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While CaMKII has long been known to be essential for synaptic plasticity and learning, recent work points to
new dimensions of CaMKII function in the nervous system, revealing that CaMKII also plays an important role
in synaptic organization. Ca2+-triggered autophosphorylation of CaMKII not only providesmolecular memory
by prolonging CaMKII activity during long-term plasticity (LTP) and learning but also represents amechanism
for autoactivation of CaMKII’s multifaceted protein-docking functions. New details are also emerging about
the distinct roles of CaMKIIa and CaMKIIb in synaptic homeostasis, further illustrating the multilayered and
complex nature of CaMKII’s involvement in synaptic regulation. Here, I review novel molecular and functional
insight into how CaMKII supports synaptic function.
Introduction
CaMKII is a highly unusual kinase. Accounting for 1%–2%of total

brain protein, its abundance is only rivaled by a few other, mostly

cytoskeletal, proteins (Lisman et al., 2002). By autophosphorylat-

ing itself upon activation by Ca2+ and calmodulin (CaM), it retains

its catalytic activity beyond the initial stimulation, constituting a

molecular memory device, and has long been considered to be

important for long-term potentiation (LTP) and learning. CaMKII

activation by Ca2+ influx via NMDA receptors (NMDARs) is

essential for standard hippocampal LTP and hippocampus-

based learning (Kerchner and Nicoll, 2008; Lisman et al., 2012;

Malenka and Bear, 2004; Morris, 2013). The pivotal role of

CaMKII in LTP cannot be overemphasized. This Reviewwill focus

on recent work that has unearthed novel functions of CaMKII in

spines, focusing on the hippocampal CA1 region.

CaMKII Structure and Regulation
CaMKII is formed by 12 catalytically active subunits (Figure 1)

(Chao et al., 2011; Colbran and Brown, 2004). Four different

genes (CAMK2A, CAMK2B, CAMK2G, and CAMK2D) encode

CaMKIIa–CaMKIId, respectively, with a and b being highly prev-

alent in brain. CaMKII accounts for 2%–6% of total protein in the

PSD (�80 dodecameric complexes per 0.1 mm2 of PSD [Chen

et al., 2005); larger PSDs in mushroom-shaped spines will have

up to �240 dodecamers [Feng et al., 2011]), trumping the abun-

dance of the prototypal postsynaptic scaffold protein PSD-95

(�250 per 0.1 mm2 of PSD [Chen et al., 2008]) in total mass (Dos-

emeci et al., 2007). Forebrain CaMKII consists mostly of nine a

and three b subunits, whereas this ratio is inverted for cerebellar

CaMKII (Miller and Kennedy, 1985).

CaMKII is inactive under resting conditions as substrate

access to its binding site in the catalytic domain is blocked

by the autoinhibitory pseudosubstrate segment of the protein

(Figures 1A and 1B) (Braun and Schulman, 1995; Colbran and

Brown, 2004; Coultrap and Bayer, 2012). Upon Ca2+ influx,

Ca2+/calmodulin binding to the pseudosusbtrate segment of

CaMKII relieves it from this autoinhibition.WhenCa2+/CaMbinds

to two neighboring subunits, autophosphorylation at T286 (T287
in CaMKIIb) can occur, which results in the persistence of kinase

activity even beyond removal of Ca2+/CaM (Braun and Schul-

man, 1995; Colbran and Brown, 2004; Coultrap and Bayer,

2012) (Figure 1C). However, this so-called autonomous activity

of CaMKII is significantly below the maximal activity (�40%–

80% at physiological ATP concentrations, i.e., >1 mM) (Coultrap

et al., 2010).

Autophosphorylation of the 12 subunits within a holoenzyme

allows for graded translation of Ca2+ spike frequency into kinase

activity in vitro (De Koninck and Schulman, 1998) and in intact

neurons (Fujii et al., 2013). Furthermore, as part of this molecular

memory mechanism, T286 residues that lose their phosphoryl

moieties during periods of suboptimal Ca2+ influx can be rephos-

phorylated. Rephosphorylation of T286 is greatly enhancedwhen

the neighboring subunit is still T286 phosphorylated because

T286 phosphorylation dramatically enhancesCa2+/CaMbinding,

a phenomenon called CaM trapping. Notably, autonomous

CaMKII activity due to T286 phosphorylation, which is lower

than Ca2+/CaM-stimulated CaMKII activity and varies between

substrates, is especially highwith respect to T286autophosphor-

ylation of neighboring subunits (Coultrap et al., 2010).

CaMKII Localization and Interactions in Spines
Under basal conditions, endogenous CaMKII appears to be

enriched by a factor of�2 in spines compared to dendritic shafts

(Feng et al., 2011; Merrill et al., 2005; Strack and Hell, 2008).

Under basal conditions, �80% of CaMKII molecules exit spines

and exchange with dendritic shaft CaMKII with a time constant

between 1 and 5 min (�1 s for free GFP), with �15% remaining

firmly anchored in spines after 30 min (Lee et al., 2009; Sharma

et al., 2006; Sturgill et al., 2009). Protein-protein interactions

play a critical role in retainingCaMKII in spines, andF-actin, a-ac-

tinin, NMDARs, and to somedegree densin-180, are emerging as

major CaMKII binding partners (Figure 2) (Strack and Hell, 2008).

CaMKII Binding to F-Actin
Most of CaMKII and of F-actin within spines are in the spine inte-

rior (Ding et al., 2013; Feng et al., 2011; Tao-Cheng et al., 2007)
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Figure 1. CaMKII Structure
(A) Linear depiction of one CaMKII subunit. It shows kinase domain (blue; numbering according to mouse CaMKIIa), autoinhibitory segment (yellow; formed by
R1, which includes T286, R2, which binds to S site, and R3, which includesmost of the CaMbinding site; red), linker region (green), and association domain (gray).
(B) Autoinhibition and autophosphorylation of CaMKII subunits. The diagram illustrates schematically two neighboring subunits with the inhibitory segment in
black. The T site (gray half-moon) accommodates T286 under resting conditions, fostering the interaction of the pseudosubstrate region immediately
downstream of T286 with the catalytic site (S site; gray surface on right side of each subunit). The S site is formed by the cleft between N and C domains and is in
close proximity to the T site. Upon binding of Ca2+/CaM to the region defined by T305/306, the inhibitory segments are displaced from the S and T sites (red
dashed lines). If two neighboring subunits simultaneously bind Ca2+/CaM, T286 from one subunit can reach the catalytic site of the other (red arrow) and becomes
phosphorylated.
(C–E) CaMKII dodecamer. Each model depicts the two stacked hexameric rings.
(C) Schematic of a structural model of CaMKII dodecamer. According to the model, the CaMKII dodecamer can exist in three main conformations: (1) a closed
inhibited/inactive conformation with the linker folded into the association domain, rendering it inaccessible for Ca2+/CaM binding and activation; (2) an open
inhibited/inactive conformation with the linker extended outward; and (3) a fully extended active conformation with Ca2+/CaM bound to the regulatory segment.
The kidney-shaped segments represent the catalytic domains. They consist of a smaller globular N and a larger globular C domain. The catalytic cleft is nested in
the cleft between the two domains. Adopted with permission from Stratton et al. (2013).
(D and E) Space-filling atomic model of the crystal structure of the CaMKII dodecamer in the closed, inhibited conformation. Shown are views from side (D) and
top (E). The individual catalytic domains of each subunit are alternating light and dark blue for clarity. The association domains, which form the central hub, are
gray. The positions of the linkers are depicted by red spheres. Adopted with permission from Chao et al. (2011).
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Figure 2. Domains that Mediate Interactions between CaMKII,
a-Actinin, F-Actin, Densin, and NMDARs
(A) Linear structures of CaMKII and its most prevalent and functionally
important binding proteins in spines. The CaMKII diagram (red) shows the N
domain (aa 1–96; numbering according tomammalian CaMKIIa), C domain (aa
97–274), catalytic site nested between N and C domains (includes substrate
binding site [S site]), autoinhibitory segment (aa 275–340) consisting of R1 (aa
275–291; contains T286 for interactionwith the T site under resting conditions),
R2 (aa 291–297; binds to the S site under resting conditions), and R3 (aa 297–
314; includes the Ca2+/CaM binding site, which overlaps with R2; dark red
oval; T305/T306 inhibit Ca2+/CaM binding if phosphorylated), linker segment L
(aa 314–340), and association domain (aa 341–478). a-Actinin (blue) consists
of two calponin homology domains (CH1: aa 1–132; CH2: aa 148–249;
numbering according to mammalian a-Actinin-1), four spectrin repeat do-
mains (SR1: aa 269–384; SR2: aa 395–499; SR3: aa 509–600; SR4: 610–738),
and four EF hands (aa 745–894). The linker between CH2 and SR1 (aa 250–
268) is an important attachment site for the EF hands in the antiparallel dimer
(second protomer is not depicted). Densin (green) is formed by a leucine-rich
repeat domain (LRR; consists of 16 leucine-rich repeats; aa 1–420), a central
domain of less certain structural identity (aa 421–1,404), and a C-terminal PDZ
domain (aa 1,405–1,492). The NMDAR GluN2B subunit (orange) consists of an
extracellular N-terminal domain (NTD) and glutamate binding domain (GBD),
which is formed by the N terminus and the extracellular loop between
transmembrane segments 2 and 3, three transmembrane segments, which
form, together with a membrane-reentry loop, the pore, and an intracellular
C terminus (aa 838–1,482).
(B) Depiction of CaMKII interaction sites. The linker of CaMKIIb (horizontal
stripes), which is of variable length and different from the linker of CaMKIIa, is
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and turn over with comparable rates (�1 min; [Feng et al., 2011;

Frost et al., 2010; Honkura et al., 2008; Lee et al., 2009; Sharma

et al., 2006; Sturgill et al., 2009]). CaMKIIbbinds to and crosslinks

F-actin filaments (Fink et al., 2003; Lin and Redmond, 2008; Oka-

moto et al., 2007; Shen and Meyer, 1999) via the variable linker

between the regulatory and association domains of CaMKIIb,

which is different from CaMKIIa (Figure 2) (Fink et al., 2003;

O’Leary et al., 2006; Lin and Redmond, 2008; Shen and Meyer,

1999). F-actin binding targets CaMKII dodecamers to spines,

where F-actin is concentrated (Figure 3). Upon Ca2+ influx,

Ca2+/CaM and T287 autophosphorylation displace CaMKIIb

from F-actin (Lin and Redmond, 2008; Shen and Meyer, 1999)

(Figure 3). Notably, CaMKIIb has an �9-fold higher affinity for

Ca2+/CaM (EC50 for autophosphorylation: 15 nM) than CaMKIIa

(Brocke et al., 1999), suggesting that CaMKIIb-containing

dodecamers are readily released from F-actin before CaMKIIa

subunits bind Ca2+/CaM and are activated. However, Ca2+/

CaM binding to CaMKIIa is necessary for T287 phosphorylation

of CaMKIIb in native forebrain dodecamers as CaMKIIa subunits

phosphorylate CaMKIIb subunits (Brocke et al., 1999).

CaMKII Binding to a-Actinin
a-actinin is an F-actin binding protein concentrated at cell adhe-

sion points and in spines (Otey and Carpen, 2004; Wyszynski

et al., 1998). Four genes (ACTN1–ACTN4) encode the highly

homologous a-actinin-1 through a-actinin-4 with a-actinin-1,

a-actinin-2, and a-actinin-4, but not a-actinin-3, being ex-

pressed in forebrain neurons (Schnizler et al., 2009; Wyszynski

et al., 1998). a-actinins contain two calponin homology domains

(CH1 and CH2), followed by four spectrin homology repeats

(SR1–SR4), four EF hand motifs (EF region), and a C-terminal

PDZ binding motif (ESDL; Figure 2A). The same segment in the

CaMKII autoinhibitory domain that binds to Ca2+/CaM binds to

the EF hand motifs of a-actinin-2 and a-actinin-4 (Figure 2B)

(Jalan-Sakrikar et al., 2012; Robison et al., 2005b; Walikonis

et al., 2001). Indeed, Ca2+/CaM outcompetes a-actinin for

CaMKII binding (Meyer et al., 1992; Robison et al., 2005a), thus

Ca2+ influx dislodges CaMKII from a-actinin and enables CaMKII

to redistribute within spines (Figure 3). As a-actinin supports

CaMKII association with F-actin under basal conditions (Jalan-

Sakrikar et al., 2012), disruption of a-actinin binding to one or

more subunits of a CaMKII dodecamer by Ca2+/CaM might act

in parallel with disruption of the direct binding of CaMKIIb sub-

units to F-actin. Furthermore, the two N-terminal EF hands in

a-actinin-1 and a-actinin-4 can bind Ca2+, which inhibits their

binding to F-actin (Burridge and Feramisco, 1981; Sjöblom
important for binding to F-actin (yellow beaded double string crossing
underneath the linker). The exact binding site on CaMKIIb for F-actin is unclear.
F-actin also binds to CH1 of a-actinin (crossing underneath CH1). Other
connections of CaMKII are depicted by red arrows. EF3 and EF4 hands of
a-actinin (aa 819–194; horizontal stripes) and Ca2+/CaM compete for binding
to R2/R3 on CaMKII (dark red oval). The association domain of CaMKII (aa
341–478) binds to aa 1,335–1,382 of densin (horizontal stripes) independent of
CaMKII activation. The T site of CaMKII binds to aa 1,290–1,309 of GluN2B
(including S1303, which is involved in CaMKII binding and phosphorylated by
CaMKII) and aa 793–824 of densin (horizontal stripes) upon addition of Ca2+/
CaM or phosphorylation of T286. a-actinin binds with its C-terminal ESDL
motif to the PDZ domain of densin and with its C-terminal portion of SR4 to the
C-terminal portion of GluN2B (blue arrows).
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et al., 2008; Witke et al., 1993). Multiple interactions of single

CaMKIIa/CaMKIIb dodecamers with F-actin via b subunits and

with F-actin-associated a-actinin dimers are likely to be critical

for keeping a defined amount of CaMKII anchored within each

spine. Ca2+ influx has the potential to liberate CaMKIIa/CaMKIIb

dodecamers from F-actin and a-actinin for redistribution within

individual spines to the PSD within seconds.

T286 autophosphorylation does not affect binding of the EF

hands of a-actinin, suggesting that a-actinin binds to a portion

of the inhibitory region that is accessible in the resting conforma-

tion of CaMKII (conformation b in Figure 1C). Slow autophos-

phorylation in the Ca2+/CaM binding site of CaMKII abrogates

binding of Ca2+/CaM only if on T305, but of both Ca2+/CaM

and a-actinin if on T306 (Jalan-Sakrikar et al., 2012), consistent

with a structural model that proposes that T306 but not T305 is

involved in binding to the EF region of a-actinin, which only

engages one face of the a-helical structure of this CaMKII region

(Jalan-Sakrikar et al., 2012). Thus, T305 autophosphorylation

potentially serves to protect the a-actinin-CaMKII interaction

from being disrupted by Ca2+/CaM. The impact of CaMKIIb

phosphorylation on T306/T307 has not been studied. Like

Ca2+/CaM, a-actinin binding stimulates CaMKII activity but to a

lesser extent than Ca2+/CaM and only for certain substrates

(Jalan-Sakrikar et al., 2012). This mechanism could act to ensure

a certain but low level of kinase activity of a-actinin-associated

CaMKII.

CaMKII Binding to Densin
Densin consists of multiple leucine-rich repeats (LRRs), a middle

region of less clear homologies, and a PDZ domain located at its

C terminus (Figure 2A). Densin binds to the T site of CaMKIIa and

CaMKIIb (Jiao et al., 2011) and to the C-terminal oligomerization

domain of CaMKIIa but not CaMKIIb (Figure 2B) (Strack et al.,

2000b). Whereas binding of densin to the CaMKII association

domain is independent of CaMKII activation, binding of densin

to the T site of CaMKII requires either Ca2+/CaM or T286 auto-

phosphorylation to provide access to the site (Figure 2B) (Jiao

et al., 2011). At present, the relevance of the two densin interac-

tion sites is not clear. a-actinin can bind to the PDZ domain of

densin (Robison et al., 2005b; Walikonis et al., 2001), which syn-

ergistically promotes the CaMKII-a-actinin interaction probably

by forming a ternary complex (Robison et al., 2005b).

Densin knockout (KO) mice do not show loss of CaMKII from

spines or PSDs under basal conditions, suggesting that densin’s

role as a CaMKII-anchoring protein is redundant or auxiliary

(Carlisle et al., 2011). Nevertheless, GluN1/densin double KO

neurons, but not GluN1 single KO neurons, show a strongly

reduced spine accumulation of CaMKII (Carlisle et al., 2011).

Apparently in GluN1, KO neurons in which NMDARs and hence

GluN2B are absent, densin is needed for compensating loss of

CaMKII anchoring under basal conditions, possibly by fostering

CaMKII binding to a-actinin. In fact, a-actinin is reduced in the

PSD in densin KO mice supporting the notion that densin helps

localize a-actinin at postsynaptic sites and spines (Carlisle

et al., 2011). Thus, densin might augment CaMKII interactions

with F-actin via a-actinin.

Despite the contribution of densin to basal CaMKII targeting to

spines and the activity-driven densin-T site interaction, a role of
252 Neuron 81, January 22, 2014 ª2014 Elsevier Inc.
densin in Ca2+/CaM-induced postsynaptic CaMKII clustering

appears to be of low prevalence, as abrogating CaMKII binding

toGluN2B is sufficient to completely abolish activity-driven spine

accumulation of CaMKII (see below) (Halt et al., 2012). Accord-

ingly, the activity-triggered recruitment of CaMKII from shaft to

spines is mainly GluN2B, and not densin, dependent.

Paradigm Shifting Structural Roles for CaMKII: F-Actin
Bundling and Branching
CaMKIIb binding to F-actin not only anchors CaMKII in spines

but also stabilizes and bundles F-actin to augment spine size

(Lin and Redmond, 2008; Okamoto et al., 2007). Knockdown of

CaMKIIb (but not CaMKIIa) causes a reduction in spine head

size and loss of mature spines, which is fully rescued by ectopic

expression of kinase dead CaMKIIb K43R or of a fragment

comprised of the association domain and the preceding linker

region that mediates F-actin bundling (Okamoto et al., 2007).

Accordingly, F-actin bundling by CaMKIIb enhances spine size

in a kinase activity-independent manner. Also, CaMKIIb overex-

pression stabilizes F-actin-rich structures in cultured cortical

neurons and decreases F-actin motility in spines (Okamoto

et al., 2007). Furthermore, in CaMKIIb A303R knockin (KI) mice,

CaMKIIb cannot be activated (as Ca2+/CaM binding is abro-

gated), yet spine targeting of CaMKIIa as well as hippocampal

LTP and learning are all normal. This lack of effect is in contrast

to CaMKIIb KOmice in which CaMKIIa spine targeting, LTP, and

learning are impaired (Borgesius et al., 2011). The modest phe-

notypes of CaMKIIbA303RKI mice probably reflect the recurring

theme of redundancy and the engagement of compensatory

mechanisms in postsynaptic CaMKII targeting.

When neuronal network activity is decreased, postsynaptic

AMPA receptor (AMPAR) content and responses and probably

spine size increase over the synapse population to maintain

homeostasis of overall excitatory inputs into this neuron (Murthy

et al., 2001; Turrigiano, 2008). In parallel, expression and spine

content of CaMKIIb are increased and CaMKIIa expression is

decreased (Thiagarajan et al., 2002). With the emerging role of

CaMKIIb in stabilizing F-actin, it appears likely that the homeo-

static increase in synaptic strength is at least in part due to the

CaMKIIb-mediated increase in F-actin content, which in turn

leads to larger spine size and thereby higher postsynaptic

strength. Indeed, knockdown of CaMKIIb prevents the increase

in postsynaptic GluA1 that is otherwise observed upon chronic

inhibition of neuronal activity by TTX (Groth et al., 2011) and

overexpression of CaMKIIb increases miniature excitatory post-

synaptic current (mEPSC) frequency probably by increasing

synapse density (Thiagarajan et al., 2002).

As discussed above, a-actinin fosters the interaction of

CaMKII with F-actin (Jalan-Sakrikar et al., 2012). The interplay

among a-actinin, CaMKIIa/b dodecamers, and F-actin probably

helps to organize the F-actin network in spines (Burette et al.,

2012; Korobova and Svitkina, 2010). a-actinin by itself mediates

formation of parallel F-actin filaments or F-actin bundling (Meyer

and Aebi, 1990; Pavalko and Burridge, 1991; Wachsstock et al.,

1993). In neurons, overexpression of a-actinin-2 induces long

filopodia-like structure on dendrites (Hoe et al., 2009; Nakagawa

et al., 2004), which mainly contain parallel F-actin bundles (Kor-

obova and Svitkina, 2010). Furthermore, CaMKIIb knockdown



Figure 3. Interactions of CaMKII with F-Actin, a-Actinin, and
NMDARs in Spines
Under basal conditions, CaMKII (pink) is mostly associated with F-actin (black
lines). This interaction might also localize CaMKII to an area 50–100 nm un-
derneath the center of the PSD with high CaMKII concentrations also present
at the lateral edges of the PSD (Ding et al., 2013). The figure envisions that this
association with F-actin occurs in conjunction with a-actinin (blue) as CaMKIIb
subunits within the dodecameric CaMKII complexes as well as a-actinin
directly bind to F-actin and to each other. The resulting ‘‘triades’’ (magnified
area) are predicted to foster a highly branched F-actin cytoskeleton rather than
the parallel fiber arrangement induced by a-actinin alone in the absence of
CaMKII. Ca2+ influx via NMDARs, which consist of GluN1 (yellow) and GluN2
(orange) subunits, triggers release of CaMKII from F-actin as Ca2+/CaM will
displace CaMKIIb from F-actin (red arrow in insert) and CaMKIIa and CaMKIIb
from a-actinin (blue arrow in insert). CaMKII will then bind to the NMDAR
subunit GluN2B (top left area of PSD), which requires either Ca2+/CaM or the
more lasting T286/287 autophosphorylation. After removal of Ca2+/CaM,
a-actinin will reassociate with CaMKII, possibly forming a trimeric complex
with GluN2B (top middle area; right area depicts an a-actinin-NMDAR com-
plex without CaMKII).
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not only reduces the number and size of spines but also in-

creases the number of such filopodia-like dendritic protrusions

(Okamoto et al., 2007). This outcome of CaMKIIb knockdown

is consistent with and best explained by a-actinin being the pre-

vailing determinant of the parallel F-actin fibers in those protru-

sions, contrasting the CaMKIIb-supported branched F-actin in

spines (Korobova and Svitkina, 2010). Thus, in conjunction

with CaMKIIb, a-actinin may support the branched F-actin cyto-

skeleton rather than a parallel arrangement of F-actin fibers in

spines (Figure 3). Binding of a-actinin to F-actin opens up access

to the EF hands near a-actinin’s C terminus (Figure 4) (Travers

et al., 2013), which in turn bind to the regulator domain of CaMKII

(Figure 2). In fact, the density of F-actin branching points appear

to be highest �20 nm interior to the PSD, with dense accumula-

tion of branching points at the lateral edges of the PSD (Burette
et al., 2012). This distribution of branched F-actin matches quite

well the distribution of CaMKII in spines (Ding et al., 2013). Other

F-actin regulators and especially the Arp2/3 complex, which

promotes F-actin branching, are likely to assist in induction of

branched fiber formation (Korobova and Svitkina, 2010; Rácz

and Weinberg, 2008).

Role of CaMKII Anchoring at the PSD
At first glance, CaMKII’s abundance suggests that it might not

need to be precisely targeted within PSDs to fulfill its role in post-

synaptic signaling. However, anchoring by densin and a-actinin

can refine its substrate selectivity and, as I will discuss below,

activity-driven binding to GluN2B is important for LTP and spine

stabilization, indicating that its accurate anchoring within the

PSD does matter. Anchoring of CaMKII makes phosphorylation

faster, more efficient, and much more selective. The relative

slow kinetics of CaMKII (�10/s [Coultrap and Bayer, 2012]) ren-

ders kinase anchoring all the more important for effective phos-

phorylation of key targets and probably reflects that it mainly

phosphorylates substrates within its immediate vicinity rather

than mediating high throughput phosphorylation of many

proteins within a larger area. In parallel, notably, the upstream

regulator of CaMKII, CaM, is itself anchored at the PSD by neu-

rogranin, which recruits apo-CaM to postsynaptic sites and

releases Ca2+/CaM upon Ca2+ influx. This mechanism ensures

that sufficient CaM is present in spines to allow for effective

signaling (Zhabotinsky et al., 2006; Zhong et al., 2009). The pre-

cise spatial and consequent functional arrangements of CaM

and neurogranin with respect to CaMKII remain to be defined.

Activity-Dependent CaMKII Binding to NMDAR
The bulk of CaMKII is in the interior of a spine (Ding et al., 2013;

Feng et al., 2011; Tao-Cheng et al., 2007), as this space ac-

counts for a much larger fraction of the spine volume than the

area immediately beneath the PSD. Interestingly, in quickly

perfused rat brain (1.5 min; to prevent postmortem CaMKII clus-

tering at PSDs), the concentration of CaMKII shows a distinct

peak about 40 nm away from PSD along the axodendritic posi-

tion but falls off toward the spine center to about one-third of

the peak concentration. It declines to even lower values (approx-

imately one-tenth of peak at 40 nm) at the PSD center near the

plasma membrane along the axodendritic axis, although it is

larger at the periphery than in the center of the PSD (Ding

et al., 2013). Ca2+ influx via NMDAR upon LTP induction induces

relocation of CaMKII from spine center to PSD within <2 min

(Ding et al., 2013; Dosemeci et al., 2002; Otmakhov et al.,

2004; Tao-Cheng et al., 2007), possibly much faster (Figure 3).

These findings and the above biochemical data showing that

CaMKIIa/b dodecamers are linked to F-actin directly via

CaMKIIb and indirectly via a-actinin and that Ca2+/CaM severs

these interactions, suggest the following scenario. Under basal

conditions, CaMKII is largely anchored to F-actin in the interior

of spines. Within seconds, perhaps milliseconds, of Ca2+ influx,

Ca2+/CaM will release CaMKII from F-actin and a-actinin for

rapid relocation to the PSD. Within 1–2 min of Ca2+ influx, redis-

tribution of bulk CaMKII from shaft to spines also becomes

obvious (Otmakhov et al., 2004; Shen and Meyer, 1999; Shen

et al., 2000) (for endogenous CaMKII, see Ding et al., 2013;
Neuron 81, January 22, 2014 ª2014 Elsevier Inc. 253



Figure 4. Binding of a-Actinin to F-Actin
Makes EF3 and EF4 Accessible for CaMKII
Binding
(A) Native structure of a-actinin dimer (PDB ID:
1SJJ) with both actin binding domains (CH1 and
CH2) in a closed conformation (insert on top of the
full-length a-actinin structural model). In this
structure, EF3 and EF4 from the C terminus of one
protomer interacts with the neck region, which
connects CH2 with SR1 in the other protomer
(Travers et al., 2013). CH1 is quasifolded back like
a hook toward the SR region.
(B) Actin dimers as present in F-actin (PDB ID:
3G37) are docked onto the a-actinin structure
depicting the F-actin crosslinking activity of
a-actinin. CH1 binds to F-actin (Travers et al.,
2013). The CH1 and CH2 domains are in an open
conformation in this F-actin-bound state (insert on
top of the full-length a-actinin-F-actin structural
model) as observed (Galkin et al., 2010). EF3 and
EF4 of the second antiparallel a-actinin protomer
are displaced from the neck region as predicted
rendering them accessible for CaMKII binding.
Scale bars represent 20 Å for main figure and 10 Å
for enlarged inserts.
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Merrill et al., 2005; Strack and Hell, 2008). A two-step process is

likely in place in which CaMKII will relocate to postsynaptic sites

rather quickly from the spine interior and more slowly from

shafts.

The Ca2+-triggered increases in CaMKII content of spines and

isolated PSDs depend on the activity-driven binding of CaMKII to

the C-terminal tail of GluN2B (aa 1,290–1,309); both effects are

abrogated in GluN2BL1298A/R1300Q KI mice in which CaMKII bind-

ing to GluN2B is eliminated (Halt et al., 2012). Hence, GluN2B as-

sociation is a critical requirement for recruitment of CaMKII to

postsynaptic sites. The dependence of activity-triggered CaMKII

accumulation in spines on GluN2B binding is especially remark-

able as the space in the spine interior is much larger than under-

neath the PSD. Even though it has been estimated that �5% of

the total CaMKII content within a spine is concentrated at its PSD

(Feng et al., 2011), it appears that a clearly distinguishable
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change in total spine CaMKII would

have to involve a change in the spine

cytosol and not just at the PSD. CaMKII

binding to GluN2B might have effects

that reach throughout the whole spine.

Newly recruited CaMKII might bind to

CaMKII that is already anchored within

the spine, including CaMKII associated

with GluN2B (Hudmon et al., 2005a) (see

also tower-like CaMKII structures in

Petersen et al., 2003) and with F-actin/

a-actinin due to Ca2+/CaM-induced

CaMKII self-aggregation. Perhaps asso-

ciation of CaMKII with GluN2B at the

PSD somehow fosters CaMKII autophos-

phorylation and thereby aggregation in

the spine interior potentially by saturating

the phosphatases that otherwise de-

phosphorylate T286 (Lisman et al., 2002).
The stoichiometry of CaMKII and GluN2B in PSD also de-

serves further consideration. Given that a typical PSD has �80

CaMKII dodecamers/0.1 mm2 (Chen et al., 2005), which trans-

lates into up to �240 dodecamers in larger PSDs (Feng et al.,

2011), but has only at most 10–20 GluN2B-containing NMDARs

(Feng et al., 2011), it appears likely that CaMKII is anchored not

only via GluN2B but also other binding sites. Additional sites that

require CaMKII activation via Ca2+/CaM or T286 autophosphor-

ylation for binding are present on GluN1 (aa 845–861) and

another site within the membrane proximal half of the C terminus

of GluN2B (aa 839–1,120) (Leonard et al., 2002; Merrill et al.,

2005). Densin is also part of the PSD (Walikonis et al., 2000)

and a-actinin can associate with the PSD via binding to densin

and NMDAR subunits (Walikonis et al., 2001; Wyszynski et al.,

1997), constituting additional CaMKII attachment sites. It is

unclear whether densin and a-actinin form CaMKII anchor sites



Figure 5. Role of CaMKII Binding to GluN2B in AMPAR
Phosphorylation
Ca2+ influx during LTP will induce association of CaMKII with the NMDAR.
From there, CaMKII can reach and phosphorylate neighboring AMPARs.
Phosphorylation of GluA1 on S831 will immediately increase conductance
through AMPARs (dark purple). The Ca2+ influx will also facilitate detachment
of the cytosolic C termini of TARPs (dark magenta), which have multiple
positively charged Arg and Lys residues. The detachment will make nine
phosphorylation sites on Stg (red circles) available for CaMKII. The ensuing
phosphorylationswill reduce the net positive charge and thereby reassociation
with the plasma membrane. As a result, the number of TARPs whose C termini
are available for binding to PDZ domains of PSD-95 (blue) will be increased for
enhanced trapping of AMPAR-TARP complexes at postsynaptic sites (Opazo
et al., 2010).
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separate from GluN2B and from each other or if they are part of

the same complex. Formation of such a complex is conceivable

as the dodecameric CaMKII can simultaneously interact with all

three proteins (Robison et al., 2005b), which can also interact

with each other. If densin, a-actinin, and GluN2B together form

CaMKII anchoring sites, their number would be 10–20 but with

multiple attachment sites for CaMKII.

CaMKII binding to GluN2B1290-1309 needs either Ca2+/CaM or

T286 phosphorylation because binding occurs at the T site,

similar to T286 (Figure 2) (Bayer et al., 2001; Leonard et al.,

1999, 2002). As long as a CaMKII subunit is bound to

GluN2B1290-1309, T286 and with it the downstream inhibitory

segment will not be able to rebind to the T and S site, respec-

tively, keeping CaMKII constitutively active (Bayer et al., 2001).

This autonomous activity is lower than that induced by T286

phosphorylation; nevertheless, this displacement is analogous

to T286 phosphorylation in that it can promote T286 rephosphor-

ylation upon suboptimal Ca2+ influx of a neighboring subunit that

lost its T286 phosphate due to suboptimal Ca2+ influx. This effect

is in place because only that neighboring subunit and not the
GluN2B1290-1309-bound subunit requires new Ca2+/CaM binding

in contrast to unbound and completely unphosphorylated

CaMKII. This mechanism has the potential to further perpetuate

CaMKII activation beyond T286 autophosphorylation while

being impervious to dephosphorylation (Lisman et al., 2002).

Furthermore, analogous to autophosphorylation (Singla et al.,

2001), GluN2B binding could increase the affinity of CaMKII for

Ca2+/CaM resulting in Ca2+/CaM trapping. Ca2+/CaM trapping

by GluN2B-bound CaMKII would also promote rephosphoryla-

tion of a neighboring subunit by making it easier for the

GluN2B-associated subunit to capture Ca2+/CaMupon submax-

imal Ca2+ influx, thereby fostering simultaneous binding of Ca2+/

CaM to this and the neighboring subunit.

Role of CaMKII Binding to NMDAR in LTP
Ca2+ influx via NMDARs induces CaMKII binding to GluN2B

(Leonard et al., 1999, 2002; Strack and Colbran, 1998; Strack

et al., 2000a). This interaction is important for LTP. Ectopic

expression of GluN2B with two point mutations that eliminate

CaMKII binding (GluN2BR1300Q/S1303D) in cultured hippocampal

slices abrogates LTP induced by pairing postsynaptic depolari-

zation with a 3 Hz/90 s stimulus train (Barria and Malinow,

2005). Furthermore, field LTP induced by two 100 Hz/1 s stim-

ulus trains or by theta burst stimulation is reduced by 50% in

GluN2BL1298A/R1300Q knockin mice (Halt et al., 2012). Why over-

expression of GluN2BR1300Q/S1303D would completely prevent

LTP induced by a rather strong pairing protocol when similar

point mutations in KI mice only partially affect two forms of

LTP induced by milder induction protocols is unclear.

GluN2B binding recruits CaMKII to strategically ideal

locations, placing CaMKII at the source of Ca2+ influx and near

AMPAR (Figure 5) (Leonard et al., 1999). CaMKII can reach sub-

strates that are 20 nm, if not farther, away from its anchoring

sites, as the dodecameric cylinder of CaMKII is �20 nm long

and the 12 kinase domains point to multiple directions (Chao

et al., 2011). If we assume that a typical PSD harbors 10–20

GluN2B-containing NMDARs (Feng et al., 2011) and that they

are relatively evenly spaced across a PSD and interspersed

with 40 AMPARs, their distance is well within this range. Func-

tional studies in GluN2BL1298A/R1300Q knockin mice clearly

show that CaMKII binding to GluN2B is important for NMDA-

induced phosphorylation of GluA1 on S831 and chemical LTP-

induced augmentation of the AMPAR auxiliary subunit g8 in

the PSD beyond the initial stimulation period of 5 min (Halt

et al., 2012).

As a-actinin also directly binds to GluN1 andGluN2B (Figure 2)

(Wyszynski et al., 1997), it stabilizes CaMKII binding to NMDARs

and augments GluN2B phosphorylation on S1303. However,

at the same time, a-actinin inhibits GluA1 phosphorylation

on S831 as it antagonizes Ca2+/CaM binding to CaMKII when

ectopically expressed in HEK293 cells (Jalan-Sakrikar et al.,

2012). S831 in theC-terminal tail of GluA1 is an important CaMKII

site for upregulation of AMPAR channel conductance (Kristen-

sen et al., 2011; Oh and Derkach, 2005). Thus a-actinin might

stabilize the postsynaptic structure by linking the NMDAR-

CaMKII complexes via multiple interactions to F-actin. It might

in parallel curb in such stabilized structures of upregulation of

AMPAR activity by CaMKII-mediated S831 phosphorylation to
Neuron 81, January 22, 2014 ª2014 Elsevier Inc. 255
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preserve the status quo of the postsynaptic site with a rather

modest level of S831 phosphorylation. To caution, however, it

is also quite possible that a-actinin binding to one or two CaMKII

subunits in a dodecameric complex recruits CaMKII to the neigh-

borhood of postsynaptic AMPAR, with the other subunits being

freely available for enhancedGluA1 S831 phosphorylation in vivo

upon such a-actinin-mediated CaMKII anchoring.

Activity-Driven Accumulation of CaMKII in Spines and a
Role for L-type Ca2+ Channels
In single spines, potentiation by high-frequency glutamate un-

caging doubles the amount of total as well as anchored CaMKII

within 30–40 min, largely paralleling the lasting increase in spine

size (Lee et al., 2009; Zhang et al., 2008). However, it should

be noted that CaMKII clustering trailed spine enlargement by

�10 min in one study (Zhang et al., 2008) but not in another

(Lee et al., 2009). The former timing of CaMKII clustering is

similar to the delayed accumulation of GluA1 at the spine surface

in other work (Kopec et al., 2006), which hints at a potentially

causal relationship. The correlated increases in the spine size

and bulk CaMKII content upon potentiation lead to the sugges-

tion that the increase in bulk CaMKII accumulation during later

phases of potentiation is to a good degree due to binding of

CaMKII to F-actin (Lisman et al., 2012), which is consistent

with a structural role for CaMKII in maintaining F-actin in an inter-

dependent relationship as discussed in detail above.

Chemically induced LTP, which activates all functional synap-

ses, results in postsynaptic CaMKII clustering that persists

for >2 hr (Otmakhov et al., 2004). However, it is unclear whether

this lasting increasewould apply to individually stimulated spines

as puffing glutamate onto a small dendritic region results in post-

synaptic CaMKII accumulation throughout the dendritic arbor,

indicating that activation of multiple synapses utilizes mecha-

nisms for CaMKII accumulation that might differ from those for

individual spine stimulation (Rose et al., 2009) (for lack of this

widespread CaMKII clustering in a different hippocampal culture

system without astrocyte feeder layers and without AP5 used

during culturing, see Lemieux et al., 2012). Similarly, electro-

physiologically induced LTP, which probably potentiates much

less than 1% of all synapses, results in CaMKII T286 auto-

phosphorylation throughout the dendritic area, suggesting

widespread CaMKII activation (Ouyang et al., 1997, 1999). The

widespread CaMKII clustering in spines that is induced by a local

glutamatepuff (but not global glutamate application) dependsnot

only onNMDARbut also L-typeCa2+ channels (Rose et al., 2009).

The L-type channel Cav1.2 itself also functions as a CaMKII

anchor protein and allows CaMKII stimulation within the Ca2+

nanodomain at the pore (Abiria and Colbran, 2010; Grueter

et al., 2006; Hudmon et al., 2005b). This interaction is complex

as CaMKII can bind to the IQ motif region (Hudmon et al.,

2005b) and the auxiliary b subunits b1 and b2 (Abiria and Colbran,

2010; Grueter et al., 2006). The IQ region in the C terminus of the

central pore-forming a11.2 subunit has been implicated in both

Ca2+-dependent inactivation (CDI) and Ca2+-dependent facilita-

tion (CDF) ofCav1.2 currents (Zühlke et al., 1999).CDI ismediated

by CaM, which also interacts directly with this region in a rather

complex manner (Johny et al., 2013). CDF can be observed

upon repeated stimulation (Dzhura et al., 2000), requires CaMKII
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binding to the IQ region (Hudmonet al., 2005b) andb1 or b2 (Abiria

and Colbran, 2010; Grueter et al., 2006), and phosphorylation of

b2 by CaMKII in the Cav1.2 complex (Abiria and Colbran, 2010;

Grueter et al., 2006).

L-type channels are enriched at postsynaptic sites (Davare

et al., 2001; Hell et al., 1993, 1996), but it is unclear whether

CaMKII binding to L-type channels per se is required for the

widespread CaMKII clustering in spines throughout dendrites

upon their localized stimulation. However, CaMKII binding to

the Cav1.2-related Cav1.3 L-type channel is required for activa-

tion of CaMKII-dependent CREB-mediated gene transcription

upon weak but not strong depolarization of cultured superior

cervical ganglion (SCG) neurons (Wheeler et al., 2012). Activation

of CREB upon L-type channel activation is blocked by the fast

Ca2+-chelator BAPTA but not the slower chelator EGTA (Wheeler

et al., 2012), suggesting that influx of Ca2+ activates CaMKII

associated with L-type channels in a spatially restricted manner,

potentially limited to nanodomains surrounding individual chan-

nels (Neher, 1998). Interestingly, clustering of CaMKII at Cav1.3

puncta (the main L-type channel in SCG) can be induced by

both weak depolarizations that selectively activate Cav1.3 but

also stronger depolarizations that selectively activate N-type

currents in the presence of L-type blockers. CaMKII does not

cluster at N-type Ca2+ channel puncta (the main non-L-type

high threshold Ca2+ channel in SCG) (Wheeler et al., 2012).

Accordingly, L-type channels can serve as hubs for CaMKII

signaling, probably bringing together various signaling compo-

nents even if they have to ultimately reach far away sites such

as the nucleus.

Monitoring CaMKII Dynamics in Spines by FLIM
Measuring fluorescence lifetime (FLIM) to monitor activation of

CaMKII doubly tagged with mEGFP and REACh, Lee et al. found

that induction of LTP by repetitive glutamate uncaging resulted

in a surprisingly transient change in the FLIM signal (Lee et al.,

2009). Earlier evidence had indicated that CaMKII activity

undergoes a prolonged increase in CaMKII activity upon LTP

induction at potentiated spines (Lisman et al., 2002). While Lee

et al.’s data suggest that activation of bulk CaMKII may be

only short lived in spines, a more cautious interpretation is war-

ranted. However, CaMKII can exist in different activated states

with Ca2+/CaM, resulting in maximal activation without T286

autophosphorylation (Braun and Schulman, 1995; Coultrap

et al., 2010). T286 phosphorylation keeps the kinase active

beyond Ca2+ and CaM dissociation but at a significantly lower

level than Ca2+/CaM (Braun and Schulman, 1995; Coultrap

et al., 2010). Yet, the FLIM signals are actually several fold

more strongly influenced by T286 autophosphorylation than by

Ca2+/CaM binding (Lee et al., 2009). For instance, T286A mutant

CaMKII shows far fewer changes in FLIM upon Ca2+/CaM addi-

tion than wild-type (WT) CaMKII even though it can be fully

activated by Ca2+/CaM (Lee et al., 2009). Accordingly, the

FLIM signals faithfully reflect only conformational changes of

CaMKII and are not a direct measure of its catalytic activity.

The relaxation of FLIM signals shortly after LTP might thus indi-

cate a conformational change to a discrete, yet still catalytically

active, conformation. Also, it is unknown how binding of CaMKII

to its anchoring sites affects the FLIM signals. It is possible that
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binding to GluN2B, densin, or a-actinin substantially reduces

fluorescence lifetime without strongly affecting CaMKII activity.

The above FLIM studies also suggest that CaMKII activation in

spines upon depolarization (in the absence of glutamate recep-

tor activation) depends on Ca2+ influx via L-type channels even

though this influx only contributes a small amount of total Ca2+

influx into spines in this scenario (Lee et al., 2009). Furthermore,

20 mM of the fast Ca2+ chelator BAPTA, but not 20 mM of the

slow Ca2+ chelator EGTA, blocked this CaMKII activation in

spines. As BAPTA but not EGTA is fast enough to intercept

Ca2+ close to the channel mouth to interfere with its signaling

to nearby Ca2+ target sites, these results suggest once more

that depolarization-induced Ca2+ influx activates CaMKII mole-

cules that reside within nanodomains near L-type channels

(Neher, 1998) and are likely tethered to Cav1.2 (Hudmon et al.,

2005b). Such a highly localized effect of Ca2+ influx via L-type

channels is also in agreement with most recent findings that

stimulating hippocampal slices with glutamate leads to displace-

ment of a-actinin from the IQ motif of Cav1.2, which otherwise

anchors Cav1.2 at postsynaptic sites (Hall et al., 2013). This

effect is blocked by inhibition of L-type channels, but not

NMDARs, reflecting a highly localized Ca2+-mediated effect in

spines within the immediate environment of Cav1.2 that cannot

be mediated by robust Ca2+ influx via NMDARs within the

same spines.

What is, however, not immediately compatible with the finding

that depolarization-induced activation of CaMKII is mediated by

highly localized Ca2+ influx via L-type channels is that CaMKII

activation in spines upon robust Ca2+ influx through NMDAR

was fully sensitive not only to 5 mM BAPTA but also to 5 mM

EGTA (Lee et al., 2009). In other words, these observations sug-

gest that EGTA-sensitive global rather than local Ca2+ signaling

is important for CaMKII activation, although this latter finding is

consistent with the model that the bulk of CaMKII is associated

with F-actin in the spine interior under resting conditions and

activated upon delocalized Ca2+ influx (Figure 3). Clearly more

work is needed to reconcile these findings. Also, it is quite

possible that a subpopulation of CaMKII that is too small to be

detected by the above FLIM studies would relocate to the PSD

and stay active for much longer than the bulk of CaMKII in spines

(Lisman et al., 2012).

Dissociation of Spine Size and Postsynaptic Strength by
T305/T306 Phosphorylation
Expression of the phosphomimetic CaMKIIa mutation T286D

induces synaptic weakening (Pi et al., 2010b). This finding is sur-

prising because strengthening rather than weakening would

have been predicted, as CaMKIIa T286D is constitutively active

like truncated CaMKIIa1-290, which increases EPSC amplitude

(Pi et al., 2010b). As it turns out, the CaMKIIa T286D mutant be-

comes phosphorylated on T305 or T306. Preventing T305/T306

phosphorylation in the CaMKIIa T286D/T305A/T306A triple

mutant leads to the expected potentiation rather than depres-

sion of synaptic transmission (Pi et al., 2010b). The phosphomi-

metic CaMKIIa T286D/T305D/T306D mutant, however, induces

depression. At the same time, all of the CaMKIIamutants tested

that include T286D increased spine size in organotypic cultures

(Pi et al., 2010a), potentially by inducing T site interaction with
GluN2B or another T site binding protein. Accordingly, T286

phosphorylation is necessary and sufficient for CaMKIIa to

augment spine size independent of T305/T306 phosphorylation

status. CaMKIIa activation is neither sufficient nor necessary

for the increase in spine size or the decrease in EPSC amplitude,

as the kinase deadmutation K42R did not prevent spine enlarge-

ment or EPSC reduction by CaMKIIaK42R/T286D expression. At

the same time, CaMKIIa activity appears to be critical for the

increase in EPSC amplitude seen with CaMKIIa1-290, as overex-

pression of WT CaMKIIa had no effect on AMPAR EPSC ampli-

tude (Pi et al., 2010b). Further puzzling, CaMKIIa T286D/T305D/

T306D as well as CaMKIIa T286D/T305A/T306A prevented LTP,

the latter potentially by occlusion as it induces potentiation upon

its ectopic expression, whereas single mutant CaMKIIa T286D

showed nearly normal LTP (Pi et al., 2010b).

Given that the T306Dmutation and thus likely T306 phosphor-

ylation block a-actinin binding (Jalan-Sakrikar et al., 2012), it

is conceivable that T305/T306-phosphorylated CaMKIIaT286D

and CaMKIIaT286D/T305D/T306D show reduced EPSCs due

to loss of a-actinin binding. Binding to a-actinin may play a hith-

erto unappreciated role in CaMKII anchoring at postsynaptic

sites, possibly via formation of a complex between CaMKII,

a-actinin, densin, and the NMDAR (Figure 2), which could be

important for synaptic strength independent of spine size.

The fact that T305/T306-phosphorylated CaMKIIaT286D

and CaMKIIaT286D/T305D/T306D increases spine size when

decreasing postsynaptic response strength is remarkable

because it shows that the two parameters do not have to always

be correlated (see alsoWang et al., 2007). This loss of correlation

could indicate that T305/T306 phosphorylation affects the

coupling of size and AMPAR content of spines. Many molecular

mechanisms could be invoked. As T286 phosphorylated or

T286D mutated CaMKII binds to GluN2B and also the central

densin domain (Figure 2), these interactions could support

CaMKII functions that are not engaged under basal conditions

and are only modestly affected by T305/T306 phosphorylation

(Leonard et al., 2002) but can augment F-actin in spines and

thereby spine size and postsynaptic AMPAR number or activity

upon stimulation. One candidate mechanism is CaMKII-medi-

ated phosphorylation of Kalirin 7, which promotes F-actin forma-

tion via Rac (Xie et al., 2007), although there is no evidence that

its phosphorylation by CaMKII requires CaMKII binding to

GluN2B or densin. On the other hand, T305/T306 phosphoryla-

tion may engage a second mechanism that acts to reduce

AMPAR strength by recruiting proteins that negatively regulate

availability of functional AMPARs at postsynaptic sites such as

the kinase Cdk5 (Morabito et al., 2004; Seeburg et al., 2008).

Cdk5 binds via its activator p35 to CaMKII (Dhavan et al.,

2002) and this interaction is augmented by CaMKII activation

by Ca2+/CaM. It is possible, but highly speculative, that T305/

T306 autophosphorylation subsequent to T286 phosphorylation

is responsible for this increase in CaMKII-Cdk5 binding, thereby

recruiting Cdk5 to postsynaptic sites for downregulation of

AMPARs. Finally, T305/T306 phosphorylation impairs retention

of CaMKII that accumulates upon Ca2+ influx in spines (Shen

et al., 2000) and modestly reduces binding of CaMKII to GluN1

and GluN2B by �50% (Leonard et al., 2002), which could nega-

tively affect its actions at the PSD. Clearly, we are missing
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important details in our understanding of how CaMKII regulates

spine size and especially postsynaptic strength.

CaMKII as Docking Protein for Arc
Further underscoring its structural functions, CaMKII is emerging

as a docking protein for several other proteins in spines,

including Arc/Arg3.1. Arc binds to the endocytic proteins dyna-

min and endophilin and is important for postsynaptic removal

of AMPAR especially upon homeostatic down scaling of post-

synaptic strength (Chowdhury et al., 2006; Shepherd et al.,

2006). Although Arc expression requires synaptic activity, it is

preferably recruited by CaMKIIb to spines of low activity (Okuno

et al., 2012). CaMKIIb binds Arc much more tightly in the

absence of Ca2+/CaM and T287 autophosphorylation (Arc bind-

ing to CaMKIIa is weak under all conditions) (Okuno et al., 2012).

Thus, CaMKIIb acts to curb an increase in synaptic strength

under basal conditions and can in fact counteract spine size

expansion by recruiting Arc to less active synapses in vivo and

in culture (Okuno et al., 2012). This ‘‘inverse tagging’’ of inactive

spines might contribute to the synapse specificity of LTP as it

will mainly affect nonpotentiated synapses. In this way, it might

cause a modest homeostatic synaptic down scaling of the

large majority of nonpotentiated synapses as required to keep

the overall synaptic input within a defined dynamic range and

to prevent overexcitability after potentiation of a subpopulation

of synapses.

CaMKII as Docking Protein for Proteasomes
CaMKII recruits proteasomes to spines (Bingol et al., 2010).

Notably, proteasome activity is not only needed for long-term

depression (LTD) but also LTP, perhaps because negative regu-

lators of postsynaptic strength have to be removed, including

rigid scaffolds formed by structural proteins (Bingol and Sheng,

2011), Arc (Chowdhury et al., 2006; Shepherd et al., 2006), the

small G proteins Rap1 and Rap2 and their upstream activators

EPAC2 (Woolfrey et al., 2009; Zhu et al., 2002, 2005), the Rho

family of small G proteins and its upstream activators Ephexin

1 and 5 (Margolis et al., 2010), the cyclin-dependent kinase

Cdk5 (Morabito et al., 2004; Seeburg et al., 2008), and the

polo-like kinase Plk2 (Morabito et al., 2004; Seeburg et al.,

2008). Ca2+ influx via NMDARs augments CaMKII accumulation

in stimulated spines just before proteasome accumulation. The

capability of CaMKII to bind and thereby recruit proteasomes

depends on its activation by Ca2+/CaM and on T286 autophos-

phorylation and on its binding to GluN2B (Hamilton et al.,

2012). This dual requirement for CaMKII activation for binding

to its own docking site on GluN2B on one hand and to protea-

some on the other will assure that proteasome accumulation

mainly occurs in spines that are experiencing high activity. Over-

expression of CaMKII with the phosphomimetic T286D mutation

to allow GluN2B and proteasome binding plus the K42R muta-

tion in the catalytic site to inactivate the kinase activity (and

thereby perhaps T305/T306 phosphorylation) also promotes

postsynaptic proteasome accumulation (Bingol et al., 2010).

These results once more indicate that CaMKII can play a struc-

tural role by demonstrating its ability to function as an activity-

dependent, autoregulated postsynaptic proteasome scaffold.

This mechanism is not only important for LTP but also for activ-
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ity-induced formation (Hamilton et al., 2012) and stabilization (Hill

and Zito, 2013) of new spines.

CaMKII as Docking Protein for Casein Kinase 2
CaMKII also acts as a scaffold to recruit casein kinase 2 (CK2) to

GluN1/GluN2B complexes. CK2 phosphorylates S1480 in the

GluN2B SXV motif (Chung et al., 2004; Sanz-Clemente et al.,

2010), which mediates binding of the receptor to PSD-95 or its

homologs PSD-93 or SAP102 and regulates its postsynaptic

targeting (Elias et al., 2006, 2008; Prybylowski et al., 2005). Acti-

vation of CaMKII by Ca2+/CaM is required for phosphorylation

of GluN2B S1480 by CK2, which blocks PSD-95 binding and

impairs postsynaptic NMDAR targeting (Sanz-Clemente et al.,

2010, 2013). As for proteasomes, CaMKII autophosphorylation

probably enhances the recruitment of CK2 to GluN2B synergis-

tically with changes in Ca2+ concentration such that the effect

becomes rapidly stronger with further Ca2+ influx above a certain

Ca2+ threshold.

The activation-dependent recruitment of proteasomes and

CK2 to GluN2B by CaMKII illuminates once again CaMKII’s

role as a multivalent adaptor protein whose protein interactions

at various sites are regulated by the kinase activity intrinsic to

each subunit of the dodecamer (see also Robison et al., 2005b).

Role of CaMKII and Its Anchoring by GluN2B in LTP and
Synapse Selectivity of LTP
CaMKII (and PKC) can phosphorylate GluA1 on S831 to increase

AMPAR conductivity (Kristensen et al., 2011; Oh and Derkach,

2005) and EPSCs during LTP (Benke et al., 1998). S831 phos-

phorylation depends on CaMKII binding to GluN2B1290-1309

(Halt et al., 2012). CaMKII (and PKC) can also phosphorylate

stargazin (Stg/g2) on as many as nine serine residues (Figure 5).

Stg/g2 is a member of the TARP family of AMPA receptor auxil-

iary subunits that mediate postsynaptic AMPAR recruitment

by PSD-95 and PSD-93 (Chen et al., 2000; Elias et al., 2006,

2008; Schnell et al., 2002). Ectopic expression of phosphomi-

metic and -preventive Asp and Ala mutants of all nine residues

occludes or prevents, respectively, pairing-induced LTP (Tomita

et al., 2005) and postsynaptic AMPAR trapping by CaMKII activ-

ity (Opazo et al., 2010). As Ca2+ potently disrupts electrostatic

interactions between proteins and the plasma membrane (Zilly

et al., 2011), Ca2+ influx through the NMDAR probably promotes

this Stg/g2 phosphorylation by decreasing the association of

the Stg/g2 C terminus with the plasma membrane, thereby

rendering it more accessible for CaMKII (Figure 5). The conse-

quent phosphorylation prevents the Stg/g2 C terminus from

reassociating with the plasma membrane, thereby fostering

PSD-95 binding (Sumioka et al., 2010). In this manner, CaMKII

can elevate the number of postsynaptic AMPAR anchoring

sites or ‘‘slots’’ that might be formed by TARPs in conjunction

with PSD-95. The interaction between TARPs and PSD-95

will enhance their mutual accumulation at postsynaptic sites,

thereby recruiting more AMPARs, which is thought to underlie

LTP (Kerchner and Nicoll, 2008; Lisman and Hell, 2008). The

nine serine residues that are phosphorylated by CaMKII in Stg/

g2 are conserved in other TARPs including g8, the prevalent

hippocampal TARP (Rouach et al., 2005). ChemLTP augments

the content of g8 and other TARPs in PSD preparations (Halt



Neuron

Review
et al., 2012). The correlation between loss of NMDAR-mediated

CaMKII anchoring and loss of persistent g8 postsynaptic accu-

mulation following chemLTP in GluN2B KI mice (Halt et al.,

2012) provides evidence for the model that phosphorylation of

TARPs by CaMKII enhances clustering of AMPAR-TARP com-

plexes at the PSD upon LTP (Hayashi et al., 2000; Sumioka

et al., 2010; Tomita et al., 2005). However, it should be noted

that postsynaptic localization of AMPARs by Stg/g2 and g8

can to some, though much limited, degree be accomplished in-

dependent of the whole C terminus of Stg/g2 and of g8 including

their very C-terminal PDZ binding segment for PSD-95 (Milstein

and Nicoll, 2009).

Given that phosphorylation of GluA1 on S831 and a lasting

accumulation of g8 in PSDs following chemLTP depend on the

activity-driven CaMKII binding to GluN2B1290-1309, it is quite

conceivable that phosphorylation of Stg/g2 and potentially of g8

also requires CaMKII binding to GluN2B. This might also be

true for CaMKII-mediated phosphorylation of the Rac GTP

exchange factor kalirin-7, which augments Rac activity, F-

actin formation, spine enlargement, and postsynaptic AMPAR

accumulation (Xie et al., 2007). In this context, it is tempting to

speculate that T305/T306 phosphorylation prevents GluN2B-

associated CaMKII from phosphorylating some targets (e.g.,

TARPs, which directly mediate postsynaptic AMPAR targeting)

butnot other targets (e.g.,Rac,whichaugmentsF-actin andspine

size). Such a mechanism would explain why CaMKII when phos-

phorylated on T286 and T305 or T306 reduces postsynaptic

response strength when it increases spine size. Interestingly,

the structural protein CASK fosters T306/T307 phosphorylation

in Drosophila CaMKII, circumventing T287 phosphorylation,

constituting an endogenous mechanism that downregulates

CaMKII activity at synapses of low activity (Hodge et al., 2006).

Further evidence for the importance of CaMKII binding

to GluN2B in the maintenance phase of LTP comes from the

following observations. The membrane-permeant tatCN21 pep-

tide derived from the endogenous CaMKII inhibitory protein

CaMKIIN can directly inhibit CaMKII and displace CaMKII

from GluN2B (Buard et al., 2010; Sanhueza et al., 2011). Other

catalytic site binding peptides (e.g., syntide) cannot disrupt the

CaMKII-NMDAR interaction probably because they cannot

bind with sufficient affinity to the T site. Whereas 5 mM tatCN21

is sufficient to fully block CaMKII activation in acute hippocampal

slices (Buard et al., 2010), 20 mM tatCN21 is required for CaMKII

displacement from GluN2B (Sanhueza et al., 2011). Although

5 mM tatCN21 is sufficient to block LTP induction when applied

before the tetanus reflecting the requirement of CaMKII activity

during the initiation of LTP (Buard et al., 2010), 20 mM tatCN21

concentration is necessary when applied after the tetanus

to reverse LTP and prevent its maintenance (Sanhueza et al.,

2011). Accordingly, it is the displacement of CaMKII from

GluN2B and not its inactivation that interferes with LTP mainte-

nance. As other inhibitors of CaMKII activity did not affect LTP

maintenance, it is quite possible that CaMKII’s role when bound

to GluN2B is structural rather than catalytic. Additional activa-

tion-dependent binding sites for CaMKII in the C termini of

GluN1, GluN2A, and a second, membrane-proximal site in the

long C terminus of GluN2B that is upstream of GluN2B1290-1309

(Leonard et al., 1999, 2002) and densin793-824 (Carlisle et al.,
2011) appear to bemuch less relevant (Halt et al., 2012). It should

be noted, however, that peptides similar to tatCN21 can also

affect CaMKII binding to densin (Jiao et al., 2011).

CaMKII activation and accumulation is limited to individual

spines when those undergo potentiation by repetitive glutamate

uncaging (Lee et al., 2009; Zhang et al., 2008). Given that CaMKII

is necessary for standard LTP in CA1 (Lisman andHell, 2008; Lis-

man et al., 2012), that abrogating postsynaptic CaMKII accumu-

lation in GluN2B KI mice inhibits LTP (Halt et al., 2012), and that

CaMKII constitutes 2%–6% of total protein in PSDs (Chen et al.,

2005), it appears that activity-dependent CaMKII binding to

GluN2B is a central part of the mechanism that accounts for

the synapse specificity of LTP, a prerequisite for LTP’s role in

information storage, by recruiting CaMKII to those synapses

that experience heightened Ca2+ influx.

Role of CaMKII in Synaptic Homeostasis
Prolonged decreases in neuronal network activity trigger in-

creases in postsynaptic AMPAR content and responses and

spine size increase over most synapses of a neuron to maintain

the set point for total excitatory input (Murthy et al., 2001;

Turrigiano, 2008). In parallel, levels of CaMKIIa decrease and

CaMKIIb increase (Thiagarajan et al., 2002). The opposite is

true upon chronic increase of network activity, i.e., AMPAR-

mediated synaptic transmission and CaMKIIb levels decrease

and CaMKIIa levels increase (Thiagarajan et al., 2002). CaMKIIa

overexpression in dissociated hippocampal cultures drastically

decreases mEPSC frequency (but increases mEPSC amplitude)

(Thiagarajan et al., 2002). CaMKIIb overexpression increases

GluA1 protein levels (Groth et al., 2011), the number of PSD-95

positive puncta (Fink et al., 2003), and mEPSC frequency (but

not amplitude) (Thiagarajan et al., 2002). Overexpression of

CaMKIIa might impair spine stability and thereby synapse num-

ber by reducing the interaction of the enzyme with F-actin due

to decreased CaMKIIb content in the dodecamer, while overex-

pression of CaMKIIb might have the opposite effect. The in-

crease in mEPSC amplitude by CaMKIIa overexpression could

be via GluA1 S831 and Stg phosphorylation, which would in-

crease AMPAR conductance and abundance, respectively. Of

note, EPSC amplitude was unaltered upon overexpression of

CaMKIIa in CA1 pyramidal neurons in organotypic slice cultures

(Pi et al., 2010b), in contrast to its effect in dissociated hippo-

campal cultures (Thiagarajan et al., 2002).

Four related proteins known asGKAPs (or SAPAPs) bind to the

GK domain of PSD-95 to foster its postsynaptic localization.

GKAPs connect PSD-95 to Shank, another important postsyn-

aptic structural protein, which is linked to F-actin. GKAP is

surfacing as an important target for CaMKII under conditions

of chronically decreased as well as increased neuronal activity.

Decreasing network activity in hippocampal cultures with TTX

augments the number of GKAP- and PSD-95-positive synapses

as well as the postsynaptic content of GKAP and PSD-95 at

individual synapses (Shin et al., 2012). These increases are pre-

vented by blocking L-type Ca2+ channels and by knockdown of

CaMKIIb. Knockdown of CaMKIIb by itself reduces GKAP and

PSD-95 cluster density (Fink et al., 2003; Shin et al., 2012) and

spine size and number (Okamoto et al., 2007) and prevents ho-

meostatic upregulation of GluA1 upon chronic block of AMPAR
Neuron 81, January 22, 2014 ª2014 Elsevier Inc. 259
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activity (Groth et al., 2011). The observation that Ca2+ channel

inhibition counteracts the effect of decreased network activity

on GKAP and PSD-95 is surprising, as is the increase in CaMKIIb

T287 autophosphorylation upon TTX treatment, as Ca2+ influx

via L-type channels will be reduced. Also, the finding that L-

type block alone did not affect GKAP or PSD-95 clustering

(Shin et al., 2012) contrasts earlier observations that such a block

mimics the TTX-induced elevation of mEPSC frequency (Thia-

garajan et al., 2005), the latter predicting increased synapse den-

sity and thereby PSD-95 cluster density upon chronic L-type

block. Thus, more work is required to define how L-type Ca2+

channels mediate inactivity-triggered upregulation of postsyn-

aptic GKAP and PSD-95 and AMPAR function.

A chimeric CaMKIIa construct carrying the F-actin binding

domain of CaMKIIb was able to rescue the loss of TTX-induced

upregulation of postsynaptic GKAP clustering upon CaMKIIb

knockdown (Shin et al., 2012). This finding indicates that F-actin

recruits native CaMKIIb-containing CaMKII dodecamers to the

postsynaptic site for homeostatic upregulation of postsynaptic

size and strength and provides further support for the above

model thatCaMKIIb is important for postsynaptic F-actin function.

How does CaMKII regulate GKAP and PSD-95 in spines?

GKAP binds to dynein light chain (DLC), which links GKAP to

myosin 5A (Naisbitt et al., 2000). Disrupting the DLC-GKAP inter-

action or knockdown of myosin 5A impairs postsynaptic GKAP

localization under basal conditions (Shin et al., 2012). Further

evidence suggests that CaMKII phosphorylates GKAP in its

DLC binding domain on S340 and S384, which disrupts DLC

binding and synaptic targeting of GKAP under resting condi-

tions. Ectopic expression of GKAP with either phosphodeficient

S340A,S384A or phosphomimetic S340D,S384D double muta-

tions prevents the inactivity-induced postsynaptic accumulation

of GKAP. These findings suggest that GKAP requires myosin

5A-dependent transport and that GKAP has to undergo a

phosphorylation-dephosphorylation cycle for its postsynaptic

accumulation. CaMKII-mediated phosphorylation might release

GKAP from DLC after it arrives in spines. During chronic inac-

tivity, an increase in F-actin-anchored CaMKII might augment

accumulation of GKAP and thereby of PSD-95 in spines. In

general agreement with these findings, expression of domi-

nant-negative myosin 5A and myosin 5A knockdown reduces

postsynaptic AMPAR content and activity in organotypic hippo-

campal slice cultures, especially under conditions of basal

synaptic activity and blocked LTP aswell as CaMKII-driven post-

synaptic targeting of GluA1 (Correia et al., 2008).

Increasing network activity with a GABAA receptor antagonist

bicuculline decreases the density and intensity of GKAP and

PSD-95 immunofluorescent puncta (Shin et al., 2012). This effect

is inhibited by NMDAR blockade and knockdown of CaMKIIa but

not of CaMKIIb. Bicuculline treatment induces ubiquitination and

proteasomal degradation of GKAP, which is prevented by KN93

implicating CaMKII as one of its targets although KN93 inhibits

also other CaMKs and various ion channels. In support for a

role of CaMKII in regulating GKAP degradation, CaMKII disrupts

binding of GKAP to PSD-95 by phosphorylating GKAP on S54

and S201 (Shin et al., 2012). Furthermore, S54 phosphorylation

is required for GKAP polyubiquitination and removal from the

synapse (Shin et al., 2012). Accordingly, increased Ca2+ influx
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during enhanced network activity stimulates CaMKIIa. The

ensuing phosphorylation of GKAP displaces it from PSD-95,

thereby leading to its ubiquitination and degradation. The loss

of GKAP then translates into loss of postsynaptic AMPARs

with GKAP mutation or knockdown preventing the homeostatic

scaling (Shin et al., 2012).

CaMKII in Brain Diseases
Synapse dysfunction is implicated in many, perhaps the major-

ity, of brain diseases. In disorders in which Ca2+ influx is dysre-

gulated, CaMKII function is likely to be affected. While CaMKII’s

role in disease is far from being fully understood, we have evi-

dence for CaMKII involvement in multiple neurological disorders.

Here, I will briefly discuss emerging evidence that has begun to

provide insight into how dysregulation of CaMKII activity contrib-

utes to disease.

During and subsequent to spontaneous seizures, Ca2+ influx

through NMDARs and Ca2+-permeable AMPARs can contribute

to the etiology of epilepsy in part by dysregulation of CaMKII

(McNamara et al., 2006). During ischemic conditions that lead

to excitotoxic insult, the Ca2+ influx through NMDARs causes

postsynaptic CaMKII activation (Westgate et al., 1994) and

CaMKII inhibitors can alleviate the insult at least in the early

phases (Hajimohammadreza et al., 1995; Vest et al., 2010). How-

ever, longer treatments with CaMKII inhibitors have the potential

to exacerbate the damage (but see Vest et al., 2010) in part by in-

hibiting glutamate reuptake by astrocytes (Ashpole et al., 2013).

Accumulation of amyloid beta peptide (Ab) is one of the two

main hallmarks of Alzheimer’s disease. Ab can induce synaptic

loss by chronically increasing NMDAR activity (Hu et al., 2009;

Wei et al., 2010), which in turn would usually affect CaMKII acti-

vation status, postsynaptic localization, and function. However,

it appears that at least in organotypic hippocampal slices, viral

expression of Ab acts through a novel metabotropic rather

than ionotropic NMDAR function (Kessels et al., 2013). An anal-

ogous metabotropic NMDAR function seems to underlie

NMDAR-dependent LTD. Thesemetabotropically induced forms

of LTD are independent of postsynaptic Ca2+ rises and thereby

likely of CaMKII activation, although they could quite well involve

structural changes of GluN2B that could affect CaMKII binding

as GluN2B mediates the metabotropic Ab effect (Hu et al.,

2009; Kessels et al., 2013).

In a rat model of Parkinson’s disease, CaMKIIa T286 phos-

phorylation and its association with the NMDAR is increased

(Picconi et al., 2004). Importantly, the dysfunctions in motor

performance and LTP at corticostriatal synapses were rectified

by injection of CaMKII inhibitors, causally linking upregulation

of CaMKII activity to this disease model.

Mutations in the chromatin remodeling protein ATRX have

been implicated in mental retardation. In ATRX KO mice, spines

were enlarged in the medial prefrontal cortex but not in the

hippocampal CA1 area (Shioda et al., 2011). This enlargement

was paralleled by increased CaMKII autophosphorylation. This

increase was correlated with increased phosphorylation of

Kalirin-7 and of Tiam 1, a guanine nucleotide exchange factor

for Rac, both of which would be expected to elevate spine size.

Increased T305/T306 phosphorylation of CaMKII has been

demonstrated in Angelman’s syndrome, which is characterized
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by motor dysfunction, epilepsy, and mental retardation (van

Woerden et al., 2007; Weeber et al., 2003). As T305/T306 phos-

phorylation decreases basal synaptic strength (Pi et al., 2010b),

it is now important to define the precise functions of this phos-

phorylation to further define the molecular mechanism of Angel-

man’s syndrome.

Dissecting the precise role of CaMKII in these and other

brain diseases has proven to be a challenge, probably because

CaMKII fulfills many different functions. Some of these functions

might contribute to neuronal damage upon CaMKII dysregula-

tion and others might actually counteract it. Defining the function

of CaMKII in these diseases will not only advance our under-

standing of CaMKII-regulated mechanisms but also pave the

way for developing innovative treatments. Disentangling the pre-

cise mechanisms of postsynaptic regulation must be a central

focus in our quest to comprehend brain function and molecular

basis of disease.

Conclusions
CaMKII commanded early attention in the synaptic signaling field

based on its high expression levels, its size, and its intricate and

lasting autoregulation. Recent discoveries have shed new light

onto the function of CaMKII at the postsynapse, revealing a

major autoregulated structural role for CaMKII in addition to

its kinase function. It is now apparent that CaMKII is a central

organizer of the postsynaptic F-actin network and acts as an

autotuning machine that regulates its own PSD localization and

simultaneously recruiting key effector proteins including the

proteasome and CK2. A full understanding of the molecular

details of synaptic plasticity and learning awaits a rigorous

biochemical analysis of the precise structural and mechanistic

properties of CaMKII and its interactions. I predict CaMKII’s

versatile and multifaceted functions will keep us in suspense for

years to come.

ACKNOWLEDGMENTS

I wish to thank Dr. H. Schulman (Allosteros Therapeutics) for discussions;
Dr. M.M. Stratton and Dr. J. Kuriyan (UCBerkeley) for discussions and for putt-
ing Figures 1A, 1C, 1D, and 1E together; Ms. H. Shams and Dr. M.R.K. Mofrad
(UC Berkeley) for discussions and for providing Figure 4; and Mr. Pang-Yen
Tseng (UC Davis) for help with Figures 1B, 2, and 3. Work by J.W.H. was sup-
ported by NIH grants R01NS035563, R01AG017502, and R01NS078792.

REFERENCES

Abiria, S.A., and Colbran, R.J. (2010). CaMKII associates with CaV1.2 L-type
calcium channels via selected beta subunits to enhance regulatory phosphor-
ylation. J. Neurochem. 112, 150–161.

Ashpole, N.M., Chawla, A.R., Martin, M.P., Brustovetsky, T., Brustovetsky, N.,
and Hudmon, A. (2013). Loss of calcium/calmodulin-dependent protein kinase
II activity in cortical astrocytes decreases glutamate uptake and induces
neurotoxic release of ATP. J. Biol. Chem. 288, 14599–14611.

Barria, A., and Malinow, R. (2005). NMDA receptor subunit composition con-
trols synaptic plasticity by regulating binding to CaMKII. Neuron 48, 289–301.

Bayer, K.U., De Koninck, P., Leonard, A.S., Hell, J.W., and Schulman, H.
(2001). Interaction with the NMDA receptor locks CaMKII in an active confor-
mation. Nature 411, 801–805.
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Zühlke, R.D., Pitt, G.S., Deisseroth, K., Tsien, R.W., and Reuter, H. (1999).
Calmodulin supports both inactivation and facilitation of L-type calcium
channels. Nature 399, 159–162.
Neuron 81, January 22, 2014 ª2014 Elsevier Inc. 265


	CaMKII: Claiming Center Stage in Postsynaptic Function and Organization
	Introduction
	CaMKII Structure and Regulation
	CaMKII Localization and Interactions in Spines
	CaMKII Binding to F-Actin
	CaMKII Binding to α-Actinin
	CaMKII Binding to Densin
	Paradigm Shifting Structural Roles for CaMKII: F-Actin Bundling and Branching
	Role of CaMKII Anchoring at the PSD
	Activity-Dependent CaMKII Binding to NMDAR
	Role of CaMKII Binding to NMDAR in LTP
	Activity-Driven Accumulation of CaMKII in Spines and a Role for L-type Ca2+ Channels
	Monitoring CaMKII Dynamics in Spines by FLIM
	Dissociation of Spine Size and Postsynaptic Strength by T305/T306 Phosphorylation
	CaMKII as Docking Protein for Arc
	CaMKII as Docking Protein for Proteasomes
	CaMKII as Docking Protein for Casein Kinase 2
	Role of CaMKII and Its Anchoring by GluN2B in LTP and Synapse Selectivity of LTP
	Role of CaMKII in Synaptic Homeostasis
	CaMKII in Brain Diseases
	Conclusions
	Acknowledgments
	References


