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Abstract

Measured bidirectional reflectance distribution function (BRDF) data have been used to represent complex interaction between lights and
surface materials for photorealistic rendering. However, their massive size makes it hard to adopt them in practical rendering applications. In this
paper, we propose an adaptive method for B-spline volume representation of measured BRDF data. It basically performs approximate B-spline
volume lofting, which decomposes the problem into three sub-problems of multiple B-spline curve fitting along u-, v-, and w-parametric
directions. Especially, it makes the efficient use of knots in the multiple B-spline curve fitting and thereby accomplishes adaptive knot placement
along each parametric direction of a resulting B-spline volume. The proposed method is quite useful to realize efficient data reduction while
smoothing out the noises and keeping the overall features of BRDF data well. By applying the B-spline volume models of real materials for
rendering, we show that the B-spline volume models are effective in preserving the features of material appearance and are suitable for
representing BRDF data.
& 2015 Society of CAD/CAM Engineers. Production and hosting by Elsevier. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).
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1. Introduction

Bidirectional reflectance distribution function (BRDF) is a
fundamental radiometric concept that models directional prop-
erties of reflection between light and surface materials [1,2].
In computer graphics, BRDF has been widely adopted for
realistic representation of material appearance. Although there
have been extensive works on modeling surface reflectance, it
is still an active research topic to develop BRDF models. Since
the first introduction of Phong model [3], various BRDF
models have been proposed either to overcome the short-
comings of the others or to achieve the different goals such as
accuracy, computational efficiency, controllability, versatility,
and compactness in data size. The good description of BRDF
models can be found in [1–5].
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Physically-based rendering aims to simulate the interaction
of light and materials by more precisely considering various
physical properties of optics to enhance the realism of
synthetic images [1,2]. Recently, there have been strong
requirements to simulate sophisticated material properties with
great accuracy that cannot be easily achieved with existing
modeling techniques of material appearance. Advances in
measuring technology have made it possible to accurately
acquire reflection properties of real materials using a goniore-
flectometer [6–8]. Obviously, using measured BRDF data has
been one of the alternatives to simple phenomenological
models. For example, measured BRDF data are actively used
for virtual prototyping in fashion, consumer electronics, and
automotive industries to visualize the sophisticated real mate-
rials [9,10], and for VFX in the film industry to express
delicate textile materials of digital doubles [11].
To be applied in such applications, the measured BRDF data

should be stored into a simple tabular form or fit into a more
sophisticated representation. As the measured BRDF data are
lsevier. This is an open access article under the CC BY-NC-ND license
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usually huge and even noisy, it is much preferable to compute
suitable mathematical models which approximate the data and
smooth out the noise in the data. When the BRDF data is used
in the tabular form without compression, their size causes a
critical problem in production environment. For example, in
case of the complete BRDF data set of a single material, its
storage size varies from 33 to 750 megabytes, which can be a
serious burden even to a commercial rendering system hand-
ling multiple sets of such BRDF data along with several
gigabytes of geometry and texture data, not only in a memory
but also over the network. Thus, it is very important to develop
a compact representation scheme that preserves the overall
features of the data faithfully.

A general approach is to approximate the measured BRDF
data by one of the analytical models with a small set of control
parameters [12]. However, as most of the analytical models
are defined by nonlinear functions, it is required to employ
nonlinear optimization algorithms for estimating the underlying
parameters. Obviously this nonlinear optimization approach
has several shortcomings. According to Ngan et al. [12], most
of the analytical models obtained by non-linear least squares
fitting could not express all the reflection features such as
generalized diffuse, backscattering, off-specular, and Fresnel
effects. For better results, it is required to increase the number
of lobes or parameter complexity, which usually increase not
only the difficulty in solving the non-linear optimization
problem but also the computational burden of evaluating
BRDF values from the fitted models.

In an effort to reduce the size of measured BRDF data while
keeping an accurate representation of the data, many alter-
native approaches have been proposed. Shröder and Sweldens
[13] used spherical wavelets to represent reflectance functions.
Several research groups used polynomial based analytical
models. Koenderink et al. [14] used Zernike polynomials for
representing BRDF data, and Ozturk et al. [15] represented
diffuse and glossy BRDF data by polynomial functions com-
bined with the principal component analysis. In most cases of
using polynomial based analytical models, a higher degree of
polynomials is required to accurately fit some complex data.
Several research groups including Lawrence et al. [16] have
investigated techniques for factoring large BRDF datasets
into more compact, manageable form. In all cases, the four
dimensional (4D) anisotropic BRDF is factored into products
of two dimensional (2D) functions that can be represented as
texture maps. In most cases, the factorizations are not so
accurate as the original measured BRDF data. Recently, Kurt
and Cinsdikici [17] presented a new BRDF model which uses
neural networks SOMs and MANs to represent measured
BRDF data.

B-splines have been one of de facto industrial standards to
represent curves and surfaces in the field of Computer Aided
Geometric Design (CAGD) for more than a decade [18,19]. It
is well-known that higher-degree polynomial models are
inefficient to process and are numerically unstable to be fitted
[18,19]. As B-splines are defined by piecewise polynomials,
they can overcome the shortcomings of polynomial based
models. Although many useful methods have been presented
for B-spline curve or surface fitting to measured data,
comparatively little attention has been given to how to apply
B-spline volume fitting for rendering. Lee and Park [20,21]
proposed a method for B-spline volume representation of
isotropic measured BRDF data. Their method works well
when the values of the given data changes smoothly (i.e., for
BRDF data of materials which are diffuse or moderately
glossy), but it has difficulty when the data values change
rapidly or have sharp peaks considered as not outliers but
features (i.e., for BRDF data of glossy or specular materials).
In subsequent work in the form of short note [22], they coined
the idea of adaptive placement of knots of resulting B-spline
volumes as a way of alleviating the shortcoming.
In this paper, we solidify the idea coined in [22] and propose

an adaptive method for B-spline volume representation of
measured BRDF data. The method basically performs approx-
imate B-spline volume lofting, which decomposes the problem
into three sub-problems of multiple B-spline curve fitting along
u-, v-, and w- parametric directions. Especially, it makes the
efficient use of knots in the multiple B-spline curve fitting and
accomplishes adaptive knot placement using dominant col-
umns along each parametric direction of a B-spline volume.
The resulting B-spline volume called B-spline volume BRDF
(hereafter BVB) becomes a compact but accurate representa-
tion of the measured BRDF data. We show that the proposed
method is quite useful to realize efficient data reduction while
smoothing out the noises and keeping the overall features of
BRDF data. By applying the BVB models of real materials for
rendering, we also show that the BVB models are effective in
preserving the features of material appearance and are suitable
for representing the measured BRDF data coming from a wide
range of materials (i.e., not specific to diffuse and moderately
glossy materials).
The rest of the paper is organized as follows. In Section 2,

we explain some preliminaries related to BRDF. In Section 3,
we present the adaptive method for BVB model fitting.
In Section 4, we describe the application of BVB models
to photorealistic rendering. In Section 5, we explain experi-
mental results to show that BVB models are appropriate for
BRDF representation and are useful to enhance rendering
process. Finally, we conclude the paper with some remarks in
Section 6.
2. Preliminaries Related to BRDF

2.1. Measured BRDF Data

For two unit vectors ωi and ωo denoting input (or incident)
and output (or reflected) directions of light rays at a surface
point p, BRDF is the differential ratio of reflected radiance
along ωo to the irradiance incident on the point p along ωi

[1,2]. At a point p in the spherical coordinate system, BRDF is
defined as f ðωo;ωiÞ ¼ f θo;ϕo; θi;ϕi

� �
where ωi ¼ ðθi;ϕiÞ and

ωo ¼ ðθo;ϕoÞ. If BRDF can be defined as f θo; θi; ϕd

� �
where

ϕd ¼ jϕo�ϕij, such BRDF is called isotropic. Otherwise, it is
called anisotropic. As shown in Fig. 1, the domain of isotropic
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BRDF is 3D rather than 4D. Examples of anisotropic materials
include brushed metals and velvets. Most of ordinary materials
are isotropic. In this paper, we deal with only isotropic BRDF.

Image-based measurement equipment is actively used due to
its relatively simple configuration [6–8]. While a special light
source rotates along the spherical sample of a target material,
a digital camera captures the images of the sample at each light
position. After post-processing, we can obtain an isotropic
BRDF data set which is stored in a simple tabular form
(hereafter TBF)

f i;j;k ¼ f ðθi ¼ ai; θo ¼ bj;ϕd ¼ ckÞ ð1Þ

where ði; j; kÞA ½0; ::; imax� � ½0; ::; jmax� � ½0; ::; kmax�. The angle
values ai, bj, ck are defined as follows: ai ¼ π

2i=imax,
bj ¼ π

2j=jmax, ck ¼ 2πk=kmax. When RGB triple is used, each
BRDF data element should be a vector of three color
coordinates as follows: f i;j;k ¼ ðf ri;j;k; f gi;j;k; f bi;j;kÞ. Thus, the
Fig. 2. Iso-meshes of measured BRDF d

Fig. 1. Illustration of isotropic BRDF.
measured BRDF data are given as follows:

F ¼ ff i;j;kjiA ½0; ::; imax�; jA ½0; ::; jmax�; kA ½0; ::; kmax�g ð2Þ
Fig. 2 shows the iso-meshes of measured BRDF data sets

obtained from various materials. In the figure, the iso-meshes
are displayed at specific incident angles in the spherical
coordinate system.
When each color coordinate is encoded as four bytes and

the measurement step is 1 degree for each dimension (i.e.,
imax ¼ jmax ¼ 90, kmax ¼ 360), the size of measured BRDF data
of each material reaches 70 megabytes. This is a very large
size for both off-line and real-time renderers. Hence, we are
interested in developing a new representation scheme that
requires small storage while preserving the reflection features
of the original material.
2.2. Fitting analytical models to measured BRDF data

Ngan et al. [12] evaluated several analytical models in terms
of their ability of approximating measured BRDF data. Due to
practical problems of non-linear fitting (such as dependency on
initial guesses and convergence to local optima) and limited
power of expression, it is difficult to find proper parameter
values of each analytical model that preserves all the overall
features of the BRDF data. Thus the fitted models often do not
fit the data satisfactorily.
As the Lafortune model (hereafter LFT) [4] and the Cook–

Torrance model (hereafter CKT) [5] have been widely used
among analytical models, we use them as reference models
to assess the usefulness of BVB models for data fitting
and rendering. According to Ngan et al. [12], the CKT model
ata obtained from various materials.
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outperformed the other analytical models, and the LFT model
showed the average performance for fitting and rendering.

The CKT model, which originated from the field of physics,
has been adopted for computer graphics, specifically to support
more physically based properties of light reflection on the
surface geometry [5]. The LFT model is a generalization of the
Phong model, which is expressed as a sum of multiple specular
lobes [4]. It is useful in representing relatively simple reflection
features with flexibility of control, and it is efficient in
evaluation. However, it is not suitable to represent materials
with complex reflection features. Moreover, it fits the data
poorly in the region of grazing angles where the light vector is
nearly parallel to the tangent plane at each surface point.
3. Adaptive method for BVB model fitting

3.1. B-spline volume

A parametric B-spline curve of order p is defined as follows:

CðtÞ ¼ ∑
n

i ¼ 0
Ni;pðtÞbi ð3Þ

where bi are control points, Ni;pðtÞ are the normalized B-spline
functions defined over the knot vector T¼ ft0; t1; :::; tnþ
p�1; tnþpg, and the parameter domain is given as
tA ½tp�1; tnþ1�. By directly extending B-spline curves to a
trivariate case, we define a parametric tensor product B-spline
volume Bðu; v;wÞ of order (degreeþ1) p, q, r as follows:

Bðu; v;wÞ ¼ ∑
nu

i ¼ 0
∑
nv

j ¼ 0
∑
nw

k ¼ 0
Ni;pðuÞNj;qðvÞNk;rðwÞbi;j;k ð4Þ

where bi;j;k are control points, and the parameter domains are given
as uA ½up�1; unuþ1�, vA ½vq�1; vnv þ1�, and wA ½wr�1;wnw þ1�.
Ni;pðuÞ, Nj;qðvÞ, and Nk;rðwÞ are the normalized B-spline functions
of order p, q, r defined on knot vectors U, V, W in the u, v, w
directions, respectively. The knot vectors U, V, andW are given as
U¼ u0; u1; ::; unu þp

� �
, V¼ v0; v1; ::; vnv þq

� �
, and W¼ w0;f

w1; ::;wnw þ rg. In this work, we pursue a proper way of fitting a
B-spline volume to the measured BRDF data F of a real material
given in Eq. (2). The resulting B-spline volume becomes a
BVB model.
3.2. Approximate B-spline volume lofting

We want each element f i;j;k of the BRDF data F to be a B-
spline volume element at specific parameter values
ðu; v;wÞ ¼ ðui; vj;wkÞ, that is, Bðui; vj;wkÞ ¼ f i;j;k. Hence, the
problem of constructing a B-spline volume Bðu; v;wÞ from the
data F can be solved by the least-squares B-spline volume
fitting. When the parameter values ui, vj, wk of the volumetric
data f i;j;k , the orders p, q, r of B-spline functions, and the knot
vectors U, V, W of a B-spline volume Bðu; v;wÞ are given, the
control points bi;j;k can be determined by minimizing the
following least-squares error

Eðb0;0;0; :::; bnu;nv;nwÞ ¼ ∑
imax

i ¼ 0
∑
jmax

j ¼ 0
∑
kmax

k ¼ 0
‖Bðui; vj;wkÞ� f i;j;k‖2:

ð5Þ
According to the uniform angle steps in Eq. (1), the

parameter values ui, vj, and wk are equally spaced as
ui ¼ i=imax, vj ¼ j=jmax, and wk ¼ k=kmax, respectively. It is
natural to make the parameters values linearly related to the
angle values. The knots of the knot vectors U, V, W can be
placed using the parameter values [18,19]. Since the objective
functional in Eq. (5) is quadratic, this minimization problem
leads to that of solving a system of linear equations. Without
loss of generality, imax4nu, jmax4nv, and kmax4nw, so the
least-squares minimization provides reasonably good solu-
tions. However, as the size of the system matrix becomes
very large (that is, M �M where M ¼ ðnuþ1Þ�
ðnvþ1Þ � ðnwþ1Þ), the direct approach to solving such a
large linear system should be avoided due to inefficiency in
computation time and memory usage.
The proposed method for B-spline volume representation of

BRDF data basically takes the scheme of approximate B-spline
volume lofting, which is extended from approximate surface
lofting based on the property of tensor products of B-splines
[23,24]. In the approximate volume lofting, we construct a
B-spline volume by successively applying multiple B-spline
curve fitting to a set of polylines along each parametric (w-, v-,
u-) direction. Consider that the equations Bðui; vj;wkÞ ¼ f i;j;k
are written as follows:

f i;j;k ¼ Bðui; vj;wkÞ
¼ ∑

nw

c¼0
Nc;rðwkÞ ∑

nu

a¼0
∑
nv

b¼0
Na;pðuiÞNb;qðvjÞba;b;c

� �
ð6Þ

By replacing ∑nu
a¼0∑

nv
b¼0Na;pðuiÞNb;qðvjÞba;b;c by intermedi-

ate control points gi;j;c, we can simplify Eq. (6) as follows:

f i;j;k ¼ ∑
nw

c ¼ 0
Nc;rðwkÞgi;j;c ¼Ci;jðwkÞ for ði; jÞA ½0; ::; imax�

�½0; ::; jmax�: ð7Þ
Eq. (7) means multiple B-spline curve fitting to ðimaxþ1Þ �

ðjmaxþ1Þ polylines each of which consists of ðkmaxþ1Þ points
passing along the w direction. We can obtain the control points
gi;j;c for ði; j; cÞA ½0; ::; imax� � ½0; ::; jmax� � ½0; ::; nw� by solving
the multiple B-spline curve fitting where nw, r, wk, and W are
given. Now the intermediate control points gi;j;c are expressed
as follows:

gi;j;c ¼ ∑
nv

b ¼ 0
Nb;qðvjÞ ∑

nu

a ¼ 0
Na;pðuiÞba;b;c

� �
ð8Þ

By replacing ∑nu
a ¼ 0Na;pðuiÞba;b;c by intermediate control

points hi;b;c, we can simplify Eq. (8) as follows:

gi;j;c ¼ ∑
nv

b ¼ 0
Nb;qðvjÞhi;b;c for ði; cÞA ½0; ::; imax�

�½0; ::; nw�: ð9Þ
Eq. (9) means multiple B-spline curve fitting to ðimaxþ1Þ �

ðnwþ1Þ polylines each of which consists of jmaxþ1 points
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passing along the v direction. Similarly, we can obtain the
control points hi;b;c for ði; b; cÞA ½0; ::; imax� � ½0; ::; nv� �
½0; ::; nw� by applying multiple B-spline curve fitting where
nv, q, vj, and V are given. The intermediate control points hi;b;c
are expressed as follows:

hi;b;c ¼ ∑
nu

a ¼ 0
Na;pðuiÞba;b;c

For

ðb; cÞA ½0; ::; nv� � ½0; ::; nw� ð10Þ
Eq. (10) means multiple B-spline curve fitting to ðnvþ1Þ �

ðnwþ1Þ polylines each of which consists of imaxþ1 points
passing along the u direction. We can finally obtain the control
points ba;b;c for ða; b; cÞA ½0; ::; nu� � ½0; ::; nv� � ½0; ::; nw� by
solving the multiple B-spline curve fitting where nu, p, ui, and
U are given.

The overall process of approximate B-spline volume lofting
is depicted in Fig. 3 and its main steps are summarized as
follows:
(1)
 From the input points f i;j;k, construct w-directional poly-
lines, each of which has the same number of points
kmaxþ1. Determine wk and W along w-direction. Then,
do w-directional multiple B-spline curve fitting by Eq. (7),
which converts input points f i;j;k to intermediate control
points gi;j;c for ði; j; cÞA ½0; ::; imax� � ½0; ::; jmax� � ½0; ::; nw�.
(2)
 From the intermediate points gi;j;c, construct v-directional
polylines, each of which has the same number of points
jmaxþ1. Determine vj and V along v-direction. Then, do
v-directional multiple B-spline curve fitting by Eq. (9),
Fig. 3. Overall process of approximate B-
which converts the points gi;j;c to intermediate control
points hi;b;c for ði; b; cÞA ½0; ::; imax� � ½0; ::; nv� � ½0; ::; nw�.
(3)
 From the intermediate points hi;b;c, construct u-directional
polylines, each of which has the same number of points
imaxþ1. Determine ui and U along u-direction. Then, do
u-directional multiple B-spline curve fitting by Eq. (10),
which converts the points hi;b;c to final control points ba;b;c
for ða; b; cÞA ½0; ::; nu� � ½0; ::; nv� � ½0; ::; nw�.
(4)
 Construct a B-spline volume Bðu; v;wÞ with the control
points ba;b;c.
The control points ba;b;c of the B-spline volume Bðu; v;wÞ
are obtained by applying multiple B-spline curve fitting three
times, which converts points f i;j;k to intermediate points gi;j;c
and hi;b;c, and finally to ba;b;c.

3.3. Multiple B-spline curve fitting with adaptive knot
placement

The multiple B-spline curve fitting is a key ingredient of
approximate B-spline volume lofting. Given a set of polylines,
it constructs a set of compatible B-spline curves each of which
fits the points of its corresponding polyline [23,24]. B-spline
curves are called compatible when they have the same B-spline
order, the same number of control points, and the same knot
vector. In the multiple B-spline curve fitting derived from
Eqs. (7), (9), or (10), the polylines have the same number of
points.
Given mrþ1 polylines Pi ¼ fpi;jjj ¼ 0; :::;mcg for

iA ½0; ::;mr�, consider how to construct B-spline curves of
spline volume lofting.



Fig. 4. Multiple B-spline curve fitting: (a) 11 polylines each of which consists
of 151 points; (b) 17 dominant columns drawn in blue with the polylines;
(c) compatible B-spline curves obtained using the dominant columns; (d)
control polygons each of which consists of 17 control points; (e) compatible B-
spline curves obtained by NKTP; and (f) control polygons (17 control points
per each) obtained by NKTP.
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order p which are defined as CiðtÞ ¼ ∑n
k¼0Nk;pðtÞbi;k. As the

polylines have the same number of points, all the points of
each column Qj ¼ fpi;jji ¼ 0; ::;mrg are made to have the same
parameter value tj, that is, CiðtjÞ ¼ pi;j for iA ½0; ::;mr�. The
values tj are equally spaced (i.e. tj ¼ j=mc) as mentioned in
Section 3.2. The knots of a common knot vector
T¼ t0; t1; ::; tnþp

� �
are usually chosen to reflect the distribu-

tion of the parameter values [18,19,23–26]. The control points
bi;k for kA ½0; ::; n� of the ith B-spline curve CiðtÞ can be
determined by minimizing the following least-squares errors:

Eðbi;0; :::; bi;nÞ ¼ ∑
mc

j¼0
‖CiðtjÞ�pi;j‖2 ð11Þ

where iA ½0; ::;mr�
Each minimization problem is equivalent to solving a linear

system. Each resulting curve CiðtÞ is a piecewise B-spline
curve of order (degreeþ1) p with Cp�2 continuity at interior
knots [18,19]. It is easily found that the successive application
of multiple B-spline curve fitting using Eq. (11) is much more
efficient in terms of computation time and memory usage than
the direct approach using Eq. (5).

Recall that mc denote the number of points of each polyline
and n the number of control points. The results of multiple
curve fitting are affected by how to place the knots in Eq. (11).
Several ways of placing the interior knots of the knot vector
T have been suggested including the averaging technique for
mc ¼ n, and the knot placement techniques (hereafter KTP) for
mc4n [18,19]. When mc is nearly greater than n (jmc�nj is
small), it often generates undesirable results [23]. To avoid
this, Piegl and Tiller [25] suggested another knot placement
technique (hereafter NKTP).

Note that, in Lee and Park's work [20,21] on B-spline
volume representation of BRDF data, knots are determined by
the knot placement techniques KPT and NKTP. However,
these knot placement techniques select the knots in a simple
and trivial manner that each knot span contains almost the
same number of parameter values, and that all interior knots
are changed even though the number n increases by one, which
makes it difficult to realize adaptive curve fitting and prevents
compact and accurate B-spline volume representation of
BRDF data when the data values change rapidly or have sharp
peaks considered as not outliers but features (i.e., for BRDF
data of glossy or specular materials).

Recently, Park and Lee [26] presented a novel approach
(hereafter DOM) to knot placement for B-spline curve fitting.
After selecting dominant points from the given points, we
can determine the interior knots by averaging the parameter
values of the dominant points. This knot placement results in a
stable system matrix which is not singular, and supports local
modification realizing adaptive curve fitting that fewer knots
are placed at flat regions but more at complex regions.

We extend the DOM approach for multiple B-spline curve
fitting where a set of polylines are considered instead of a
single polyline. Note that the points of each column
Qj ¼ fpi;jji¼ 0; ::;mrg have the same parameter value tj. In
multiple B-spline curve fitting to a set of (mrþ1) polylines
Pi ¼ fpi;jjj¼ 0; :::;mcg, we select (nþ1) dominant columns
Dk ¼Qf ðkÞ from (mcþ1) columns Qj, determine a common
knot vector T by averaging the parameter values tj associated
with the dominant columns Dk as follows:

tpþ i�1 ¼ 1
p�1 ∑

iþp�2

k ¼ i
tf ðkÞ for i¼ 1; ::; n�pþ1 ð12Þ

where f ðkÞ is a monotonically increasing function that returns
the index of the column corresponding to the kth dominant
column (i.e. Qf ðkÞ ¼Dk). Then, with these knots, we obtain
compatible B-spline curves CiðtÞ by minimizing the least-
squares errors in Eq. (11). Fig. 4 shows multiple B-spline
curve fitting with and without adaptive knot placement.
To determine the dominants columns, we employ an

adaptive refinement approach that places a new dominant
column in the subset with the largest deviation at the current
iteration. Note that the points pi;j ¼ ðxi;j; yi;j; zi;jÞ do not have
any geometric meaning in Euclidean space because they come
from BRDF data in Eq. (2). Thus, during the determination
of the dominant columns, we transform the points pi;j into
p̂i;j ¼ ðx̂i;j; ŷi;j; ẑi;jÞ whose coordinates are given as

x̂i;j ¼ i=mr; ŷi;j ¼ tj;



Fig. 5. Framework of rendering using three types of BRDF models.
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ẑi;j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ1xi;j
� �2þ λ2yi;j

� �2þ λ3zi;j
� �2q

ð13Þ
In this work, the same weight was set to each coordinate (i.e.,
λ1 ¼ λ2 ¼ λ3 ¼ 1).

Now consider a subset of columns Ss;e ¼ fQjjj¼ s; ::; eg in
which there are only two dominant columns Qs and Qe.
Starting with an initial subset S0;mc , we can obtain as many
dominant columns as required by repeating the following
steps: Among subsets of columns, find a subset Ss;e

(je�sj41) with the largest deviation, and choose a new
dominant column Qw (sowoe) which minimizes the differ-
ence between the total arc lengths of Ss;w and Sw;e. Then,
divide the subset Ss;e into two subsets Ss;w and Sw;e.

The deviation Ds;e of a subset Ss;e can be defined in various
ways. In this work, we define it as the maximum chord height
Ds;e

chd_ max ¼maxej ¼ smaxmr
i ¼ 0‖p̂i;j� ~pi;j‖ or the average chord

heights Ds;e
chd_avg ¼ 1

ðmr þ1Þðe� sþ1Þ∑
e
j ¼ s∑

mr
i ¼ 0‖p̂i;j� ~pi;j‖ where

~pi;j is the orthogonal projection of the p̂i;j onto the line segment

p̂i;sp̂i;e (i.e., chord height of the p̂i;j with respect to the line
segment). The total arc length Ls;e of the subset Ss;e is defined
as Ls;e ¼∑mr

i ¼ 0∑e�1
j ¼ s‖p̂i;jþ1� p̂i;j‖.

The maximum chord height tends to make dominant
columns closer at sharp regions than the average chord height.
For the BRDF data of diffuse or moderately glossy materials,
as their polylines usually have smooth shape without sharp
peaks, the maximum chord height is likely to be good to locate
the dominant columns. For the BRDF data of glossy or
specular materials, as their polylines usually have sharp peaks
at small regions, the average chord height is enough to locate
the dominant columns. We have experienced that the max-
imum chord height is usually good for the BRDF data sets of
diffuse or moderately glossy materials, and that the average
chord height is good for the BRDF data sets of glossy or
specular materials.

As shown in Fig. 4, the multiple B-spline curve fitting using
dominant columns has a notable tendency to generate fewer
control points (correspondingly, curve segments) at flat regions
but more at complex regions, which is very helpful to
approximate BRDF data by a compact and accurate B-spline
volume consisting of fewer control points. Note that the points
in Fig. 4 are the ones transformed from an iso-mesh of the
BRDF data.

3.4. Error-bounded BVB model fitting

When B-spline order ðp; q; rÞ, the number of control points
ðnu; nv; nwÞ, and the measured BRDF data of any real material
are given, we can generate a BVB model to represent the
BRDF data by applying the adaptive method of BVB model
fitting. For practical applications, it is more useful to specify a
tolerance in order to obtain a BVB model satisfying that the
fitting error between the BVB model and the given BRDF data
is smaller than the tolerance. The resulting BVB model is
called error-bounded. In order to get a compact but accurate
BVB model using the error-bounded BVB model fitting, it is
important to reduce the number of knots (correspondingly
control points) while keeping desired accuracy. As the problem
of BVB model fitting is decomposed into sub-problems of
multiple B-spline curve fitting, it can be completed with the
successive application of error-bounded multiple B-spline
curve fitting along each parametric direction. Thus, the given
tolerance is equally divided into three, each for the error-
bounded multiple B-spline curve fitting along its correspond-
ing (u-, v-, or w-) parametric direction where the error is
defined as E¼maxmr

i ¼ 0maxmc
j ¼ 0‖pi;j�CiðtjÞ‖.

As it is not known in advance how many control points are
required for the error-bounded multiple B-spline curve fitting,
it is common to take an iterative (incremental or binary search-
based) process which repeats fitting, checking deviation, and
adjusting the number of knots (i.e., the number of control
points). In this work, we take the binary search algorithm
[23,24] to complete the process since it is better in
computation.

4. Application of BVB models to rendering

Given the BRDF data of any material, we can now generate
a B-spline volume to represent the BRDF data by the proposed
method for BVB model fitting. Then, we can use the B-spline
volume (i.e. BVB model) as an alternative BRDF model for
photorealistic rendering. Fig. 5 shows a conceptual framework
of photorealistic rendering employed in this work.
It has three shaders for measured BRDF data, analytical

BRDF models, and BVB models. They are integrated into
PBRT renderer [2], which provides Cþþ API to extend its
basic functionalities. Each shader is invoked with its associated
BRDF model at run time when surfaces of interest should be
rendered. The PBRT renderer supports several materials based
on classic BRDF models such as perfect diffuse, Lafortune
(LFT), Cook–Torrance (CKT). In our case, we added new
Cþþ classes that inherit the abstract BRDF classes. For BVB
models, we apply the proposed method for B-spline volume
representation of the measured BRDF data of 100 materials
obtained by Matusik et al. [7,8]. For analytical BRDF models,
we use the results of Ngan et al. [12] where they conducted
analytical BRDF model fitting to the measured BRDF data of
the 100 materials.
For photorealistic rendering, we employed distribution ray

tracing in PBRT [2]; we used direct lighting with 64 pixel
samples and 64 light samples while applying single environ-
mental lighting with a high dynamic range image and setting
the maximum trace depth to 4. In order to decouple the effect
of importance sampling [16] on the quality of rendering, we
applied cosine-weighted uniform hemisphere sampling [2].



Fig. 8. Images rendered with BRDF models (from left to right, TBF, BVB,
LFT, and CKT) of red plastic.
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All the rendered images were generated based on single
threaded processing.

Figs. 6–8 show happy Buddha and sphere images which
were generated by photorealistic rendering using four kinds of
BRDF models (TBF, BVB, LFT, and CKT) for three materials
(alum bronze, green metallic paint, and red plastic). Recall that
TBF denotes a tabular form of measured BRDF data.

In this work, the size of rendered images is set to 256� 512
and 512� 512 pixels for happy Buddha and sphere scenes,
respectively. For rendering with BVB models, we generated
BVB models by error-bounded BVB model fitting with B-
spline orders and tolerance rates specific to their associated
BRDF data. Note that the images rendered using BVB models
are very faithful to the images rendered using TBF models.

5. Experimental results

We implemented the adaptive BVB model fitting proposed
in Section 3 and the photorealistic rendering described in
Fig. 6. Images rendered with BRDF models (from left to right, TBF, BVB,
LFT, and CKT) of alum bronze.

Fig. 7. Images rendered with BRDF models (from left to right, TBF, BVB,
LFT, and CKT) of green metallic paint.
Section 4. The implementation has been completed using C
and Cþþ languages on an IBM compatible personal com-
puter running MS Windows Vista with an Intel Xeon
processor X5365. In this section, we show the experimental
results of generating BVB models and of applying them to
rendering in order to demonstrate that the BVB models are
compact and faithful to represent the BRDF data for rendering
applications. We also compare the BVB models with two types
of analytical BRDF models (CKT and LFT) in accuracy of
data fitting and quality of rendering.
For test datasets, we use isotropic BRDF data of 100 real

materials measured by Matusik et al. [7,8]. The size of each
BRDF data is given as ðimax; jmax; kmaxÞ ¼ ð90; 90; 360Þ. We
found that all the BRDF data sets are more or less contami-
nated with noise and especially the data sets coming from
specular materials contain sharp peaks considered as features.

5.1. Generation of BVB models and their application to
rendering

For given B-spline orders ðp; q; rÞ, we applied the proposed
method to obtain a BVB model of each material either by
specifying the number of control points ðnu; nv; nwÞ or by
specifying the tolerance. Then, we applied photorealistic
rendering using the BVB model. To evaluate the quality of a
BVB model, we computed the error between the BVB model
and its corresponding BRDF data. In this work, we use the
average fitting error AE which is defined as follows:

AE ¼ 1
ðimax þ1Þðjmax þ1Þðkmax þ1Þ ∑

8 ði;j;kÞ
‖Bðui; vj;wkÞ� f i;j;k‖ ð14Þ

As simple statistical values of the BRDF data, we use the
average and the largest values (AR, MR) of the BRDF data
which are defined as follows:

AR ¼ 1
ðimax þ1Þðjmax þ1Þðkmax þ1Þ ∑

8 ði;j;kÞ
‖f i;j;k‖;

MR ¼ max
8 ði;j;kÞ

‖f i;j;k‖ ð15Þ
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For the 100 materials used in this work, their MR values (0.4–
8907.5) have great variation (std=1594.8), but their AR values
(0.008–0.24) have small variation (std=0.056). We used the
MR values to roughly classify the materials into three: diffuse,
glossy specular, and highly specular materials. Diffuse materi-
als mostly have small MR values (i.e. 0.76 for blue fabric and
3.49 for polyethylene), but highly specular materials have large
MR values (i.e. 4533.6 for aluminum and 8907.5 for chrome).
Glossy specular materials have in-between MR values (i.e.
31.4 for gold paint and 196.8 for purple paint).

To evaluate the quality of a BRDF model in view of
rendering, we estimated the difference error between an image
rendered using TBF (i.e. target image) and an image rendered
using its fitted model (i.e. test image). For more consistent
estimation, we made the two images have the same back-
ground image in TIFF format. Let ai;j denote a pixel of a target
image a and bi;j a pixel of a test image b. Each image size is
ðxmaxþ1Þ � ðymaxþ1Þ, and the RGB value of each image pixel
varies from 0 to 255. To assess the test image b with respect to
the target image a, we use the mean absolute error (MAE)
defined as follows:

MAE ¼ 1
ðxmax þ1Þdðymax þ1Þ ∑8 ði;jÞ

‖ai;j�bi;j‖: ð16Þ

BVB model fitting by specifying the number of control
points is the basic tool for generation of a BVB model of each
material. As an example of such BVB model generation, we
constructed from the BRDF data of gold metallic paint
(AR ¼ 0:092, MR ¼ 4:074) a set of B-spline volumes. Fig. 9
shows some graphical results of a BVB model where
ðnuþ1; nvþ1; nwþ1Þ ¼ ð15; 15; 60Þ and p¼ q¼ r ¼ 4. It is
found that AE¼ 0:003 and ME¼ 0:343 for the BVB model.
The first row of the figure shows three iso-meshes
(θi ¼ 30 3 ; 60 3 ; 90 3 ) in a ðθo;ϕdÞ spherical coordinate system
for the TBF model. The second row of the figure shows three
corresponding iso-surfaces (u¼ 1

3 ;
2
3; 1) in a ðv;wÞ spherical

coordinate system for the BVB model. Note the BVB model
Fig. 9. Iso-meshes of a TBF model and a BVB model at three incident angles.
(From left to right, θl¼301, 601, and 901).
can smooth out the noises and keep the overall feature of the
data. Whereas the storage size of the BRDF data reaches to 70
megabytes in TBF (35 megabytes in halfway direction
representation [7]), the size of the BVB model is about 320
kilobytes (0.46% of the input data).
Fig. 10 shows happy Buddha images rendered using four

kinds of BRDF models for gold metallic paint. Fig. 10(a) is a
target image obtained using the TBF model. Fig. 10(b)–(d) are
test images obtained using BVB, LFT, and CKT models. The
BVB model is the same one used in Fig. 9. Fig. 10(e)–(g) are
the different images between the target image and the test
images. In case of the difference image for the BVB model in
Fig. 10(e), difference values are scaled up 20 times for easy
recognition. The difference image errors (MAE) are 0.12, 7.55,
and 11.82 for BVB, LFT, and CKT, respectively. Note that the
BVB model is very faithful to be a good alternative of the
measured BRDF data for rendering.
Fig. 11 shows the results of B-spline volume representation

of the measured BRDF data of gold metallic paint where B-
spline order is specified as p¼ q¼ r¼ 2; 3; 4, and the number
of control points is given in the form of ðnuþ1; nvþ1;
nwþ1Þ ¼ ðn; n; 4nÞ. Fig. 11(a) shows the average fitting errors
AE. Fig. 11 (b) shows image difference error (MAE) of the
happy Buddha images rendered by using the resulting BVB
models.
Note that, in Fig. 11, the errors AE and MAE usually

decrease as the number of control points increases. This trend
is similarly noticed in BVB model-based fitting and rendering
for other materials. Obviously, the quality of fitted BVB
models is positively correlated with the quality of images
rendered using the BVB models. This implies that in order to
make BVB models appropriate for better quality of rendering,
Fig. 10. Happy Buddha images rendered using BRDF models for gold metallic
paint and their difference images.



Fig. 12. Results of error-bounded B-spline volume representation of the
measured BRDF data of specular orange phenolic: (a) the number of control
points required and (b) image difference error (MAE) of sphere images
rendered using BVB models.

Fig. 11. Results of B-spline volume representation of the measured BRDF data
of gold metallic paint: (a) plot of average fitting errors (AE) and (b) plot of
image difference errors (MAE).
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we need to reduce their fitting error as much as possible.
However, there exists a trade-off between the fitting error and
the number of control points of BVB models, so it is necessary
to find a proper compromise between the fitting accuracy and
the compactness of the BVB models. In addition, it is found
from our extensive experiments that, for the same number of
control points and the same B-spline order, the fitted BVB
models of highly specular materials are likely to have larger
fitting and rendering errors than those of the other materials.
This means that the BRDF data of highly specular materials
require more control points of BVB models to keep the same
quality of fitting or rendering.

Specifying the tolerance is much easier to control the quality
of BVB models than specifying the number ðnu; nv; nwÞ of
control points since it is not known in advance how many
control points are required. As an example of BVB model
generation by specifying the tolerance (i.e. the error-bounded
BVB model fitting), we constructed from the BRDF data of
specular orange phenolic (AR¼0.133, MR¼2357.369) a set of
B-spline volumes with different combinations of B-spline order
and tolerance: B-spline order is specified as p¼ q¼ r¼ 2; 3; 4,
and the tolerance is given as rate¼ 0:50; 0:10; 0:05; 0:01;
0:005. In this work, the tolerance is specified as tol¼MR�
rate where 0orateo1Note that specular orange phenolic is
highly specular (its MR value is ranked 22th among 100).
Fig. 12 shows results of error-bounded B-spline volume
representation of the measured BRDF data of specular orange
phenolic. Fig. 12(a) shows the required number of control
points of BVB models. Fig. 12(b) shows image difference
error (MAE) occurring in sphere images rendered using the
BVB models. There exists a trade-off between the tolerance
and the number of control points (correspondingly, the
rendering quality). As the tolerance decreases, the fitted
BVB models require more control points while the quality of
rendering usually increases. This trade-off is similarly noticed
in BVB model-based fitting and rendering for other materials.
Fig. 13 shows the trade-off more clearly. Fig. 13(a) shows

the target image rendered using the TBF model. Fig. 13(b)–(d)
show three test images rendered using BVB models which are
obtained with p¼ q¼ r¼ 2 and rate¼ 1

10 ;
1
20 ;

1
200. The

required numbers of control points in Fig. 13(b), (c), and (d)
are ð49; 58; 8Þ, ð80; 83; 10Þ, and ð90; 90; 12Þ, respectively. Note
that the BVB model obtained with the smaller tolerance
represents the BRDF data more faithfully in rendering, but
requires more control points.
Using the error-bounded BVB model fitting, we can find

BVB models such that the rendering using them produces
visually plausible results. This task requires an iterative
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process repeating the following steps: error-bounded BVB
model fitting, BVB-based rendering, checking rendered
images, and adjusting tolerances. From our practical experi-
ence, it is suggested to specify the tolerance rate as follows:
0:3rrater0:05 for diffuse materials (MRo50), and
0:05rrater0:0005 for specular materials (MRZ50). It has
been found by experience that low degree B-splines are
Fig. 13. Sphere images rendered using BRDF models for specular orange
phenolic: (a) TBF; (b) BVB model (rate¼ 0:1,ðnu; nv; nwÞ ¼ ð49; 58; 8Þ);
(c) BVB model (rate¼ 0:05,ðnu; nv; nwÞ ¼ ð80; 83; 10Þ); and (d) BVB model
(rate¼ 0:005,ðnu; nv; nwÞ ¼ ð90; 90; 12Þ).

Fig. 14. Data size ratio required for BVB model fi
effective in BVB model fitting to BRDF data for specular
materials, and high degree for diffuse materials.
For all the 100 materials, we applied the iterative process to

generate BVB models providing visually plausible rendering
results, and investigated how many control points of the BVB
models are required to represent the measured BRDF data sets.
Fig. 14 shows the data size ratios of the resulting BVB models,
and the tolerance rates with which the BVB models are fitted to
the measured BRDF data. The data size ratio means the ratio of
the number of control points of a resulting BVB model to the
number of BRDF data points. The average ratio is 2.4%. The
minimum ratio is 0.02% for blue-fabric with ðnu; nv; nwÞ ¼
ð5; 5; 13Þ, and the maximum ratio is 7.5% for chrome-steel with
ðnu; nv; nwÞ ¼ ð90; 90; 26Þ. In the figure, BRDF materials were
sorted in increasing order of their MR values. For most materials
which are not highly specular, very low data size ratios (less than
1%) occur in BVB model generation. Even for highly specular
materials, moderate data reduction ratios (2.5–7.5%) occur in
BVB model generation.
From these results, we found that BVB models are quite

suitable for representing the measured BRDF data since they are
compact in model size and effective in preserving the features of
material appearance. Note that 165 megabytes of memory is
required to store all the 100 BVB models, whereas 7 gigabytes
of memory is needed to store all the 100 BRDF data sets in the
form of TBF. For a scene where a significant number of
different BRDF data sets is used, it is very difficult to perform
TBF-based rendering using a contemporary IBM-compatible
personal computer because of excessive consumption of random
access memory for the BRDF data sets, but it is easy to do with
BVB-based rendering. Fig. 15 shows an image of a simple
scene rendered using BVB models where 100 spheres of
different materials are placed.
tting with visually plausible rendering results.
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5.2. Comparison of BVB models with analytical models

We compared BVB models with two kinds of analytical
BRDF models (CKT and LFT) in accuracy of data fitting and
in quality of rendering. Recall that we used the results of Ngan
et al. [12] to fit the analytical models to the measured BRDF
data sets provided by Matusik et al. [7,8]. As the materials
were named slightly differently by the two research groups, we
used 86 identically named materials for comparison among
Fig. 15. Image of 100 spheres of different materials.

Fig. 17. Comparison of sectional views of iso-meshes of fitted BRDF model

Fig. 16. Comparison of BRDF models CK
BRDF models. For BVB models to be compared with CKT
and LFT models, we employed the BVB models which are
fitted with the tolerance rates shown in Fig. 14.
Fig. 16 shows the fitting errors AE of BRDF models (CKT,

LFT, BVB) obtained by model fitting to the measured BRDF
data of the 86 materials. In the figure, the errors were plotted in
log scale and sorted in increasing order of MR value.
Following the work of Ngan et al. [12], we omitted the BRDF
values with incoming or outgoing angles larger than 801 to
avoid possible outliers when computing the errors. Some
BRDF models like CKT have extremely large errors when
all the BRDF values are included, but the BVB models do not.
Comparing the BRDF models in accuracy of data fitting, we
found that the BVB models have much smaller fitting errors
than the analytical models CKT and LFT.
This becomes more obvious when the sectional views of

iso-meshes of the BRDF models are displayed. Fig. 17, for
example, shows the sectional views (ϕd ¼ 1801) of iso-meshes
(θi ¼ 471) of three BRDF models generated from the measured
BRDF data of nylon (AR¼ 0:190, MR¼ 796:479). Nylon is
not specular, but special in that it has high peak values at graze
angles. In the figure, cubic root was applied to scale down the
data values. The BVB model fits the BRDF data very well
while representing the overall features of the data. However,
the CKT and LFT models have difficulty in representing the
BRDF data.
Fig. 18 shows the plot of image difference errors (MAE)

occurring in happy Buddha and sphere images rendered using
BRDF models (TBF, BVB, LFT, CKT) for the 86 materials. In
the figures, the errors were plotted in log scale and sorted in
increasing order of MR value. Comparing the BRDF models in
s (θi ¼ 47 3 , cubic root applied, nylon): (a) CKT; (b) LFT; and (c) BVB.

T, LFT, BVB in average fitting errors.
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quality of rendering, we found that the BVB models have
much smaller image difference errors than the CKT and LFT
models. This becomes more obvious by referring to Figs. 6–10
that show the images rendered using four kinds of BRDF
models (TBF, BVB, LFT, CKT). The images rendered using
BVB models are much more faithful to the target images
rendered using TBF models (i.e., measured BRDF data),
whereas the images rendered using LFT and CKT models
are not in most cases.
Fig. 18. Comparison of image difference errors (MAE) occurring in physically-ba
images and (b) sphere images.
From all the results mentioned above, we found that BVB
models outperform the well-known analytical BRDF models
(LFT and CKT) both in accuracy of data fitting and in quality
of rendering.

6. Concluding remarks

In this paper, as one group of advocates asserting that B-
spline models can be well suited for good representations of
sed rendering using three BRDF models CKT, LFT, BVB: (a) happy Buddha
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scientific data arising in computer graphics applications, we
have proposed an adaptive method for B-spline volume
representation (called BVB model) of BRDF data, and
described the application of BVB models to photorealistic
rendering. The proposed method basically performs approx-
imate B-spline volume lofting, which decomposes the problem
into three sub-problems of multiple B-spline curve fitting along
u-, v-, and w- parametric directions. Especially, it makes the
efficient use of knots in the multiple B-spline curve fitting and
accomplishes adaptive knot placement along each parametric
direction of a resulting B-spline volume. We have demon-
strated with extensive experiments that BRDF data coming
from a wide range of materials can be represented by BVB
models which are compact in model size and faithful in
preserving the features of material appearance.

In the Monte Carlo integration method [2], we need to
provide a probability density function of BRDF for multiple
importance sampling in ray tracing or incremental path
generation of path tracing, which would further enhance the
quality of rendered image with the same amount of computa-
tion. As a few analytical BRDF models including Phong [3]
and Lafortune [4] support easy importance sampling, a reason-
able approach to importance sampling for measured BRDF
data has been to approximate the BRDF data by one of such
analytical BRDF models. However, this also confronts the
shortcomings of solving nonlinear optimization problems, and
requires additional computation to evaluate the analytic form
of a probability density function. In case of using TBF directly,
a probability density function can be stored as another tabular
form. However, this consumes a quite amount of storage size
[2]. It is notable that Lawrence et al. [16] properly exploited a
model based on factorization of BRDF data which is con-
venient for importance sampling. In a similar way of repre-
senting measured BRDF data in the form of tensor product
B-splines, it is possible to approximate or represent the
probability density function using the same form of B-splines.

As we have implemented single-threaded programs to per-
form rendering, we found that the BVB model demands more
computation for rendering than the others. For example, the
average time to render happy Buddha images of 256� 512
pixels is found to be 31, 34, 37, 50 min for LFT, CKT, TBF,
BVB, respectively. The CKT model demands more computa-
tion than the LFT model. Although TBF-based rendering does
not need any complicated computation, it takes more time than
LFT or CKT-based rendering since it is a great computational
burden to load BRDF data into memory and to read the data
during a rendering process. BVB-based rendering usually
demands more computation in evaluating model values using
Eq. (4) than the others. Thus, it takes more rendering time
although using BVB models of lower degree somewhat
reduces the rendering time. However, BVB models support
the computation of BRDF values by matrix multiplication, but
analytical models do not allow it since they are defined by non-
polynomial equations. This means that the computation of
BRDF values with BVB models can be much enhanced by
adopting, for example, single instruction multiple data (SIMD)
parallel computing [27].
We expect to do more research on the following topics
for future works. First, as BVB models are not good in
computation to render with single thread programs, we plan to
implement advanced SIMD parallel computing to enhance the
computation of BRDF values with BVB models and corre-
spondingly the overall computational performance of BVB-
based rendering. Second, we will devise a method for
representing the probability density function of BRDF in the
form of B-splines. Third, in order to deal with 4D BRDF data
which come from anisotropic materials, we will extend the
proposed method to generate a multivariate B-spline model
from multivariate vector-valued scientific data.
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