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Abstract

It is known that a finite group with just two different sizes of conjugacy classes must be nilpotent
and it has recently been shown that its nilpotence class is at most 3. In this paper we study the analogs
of these results for Lie algebras and some related questions.
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1. Introduction

Several authors have investigated finite groups that have just two different conjugacy
class sizes. For example, in [3], N. Ito showed that such a group must be nilpotent. (And
in fact, once we know that the group is nilpotent, it is easy to see that it must be the
direct product of an abelian group angagroup for some prime.) Recently, a dramatic
improvement of Ito’s result was obtained by K. Ishikawa, who showed in [2] that a finite
group with just two class sizes must have nilpotence class at most 3. (The second author of
this paper was able to simplify Ishikawa’s proof somewhat, and he circulated his argument
privately. We include a slightly improved version of it here as Appendix A.)

Of course, the number of different conjugacy class sizes in a finite groisgequal to
the number of different orders of centralizers of elements of his observation allows us
to consider possible analogs of Ito’s and Ishikawa’s theorems for Lie algebras: What can
be said about a finite-dimensional Lie algeliréd the centralizer subalgebr&y (x) have
just two different dimensions asruns over the elements @f?
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We consider only finite-dimensional Lie algebras in this paper. Also, although some
of our arguments would work more generally, we limit ourselves to Lie algebras over
the complex numbers except in Theorem B, which we state and prove over an arbitrary
field. (We will usually omit explicit mention of the modifiers “finite-dimensional” and
“complex”, however.) For general background on Lie algebras, we refer the reader to the
books [1,4] by N. Jacobson and J.E. Humphreys, respectively.

Results that hold for finite groups and that make sense for Lie algebras are often valid
for such algebras. In fact, the Lie-algebra version of such a result is usually somewhat less
complicated to state and easier to prove than is the corresponding theorem about groups.
Nevertheless, the Lie algebra analog of Ito’s theorem is not valid: A Lie algebra with just
two dimensions of element centralizers need not be nilpotent or even solvable. It is easy to
see, for example, that in the three-dimensional simple Lie algépi@), the centralizer of
each nonzero element has dimension 1. Also, the unique non-abelian two-dimensional Lie
algebra shows that even if we assume that the algebra is solvable, it need not be nilpotent.

Nevertheless, we do obtain some results in the direction of Ito’s theorem for Lie
algebras. We show, in fact, that if a Lie algeldtahas just two centralizer dimensions,
then either it is nilpotent or else its ceni#&fL) has codimension at most 3. (It is not hard
to see, however, that if is nilpotent and has just two centralizer dimensions, then the
codimension of the center can be unboundedly large.)

Theorem A. Suppose thak is a nonnilpotent finite-dimensional complex Lie algebra and
that the subalgebra€ () have just two different dimensions asins over the elements
of L. Thendim(L/Z (L)) < 3 and one of the following possibilities occurs.

(1) L/Z(L) is isomorphic to the unique non-abeli@mimensional Lie algebra.

(2) L/Z(L) is isomorphic tasla(C).

(3) L/Z(L) is isomorphic to the Lie algebra with badig, x, y} and relationga, x] = x,
[av )’] ==Y and[-xv }’] =0.

We shall see that all three possibilities in Theorem A can occur, and we observe that
is nonsolvable only in Case (2). Also, we remark that in the first two cases, the subalgebra
Z(L) is necessarily a direct summand bf (This is fairly easy to see in Case (1) and
it follows from Levi's theorem [4, p. 91] in Case (2).) The center cannot be a direct
summand in Case (3) however, because the Lie algeli#él.) has more than two different
centralizer dimensions.

Unlike the situation for Ito’s theorem, the analog of Ishikawa’s theorem is valid for
nilpotent Lie algebras, and this works over any field.

Theorem B. Let L be a finite-dimensional nilpotent Lie algebra over an arbitrary field and
assume that the subalgebr&g (+) have at most two different dimensionsrasins over
the elements af.. Then the nilpotence class bfis at most3.

We also obtain results for Lie algebras in which there are more than just two centralizer
dimensions. To state these, we consider the set of dimensions@wércentralizers of
noncentral elements of a Lie algeldrand we write cdL) to denote this set of “nontrivial”



286 Y. Barnea, I.M. Isaacs / Journal of Algebra 259 (2003) 284—-299

centralizer dimensions. (Thusis abelian if and only if cdL) = ¢ and there are just two
centralizer dimensions if and only|i€d(L)| = 1.)

We show that ificd(L)| is given, then the Lie algebra is “almost” solvable. To state
our result, we recall that the radical of a Lie algebra is its unique largest solvable ideal and
that the (uniquely determined) rank of a Lie algebra is the dimension of an arbitrary Cartan
subalgebra.

Theorem C. Let R be the radical of a finite-dimensional complex Lie algebral hen the
rank of L /R is at mosticd(L)]|.

Recall that if R is the radical of a Lie algebra, thenL/R is a direct sum of simple
ideals. If|cd(L)| = 1, it follows from Theorem C thaL /R has rank at most 1, and thus
if R < L, the only possibility is that./R = s[>(C). In this case,R has codimension 3
and we know by Theorem A tha must actually be the cent@r(L). In fact, the case of
Theorem C wher¢gcd(L)| = 1 is used in the proof of Theorem A.

It is natural to ask whether or not Theorems A and B have analogs for Lie algebras
for which|cd(L)| > 1. It seems that the relevant parameter here igaiyL)|, but instead
it is the related quantity magd(L)) — min(cd(L)), which we denoteé\(L). Of course, we
have defined\ (L) only whenL is non-abelian, and so we s&(L) = —1 if L is abelian.
Note thatjcd(L)| < A(L) + 1 and thatcd(L)| = 1 if and only if A(L) = 0.

It follows easily from Theorem A that if. is solvable andA(L) = 0, thenL has a
nilpotent ideal with codimension at most 1. (This is because each of the two solvable
possibilities forL/Z(L) in Theorem A has an abelian ideal with codimension 1.) The
following theorem is a generalization of this fact, and indeed, we use theAqdse= 0 of
this result in our proof of Theorem A. We recall that the nilradical of a Lie algéhsathe
unique largest nilpotent ideal @f.

Theorem D. Let L be a solvable finite-dimensional complex Lie algebra with nilradi¢al
ThenA(N) < A(L) and the codimension & in L is at mostA(L) + 1.

We mention that an argument similar to that in our proof of Theorem D can be used
to show thatA(H) < A(L), where H is a Cartan subalgebra of an arbitrary finite-
dimensional complex Lie algebia We do not present that proof here, however.

The assertion of Theorem B is thatlifis a nilpotent Lie algebra and (L) =0, then
the nilpotence class df is at most 3. We do not know if this result can be generalized
to cases wher& (L) > 0, but it seems reasonable to conjecture that there does exist such
a generalization.

ConjectureE. Let L be a nilpotent Lie algebra. Then the nilpotence class & bounded
in terms of A(L).

In general, the nilpotence class of a nilpotent Lie algdbradefinitely not bounded in
terms of|cd(L)|. In fact, even whencd(L)| = 2, the nilpotence class can be arbitrarily
large. To see this, leL be the semidirect product of an abelian algeHravith basis
{a1,a, ...,a,}, acted on by a 1-dimensional algebra with generatacting according
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to the formulala;, x] = a;+1 for 1 <i <n and[a,, x] = 0. (It is easy to check that
exists for every positive integer and thatL is nilpotent of class:.) The center ofL

is the 1-dimensional subspace spanned:pyevery noncentral element df in A has
centralizerA, and all elements af outside ofA have centralizers of dimension 2t 2,
therefore, cdL) = {2, n} has cardinality 2, and yet the nilpotence class unbounded.

If Conjecture E is true, then it would follow by Theorem D that the nilpotence class of

the nilradicalN of a solvable Lie algebra is bounded in terms oA(L). SinceL/N is
abelian, we would have the following as a consequence.

ConjectureF. Let L be a solvable Lie algebra. Then the derived length @& bounded in
terms ofA(L).

Finally, we return to finite groups. It is known that there is no bound on the nilpotence
class of a finitep-group if there are exactly three conjugacy class sizes, and so Ishikawa’s
theorem does not generalize in that direction. For exampljsfthe wreath product of a
cyclic group of ordenp” with a cyclic group of ordep, it is not hard to see that the class
sizes ofP are 1,p, andp?~D" but that the nilpotence class is unbounded in terms of

In this wreath product example, however, the analog of our paramésaunboundedly
large. If P is a non-abeliap-group, we define\ (P) = ¢ — f, wherep® is the size of the
largest conjugacy class i andp/ is the size of the smallest noncentral clas®ir(Also,
we setA(P) = —1if P is abelian.) Ishikawa’s theorem asserts thak {{?) = 0, then the
nilpotence class of is at most 3, and we have the following conjecture.

Conjecture G. Let P be a finitep-group. Then the nilpotence class Bfis bounded in
terms ofA(P).

2. Semismplerank and the number of centralizer dimensions

In this section we prove Theorem C. The key idea is nothing but a bit of elementary
linear algebra, which we state below as a lemma. We need to establish some notation.
Let F™ be them-dimensional row vector space over a fiéldIf v € F™ and 1< i <m,
we write v(i) € F to denote theth coordinate ofv; we define supf) = {i | v(i) # 0},
the supportof v, and we sets(v) = |[supfv)|. If U C F™ is a subspace, we define
S(U)={s(u)|0#£uecU}.

Lemma 2.1. Suppose tha¥ is an infinite field and thal/ C F™ is a subspace, then
dim) < [SWU)I.

Proof. If S(U) is empty, thenU contains no nonzero vectors, and hence(diin= 0, as
required. We can assume, therefore, thdf ) is nonempty, and we work by induction on
[S(U)I.

Let x,y e U anda € F, so that we have sugp — ay) C supfx) U suppy). If
i € supfx)Usupfy) buti is notin supgx — «ay), thenx (i) = ay (i), and we see that there
is most one possibility fow. SinceF is infinite, it follows that we can choosee F so that
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all of these “bad” elements are avoided, and it follows that supp supgy) = suppz)
for some element € U.

Now letk = max(S(U)) and letx € U with s(x) = k. If y € U, we know that supfx) U
SUpfy) = suppz) for some element € U and it follows from the maximality ok that
supfy) C suppx). Fix j € suppx) and letr : U — F be the linear functional defined by
u+—> u(j). Sincej € supfx), we see that ¢ ker(zr) and so dingtker(r)) = dim(U) — 1.
Also, if y € ker(r), then suppy) < suppx), and hences(y) < k andk ¢ S(ker(r)).
Thus S(ker(rr)) is a proper subset &f(U) and, by the inductive hypothesis, we see that
dimker(m)) < |S(ker(m))| < [SU)|. Itfollows that dimU) = 1+ dim(ker()) < [S(U)],
as required. O

Proof of Theorem C. Let R be the radical ofL. We know by Levi’'s theorem [4, p. 91]
that there is a subalgebsac L such thatS = L/R and, in particulars is semisimple and
has an abelian Cartan subalgelraNe need to show that diffi) < |cd(L)|.

SinceSNZ(L) = 0, we see thaf acts faithfully onL, and thus by [1, Theorem 6.4], we
know that ifs € S is an element whose adjoint action Sns semisimple, then its adjoint
action onL is also semisimple. Sincgis semisimple, its Cartan subalgelitas toral, and
this means that the adjoint action of each elemerf oh S is semisimple. We conclude,
therefore, that the adjoint action of each elemerif @n L is semisimple.

SinceT is abelian and each of its elements acts semisimpli dhfollows that there is
a basis forL such that the adjoint representatiorifobn L is viam x m diagonal matrices,
wherem = dim(L). In particular, we see that if € T, then dim{(C.(¢)) is exactly the
number of zero entries on the diagonal of the diagonal matfix representing. Also,
sinceT NZ(L) =0, we see thap is a vector-space isomorphism frdfinto the space of
diagonaln x m matrices ovefC.

We can identify the space of all diagonal x m matrices overC with the row
spaceC™. Under our identifications, thereforE is a subspace of this space of row vectors.
Furthermore, ift € T, we see that ditfC. (z)) =m — |supg?)|, and so there are at most
|cd(L)| different numbers that can occur|asipft)| for nonzero elementse T . It follows
by Lemma 2.1 that dif7") < |cd(L)|, as required. O

3. Dimensions of centralizersin thenilradical

In this section we prove Theorem D. We begin by recalling some basic facts about
the Zariski topology on a Lie algebra. If we fix a basis, we can identify. with the
set of n-tuples of elements of, wheren = dim(L). If I is an ideal in the ringR of
polynomials inn indeterminates ovet, then the corresponding variety(/) is the subset
of L consisting of those-tuples that are simultaneous zeros for all of the polynomials in
the ideall. The closed sets in the Zariski topology énare exactly the varieties of the
various ideals oR. (Itis not hard to check that this is a topology and that it is independent
of the initial choice of the basis fdt.) The key fact that we will use is that two nonempty
Zariski-open sets cannot be disjoint. (This is equivalent to the assertiod tisatot the
union of two proper varietie¥ (/) andV(J). But V() UV(J) =V J) andV({J) < L
sincel J # 0 and the fieldC is infinite.)



Y. Barnea, I.M. Isaacs / Journal of Algebra 259 (2003) 284—-299 289

Lemma 3.1. Letm = min(cd(L)), whereL is a non-abelian Lie algebra. Thefx € L |
dim(C.(x)) = m} is a nonempty Zariski-open subset/of

Proof. Our set is certainly nonempty and we I#f be its complement inL. Then
M ={x € L |dim(C.(x)) > m} and we need to show thaf is Zariski-closed.

Choose a basis fat and view the adjoint representation bfas a magp from L into
the space ofi x n matrices ovelC. If x € L, we see that difC. (x)) = n — rank(p(x)).
Our setM, therefore, is exactly the set of elements L such that ranko (x)) < k, where
we have writterk = n — m. Since these are exactly the elementd.ofor which every
k x k submatrix ofp(x) has determinant 0, it follows thatlies in M if and only if the
coefficients ofx with respect to the specified basis fbrare simultaneous solutions of
certain polynomial equations. This completes the proaf.

Next, we need some general (and presumably well known) results about nilpotent Lie
algebras.

Lemma3.2. Let N be anilpotent Lie algebra and suppose tifatC N is a maximal proper
subalgebra. Thel#/ is an ideal ofN.

Proof. We work by induction on dirWV). Let Z = Z(N), the center, and note th4t> 0
sinceN is nontrivial and nilpotent. IZ € H then sinceH + Z is clearly a subalgebra, we
haveH+Z = N.Thus[N,H]=[H+Z,H]=[H, H] C H, as required. We can assume,
therefore, thaZ C H, and thusH /Z is a maximal proper subalgebra of the nilpotent Lie
algebraN/Z. Since din{N/Z) < dim(N), we conclude by the inductive hypothesis that
H/Z is an ideal ofN/Z. The result now follows. O

Corollary 3.3. Let N be a nilpotent Lie algebra and suppose tifatC N is a subalgebra
such thatd + N’ = N, whereN’ is the derived subalgebra &f. ThenH = N.

Proof. If H < N, we can replaceH by a maximal proper subalgebra, and thus by
Lemma 3.2, we can assume tltttis an ideal ofN. ThenN/H is a Lie algebra having
no nonzero proper subalgebras, and we deduce that\gifd) = 1, and thusN/H is
abelian. But therV' € H and N = H + N’ = H < N. This is a contradiction and the
proof is complete. O

Lemma 3.4. Let L be a Lie algebra and suppose thstC L is a nilpotent ideal. IfL/N’
is nilpotent, therL is nilpotent.

Proof. First, note that the derived subalgebyais an ideal ofL, and so the hypothesis
makes sense. By Engel's theorem, it suffices to show thatigdilpotent for an arbitrary
elementx € L. Givenx, we consider the Fitting decomposition bfwith respect to ad.
In other words, we writd. = Lo+ L1, where ad is nilpotent onLg and adk is invertible
on Lj. Also, we recall thal g is a subalgebra af (see [4, Proposition I11.2]).

SinceL /N’ is nilpotent, we see that the linear transformatio¢N’ induced by ad
is nilpotent, and thug1 C N’. It follows thatL = N’ + Lo, and henc&v = N’ + (LoN N).
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By Corollary 3.3, we conclude thato N N = N, and thusN C Lg. It follows that
L1 C N' C N C Lg, and we conclude that; = 0, and thusLg = L. In other words, ad
is nilpotent, as required. O

Lemma3.5. Let N be the nilradical of a solvable Lie algebvaand letx € L. If the linear
transformation ofN /N’ induced by the action a@fdx is nilpotent, thenx € N.

Proof. Since L is solvable, we know thaL /N is abelian, and thus the subalgebra
H = N + Cx is actually an ideal oL, and it suffices to show that this ideal is nilpotent.
By Lemma 3.4, therefore, it suffices to show that the Lie algebf&/’ is nilpotent.

Since the action of adon N /N’ is nilpotent and for each elememnt N, the action of
adn on N/N' is trivial, we see that the action of adon N/N’ is also nilpotent, wherg is
an arbitrary element off . Also, if & € H is arbitrary, then sinceH, 1] C N, it follows that
adh induces a nilpotent linear transformation i N’. We conclude that each element of
the Lie algebra? /N’ is ad-nilpotent, and thu& /N’ is nilpotent by Engel’s theorem. This
completes the proof. O

Theorem 3.6. Let N be the nilradical of a solvable Lie algebra. Then the sefx € N |
Cr(x) € N} contains a nonempty Zariski-open subseiof

Proof. Note thatL/N is abelian sincd. is solvable. The vector spa@é/N’ is a module
for L/N, and thus we can decompoSe N’ as a finite direct sum of nonzeilginvariant
weight spacedV,,, where each weight is a function fromL/N into the fieldC. If we
view « as a function defined oh, we can say that for each element L, the linear
transformation oW, induced by ad — «(x) - 1 is nilpotent.

Let A be the set of elemenise N such that the image of x in N/N’ has a nonzero
componentin each weight spaBg . Itis clear thatA is nonempty and Zariski-open M,
and so it suffices to show th@f, (a) C N for all elements: € A. By Lemma 3.5, therefore,
it suffices to show that it € L centralizes: € A, then the induced action of acon N/N’
is nilpotent. Finally, since the action of ad- «(x) - 1 on the weight spac#,, is nilpotent,
it suffices to show that(x) = 0 for each of the weights.

Sincela, x] = 0 anda has a nonzero component in each weight sgéigewe see that
the linear transformation d¥,, induced by ad annihilates some nonzero vector, and thus
has 0 as an eigenvalue. But sincerada(x) - 1 is nilpotent onW,,, we see thak(x) is the
unique eigenvalue of the action of a@n W,,. It follows thata(x) =0, as required. O

We are now ready to prove part of Theorem D of the introduction.

Theorem 3.7. Let L be a solvable Lie algebra with nilradicaV. ThenA(N) < A(L).
Also, if N is non-abelian, themin(cd(N)) € cd(L).

Proof. We can certainly assume that < L. If N is abelian, them\(N) = —1 < A(L),

and there is nothing further to prove. We can assume, thereforeytisahon-abelian.
Let m = min(cd(N)) and M = max(cd(N)), so thatM —m = A(N). By Lemma 3.1

and Theorem 3.6, together with the fact that nonempty Zariski-open subs¥tsafinot
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be disjoint, we can choose € N such that dinfiCx (x)) = m andC.(x) € N. Then
dim(C.(x)) = dim(Cxy(x)) = m andm € cd(L), as required. In particular, we have
min(cd(L)) < m.

Now let y € N with dim(Cy(y)) = M. Theny ¢ Z(N), and soy ¢ Z(L), and
we haveM = dim(Cy(y)) < dim(C(y)) € cd(L). Thus maxcd(L)) > M and, since
min(cd(L)) < m, we see tha\(L) > A(N), and the proof is complete.

To complete the proof of Theorem D, we need to review a bit of the theory of Cartan
subalgebras. We recall that if is any Lie algebra, theh has a Cartan subalgebra,
which, by definition, is nilpotent. It follows that decomposes as a finite direct sum
of nonzero weight spacds, with respect to the adjoint action df on L, where each
weighta is some function fron# into the fieldC. Also, H C Lg, and in fact we must have
equality here since otherwigé would annihilate a nonzero element of the vector space
Lo/ H, and this contradicts the fact that the Cartan subalgBbgdts own normalizeriri.
Finally, if « is any nonzero weight, we hayé,, H] = L, and thusL, C L'. It follows
from all of thisthatL = H + L’.

The following result contains the part of Theorem D that we have not yet proved.

Theorem 3.8. Let L be a solvable Lie algebra and suppose thats its nilradical. Then
dim(L/N) <1+ A(L).

Proof. Since, by definitionA(L) > —1, there is nothing to prove i¥ = L, and so we can
suppose thak is not nilpotent. Sincé. is solvable, however, we know that is nilpotent,
and hencd.’ C N.

Let H be a Cartan subalgebra bfand observe thatl + N 2 H + L' = L, and thus
H+ N = L. Also, sinceH < L, there exists some nonzero weight for the actioWain L
and we letW = L, be the corresponding weight space, so Wiat [W, H]C L' C N.

Since H is solvable, there exists a nonzero elemerd W such thatfw, H] € Cw,
and thus the codimension i of C N H is at most 1, wher& = C (w). Also, since
a #0,we havdw, H] # 0, and saw is not central inL. and dim{C) € cd(L). In particular,
dim(C) < max(cd(L)).

We claim that dindC N N) > min(cd(L)). First, we see that ifV is non-abelian,
we have dindC N N) = dim(Cy (w)) > min(cd(N)) € cd(L) by Theorem 3.7, and thus
dim(C N N) > min(cd(L)), as required. IfN is abelian, on the other hand, thah< C
sincew € N. Also, by Theorem 3.6 we know that is the centralizer inL of one
of its elements, and thus di@ N N) = dim(N) € cd(L). In this case too, we have
dim(C N N) > min(cd(L)), as claimed.

SinceH + N = L andC N H has codimension at most 1 #fi, we see tha€ + N has
codimension at most 1 in, and thus

dim(L/N) < 1+dim((C + N)/N) =1+dim(C) —dim(C N N)

1+ max(cd(L)) —min(cd(L)) =1+ A(L),

NN

as required. O
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Corollary 3.9. Let N be the nilradical of a solvable Lie algebrad and suppose that
|cd(L)| = 1. Thendim(L/N) < 1and, if N is non-abelian, thegd(N) = cd(L).

Proof. For any Lie algebra, we know thatjcd(X)| = 1 if and only if A(X) = 0. The
result is now immediate from Theorems 3.8 and 3.7

4. Onecentralizer dimension in nonsolvable algebras
Our goal in this section is to prove the following theorem.

Theorem 4.1. Let L be a Lie algebra and assume thatl(L)| = 1. If L is not solvable,
then L is the direct sum of its cente£(L) and a copy ofslo(C) and, in particular,
dim(L/Z(L)) = 3.

We suppose throughout this section thatis a nonsolvable Lie algebra such that
cd(L) = {n}. Let R denote the radical of. and note that the semisimple algelitaAR
has rank 1 by Theorem C, and thugR = s13(C) and, in particularR has codimension 3
in L. By Levi's theorem, there is a subalgelfr& L such thatS = sl>(C), and we see that
RN S =0. To complete the proof of Theorem 4.1, therefore, it suffices to showRtlsat
central inL.

Now R is a module forS = sl>(C), and sinceS is semisimple, we know by Weyl's
theorem thaR is a direct sum of simpl§-modules (see [1, Theorem 6.3]). Furthermore,
according to Section 7 of [1], the isomorphism types of the simplmodules are
comparatively easy to describe.

Fix a basis{x, i, y} for S, where[h, x] = 2x, [h, y] = —2y, and[x, y] = h. Then for
each integem > 0, there is exactly one isomorphism type of simglenoduleM = M,
of dimensionm + 1. This module has a basis;}, where 0< i < m, and where the
action of S is given as follows. Each basis vectgris an eigenvector fok and we have
h-vi=@m— 2)v; for 0<i < m. The elementy € S acts according to the formula
y-vi =({ +m)vi41 for 0<i <m andy - v, = 0. Finally, the action of the is given
byx-vpo=0andx -v;=m —i+ 1)v;_1 fori > 0.

In particular, we have the following lemma.

Lemma 4.2. Let M be a simpleS module of dimensiod/, where § = sl>(C), and
let {x, h, y} be the basis of§ as in the previous discussion. Thdim(Cy(x)) =1 =
dim(Cy(y)) anddim(Cy, (h)) is 1 or 0, according to whethed is odd or even.

Corollary 4.3. Let L, n, R, and S be as before, and writ® = )" M;, a direct sum of
simpleS-modules. Then there are exactly- 1 summand®4; and each of them has odd
dimension.

Proof. Letx, h € S be as before, and note that= Y M; + S is a direct sum of subspaces,
each of which is invariant under bothand#. Also, dim(Cg(x)) =1 =dim(Cg(k)) and,
in particular, neithex nor x is central inL. Since we are assuming that(éd = {n}, we
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have diM(C;, (x)) =n =dim(C (h)), and so)_dim(Cy, (x)) =n — 1= dim(Cy, (h)).

In each direct summand/;, however, we see by Lemma 4.2 that d@n;(x)) >
dim(Cy, (h)) = 1, and thus there are exactty— 1 summands, as required. Also, we
see that equality must hold for each of these simpimodulesM;, and it follows by
Lemma 4.2 that/; must have odd dimension.O

Proof of Theorem 4.1. Let R, n, S, and the basi$x, &, y, } of S be as in the previous
discussion, and leV be the nilradical ofR. Our first step is to show that diR/N) < 1;
then we show thar is nilpotent, and finally, to complete the proof, we show tRais
central inL.

Let R € B C L, where B is a subalgebra and dia/R) = 2. (For example, we
could takeB to be R + Ch + Cx or R + Ch + Cy.) ThenB/R is solvable, and hence
B is solvable, and we le?? be the nilradical ofB. Since B/R is isomorphic to a
2-dimensional subalgebra efy(C), it is not nilpotent, and it follows thaP + R < B,
and thus dimiR/(R N P)) < dim(B/P).

If b is a noncentral element df, thenb is not central inL, and hence since we are
assuming that ad.) = {n}, it follows that dim(C (b)) = n. SinceCy(b) =Cr(b) N B
andB has codimension 1 if, we see that the only possibilities for di@jp (b)) aren and
n—1.ThuscdB) C {n —1,n},and scA(B) < 1. By Theorem 3.8, therefore, we conclude
that dimB/P) < 2, and thus diriR/(R N P)) < 1. But R N P is a nilpotent ideal ofR,
and so ifR is not nilpotent, we hav& N P = N, and thus dimR/N) < 1, as required.

Suppose now thaR is not nilpotent, so that dictk/N) =1 andN = RN P is an ideal
of B. Since we can choosg to contain the elementsandx or the elements andy, and
in either case) is an ideal ofB, it follows thatN is actually an ideal of..

By Weyl's theoremR is completely reducible as &module, and we know tha¥ is a
submodule of codimension 1. It follows that we can wite= N + A, where dinfA) =1
and A is an S-module. ButS acts trivially on its unique (up to isomorphism) module of
dimension 1, and hence if we choosg@ € A, we can writeS C Cy (a).

Now let R = Ro(a) + R1(a) = U + V be the Fitting decomposition at with respect
to ada, so that the action of is nilpotent onU and is invertible onV. Also, sinceS
centralizes:, we observe thal/ and V are S-submodules oR. Sincea ¢ N, we see by
Lemma 3.5 that the action of acbn N is not nilpotent, and thu&y’ € U and, in particular,
V >0.

Note that the action of the elemente S on everyS-module is nilpotent and, in
particular, dinfCy (x)) > 0. Sincea acts invertibly onV andx anda commute, we deduce
that the action ok + a on V is invertible, and hence dif€y (x +a)) =0.

SinceS, U, andV are all invariant under both andx + «, it follows that

dim(C. (x)) = dim(Cy (x)) + dim(Cy (x)) + dim(Cs(x)) and
dim(Cr(x + a)) =dim(Cy (x + a)) + dim(Cy (x + a)) + dim(Cs(x + a)).
Note that diniCg(x)) = 1 =dim(Cgs(x + a)) and, in particular, neither of these elements

is central inL, so that we have dif€. (x)) =n =dim(C.(x + a)). Since we have seen
that dimCy (x 4+ a)) < dim(Cy (x)), it follows that dim(Cy (x)) < dim(Cy (x + a)).
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The action ofz on U is nilpotent, and so we can define a series of subspdced/y >
Uy > ---> U, =0 Dby settingU;+1 = [U;, a]. We observe that sincg centralizes:, each
of the subspaces; is an S-submodule, and hence by Weyl's theordrhijs isomorphic
as anS-module to the direct sum of the factot§/U; 1 for 0 <i < m. Sincex € §,
it follows that dimCy (x)) is exactly the sum of the dimensions of the centralizers of
the action ofx on each factor. But: acts trivially on each factor, and thus the actions
of x andx + a on the factors are identical. Clearly, however, @y (x + @)) is at most
equal to the sum of the dimensions of the centralizers #fa on the factors, and thus
dim(Cy (x +a)) <dim(Cy(x)). This contradicts the inequality that was established in the
previous paragraph, and so we conclude thé nilpotent.

We can now begin our proof th& is central inL. We know thatR = ) M; is a direct
sum of simpleS-modules, and by Lemma 4.2, each summand has odd dimension. On each
such moduleM = M;, the action of the elemente S is diagonal and its eigenvalues are
all of the even integers betweer2k and Z, inclusive, where diriM) = 2k + 1. Also,
we recall that the elemente S centralizes thé-eigenvectors inv corresponding to the
maximum eigenvaluei2

Given any integetk, write W, to denote the (possibly zerd)eigensubspace ok
corresponding to the eigenvalieLetm > 0 be the maximum (necessarily even) integer
such that¥,, > 0 and note thaW,, € C (x). Also, by Lemma 4.2, the number Sfsimple
direct summands oR is exactlyn — 1, where cdL) = {n}, and thus dinWg =n — 1.
Finally, we remark that for each integkrit is easy to show thdt;, Wo] € W;.

LetR = Rl > RZ > ... > 0 be the lower central series f&r Since 0< W,, = W,, N RL,
there is some maximum positive integehat such tha,, N R’ > 0, and we fix a nonzero
elementa € W, N R'. If w € Wy is arbitrary, we havéa, w] € W,, and[a, w] € [R!, R] =
R'*t1, and thus, by the choice of we see thafa, w] = 0. We have shown, therefore, that
Wo S CL(a).

If m > 0, thena ¢ Wp, and hence ditCr(a)) > 1+ dim(Wp) = n. But alsox € S
centralizes: sincea € W,,. Thus dim{Cy (a)) > n, and we conclude that € Z(L). But
[k, a] = ma # 0, and this contradiction shows that= 0. We conclude that all of the
S-simple direct summands @& have dimension 1, and th{ig, S]=0.

Now let r € R. Since r centralizesS, we see thatCg(r + x) = Cx = Cg(x)
and, in particularx and r + x are not central inL. Thus dimM{C.(r + x)) = n =
dim(C.(x)), and since bothr + x and x stabilize bothR and S, it follows that
dim(Cg(r + x)) =dim(Cg(x)). But we know thatx centralizesR, and it follows that
r + x also centralize®, and thus- centralizesR. Sincer € R was arbitrary, we conclude
thatR is abelian, and thug = Z(L), as desired. O

5. Onecentralizer dimension in nonnilpotent algebras

We continue to assume thdt is a Lie algebra such thacd(L)| = 1. In Sec-
tion 4, we showed that if. is nonsolvable, ther./Z(L) = sl>(C) and, in particular,
dim(L/Z(L)) = 3. Here, we complete the proof of Theorem A by determining all pos-
sibilities (up to isomorphism) fof./Z (L) if L is solvable but not nilpotent.
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Theorem 5.1. Let L be a solvable nonnilpotent Lie algebra and assume i@’ )| = 1.
ThenL/Z(L) is isomorphic either to the unique non-abeli2dimensional algebra or to
the 3-dimensional algebra with basix, y, «} and relations[a, x] = x, [a, y] = —y, and
[x,y]=0.

We remark that in the nonsolvable case discussed in Section 4, the Lie algsplits
overZ(L), and thud. is the direct sum o$l>(C) with an abelian algebra, and furthermore,
every such direct sum has the property tlal(L)| = 1. If L/Z(L) is the non-abelian
2-dimensional algebra, one can show that in this situation tomust split overZ(L),
and thusL is the direct sum of the non-abelian 2-dimensional Lie algebra with an abelian
algebra. Here too, it is easy to see that every such direct sum has the desired property on
centralizer dimensions.

In the remaining case, whefeis solvable and difl./Z (L)) = 3, we see that cannot
split over its center because the algebya (L) described in Theorem 5.1 does not satisfy
the condition on centralizer dimensions. As we shall see, this case does occur, and there is
a certain 4-dimensional algebsathat satisfies the conditions. It is not hard to see that in
general L. must be the direct sum & and an abelian algebra, and that every such direct
sum satisfies the condition on centralizer dimensions.

Proof of Theorem 5.1. Let N be the nilradical ofL. Since N < L, it follows by
Corollary 3.9 that dimL/N) = 1. Also, sinceL is not nilpotent, we can choosee L
such that ad is not nilpotent, and we writ€ = C; (a). Thena ¢ N and, in particularg is
not central inL and dim(C) is the unique member of ¢d).

Suppose first thatv is abelian. CertainlyN is not central inL, and thusnN is
the full centralizer inL of one of its elements and di¥) € cd(L). Thus dim(C) =
dim(N) = dim(L) — 1, and it follows thatvV N C has codimension at most 2 in. But
CL(CNN)D2N+Ca=L,andthusC NN C Z(L) and the result follows in this case.

We can now suppose that is non-abelian. If; € N N C, thena € Cr(z), and so
Cr(2) > Cy(z). Since cdN) = cd(L) by Corollary 3.9, it follows that € Z(L), and this
shows thatv N C = Z(L). Also, since dingC) =1+ dim(C N N) =1+ dim(Z(L)) is
the unique member of ¢d), it follows that for every noncentral elemeint L, we have
CrL(b)=Z(L)+ Cb.

Next, we decomposk as a direct sum of nonzero weight spaégs= L, (a) asi runs
over the setAd of weights fora. (These, of course, are just the eigenvalues af. ablote
that Oe A and also there is at least one nonzero weight sinedsdot nilpotent. We know
that[L,, L] € Ly+,, for all choices of eigenvalugsand.. (Note that ifA + i ¢ A, then
Lj+,. =0.) In particular, we haviLo, L] € Ly, and hencd.g is a subalgebra af. Also,
Lo2Cr(a)=2Z(L)+CaandLoNL; =0if A #0.

We show next thal.g = Z(L) + Ca. Let A be a nonzero eigenvalue of aénd note
that L, is a nonzero module for the solvable Lie algeliga There must exist, therefore,
a nonzero element € L, such that[Lo, r] € Ct, and it follows thatLg N Cr(¢) has
codimension at most 1 ihg. Since G4+ € L, , we see that ¢ Lo, and thus is noncentral
andCy(t) = Z(L) + Cxt. It follows thatLo N Cy (t) = Z(L), and since this intersection has
codimension at most 1 ihg, we conclude thatg =Z(L) + Ca.
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Again let 0# 1 € A and suppose that there exigtss A such thatu is not an integer
multiple of 1. If © 4+ A € A, we can replace by n + A, which is also not a multiple of.
SinceA is finite, we can repeat this process until we have A ¢ A. Then[L,, L,]=0,
and thus if O£+ e Ly, we have O< L, CCp(t) =Z(L) + Ct C Lo+ L,. This is
impossible, however, singeis different from 0 and. and the sum of the weight spaces is
direct. We conclude from this contradiction that every membet @& an integer multiple
of A. It follows that if there exist two distinct nonzero membersmfthen each of them
must be an integer multiple of the other, and thus each is the negative of the other. We
conclude that eithen = {0, A} or A = {0, A, —A}.

We claim now that if 04 A € A, then dim(L,) = 1. To see why this is true, let
0+#1t € L, and note that is not central inL. Observe that2¢ A, and thu§L,,L;]=0
and we havd., C C(¢). SinceZ(L) has codimension 1 in this space ahd.) N L, =0,
it follows that dim(L,) = 1, as desired. Of course A € A, then similar reasoning shows
that dim(L_,) =1, and so in any case we have dim,) < 1.

SinceL=Lo+ L, +L_; =Z(L)+ Ca+ L, + L_;, we see that the codimension of
Z(L) in L is at most 3, as required. Also, if dith/Z(L)) = 3, then there is a basis for
L/Z(L) of the form{a, x, y}, wherex € L, andy € L_,. If we replacea by a suitable
scalar multiple, we can assume that 1, and it is easy to see thafZ (L) has the required
form. O

In order to see that it really is possible to have @imz(L)) = 3 in Theorem 5.1,
we construct a 4-dimensional Lie algelsras follows. First, we letV be the unique non-
abelian nilpotent 3-dimensional nilpotent Lie algebra with bésis, z}, wherez is central
and[x,y]=z. Ifwelet¢: N — N be the linear map defined y(x) = x, p(y) = —y,
ande(z) = 0, it is routine to check that is a derivation ofN. We can then defin§ to be
the semidirect produdfa + N, wherea acts onN according to the derivatiop. ThusS
has the basi¢a, x, y, z} and we see that is central inS and that[x, y] = z, [a, x] = x,
and[a, y]=—y.

Theorem 5.2. Let S be the4-dimensional algebra defined above. Thers solvable and
nonnilpotent. Alsogd(S) = {2} andZ(S) = Cz.

Proof. SinceN is nilpotentands/N is abelian, itis clear that is solvable. WriteZ = Cz,
and note thaZ C Z(S). To show thatZ = Z(S) and thatS is not nilpotent, it suffices to
check thaiZz(S/Z) = 0. But{a, x, y} is a basis forS = §/Z, and we havéa, ] = X and
[a@, y] = —y, and from this information, it is trivial to check thZiS) = 0, as required.

Now let ¢+ be a noncentral element ¢f and writet = aa + Bx + yy + 8z, where
the coefficients are complex numbers a@d g, y) # (0,0,0). We want to show that
dim(Cs(¢)) = 2, and for this purpose we lete Cs(¢) have the fornr = Aa + ux + vy
and show thath, u«, v) is a scalar multiple ofe, 8, ). We compute that

O=[t,c]l=(apu— BMx + (YA —av)y + (Bv — yu)z.
It follows that

oy
AV

a B _

O:)»/L_

’

:‘ﬁy
wov
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and so the rank of the matrix

is 1. This completes the proof.0

6. Nilpotent algebras

In this section we prove Theorem B. In fact, the following result is somewhat stronger
than the theorem stated in the introduction.

Theorem 6.1. Let L be a finite-dimensional nilpotent Lie algebra generated by elements
such thadim(Cp (r)) = max(cd(L)). Then the nilpotence class bfis at most3.

Proof. Let L =L1> 12> ... > L™ > "1 = 0 be the lower central series df,
wherem is the nilpotence class, and assume that 3. We havgL" 2, L, L] =L" > 0,
andthugL™=2, L1 Z Z(L). Sincethe ser € L | [L"2,1] € Z(L)} is a proper subalgebra
of L, there must exist some element L that does not lie in this set and such that
dim(Cy (v)) = n, wheren = max(cd(L)). Choose: € L™~2 such thafu, v] ¢ Z(L) and
write x = [u, v], so thate € L™, Recall thafL’, L/] C L*/ for all superscripts, j > 1,
and thus{u, x] € [L™2, L"~1] € L?"—3, We are assuming that > 3, and so we have
2m — 3> m, and thudu, x] € L1 = 0. We want to obtain a contradiction.

LetS = [u, [v, L]] andT = [v, L"~1]. We have

[L,x]1=[L,[u,v]]  [u,[v, L1] + [v. [L,ul]] € S+ [v, L™ ] =S +T,

and thus dindS) +dim(7) > dim([L, x]) =dim(L) — r, wherer =dim(Cp(x)) € cd(L),
and sor < n.

Since § = (adu)(adv)L, we can choose a subspadeC L such that(adu)(adv)
maps A injectively onto S and, in particular, we have dim) = dim(S). Similarly,
T = (adv)L™~1, and so we choose a subspae L™~ such thaiadv) mapsB injec-
tively ontoT and dim(B) = dim(T). Finally, letC = C; (v) and recall that diiC) = n.

We claim that the sum + B + C is direct. First, observe th&ét = ker(adv) and thatB
was chosen so th&Nker(adv) = 0. It follows thatB N C = 0 and it suffices now to check
that A N (B 4+ C) = 0. SinceB < L1, we have(adu)(adv)B = L"t1 =0 andB is
contained in kef{adu)(adv)). Also, C = ker(adv) C ker((adu)(adv)), and thusB + C C
ker((adu)(adv)). By the choice ofA, however, we know tha#t N ker((adu)(adv)) = 0,
and thus the sum + B + C is direct, as claimed.

We now have

dim(A 4+ B+ C) = dim(A) + dim(B) + dim(C) = dim(S) + dim(T) + n
> (dim(L) —r) +n >dim(L),

and thusA + B+ C = L and we can writeé = a + b+ ¢ with the obvious notation. Since we
have seen thaB + C C ker((adu)(adv)), it follows that (adu) (adv)a = (adu)(@dv)u =
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[u, [v,u]] = —[u, x] = 0, where we recall that the last equality is a consequence of our
assumption thatn > 3. Since (adu)(adv) is injective on A, we see that = 0, and
thusu € B + C. But thenx = [u, v] € [B,v] € [L™1,v] € L™ C Z(L), and this is a
contradiction. O

Appendix A

We present here a simplified proof of a somewhat strengthened form of Ishikawa’s
theorem for nilpotent groups. Recall that Ishikawa showed that if all noncentral classes
of a finite nilpotent grou have equal sizes, then the nilpotence class &f at most 3. It
was pointed out by A. Mann that Ishikawa'’s argument could be modified to yield the same
conclusion, thaG has class at most 3, under the weaker hypothesisGhatgenerated
by all of its noncentral elements that are in classes of the smallest possible size. (This, of
course, is the group-theory analog of our Theorem 6.1, which was motivated by Mann'’s
observation.)

As we mentioned in the introduction, a simplified proof of Ishikawa's theorem was
circulated privately by the second author, and we present a version of it here. The argument
is exactly parallel to the proof of Theorem 6.1 for Lie algebras, but as might be expected,
the proof for groups is a bit more technical. Mann’s stronger form of Ishikawa’s theorem
follows with no extra effort, and so we have included it the following theorem.

Theorem (Ishikawa).Let G be a finite non-abelian nilpotent group. Letbe the size of
the smallest noncentral conjugacy classénd assume that is generated by elements
in classes of size. Then the nilpotence class 6fis at most3.

We begin with a brief review of some notation and basic facts: i§ any group, we
define the lower central series by writidg) = G andG” = [G" 1, G] for r > 1, and we
recall that[G', G/] € G/t for all i, j > 1. Now suppose thaF is nilpotent of classn,
which means that = G1 > G2> ... > G" > G"t1 = 1. Inthis case, ifi € G', v € G/,

w € G¥, andi 4+ j + k =m, then[u, v, w] € G™ C Z(G). (Recall that we left associate in
multiple commutators, so that by definitiom, v, w] = [[u, v], w].) Continuing with the
assumption that+ j + k = m, we recall the Witt identityfu, v, w][v, w, u][w, u, v] = 1,
which, of course, plays the role of the Jacobi identity in Lie algebras.

Proof of Ishikawa'stheorem. Letm be the nilpotence class 6f and assume that > 3.
Then [G"2,G,G] = G™ > 1, and hencdG™2,G] € Z(G). Since the centralizer
moduloZ(G) of G"~? is a proper subgroup a, it must fail to contain some element
of G that lies in a class of size. We have[G”~2,v] € Z(G), and we can choose
u € G™2 such that the element = [u,v] is noncentral. Butx € G”~1, and thus
[x,u] € [G™1, G"2] € G¥"—3. Since we are assuming that> 3, we have & —3 > m,
and thugx, u] € G"*1 = 1. We want to obtain a contradiction.

Now let y € G be arbitrary. We have € G2 and, of coursey, y € G1, and so the
Witt identity applies and we have, u, yl[y, v, ul[u, y, v] = 1. Sincelu, v] = x, it follows
that
1t

s vl yo vl = [o,u, y1 74 =[x 4 3] 7 =[x, 0],
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where the last equality holds becalsey] € G™ C Z(G).

Next, we define map¥ :G — G andU:G — G by gV = [g,v] andgU = [g, u]
for all g € G. Then[y, v,u] € (G)VU and also[u, y,v] € (G" 1)V sinceu € G"2,
and hencdu, y] € G™ 1. If we setS = (G)VU andT = (G" 1)V, it follows that the
subsetST contains every commutatgx, y] = x x> for y € G. The number of such
commutators is, of course, the size of the conjugacy class of the noncentral eleraedt
hence is at least. It follows, therefore, thatST| > n.

Now choose subsetd € G and B € G™1 so thatVU mapsA injectively onto
(G)VU = S andV mapsB injectively onto(G” 1)V = T. Also, assume, as we can, that
le A. We have|A| = |S| and|B| = |T|, and thugA||B| > n. Let C = Cs(v) and recall
thatv lies in a class of size, so that: = |G : C| and we haveA||B||C| > n|C| = |G]|.

Now leta € A, b € B, andc € C. We will show that

(cha)VU = (@)VU,  (ch)V = (b)V (%)

and it will follow from the fact thatVU is injective onA and V is injective on B
that the elementba uniquely determines the factoss b, andc. Sincev centralizes,
we have[ch, v] = [b, v] and the second assertion @Gf) is immediate. Also(cba)V =
[cha, v] = [ba, v] = [b, v]*[a, v]. Butb € G™1, which yields[b, v] € G™ C Z(G) and
we have[b, v]? = [b, v]. Thus(cha)V = [b, v][a,v] = (bV)(aV). Again using the fact
that bV = [b, v] is central, we conclude thdtba)VU = [(bV)(@aV),u]l = [(aV),u] =
(a)VU, as desired.

As we have remarked, it follows frortx) that the elementba uniquely determines
ac€A,beB,andc € C,andthu§CBA| = |C||B||A| > |G|. We conclude thaf BA =G
and, in particular, we can choose b, andc such thatu = cha. As we have seen, the
assumption thatr > 3 yields 1= [x, u] = [u, v,u] = w)VU = (a) VU, where the last
equality follows from the first part ofx). But also(1)VU =1 and 1€ A, and sinceV U
is injective onA, we conclude that = 1 andu = cb. But thenx = [u, v] = (¢b)V = bV,
which is central inG. This is the desired contradiction, and the proof is complete.
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