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Abstract

It is known that a finite group with just two different sizes of conjugacy classes must be nilpotent
and it has recently been shown that its nilpotence class is at most 3. In this paper we study the analogs
of these results for Lie algebras and some related questions.
 2002 Elsevier Science (USA). All rights reserved.

1. Introduction

Several authors have investigated finite groups that have just two different conjugacy
class sizes. For example, in [3], N. Ito showed that such a group must be nilpotent. (And
in fact, once we know that the group is nilpotent, it is easy to see that it must be the
direct product of an abelian group and ap-group for some primep.) Recently, a dramatic
improvement of Ito’s result was obtained by K. Ishikawa, who showed in [2] that a finite
group with just two class sizes must have nilpotence class at most 3. (The second author of
this paper was able to simplify Ishikawa’s proof somewhat, and he circulated his argument
privately. We include a slightly improved version of it here as Appendix A.)

Of course, the number of different conjugacy class sizes in a finite groupG is equal to
the number of different orders of centralizers of elements ofG. This observation allows us
to consider possible analogs of Ito’s and Ishikawa’s theorems for Lie algebras: What can
be said about a finite-dimensional Lie algebraL if the centralizer subalgebrasCL(x) have
just two different dimensions asx runs over the elements ofL?
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We consider only finite-dimensional Lie algebras in this paper. Also, although some
of our arguments would work more generally, we limit ourselves to Lie algebras over
the complex numbers except in Theorem B, which we state and prove over an arbitrary
field. (We will usually omit explicit mention of the modifiers “finite-dimensional” and
“complex”, however.) For general background on Lie algebras, we refer the reader to the
books [1,4] by N. Jacobson and J.E. Humphreys, respectively.

Results that hold for finite groups and that make sense for Lie algebras are often valid
for such algebras. In fact, the Lie-algebra version of such a result is usually somewhat less
complicated to state and easier to prove than is the corresponding theorem about groups.
Nevertheless, the Lie algebra analog of Ito’s theorem is not valid: A Lie algebra with just
two dimensions of element centralizers need not be nilpotent or even solvable. It is easy to
see, for example, that in the three-dimensional simple Lie algebrasl2(C), the centralizer of
each nonzero element has dimension 1. Also, the unique non-abelian two-dimensional Lie
algebra shows that even if we assume that the algebra is solvable, it need not be nilpotent.

Nevertheless, we do obtain some results in the direction of Ito’s theorem for Lie
algebras. We show, in fact, that if a Lie algebraL has just two centralizer dimensions,
then either it is nilpotent or else its centerZ(L) has codimension at most 3. (It is not hard
to see, however, that ifL is nilpotent and has just two centralizer dimensions, then the
codimension of the center can be unboundedly large.)

Theorem A. Suppose thatL is a nonnilpotent finite-dimensional complex Lie algebra and
that the subalgebrasCL(t) have just two different dimensions ast runs over the elements
ofL. Thendim(L/Z(L))� 3 and one of the following possibilities occurs.

(1) L/Z(L) is isomorphic to the unique non-abelian2-dimensional Lie algebra.
(2) L/Z(L) is isomorphic tosl2(C).
(3) L/Z(L) is isomorphic to the Lie algebra with basis{a, x, y} and relations[a, x] = x,

[a, y] = −y, and[x, y] = 0.

We shall see that all three possibilities in Theorem A can occur, and we observe thatL

is nonsolvable only in Case (2). Also, we remark that in the first two cases, the subalgebra
Z(L) is necessarily a direct summand ofL. (This is fairly easy to see in Case (1) and
it follows from Levi’s theorem [4, p. 91] in Case (2).) The center cannot be a direct
summand in Case (3) however, because the Lie algebraL/Z(L) has more than two different
centralizer dimensions.

Unlike the situation for Ito’s theorem, the analog of Ishikawa’s theorem is valid for
nilpotent Lie algebras, and this works over any field.

Theorem B. LetL be a finite-dimensional nilpotent Lie algebra over an arbitrary field and
assume that the subalgebrasCL(t) have at most two different dimensions ast runs over
the elements ofL. Then the nilpotence class ofL is at most3.

We also obtain results for Lie algebras in which there are more than just two centralizer
dimensions. To state these, we consider the set of dimensions (overC) of centralizers of
noncentral elements of a Lie algebraL and we write cd(L) to denote this set of “nontrivial”
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centralizer dimensions. (ThusL is abelian if and only if cd(L) = ∅ and there are just two
centralizer dimensions if and only if|cd(L)| = 1.)

We show that if|cd(L)| is given, then the Lie algebraL is “almost” solvable. To state
our result, we recall that the radical of a Lie algebra is its unique largest solvable ideal and
that the (uniquely determined) rank of a Lie algebra is the dimension of an arbitrary Cartan
subalgebra.

Theorem C. LetR be the radical of a finite-dimensional complex Lie algebraL. Then the
rank ofL/R is at most|cd(L)|.

Recall that ifR is the radical of a Lie algebraL, thenL/R is a direct sum of simple
ideals. If |cd(L)| = 1, it follows from Theorem C thatL/R has rank at most 1, and thus
if R < L, the only possibility is thatL/R ∼= sl2(C). In this case,R has codimension 3
and we know by Theorem A thatR must actually be the centerZ(L). In fact, the case of
Theorem C where|cd(L)| = 1 is used in the proof of Theorem A.

It is natural to ask whether or not Theorems A and B have analogs for Lie algebrasL

for which |cd(L)|> 1. It seems that the relevant parameter here is not|cd(L)|, but instead
it is the related quantity max(cd(L))− min(cd(L)), which we denote�(L). Of course, we
have defined�(L) only whenL is non-abelian, and so we set�(L)= −1 if L is abelian.
Note that|cd(L)| ��(L)+ 1 and that|cd(L)| = 1 if and only if�(L)= 0.

It follows easily from Theorem A that ifL is solvable and�(L) = 0, thenL has a
nilpotent ideal with codimension at most 1. (This is because each of the two solvable
possibilities forL/Z(L) in Theorem A has an abelian ideal with codimension 1.) The
following theorem is a generalization of this fact, and indeed, we use the case�(L)= 0 of
this result in our proof of Theorem A. We recall that the nilradical of a Lie algebraL is the
unique largest nilpotent ideal ofL.

Theorem D. LetL be a solvable finite-dimensional complex Lie algebra with nilradicalN .
Then�(N)��(L) and the codimension ofN in L is at most�(L)+ 1.

We mention that an argument similar to that in our proof of Theorem D can be used
to show that�(H) � �(L), whereH is a Cartan subalgebra of an arbitrary finite-
dimensional complex Lie algebraL. We do not present that proof here, however.

The assertion of Theorem B is that ifL is a nilpotent Lie algebra and�(L) = 0, then
the nilpotence class ofL is at most 3. We do not know if this result can be generalized
to cases where�(L) > 0, but it seems reasonable to conjecture that there does exist such
a generalization.

Conjecture E. LetL be a nilpotent Lie algebra. Then the nilpotence class ofL is bounded
in terms of�(L).

In general, the nilpotence class of a nilpotent Lie algebraL is definitely not bounded in
terms of|cd(L)|. In fact, even when|cd(L)| = 2, the nilpotence class can be arbitrarily
large. To see this, letL be the semidirect product of an abelian algebraA with basis
{a1, a2, . . . , an}, acted on by a 1-dimensional algebra with generatorx acting according
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to the formula[ai, x] = ai+1 for 1 � i < n and [an, x] = 0. (It is easy to check thatL
exists for every positive integern and thatL is nilpotent of classn.) The center ofL
is the 1-dimensional subspace spanned byan; every noncentral element ofL in A has
centralizerA, and all elements ofL outside ofA have centralizers of dimension 2. Ifn > 2,
therefore, cd(L)= {2, n} has cardinality 2, and yet the nilpotence classn is unbounded.

If Conjecture E is true, then it would follow by Theorem D that the nilpotence class of
the nilradicalN of a solvable Lie algebraL is bounded in terms of�(L). SinceL/N is
abelian, we would have the following as a consequence.

Conjecture F. LetL be a solvable Lie algebra. Then the derived length ofL is bounded in
terms of�(L).

Finally, we return to finite groups. It is known that there is no bound on the nilpotence
class of a finitep-group if there are exactly three conjugacy class sizes, and so Ishikawa’s
theorem does not generalize in that direction. For example, ifP is the wreath product of a
cyclic group of orderpn with a cyclic group of orderp, it is not hard to see that the class
sizes ofP are 1,p, andp(p−1)n, but that the nilpotence class is unbounded in terms ofn.

In this wreath product example, however, the analog of our parameter� is unboundedly
large. IfP is a non-abelianp-group, we define�(P)= e− f , wherepe is the size of the
largest conjugacy class inP andpf is the size of the smallest noncentral class inP . (Also,
we set�(P) = −1 if P is abelian.) Ishikawa’s theorem asserts that if�(P) = 0, then the
nilpotence class ofP is at most 3, and we have the following conjecture.

Conjecture G. Let P be a finitep-group. Then the nilpotence class ofP is bounded in
terms of�(P).

2. Semisimple rank and the number of centralizer dimensions

In this section we prove Theorem C. The key idea is nothing but a bit of elementary
linear algebra, which we state below as a lemma. We need to establish some notation.

LetFm be them-dimensional row vector space over a fieldF . If v ∈ Fm and 1� i �m,
we write v(i) ∈ F to denote theith coordinate ofv; we define supp(v) = {i | v(i) = 0},
the support of v, and we sets(v) = |supp(v)|. If U ⊆ Fm is a subspace, we define
S(U)= {s(u) | 0 = u ∈ U}.

Lemma 2.1. Suppose thatF is an infinite field and thatU ⊆ Fm is a subspace, then
dim(U)� |S(U)|.

Proof. If S(U) is empty, thenU contains no nonzero vectors, and hence dim(U) = 0, as
required. We can assume, therefore, thatS(U) is nonempty, and we work by induction on
|S(U)|.

Let x, y ∈ U and α ∈ F , so that we have supp(x − αy) ⊆ supp(x) ∪ supp(y). If
i ∈ supp(x)∪supp(y) but i is not in supp(x−αy), thenx(i)= αy(i), and we see that there
is most one possibility forα. SinceF is infinite, it follows that we can chooseα ∈ F so that
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all of these “bad” elements are avoided, and it follows that supp(x) ∪ supp(y) = supp(z)
for some elementz ∈ U .

Now letk = max(S(U)) and letx ∈ U with s(x)= k. If y ∈ U , we know that supp(x)∪
supp(y) = supp(z) for some elementz ∈ U and it follows from the maximality ofk that
supp(y)⊆ supp(x). Fix j ∈ supp(x) and letπ :U → F be the linear functional defined by
u �→ u(j). Sincej ∈ supp(x), we see thatx /∈ ker(π) and so dim(ker(π))= dim(U)− 1.
Also, if y ∈ ker(π), then supp(y) < supp(x), and hences(y) < k and k /∈ S(ker(π)).
ThusS(ker(π)) is a proper subset ofS(U) and, by the inductive hypothesis, we see that
dim(ker(π))� |S(ker(π))|< |S(U)|. It follows that dim(U)= 1+dim(ker(π))� |S(U)|,
as required. ✷
Proof of Theorem C. Let R be the radical ofL. We know by Levi’s theorem [4, p. 91]
that there is a subalgebraS ⊆ L such thatS ∼= L/R and, in particular,S is semisimple and
has an abelian Cartan subalgebraT . We need to show that dim(T )� |cd(L)|.

SinceS∩Z(L) = 0, we see thatS acts faithfully onL, and thus by [1, Theorem 6.4], we
know that if s ∈ S is an element whose adjoint action onS is semisimple, then its adjoint
action onL is also semisimple. SinceS is semisimple, its Cartan subalgebraT is toral, and
this means that the adjoint action of each element ofT on S is semisimple. We conclude,
therefore, that the adjoint action of each element ofT onL is semisimple.

SinceT is abelian and each of its elements acts semisimply onL, it follows that there is
a basis forL such that the adjoint representation ofT onL is viam×m diagonal matrices,
wherem = dim(L). In particular, we see that ift ∈ T , then dim(CL(t)) is exactly the
number of zero entries on the diagonal of the diagonal matrixρ(t) representingt . Also,
sinceT ∩ Z(L)= 0, we see thatρ is a vector-space isomorphism fromT into the space of
diagonalm×m matrices overC.

We can identify the space of all diagonalm × m matrices overC with the row
spaceCm. Under our identifications, therefore,T is a subspace of this space of row vectors.
Furthermore, ift ∈ T , we see that dim(CL(t)) = m − |supp(t)|, and so there are at most
|cd(L)| different numbers that can occur as|supp(t)| for nonzero elementst ∈ T . It follows
by Lemma 2.1 that dim(T )� |cd(L)|, as required. ✷

3. Dimensions of centralizers in the nilradical

In this section we prove Theorem D. We begin by recalling some basic facts about
the Zariski topology on a Lie algebraL. If we fix a basis, we can identifyL with the
set of n-tuples of elements ofC, wheren = dim(L). If I is an ideal in the ringR of
polynomials inn indeterminates overC, then the corresponding varietyV(I) is the subset
of L consisting of thosen-tuples that are simultaneous zeros for all of the polynomials in
the idealI . The closed sets in the Zariski topology onL are exactly the varieties of the
various ideals ofR. (It is not hard to check that this is a topology and that it is independent
of the initial choice of the basis forL.) The key fact that we will use is that two nonempty
Zariski-open sets cannot be disjoint. (This is equivalent to the assertion thatL is not the
union of two proper varietiesV(I) andV(J ). But V(I) ∪ V(J )= V(IJ ) andV(IJ ) < L

sinceIJ = 0 and the fieldC is infinite.)
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Lemma 3.1. Letm = min(cd(L)), whereL is a non-abelian Lie algebra. Then{x ∈ L |
dim(CL(x))=m} is a nonempty Zariski-open subset ofL.

Proof. Our set is certainly nonempty and we letM be its complement inL. Then
M = {x ∈L | dim(CL(x)) > m} and we need to show thatM is Zariski-closed.

Choose a basis forL and view the adjoint representation ofL as a mapρ from L into
the space ofn× n matrices overC. If x ∈ L, we see that dim(CL(x))= n− rank(ρ(x)).
Our setM, therefore, is exactly the set of elementsx ∈ L such that rank(ρ(x)) < k, where
we have writtenk = n − m. Since these are exactly the elements ofL for which every
k × k submatrix ofρ(x) has determinant 0, it follows thatx lies inM if and only if the
coefficients ofx with respect to the specified basis forL are simultaneous solutions of
certain polynomial equations. This completes the proof.✷

Next, we need some general (and presumably well known) results about nilpotent Lie
algebras.

Lemma 3.2. LetN be a nilpotent Lie algebra and suppose thatH ⊆N is a maximal proper
subalgebra. ThenH is an ideal ofN .

Proof. We work by induction on dim(N). LetZ = Z(N), the center, and note thatZ > 0
sinceN is nontrivial and nilpotent. IfZ ⊆H then sinceH +Z is clearly a subalgebra, we
haveH +Z =N . Thus[N,H ] = [H +Z,H ] = [H,H ] ⊆H , as required. We can assume,
therefore, thatZ ⊆H , and thusH/Z is a maximal proper subalgebra of the nilpotent Lie
algebraN/Z. Since dim(N/Z) < dim(N), we conclude by the inductive hypothesis that
H/Z is an ideal ofN/Z. The result now follows. ✷
Corollary 3.3. LetN be a nilpotent Lie algebra and suppose thatH ⊆N is a subalgebra
such thatH +N ′ =N , whereN ′ is the derived subalgebra ofN . ThenH =N .

Proof. If H < N , we can replaceH by a maximal proper subalgebra, and thus by
Lemma 3.2, we can assume thatH is an ideal ofN . ThenN/H is a Lie algebra having
no nonzero proper subalgebras, and we deduce that dim(N/H) = 1, and thusN/H is
abelian. But thenN ′ ⊆ H andN = H + N ′ = H < N . This is a contradiction and the
proof is complete. ✷
Lemma 3.4. LetL be a Lie algebra and suppose thatN ⊆ L is a nilpotent ideal. IfL/N ′
is nilpotent, thenL is nilpotent.

Proof. First, note that the derived subalgebraN ′ is an ideal ofL, and so the hypothesis
makes sense. By Engel’s theorem, it suffices to show that adx is nilpotent for an arbitrary
elementx ∈ L. Givenx, we consider the Fitting decomposition ofL with respect to adx.
In other words, we writeL= L0 +L1, where adx is nilpotent onL0 and adx is invertible
onL1. Also, we recall thatL0 is a subalgebra ofL (see [4, Proposition III.2]).

SinceL/N ′ is nilpotent, we see that the linear transformation ofL/N ′ induced by adx
is nilpotent, and thusL1 ⊆N ′. It follows thatL=N ′ +L0, and henceN =N ′ + (L0∩N).
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By Corollary 3.3, we conclude thatL0 ∩ N = N , and thusN ⊆ L0. It follows that
L1 ⊆N ′ ⊆N ⊆ L0, and we conclude thatL1 = 0, and thusL0 = L. In other words, adx
is nilpotent, as required.✷
Lemma 3.5. LetN be the nilradical of a solvable Lie algebraL and letx ∈ L. If the linear
transformation ofN/N ′ induced by the action ofadx is nilpotent, thenx ∈N .

Proof. Since L is solvable, we know thatL/N is abelian, and thus the subalgebra
H = N + Cx is actually an ideal ofL, and it suffices to show that this ideal is nilpotent.
By Lemma 3.4, therefore, it suffices to show that the Lie algebraH/N ′ is nilpotent.

Since the action of adx onN/N ′ is nilpotent and for each elementn ∈N , the action of
adn onN/N ′ is trivial, we see that the action of adh onN/N ′ is also nilpotent, whereh is
an arbitrary element ofH . Also, if h ∈H is arbitrary, then since[H,h] ⊆N , it follows that
adh induces a nilpotent linear transformation onH/N ′. We conclude that each element of
the Lie algebraH/N ′ is ad-nilpotent, and thusH/N ′ is nilpotent by Engel’s theorem. This
completes the proof. ✷
Theorem 3.6. LetN be the nilradical of a solvable Lie algebraL. Then the set{x ∈ N |
CL(x)⊆N} contains a nonempty Zariski-open subset ofN .

Proof. Note thatL/N is abelian sinceL is solvable. The vector spaceN/N ′ is a module
for L/N , and thus we can decomposeN/N ′ as a finite direct sum of nonzeroL-invariant
weight spacesWα , where each weightα is a function fromL/N into the fieldC. If we
view α as a function defined onL, we can say that for each elementx ∈ L, the linear
transformation ofWα induced by adx − α(x) · 1 is nilpotent.

Let A be the set of elementsx ∈ N such that the imagex of x in N/N ′ has a nonzero
component in each weight spaceWα . It is clear thatA is nonempty and Zariski-open inN ,
and so it suffices to show thatCL(a)⊆N for all elementsa ∈A. By Lemma 3.5, therefore,
it suffices to show that ifx ∈ L centralizesa ∈A, then the induced action of adx onN/N ′
is nilpotent. Finally, since the action of adx−α(x) · 1 on the weight spaceWα is nilpotent,
it suffices to show thatα(x)= 0 for each of the weightsα.

Since[a, x] = 0 anda has a nonzero component in each weight spaceWα , we see that
the linear transformation ofWα induced by adx annihilates some nonzero vector, and thus
has 0 as an eigenvalue. But since adx−α(x) · 1 is nilpotent onWα , we see thatα(x) is the
unique eigenvalue of the action of adx onWα . It follows thatα(x)= 0, as required. ✷

We are now ready to prove part of Theorem D of the introduction.

Theorem 3.7. Let L be a solvable Lie algebra with nilradicalN . Then�(N) � �(L).
Also, ifN is non-abelian, thenmin(cd(N)) ∈ cd(L).

Proof. We can certainly assume thatN < L. If N is abelian, then�(N) = −1 � �(L),
and there is nothing further to prove. We can assume, therefore, thatN is non-abelian.

Let m = min(cd(N)) andM = max(cd(N)), so thatM − m = �(N). By Lemma 3.1
and Theorem 3.6, together with the fact that nonempty Zariski-open subsets ofN cannot
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be disjoint, we can choosex ∈ N such that dim(CN(x)) = m and CL(x) ⊆ N . Then
dim(CL(x)) = dim(CN(x)) = m and m ∈ cd(L), as required. In particular, we have
min(cd(L))�m.

Now let y ∈ N with dim(CN(y)) = M. Then y /∈ Z(N), and soy /∈ Z(L), and
we haveM = dim(CN(y)) � dim(CL(y)) ∈ cd(L). Thus max(cd(L)) � M and, since
min(cd(L))�m, we see that�(L)��(N), and the proof is complete.✷

To complete the proof of Theorem D, we need to review a bit of the theory of Cartan
subalgebras. We recall that ifL is any Lie algebra, thenL has a Cartan subalgebraH ,
which, by definition, is nilpotent. It follows thatL decomposes as a finite direct sum
of nonzero weight spacesLα with respect to the adjoint action ofH on L, where each
weightα is some function fromH into the fieldC. Also,H ⊆ L0, and in fact we must have
equality here since otherwiseH would annihilate a nonzero element of the vector space
L0/H , and this contradicts the fact that the Cartan subalgebraH is its own normalizer inL.
Finally, if α is any nonzero weight, we have[Lα,H ] = Lα and thusLα ⊆ L′. It follows
from all of this thatL=H +L′.

The following result contains the part of Theorem D that we have not yet proved.

Theorem 3.8. LetL be a solvable Lie algebra and suppose thatN is its nilradical. Then
dim(L/N)� 1+�(L).

Proof. Since, by definition,�(L)� −1, there is nothing to prove ifN = L, and so we can
suppose thatL is not nilpotent. SinceL is solvable, however, we know thatL′ is nilpotent,
and henceL′ ⊆N .

Let H be a Cartan subalgebra ofL and observe thatH + N ⊇ H + L′ = L, and thus
H +N = L. Also, sinceH <L, there exists some nonzero weight for the action ofH onL
and we letW = Lα be the corresponding weight space, so thatW = [W,H ] ⊆ L′ ⊆N .

SinceH is solvable, there exists a nonzero elementw ∈ W such that[w,H ] ⊆ Cw,
and thus the codimension inH of C ∩ H is at most 1, whereC = CL(w). Also, since
α = 0, we have[w,H ] = 0, and sow is not central inL and dim(C) ∈ cd(L). In particular,
dim(C)� max(cd(L)).

We claim that dim(C ∩ N) � min(cd(L)). First, we see that ifN is non-abelian,
we have dim(C ∩ N) = dim(CN(w)) � min(cd(N)) ∈ cd(L) by Theorem 3.7, and thus
dim(C ∩ N) � min(cd(L)), as required. IfN is abelian, on the other hand, thenN ⊆ C

sincew ∈ N . Also, by Theorem 3.6 we know thatN is the centralizer inL of one
of its elements, and thus dim(C ∩ N) = dim(N) ∈ cd(L). In this case too, we have
dim(C ∩N)� min(cd(L)), as claimed.

SinceH +N = L andC ∩H has codimension at most 1 inH , we see thatC +N has
codimension at most 1 inL, and thus

dim(L/N) � 1+ dim
(
(C +N)/N

) = 1+ dim(C)− dim(C ∩N)

� 1+ max
(
cd(L)

) − min
(
cd(L)

) = 1+�(L),

as required. ✷
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Corollary 3.9. Let N be the nilradical of a solvable Lie algebraL and suppose that
|cd(L)| = 1. Thendim(L/N)� 1 and, ifN is non-abelian, thencd(N)= cd(L).

Proof. For any Lie algebraX, we know that|cd(X)| = 1 if and only if �(X) = 0. The
result is now immediate from Theorems 3.8 and 3.7.✷

4. One centralizer dimension in nonsolvable algebras

Our goal in this section is to prove the following theorem.

Theorem 4.1. Let L be a Lie algebra and assume that|cd(L)| = 1. If L is not solvable,
then L is the direct sum of its centerZ(L) and a copy ofsl2(C) and, in particular,
dim(L/Z(L))= 3.

We suppose throughout this section thatL is a nonsolvable Lie algebra such that
cd(L) = {n}. Let R denote the radical ofL and note that the semisimple algebraL/R
has rank 1 by Theorem C, and thusL/R ∼= sl2(C) and, in particular,R has codimension 3
in L. By Levi’s theorem, there is a subalgebraS ⊆ L such thatS ∼= sl2(C), and we see that
R ∩ S = 0. To complete the proof of Theorem 4.1, therefore, it suffices to show thatR is
central inL.

Now R is a module forS ∼= sl2(C), and sinceS is semisimple, we know by Weyl’s
theorem thatR is a direct sum of simpleS-modules (see [1, Theorem 6.3]). Furthermore,
according to Section 7 of [1], the isomorphism types of the simpleS-modules are
comparatively easy to describe.

Fix a basis{x,h, y} for S, where[h,x] = 2x, [h,y] = −2y, and[x, y] = h. Then for
each integerm � 0, there is exactly one isomorphism type of simpleS-moduleM = Mm

of dimensionm + 1. This module has a basis{vi}, where 0� i � m, and where the
action ofS is given as follows. Each basis vectorvi is an eigenvector forh and we have
h · vi = (m − 2i)vi for 0 � i � m. The elementy ∈ S acts according to the formula
y · vi = (i + m)vi+1 for 0 � i < m andy · vm = 0. Finally, the action of thex is given
by x · v0 = 0 andx · vi = (m− i + 1)vi−1 for i > 0.

In particular, we have the following lemma.

Lemma 4.2. Let M be a simpleS module of dimensiond , where S ∼= sl2(C), and
let {x,h, y} be the basis ofS as in the previous discussion. Thendim(CM(x)) = 1 =
dim(CM(y)) anddim(CM(h)) is 1 or 0, according to whetherd is odd or even.

Corollary 4.3. Let L, n, R, andS be as before, and writeR = ∑
Mi , a direct sum of

simpleS-modules. Then there are exactlyn− 1 summandsMi and each of them has odd
dimension.

Proof. Let x,h ∈ S be as before, and note thatL= ∑
Mi +S is a direct sum of subspaces,

each of which is invariant under bothx andh. Also, dim(CS(x))= 1 = dim(CS(h)) and,
in particular, neitherx nor h is central inL. Since we are assuming that cd(L) = {n}, we
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have dim(CL(x))= n= dim(CL(h)), and so
∑

dim(CMi (x))= n− 1 = ∑
dim(CMi (h)).

In each direct summandMi , however, we see by Lemma 4.2 that dim(CMi (x)) �
dim(CMi (h)) = 1, and thus there are exactlyn − 1 summands, as required. Also, we
see that equality must hold for each of these simpleS-modulesMi , and it follows by
Lemma 4.2 thatMi must have odd dimension.✷
Proof of Theorem 4.1. Let R, n, S, and the basis{x,h, y, } of S be as in the previous
discussion, and letN be the nilradical ofR. Our first step is to show that dim(R/N) � 1;
then we show thatR is nilpotent, and finally, to complete the proof, we show thatR is
central inL.

Let R ⊆ B ⊆ L, whereB is a subalgebra and dim(B/R) = 2. (For example, we
could takeB to beR + Ch + Cx or R + Ch + Cy.) ThenB/R is solvable, and hence
B is solvable, and we letP be the nilradical ofB. SinceB/R is isomorphic to a
2-dimensional subalgebra ofsl2(C), it is not nilpotent, and it follows thatP + R < B,
and thus dim(R/(R ∩P)) < dim(B/P).

If b is a noncentral element ofB, thenb is not central inL, and hence since we are
assuming that cd(L) = {n}, it follows that dim(CL(b)) = n. SinceCB(b) = CL(b) ∩ B

andB has codimension 1 inL, we see that the only possibilities for dim(CB(b)) aren and
n−1. Thus cd(B)⊆ {n−1, n}, and so�(B)� 1. By Theorem 3.8, therefore, we conclude
that dim(B/P) � 2, and thus dim(R/(R ∩ P)) � 1. ButR ∩ P is a nilpotent ideal ofR,
and so ifR is not nilpotent, we haveR ∩ P =N , and thus dim(R/N) � 1, as required.

Suppose now thatR is not nilpotent, so that dim(R/N) = 1 andN = R ∩P is an ideal
of B. Since we can chooseB to contain the elementsh andx or the elementsh andy, and
in either case,N is an ideal ofB, it follows thatN is actually an ideal ofL.

By Weyl’s theorem,R is completely reducible as anS-module, and we know thatN is a
submodule of codimension 1. It follows that we can writeR =N +A, where dim(A)= 1
andA is anS-module. ButS acts trivially on its unique (up to isomorphism) module of
dimension 1, and hence if we choose 0= a ∈A, we can writeS ⊆ CL(a).

Now letR = R0(a)+ R1(a) = U + V be the Fitting decomposition ofR with respect
to ada, so that the action ofa is nilpotent onU and is invertible onV . Also, sinceS
centralizesa, we observe thatU andV areS-submodules ofR. Sincea /∈ N , we see by
Lemma 3.5 that the action of ada onN is not nilpotent, and thusN ⊆U and, in particular,
V > 0.

Note that the action of the elementx ∈ S on everyS-module is nilpotent and, in
particular, dim(CV (x)) > 0. Sincea acts invertibly onV andx anda commute, we deduce
that the action ofx + a onV is invertible, and hence dim(CV (x + a))= 0.

SinceS, U , andV are all invariant under bothx andx + a, it follows that

dim
(
CL(x)

) = dim
(
CU(x)

) + dim
(
CV (x)

) + dim
(
CS(x)

)
and

dim
(
CL(x + a)

) = dim
(
CU(x + a)

) + dim
(
CV (x + a)

) + dim
(
CS(x + a)

)
.

Note that dim(CS(x))= 1 = dim(CS(x + a)) and, in particular, neither of these elements
is central inL, so that we have dim(CL(x)) = n = dim(CL(x + a)). Since we have seen
that dim(CV (x + a)) < dim(CV (x)), it follows that dim(CU(x)) < dim(CU(x + a)).
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The action ofa onU is nilpotent, and so we can define a series of subspacesU =U0 >

U1 > · · ·>Um = 0 by settingUi+1 = [Ui, a]. We observe that sinceS centralizesa, each
of the subspacesUi is anS-submodule, and hence by Weyl’s theorem,U is isomorphic
as anS-module to the direct sum of the factorsUi/Ui+1 for 0 � i < m. Sincex ∈ S,
it follows that dim(CU(x)) is exactly the sum of the dimensions of the centralizers of
the action ofx on each factor. Buta acts trivially on each factor, and thus the actions
of x andx + a on the factors are identical. Clearly, however, dim(CU(x + a)) is at most
equal to the sum of the dimensions of the centralizers ofx + a on the factors, and thus
dim(CU(x+a))� dim(CU(x)). This contradicts the inequality that was established in the
previous paragraph, and so we conclude thatR is nilpotent.

We can now begin our proof thatR is central inL. We know thatR = ∑
Mi is a direct

sum of simpleS-modules, and by Lemma 4.2, each summand has odd dimension. On each
such moduleM = Mi , the action of the elementh ∈ S is diagonal and its eigenvalues are
all of the even integers between−2k and 2k, inclusive, where dim(M) = 2k + 1. Also,
we recall that the elementx ∈ S centralizes theh-eigenvectors inM corresponding to the
maximum eigenvalue 2k.

Given any integerk, write Wk to denote the (possibly zero)h-eigensubspace ofR
corresponding to the eigenvaluek. Letm � 0 be the maximum (necessarily even) integer
such thatWm > 0 and note thatWm ⊆ CL(x). Also, by Lemma 4.2, the number ofS-simple
direct summands ofR is exactlyn − 1, where cd(L) = {n}, and thus dimW0 = n − 1.
Finally, we remark that for each integerk, it is easy to show that[Wk,W0] ⊆Wk .

LetR =R1 >R2 > · · ·> 0 be the lower central series forR. Since 0<Wm =Wm∩R1,
there is some maximum positive integert that such thatWm∩Rt > 0, and we fix a nonzero
elementa ∈Wm ∩Rt . If w ∈W0 is arbitrary, we have[a,w] ∈Wm and[a,w] ∈ [Rt,R] =
Rt+1, and thus, by the choice oft , we see that[a,w] = 0. We have shown, therefore, that
W0 ⊆ CL(a).

If m > 0, thena /∈ W0, and hence dim(CR(a)) � 1 + dim(W0) = n. But alsox ∈ S

centralizesa sincea ∈ Wm. Thus dim(CL(a)) > n, and we conclude thata ∈ Z(L). But
[h,a] = ma = 0, and this contradiction shows thatm = 0. We conclude that all of the
S-simple direct summands ofR have dimension 1, and thus[R,S] = 0.

Now let r ∈ R. Since r centralizesS, we see thatCS(r + x) = Cx = CS(x)

and, in particular,x and r + x are not central inL. Thus dim(CL(r + x)) = n =
dim(CL(x)), and since bothr + x and x stabilize bothR and S, it follows that
dim(CR(r + x))= dim(CR(x)). But we know thatx centralizesR, and it follows that
r + x also centralizesR, and thusr centralizesR. Sincer ∈ R was arbitrary, we conclude
thatR is abelian, and thusR = Z(L), as desired. ✷

5. One centralizer dimension in nonnilpotent algebras

We continue to assume thatL is a Lie algebra such that|cd(L)| = 1. In Sec-
tion 4, we showed that ifL is nonsolvable, thenL/Z(L) ∼= sl2(C) and, in particular,
dim(L/Z(L))= 3. Here, we complete the proof of Theorem A by determining all pos-
sibilities (up to isomorphism) forL/Z(L) if L is solvable but not nilpotent.
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Theorem 5.1. LetL be a solvable nonnilpotent Lie algebra and assume that|cd(L)| = 1.
ThenL/Z(L) is isomorphic either to the unique non-abelian2-dimensional algebra or to
the3-dimensional algebra with basis{x, y, a} and relations[a, x] = x, [a, y] = −y, and
[x, y] = 0.

We remark that in the nonsolvable case discussed in Section 4, the Lie algebraL splits
overZ(L), and thusL is the direct sum ofsl2(C) with an abelian algebra, and furthermore,
every such direct sum has the property that|cd(L)| = 1. If L/Z(L) is the non-abelian
2-dimensional algebra, one can show that in this situation too,L must split overZ(L),
and thusL is the direct sum of the non-abelian 2-dimensional Lie algebra with an abelian
algebra. Here too, it is easy to see that every such direct sum has the desired property on
centralizer dimensions.

In the remaining case, whereL is solvable and dim(L/Z(L))= 3, we see thatL cannot
split over its center because the algebraL/Z(L) described in Theorem 5.1 does not satisfy
the condition on centralizer dimensions. As we shall see, this case does occur, and there is
a certain 4-dimensional algebraS that satisfies the conditions. It is not hard to see that in
general,L must be the direct sum ofS and an abelian algebra, and that every such direct
sum satisfies the condition on centralizer dimensions.

Proof of Theorem 5.1. Let N be the nilradical ofL. SinceN < L, it follows by
Corollary 3.9 that dim(L/N) = 1. Also, sinceL is not nilpotent, we can choosea ∈ L

such that ada is not nilpotent, and we writeC = CL(a). Thena /∈N and, in particular,a is
not central inL and dim(C) is the unique member of cd(L).

Suppose first thatN is abelian. Certainly,N is not central inL, and thusN is
the full centralizer inL of one of its elements and dim(N) ∈ cd(L). Thus dim(C) =
dim(N) = dim(L) − 1, and it follows thatN ∩ C has codimension at most 2 inL. But
CL(C ∩N)⊇N + Ca = L, and thusC ∩N ⊆ Z(L) and the result follows in this case.

We can now suppose thatN is non-abelian. Ifz ∈ N ∩ C, then a ∈ CL(z), and so
CL(z) > CN(z). Since cd(N) = cd(L) by Corollary 3.9, it follows thatz ∈ Z(L), and this
shows thatN ∩ C = Z(L). Also, since dim(C) = 1 + dim(C ∩ N) = 1 + dim(Z(L)) is
the unique member of cd(L), it follows that for every noncentral elementb ∈ L, we have
CL(b)= Z(L)+ Cb.

Next, we decomposeL as a direct sum of nonzero weight spacesLλ = Lλ(a) asλ runs
over the setΛ of weights fora. (These, of course, are just the eigenvalues of ada.) Note
that 0∈Λ and also there is at least one nonzero weight since ada is not nilpotent. We know
that[Lλ,Lµ] ⊆ Lλ+µ, for all choices of eigenvaluesλ andµ. (Note that ifλ+µ /∈Λ, then
Lλ+µ = 0.) In particular, we have[L0,Lλ] ⊆ Lλ, and henceL0 is a subalgebra ofL. Also,
L0 ⊇ CL(a)= Z(L)+ Ca andL0 ∩Lλ = 0 if λ = 0.

We show next thatL0 = Z(L) + Ca. Let λ be a nonzero eigenvalue of ada and note
thatLλ is a nonzero module for the solvable Lie algebraL0. There must exist, therefore,
a nonzero elementt ∈ Lλ such that[L0, t] ⊆ Ct , and it follows thatL0 ∩ CL(t) has
codimension at most 1 inL0. Since 0= t ∈ Lλ, we see thatt /∈L0, and thust is noncentral
andCL(t)= Z(L)+ Ct . It follows thatL0 ∩ CL(t)= Z(L), and since this intersection has
codimension at most 1 inL0, we conclude thatL0 = Z(L)+ Ca.
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Again let 0 = λ ∈ Λ and suppose that there existsµ ∈ Λ such thatµ is not an integer
multiple ofλ. If µ+ λ ∈Λ, we can replaceµ byµ+ λ, which is also not a multiple ofλ.
SinceΛ is finite, we can repeat this process until we haveµ+ λ /∈Λ. Then[Lµ,Lλ] = 0,
and thus if 0= t ∈ Lλ, we have 0< Lµ ⊆ CL(t) = Z(L) + Ct ⊆ L0 + Lλ. This is
impossible, however, sinceµ is different from 0 andλ and the sum of the weight spaces is
direct. We conclude from this contradiction that every member ofΛ is an integer multiple
of λ. It follows that if there exist two distinct nonzero members ofΛ, then each of them
must be an integer multiple of the other, and thus each is the negative of the other. We
conclude that eitherΛ= {0, λ} orΛ= {0, λ,−λ}.

We claim now that if 0= λ ∈ Λ, then dim(Lλ) = 1. To see why this is true, let
0 = t ∈ Lλ and note thatt is not central inL. Observe that 2λ /∈Λ, and thus[Lλ,Lλ] = 0
and we haveLλ ⊆ CL(t). SinceZ(L) has codimension 1 in this space andZ(L)∩Lλ = 0,
it follows that dim(Lλ)= 1, as desired. Of course, if−λ ∈Λ, then similar reasoning shows
that dim(L−λ)= 1, and so in any case we have dim(L−λ)� 1.

SinceL= L0 +Lλ + L−λ = Z(L)+ Ca +Lλ + L−λ, we see that the codimension of
Z(L) in L is at most 3, as required. Also, if dim(L/Z(L)) = 3, then there is a basis for
L/Z(L) of the form{a, x, y}, wherex ∈ Lλ andy ∈ L−λ. If we replacea by a suitable
scalar multiple, we can assume thatλ= 1, and it is easy to see thatL/Z(L) has the required
form. ✷

In order to see that it really is possible to have dim(L/Z(L)) = 3 in Theorem 5.1,
we construct a 4-dimensional Lie algebraS as follows. First, we letN be the unique non-
abelian nilpotent 3-dimensional nilpotent Lie algebra with basis{x, y, z}, wherez is central
and[x, y] = z. If we let ϕ :N → N be the linear map defined byϕ(x) = x, ϕ(y) = −y,
andϕ(z)= 0, it is routine to check thatϕ is a derivation ofN . We can then defineS to be
the semidirect productCa +N , wherea acts onN according to the derivationϕ. ThusS
has the basis{a, x, y, z} and we see thatz is central inS and that[x, y] = z, [a, x] = x,
and[a, y] = −y.

Theorem 5.2. Let S be the4-dimensional algebra defined above. ThenS is solvable and
nonnilpotent. Also,cd(S)= {2} andZ(S)= Cz.

Proof. SinceN is nilpotent andS/N is abelian, it is clear thatS is solvable. WriteZ = Cz,
and note thatZ ⊆ Z(S). To show thatZ = Z(S) and thatS is not nilpotent, it suffices to
check thatZ(S/Z) = 0. But {a, x, y} is a basis forS = S/Z, and we have[a, x] = x and
[a, y] = −y, and from this information, it is trivial to check thatZ(S)= 0, as required.

Now let t be a noncentral element ofS and write t = αa + βx + γy + δz, where
the coefficients are complex numbers and(α,β, γ ) = (0,0,0). We want to show that
dim(CS(t)) = 2, and for this purpose we letc ∈ CS(t) have the formc = λa + µx + νy

and show that(λ,µ, ν) is a scalar multiple of(α,β, γ ). We compute that

0 = [t, c] = (αµ− βλ)x + (γ λ− αν)y + (βν − γµ)z.

It follows that

0 =
∣∣∣∣α β

λ µ

∣∣∣∣ =
∣∣∣∣α γ

λ ν

∣∣∣∣ =
∣∣∣∣β γ

µ ν

∣∣∣∣ ,
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and so the rank of the matrix
[
α β γ

λ µ ν

]

is 1. This completes the proof.✷
6. Nilpotent algebras

In this section we prove Theorem B. In fact, the following result is somewhat stronger
than the theorem stated in the introduction.

Theorem 6.1. LetL be a finite-dimensional nilpotent Lie algebra generated by elementst

such thatdim(CL(t))= max(cd(L)). Then the nilpotence class ofL is at most3.

Proof. Let L = L1 > L2 > · · · > Lm > Lm+1 = 0 be the lower central series ofL,
wherem is the nilpotence class, and assume thatm> 3. We have[Lm−2,L,L] = Lm > 0,
and thus[Lm−2,L] ⊆ Z(L). Since the set{t ∈L | [Lm−2, t] ⊆ Z(L)} is a proper subalgebra
of L, there must exist some elementv ∈ L that does not lie in this set and such that
dim(CL(v)) = n, wheren = max(cd(L)). Chooseu ∈ Lm−2 such that[u,v] /∈ Z(L) and
write x = [u,v], so thatx ∈ Lm−1. Recall that[Li,Lj ] ⊆ Li+j for all superscriptsi, j � 1,
and thus[u,x] ∈ [Lm−2,Lm−1] ⊆ L2m−3. We are assuming thatm > 3, and so we have
2m− 3>m, and thus[u,x] ∈Lm+1 = 0. We want to obtain a contradiction.

Let S = [u, [v,L]] andT = [v,Lm−1]. We have

[L,x] = [
L, [u,v]] ⊆ [

u, [v,L]] + [
v, [L,u]] ⊆ S + [

v,Lm−1] = S + T ,

and thus dim(S)+ dim(T )� dim([L,x])= dim(L)− r, wherer = dim(CL(x)) ∈ cd(L),
and sor � n.

Since S = (adu)(adv)L, we can choose a subspaceA ⊆ L such that(adu)(adv)
mapsA injectively onto S and, in particular, we have dim(A) = dim(S). Similarly,
T = (adv)Lm−1, and so we choose a subspaceB ⊆ Lm−1 such that(adv) mapsB injec-
tively ontoT and dim(B)= dim(T ). Finally, letC = CL(v) and recall that dim(C)= n.

We claim that the sumA+B +C is direct. First, observe thatC = ker(adv) and thatB
was chosen so thatB∩ker(adv)= 0. It follows thatB∩C = 0 and it suffices now to check
thatA ∩ (B + C) = 0. SinceB ⊆ Lm−1, we have(adu)(adv)B = Lm+1 = 0 andB is
contained in ker((adu)(adv)). Also,C = ker(adv)⊆ ker((adu)(adv)), and thusB +C ⊆
ker((adu)(adv)). By the choice ofA, however, we know thatA ∩ ker((adu)(adv)) = 0,
and thus the sumA+B +C is direct, as claimed.

We now have

dim(A+B +C) = dim(A)+ dim(B)+ dim(C)= dim(S)+ dim(T )+ n

� (dim(L)− r)+ n� dim(L),

and thusA+B+C = L and we can writeu= a+b+c with the obvious notation. Since we
have seen thatB + C ⊆ ker((adu)(adv)), it follows that(adu)(adv)a = (adu)(adv)u =
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[u, [v,u]] = −[u,x] = 0, where we recall that the last equality is a consequence of our
assumption thatm > 3. Since(adu)(adv) is injective onA, we see thata = 0, and
thusu ∈ B + C. But thenx = [u,v] ∈ [B,v] ⊆ [Lm−1, v] ⊆ Lm ⊆ Z(L), and this is a
contradiction. ✷
Appendix A

We present here a simplified proof of a somewhat strengthened form of Ishikawa’s
theorem for nilpotent groups. Recall that Ishikawa showed that if all noncentral classes
of a finite nilpotent groupG have equal sizes, then the nilpotence class ofG is at most 3. It
was pointed out by A. Mann that Ishikawa’s argument could be modified to yield the same
conclusion, thatG has class at most 3, under the weaker hypothesis thatG is generated
by all of its noncentral elements that are in classes of the smallest possible size. (This, of
course, is the group-theory analog of our Theorem 6.1, which was motivated by Mann’s
observation.)

As we mentioned in the introduction, a simplified proof of Ishikawa’s theorem was
circulated privately by the second author, and we present a version of it here. The argument
is exactly parallel to the proof of Theorem 6.1 for Lie algebras, but as might be expected,
the proof for groups is a bit more technical. Mann’s stronger form of Ishikawa’s theorem
follows with no extra effort, and so we have included it the following theorem.

Theorem (Ishikawa).LetG be a finite non-abelian nilpotent group. Letn be the size of
the smallest noncentral conjugacy class ofG and assume thatG is generated by elements
in classes of sizen. Then the nilpotence class ofG is at most3.

We begin with a brief review of some notation and basic facts. IfG is any group, we
define the lower central series by writingG1 = G andGr = [Gr−1,G] for r > 1, and we
recall that[Gi,Gj ] ⊆ Gi+j for all i, j � 1. Now suppose thatG is nilpotent of classm,
which means thatG=G1 >G2 > · · ·>Gm >Gm+1 = 1. In this case, ifu ∈Gi , v ∈Gj ,
w ∈Gk , andi + j + k =m, then[u,v,w] ∈Gm ⊆ Z(G). (Recall that we left associate in
multiple commutators, so that by definition,[u,v,w] = [[u,v],w].) Continuing with the
assumption thati + j + k =m, we recall the Witt identity[u,v,w][v,w,u][w,u, v] = 1,
which, of course, plays the role of the Jacobi identity in Lie algebras.

Proof of Ishikawa’s theorem. Letm be the nilpotence class ofG and assume thatm> 3.
Then [Gm−2,G,G] = Gm > 1, and hence[Gm−2,G] ⊆ Z(G). Since the centralizer
moduloZ(G) of Gm−2 is a proper subgroup ofG, it must fail to contain some elementv
of G that lies in a class of sizen. We have[Gm−2, v] ⊆ Z(G), and we can choose
u ∈ Gm−2 such that the elementx = [u,v] is noncentral. Butx ∈ Gm−1, and thus
[x,u] ∈ [Gm−1,Gm−2] ⊆G2m−3. Since we are assuming thatm> 3, we have 2m−3>m,
and thus[x,u] ∈Gm+1 = 1. We want to obtain a contradiction.

Now let y ∈ G be arbitrary. We haveu ∈ Gm−2 and, of course,v, y ∈ G1, and so the
Witt identity applies and we have[v,u, y][y, v,u][u,y, v] = 1. Since[u,v] = x, it follows
that

[y, v,u][u,y, v] = [v,u, y]−1 = [
x−1, y

]−1 = [x, y],
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where the last equality holds because[x, y] ∈Gm ⊆ Z(G).
Next, we define mapsV :G → G andU :G → G by gV = [g, v] andgU = [g,u]

for all g ∈ G. Then [y, v,u] ∈ (G)VU and also,[u,y, v] ∈ (Gm−1)V sinceu ∈ Gm−2,
and hence[u,y] ∈ Gm−1. If we setS = (G)VU andT = (Gm−1)V , it follows that the
subsetST contains every commutator[x, y] = x−1xy for y ∈ G. The number of such
commutators is, of course, the size of the conjugacy class of the noncentral elementx, and
hence is at leastn. It follows, therefore, that|ST | � n.

Now choose subsetsA ⊆ G and B ⊆ Gm−1 so thatVU mapsA injectively onto
(G)VU = S andV mapsB injectively onto(Gm−1)V = T . Also, assume, as we can, that
1 ∈ A. We have|A| = |S| and|B| = |T |, and thus|A||B| � n. LetC = CG(v) and recall
thatv lies in a class of sizen, so thatn= |G :C| and we have|A||B||C| � n|C| = |G|.

Now leta ∈A, b ∈B, andc ∈C. We will show that

(cba)VU = (a)VU, (cb)V = (b)V (∗)

and it will follow from the fact thatVU is injective onA and V is injective onB
that the elementcba uniquely determines the factorsa, b, andc. Sincev centralizesc,
we have[cb, v] = [b, v] and the second assertion of(∗) is immediate. Also(cba)V =
[cba, v] = [ba, v] = [b, v]a[a, v]. But b ∈ Gm−1, which yields[b, v] ∈ Gm ⊆ Z(G) and
we have[b, v]a = [b, v]. Thus(cba)V = [b, v][a, v] = (bV )(aV ). Again using the fact
that bV = [b, v] is central, we conclude that(cba)VU = [(bV )(aV ),u] = [(aV ),u] =
(a)VU , as desired.

As we have remarked, it follows from(∗) that the elementcba uniquely determines
a ∈A, b ∈B, andc ∈C, and thus|CBA| = |C||B||A| � |G|. We conclude thatCBA=G

and, in particular, we can choosea, b, andc such thatu = cba. As we have seen, the
assumption thatm > 3 yields 1= [x,u] = [u,v,u] = (u)V U = (a)VU , where the last
equality follows from the first part of(∗). But also(1)VU = 1 and 1∈ A, and sinceVU
is injective onA, we conclude thata = 1 andu= cb. But thenx = [u,v] = (cb)V = bV ,
which is central inG. This is the desired contradiction, and the proof is complete.✷
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