £~Y(y)) e Cr(y) for eachz e I, is dense irC(I" x f~1(y)).

Proof. By the Levin—Lewis result [10, Proposition 4.4], evérg C(I"™ x f~1(y)) can be
approximated by functiong € C(I" x f~1(y)) such that eaclg~1(r) N ({z} x f~1(y)),
z €™ andr € R, contains at most + 1 points. This implies tha|({z} x f~1(y)) € Cr(y)
for eachz € I, and we are done.O

Finally, the combination of Lemma 3.3 and Lemma 2.1-2.3, yields that &yety) is
dense inC*(X). This completes the proof of Proposition 3.1

4. Proof of Theorem 1.1

One of the components of the proof of Theorem 1.1 is Theorem 4.1 below. It is a para-
metric version of the Hurewicz result [8] that everydimensional compactum admits a
0-dimensional map intd’. For finite-dimensional compact spaces this version was proved
by Pasynkov [13] (announced in 1975). Torunczyk [16] also established such a theorem for
finite-dimensional separable spaces. In the present form, Theorem 4.1 was obtained by the
authors [17]. The proof presented here follows the general method from Sections 2 and 3.
Pasynkov’s theorem, mentioned above, is also used, but we provide an easy proof of that
theorem.

Theorem 4.1. Let f: X — Y be ac-perfectn-dimensional map witly being aC-space.
Then, for eveny < k < n, C*(X, R¥) contains a dens& s-subset of mapg such that
f x gis (n — k)-dimensional.

Proof. Itis easily seen that the proof is reduced to the case whsnperfect. Following
the general schem from Section 2, for every 0 andy € Y, letC. (y) be the set of all maps
g € C*(X, R¥) satisfying the following condition: every s¢t 1(y) N g~1(z), z € R¥, can
be covered by a finite family of open sets irX each of diametek ¢ and any point of
is contained in at most — k + 1 elements of,. We need to show that eve€y(Y) is open
and dense ilC*(X, R¥). The proof of next lemma is similar to that one of Lemma 3.2.

Lemma 4.2. Lete > 0 and y € Y be fixed. Then, for every € C.(y) there exists a
neighborhoodV of y in ¥ ands > 0 such thath € C. (V) providedh| f~1(V) is §-close
to gl fH(V).
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As above, Lemma 4.2 implies that &(Y) are open inC*(X, RF) and the set-valued
mapy, ;Y — C*(X,RX), ¥.(y) = C*(X, R*)\C,(v), has a closed graph wher (X, RF)
is equipped with the uniform convergence topology.

The density of the set&.(Y) in C*(X, R¥) follows from the lemma below:

Lemma4.3. Foranye > 0,m > 1andy € Y, the set of all mapg € C(I" x f~1(y), RF)
such thatg|({z} x f~1(y)) € Ce(y) for eachz € I, is dense irC (I x f~1(y), Rb).

Proof. The proof of this lemma is the same as the proof of Lemma 3.3. The only difference
now is that, instead of the Levin—Lewis theorem, we use the Pasynkov result formulated in
Proposition 4.4 below. O

Combining all lemmas in Sections 2 and 3, we can complete the proof of Theorem 4.1.
Therefore, we need only to provide a proof of Proposition 4.4.

Proposition 4.4. Let K be a compactum of dimensiahrn and0 < k < n. Then, for every
m > 1, the set of all mapg € C(I" x K, R¥) such thatr x g is (n — k)-dimensional, is
dense inC(I" x K,R¥) (herexr :I" x K — I denotes the projection

Observe that the validity of the cake= n implies the validity of all other cases. Indeed,
if h e C(I"™ x K,R¥) andy > 0, we lift 4 to a maphy : 1" x K — R” such thati = p o hy,
wherep : R" — R is the canonical projection. Next, take € C(I" x K, R") n-close to
h1 and such thatr x g1 is O-dimensional. Therg = p o g1 is n-close toh andx x g is
(n — k)-dimensional. So, we can suppose that n.

Since dimK < n, by the Hurewicz theorem [8], there exists a 0-dimensional map
g K — I". Thenr x g, whereg is the composition of the projectiory : 1" x K — K and
g,is also 0-dimensional. According to [11, (& (iii)], almost allmapg € C(I" x K, R")
have the property ditr x g) < 0. This completes the proof of Proposition 4.4. Finally,
let us note that Levin's result [11, (id> (iii)], which was used in this proof, has a very
short proof. As a result, we obtain a proof of Proposition 4.4 which is quite easier than the
original one from [13]. O

Proof of Theorem 1.1. Let show first that the proof of Theorem 1.1 can be reduced to
the casef is perfect. Suppos& is the union of an increasing sequence of its closed
sets X; such that each restrictioff; = f|X; is perfect withY; = f(X;) C Y being
closed. Then, applying Theorem 1.1 for every m@apX; — Y;, and using that the maps
;i C*(X,RP) - C*(X;,RP), m;(g) = g|X;, are surjective and open, we conclude that
there exists a deng@s-setG C C*(X, RP) consisting of mapg such thatg; = g|X; is
fi-regularly branched for every Let g € G andn > 1. For anyi the setB,(f; x g;) is

Fy in (f; x g)(X;) [Bland (f; x g)(X;) C Y x R? is closed (recall that eacty C Y is
closed and the mafj x g; : X; — Y; x R” is perfect). So, all of the sef, (f; x g;) areF,

in Y x R”. Moreover, dimB, (f; x g;) <n-(dimf; +dimY;) —(n —1) - (p +dimY;) <
n-(dimf+dimY)—(n—1)-(p+dimY). Therefore, dint J72; B, (f; x &) <n-(dim f+
dimY) — (n — 1) - (p + dimY). On the other handB,, (f x g) C Useq B.(f; x gi). Con-
sequently, dinB, (f x g) <n-(dimf +dimY) — (n —1)-(p +dimY) for everyg € G
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andn > 1. Hence,G consists of f-regularly branched maps. Thus, everywhere below
we may assume thaf is perfect. Moreover, we can also assume that dim f be-
cause, according to the definition, every: C (X, R?) is f-regularly branched provided
p<dimf.

The remaining part of the proof, presented below, was suggested by the referee of this
paper.

It is easily seen that, by Theorem 4.1, we can assumefdin®. So, everywhere below
f is a perfect 0-dimensional map,> 1 and dimY = m. Letl =I(m, p) = [m/p] + 1,
where[m/ p] denotes the integer part af/ p.

We show by induction orp that f x g is at most/-to-1 for almost all mapg €
C*(X,RP). For p =1, it follows from Proposition 3.1. Assumg > 1 and letm =
(I—Dp+1,0<r< p. Decomposd = Yy UY> such thatt; is an F,;-subset oft with
dmYi<m—-I=(1-D(p—-1D+t—1landdimro <! —1.Letalsog=g1 x g2: X —
R?~1 x R. Since[(m —1)/(p — 1)] + 1 =1, according to the induction hypothesig,can
be approximated by a magj : X — R?~1 such thatf x g is at most/-to-1 onf~1(ry).
Denote byB the union of all fibers off x g7 having more tha points. ThenB is F, in
X and disjoint fromf ~1(Y1), so f(B) C Y». Once again by induction hypothesig, can
be approximated by a magj : X — R such thatf x g5 is at most/-to-1 on Y f(B)).
Thus, g can be approximated by the map= gj x g5 such thatf x g* is at most-to-1.
This implies that the mapg € C*(X, R?) such thatf x g is at most/-to-1 form a dense
subset ofC*(X, R”). To complete the induction, we need to show that this set is@jsa
C*(X, RP). To this end, following the proof of Proposition 3.1, we take a fafy — Q
suchthatf x 6: X — Y x Q is an embedding, and a countable bgidg}; . of open sets
in 0. We also consider the collectiod of all closures ofd~1(W;) in X, i > 1. There
are countably many familieE = {A1, Ao, ..., A;+1} consisting of + 1 disjoint elements
of A and for any suchi” andy € Y let Cy(y) denote the set of alf € C*(X, R?) such
that eache~1(z) N f~1(y), z € R?, meets at most elements of". As in Section 3, we
can show that any sét-(Y) = ({Cr(y): y € Y} is open inC*(X,R?). Therefore, the
mapsg € C*(X, R?) with f x g being at most-to-1 form aGs-set inC*(X, R?) as the
intersection of alC-(Y).

Now, we can finish the proof of Theorem 1.1. gtC Y, 0< i < m, be F,-subsets of
Y suchthattoCc Y1 C--- C Yy, dimY; <ianddimy\Y; <m—i—1. Then, from what we
proved above, it follows that™* (X, R”) contains a dens@s-subset; of mapsg such that
f x g is at most/(i, p)-to-1 on f~1(¥;) for every 0< i < m. Moreover, in addition, we
may require by [18] thag ( f ~1(y)) is O-dimensional for all € Y and allg € G. It remains
only to show that every € G is f-regularly branched. So, we fike G andn > 1, and
let 7y : Y x R? — Y be the projection ontd’. SinceB,(f x g) is Fy in (f x g)(X)
andny|(f x g)(X) is a perfect mapgy (B,(f x g)) is F, in Y. Moreover, since each
g2(f~1(y)) is 0-dimensional, dinB,(f x g) is at most the dimension ofy (B,(f x g)).
On the other hand, it f x g)~1(y,z) contains> n points, theny ¢ Ypm-1-1. Hence,
wy (B (f x g)) is contained inY\Y,,—1—1. Consequently, dimy (B, (f x g)) <m —
(n—1)p,soisdimB,(f x g). Sincen(dim f +dimY) —(n — L (p+dimY)=m — (n —
1) p, the last inequality shows thatis regularly f-branched. O
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