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Cellular electrophysiologic and mechanical evidence of superior
vascular protection in pulmonary microcirculation by Perfadex
compared with Celsior

Min Wu, MD,a,b Qin Yang, MD, PhD,a Anthony P. C. Yim, MD,a Malcolm J. Underwood, MD,a and Guo-Wei He, MD, PhD, DSca,c,d

Objective: Pulmonary endothelial function is critical in posttransplant lung performance. Hyperkalemic organ

preservation solutions alter vascular endothelial function through the non-nitric oxide and non-prostacyclin path-

way, but the most frequently used lung preservation solutions, Perfadex (Vitrolife Sweden, Kungsbacka, Sweden)

(Kþ6 mmol/L) and Celsior (IMTIX SangStat Company, Lyon, France) (Kþ15 mmol/L), have not been evaluated

on pulmonary endothelial protection. We compared the non-nitric oxide and non-prostacyclin–mediated endothe-

lial function in porcine pulmonary microarteries of lung preserved by Perfadex or Celsior solution at 4�C for

4 hours.

Methods: The non-nitric oxide and non-prostacyclin–mediated endothelial function was determined by measur-

ing the membrane potential in a single pulmonary smooth muscle cell (group II, n ¼ 6) and bradykinin-induced

relaxation (group I, n¼ 8) in pulmonary microarteries preserved in Krebs (a, control), Perfadex (b), or Celsior (c),

with inhibitors of nitric oxide and prostacyclin.

Results: Membrane potential hyperpolarization decreased in IIc (4.5� 0.2 mV, P<.05) but was preserved (P>
.05) in IIa (6.6� 0.1 mV) and IIb (6.3� 0.3 mV). Resting membrane potential was depolarized in IIc (–42.8� 1.3

mV) compared with IIa (–58.7 � 0.6 mV) and IIb (–56.7 � 0.9 mV) (P< .05). Hyperpolarization-associated

relaxation (37.3% � 7.2% vs 59.7% � 7.7%) and sensitivity (EC50) (–7.29 � 0.13 vs –7.75 � 0.06 log M)

to bradykinin significantly (P< .05) decreased in Ic but not in Ia and Ib.

Conclusion: This in vitro study simulating clinical conditions demonstrates that Perfadex preserves endothelium-

dependent smooth muscle relaxation and hyperpolarization better than Celsior solution in regard to the electro-

physiologic and mechanical properties observed at cellular and vascular levels. This study provides a new method

at the level of basic science to evaluate the solutions for heart/lung preservation.
To obtain the best results in lung transplantation, the preser-

vation of donor lung is evaluated. Since the early reports on

safe lung preservation for 12 to 24 hours with Perfadex (Vi-

trolife Sweden, Kungsbacka, Sweden),1,2 this solution has

gained wide use in lung transplantation surgery. Compared

with Euro-Collins (EC) solution, a reduction of perioperative

mortality and morbidity in clinical trials has demonstrated

that Perfadex provides superior maintenance of graft func-

tion after pulmonary transplantation and results in better

long-term survival.3,4 A recent study5 suggested that Perfa-

dex prevented moderate-to-severe posttransplant pulmonary

graft dysfunction; therefore, the use of Perfadex instead of

EC (or Papworth) should reduce pulmonary graft dysfunc-

tion in lung transplantation. Perfadex is also reported to be

useful in the preservation of lungs from elderly donors.6

On the other hand, Celsior (IMTIX SangStat Company,

Lyon, France) solution, a high-sodium, low-potassium,

extracellular-type solution (Table 1), was formulated specif-

ically for heart preservation and designed to prevent cell-

swelling, oxygen-derived free radical injury and contracture

by enhancement of energy production and limitation of cal-

cium overload.7,8 This solution was then developed as one of

the alternative solutions for pulmonary preservation9,10 and

was demonstrated to improve the function of porcine pulmo-

nary grafts stored for 24 hours.11

In lung preservation, the protection of endothelial function

has become an important issue because endothelium plays an

important role in regulating the vascular tone of pulmonary

circulation. It is well known that nitric oxide (NO), prostacy-

clin (PGI2), and a non-NO and non-PGI2 (NNONPG)

pathway, also referred to as endothelium-derived hyperpola-

rizing factor (EDHF) released by vascular endothelium, con-

tribute to endothelium-dependent relaxation.12 We have

demonstrated that hyperkalemia alters the coronary endothe-

lial function through the NNONPG pathway13,14 and that the

mechanism is the reduced hyperpolarization of the smooth
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Abbreviations and Acronyms
BK ¼ bradykinin

CI ¼ confidence interval

EC ¼ Euro-Collins

EDHF ¼ endothelium-derived

hyperpolarizing factor

HbO ¼ oxyhemoglobin

Indo ¼ indomethacin

L-NNA ¼ N-nitro-L-arginine

NNONPG ¼ non-nitric oxide and non-prostacyclin

NO ¼ nitric oxide

PGI2 ¼ prostacyclin

UW ¼ University of Wisconsin

muscle cell caused by the depolarizing effect of high potas-

sium concentration.13-16 We demonstrated that clinically

used hyperkalemic solutions, such as St Thomas Hospital

solution (containing 16–20 mmol/L Kþ),17 University of

Wisconsin (UW) solution (containing 125 mmol/L Kþ),18

and the relatively low-Kþ solution, Celsior (containing 15

mmol/L Kþ),19 alter the EDHF-mediated endothelial func-

tion in the porcine coronary circulation. In particular, we re-

ported the harmful effect of hyperkalemic lung preservation

solutions, including EC (containing 115 mmol/L Kþ) and

UW solutions, on EDHF-mediated hyperpolarization and

relaxation.20,21

Although it has been reported21 that extracellular-type so-

lutions (ie, Perfadex [containing 6 mmol/L Kþ] and Celsior)

are associated with better lung preservation than intracellu-

lar-type solutions in clinical transplantation, the comparative

effect between Perfadex and Celsior solutions remains con-

troversial.22-24

The present study was therefore designed to evaluate the

effects of Perfadex and Celsior solutions on the NNONPG

(EDHF)-mediated relaxation and associated cellular hyper-

polarization under conditions similar to those in the clinical

setting.

MATERIALS AND METHODS
All experiments were performed in accordance with institutional guide-

lines. This investigation conformed to the ‘‘Guide for the Care and Use of

Laboratory Animals,’’ published by the US National Institutes of Health

(Publication No. 85–23, revised 1996).

Vessel Preparation
Fresh porcine lungs collected from a local slaughterhouse were placed in

a container filled with cold Krebs solution (4�C) and immediately trans-

ferred to the laboratory. The transportation time was less than 1 hour. On

receipt of the lung, small (micro) pulmonary arteries (usually the third

branches of the left or right apical lobe, diameter 300–600 mm) were care-

fully dissected and removed under a microscope within 1 hour. The vessels

were cleaned of fat and connective tissue and cut into cylindric rings 2 mm

in length under a microscope. The ring was guided with a suitable length of

stainless steel wires (40 mM in diameter) through its lumen. The wire was
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fixed tightly on a jaw in a 2-channel myograph (model 500A; JP Trading,

Aarhus, Denmark), and another wire was passed lightly through the vascular

lumen and then anchored the other jaw of the same chamber. These 2 wires

were attached to a force transducer or micrometer. An adjustable microme-

ter can be used to pull the jaws apart, stretching the artery between the 2 par-

allel wires. A calibrated force transducer was used to measure the force with

the output shown on a computer screen, and the graphs were printed in

a printer. Data were digitized and stored in the computer. The Krebs solution

(Table 1) was aerated with a gas mixture of 95% oxygen and 5% carbon

dioxide at 37�C during preparation.

Normalization
After the ring was mounted in the myograph and equilibrated for 30 min-

utes, a previously described method25 was used to normalize the ring under

a condition simulating the transmural pressure encountered in vivo in the

pulmonary microcirculation. Briefly, the arterial rings were progressively

stretched until the passive transmural pressure reached 40 mm Hg, and

the pressure was immediately released. The computerized program deter-

mines the length–tension exponential curve for each ring and gives the in-

ternal circumference and diameter at a pressure of 40 mm Hg. The internal

circumference was then set to a value estimated to be equivalent to 90% of

the circumference at a passive transmural pressure of 40 mm Hg throughout

the experiment. The vessels were then released to the normalized value. This

degree of passive tension at this setting is the passive or resting situation in

the absence of constricting tone and was maintained throughout the exper-

iments. In the myograph model 500A, the normalization procedure was per-

formed automatically.

Cellular Electrophysiologic Study
The myograph was mounted within a Faraday metal-screened cage. A

conventional glass microelectrode, filled with 3 mol/L KCl (tip resistance,

40–80 MU), was advanced using a pipette holder mounted on a 3-dimen-

sional vernier-type hydraulic micromanipulator and inserted into a single

smooth muscle cell from the adventitial surface of the rings. The electrical

signals were amplified by means of a battery-operated, low-noise, wide-

band microelectrode amplifier electrometer (Electro 705; World Precision

TABLE 1. Composition of Perfadex and Celsior solutions compared

with the physiologic solution (Krebs)

Composition Krebs

Celsior

(IMTIX SangStat

Company, Lyon,

France)

Perfadex

(Vitrolife Sweden,

Kungsbacka,

Sweden)

Naþ (mmol/L) 143.4 100 138

Kþ (mmol/L) 5.9 15 6

Ca2þ (mmol/L) 2.5 0.26 0.27

Mg2þ (mmol/L) 1.2 13 0.8

Cl� (mmol/L) 128.7 41.5 142

HCO3
� (mmol/L) 25 — —

SO4
2� (mmol/L) 1.2 0 0.8

H2PO4
� (mmol/L) 1.2 0 0.8

HPO4
2� (mmol/L) — — —

Glucose (mmol/L) 11.1 0 5

Lactobionic acid (g/L) — 80 —

THAM (mmol/L) — — 1

Dextran (g/L) — — 50

Histidine (mmol/L) — 30 —

Mannitol (mmol/L) — 60 —

Glutathione — 3 —

Glutamate — 20 —

Osmolarity (mosmol/kg) 319 360 325
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Instruments Inc, Sarasota, Fla). The output signals were monitored contin-

uously on a dual-trace oscilloscope (model 2120 B; World Precision Instru-

ments Inc) and simultaneously recorded by a computer with the installed

PicoScope program (Pico Technology Limited, Hardwick, UK). The fol-

lowing criteria were used to assess the validity of a successful impalement:

(1) a sudden negative shift in voltage, followed by (2) a stable negative

voltage for more than 2 minutes, and (3) an instantaneous return to the

previous voltage level on dislodgement of the microelectrode, as previously

reported.19,26

Experimental Protocols
All rings were equilibrated at 37�C and aerated with 95% oxygen and

5% carbon dioxide for 30 minutes before and after normalization. The fol-

lowing protocols were used.

Isometric Force Study (Group I; n ¼ 8 in Each
Subgroup): Bradykinin-induced, EDHF-mediated
Relaxation

In the relaxation studies, N-nitro-L-arginine (L-NNA) (300 mM), an NO

synthase inhibitor, oxyhemoglobin (HbO, 20 mM), an NO scavenger, and

indomethacin (Indo, 7 mM), a cyclooxygenase inhibitor, were added to

the chamber for 30 minutes. A thromboxane A2 mimetic U46619 (–8 log

M) was then added to contract the rings. When the contraction reached a sta-

ble plateau (usually 15 minutes), cumulative concentration-relaxation

curves to bradykinin (BK) (–10 to –6.5 log M) were established.

The arteries were then stored in Krebs (group Ia, control), Perfadex

(group Ib), or Celsior (group Ic) solution at 4�C for 4 hours, followed by

washout with Krebs within 45 minutes at 37�C. The NNONPG-mediated

relaxation to BK was induced again. In pilot experiments under normaliza-

tion, after a washout procedure with Krebs solution and equilibrium for

a certain period, the repeated BK-induced, NNONPG (EDHF)-mediated

relaxation in the U46619-precontraction remained unchanged.

Cellular Electrophysiologic Study (Group II; n¼ 6 in
Each Subgroup): NNONPG-mediated Cellular
Hyperpolarization and Associated Relaxation

The small pulmonary arterial rings were mounted in the myograph and

then normalized to the physiologic pressure. The micrometer parameters

were recorded, and the pressure was then released. The rings were then in-

cubated in Krebs (group IIa, control), Perfadex (group IIb), or Celsior

(group IIc) solution at 4�C for 4 hours, similar to the above protocol. The

rings were then set at the previous micrometer parameters to be under phys-

iologic pressure. In the presence of Indo, L-NNA, and HbO in the myograph

chamber, the resting membrane potential and resting force were simulta-

neously recorded. When Perfadex or Celsior solution was replaced with

Krebs within 30 minutes at 37�C, the NNONPG-mediated cellular hyperpo-

larization (in a single smooth muscle cell) and associated relaxation induced

by BK (–7.0 log M) were recorded. During this period, the cellular mem-

brane potential and the force were continuously measured.

Data Analysis
Two-way analysis of variance was used for comparison in isometric

force studies. Paired Student t test was used to calculate the difference of

self-control comparison on the NNONPG-mediated hyperpolarization.

One-way analysis of variance or unpaired Student t test was used to calcu-

late the difference between groups.

Drugs
The drugs used and their sources were as follows: BK, L-NNA, Indo, and

hemoglobin were from Sigma Chemical Co (St Louis, Mo). Solutions of

L-NNA (dissolved in distilled water) and Indo (dissolved in ethanol) were

stored at 4�C. Commercial bovine hemoglobin was dissolved in 0.9%

saline solution to make up a 3-mL stock solution. The stock solution was

subsequently reduced to HbO by the addition of a small amount (<0.3 g)

of sodium dithionite. Excessive sodium dithionite was extracted by running

the solution through an Econo-Pac 10DG column (Bio-Rad, Hercules,

Calif) equilibrated with 0.9% saline solution. The HbO solutions were

frozen in aliquots at�20�C and stored for up to 14 days. The Celsior solution

was purchased from IMTIX SangStat Company (Lyon, France). Perfadex

solution was donated by Vitrolife Sweden (Kungsbacka, Sweden).

RESULTS
Relaxation Study: NNONPG-mediated Relaxation
(Group I)
Resting force. No significant differences were detected be-

fore and after cold storage in Perfadex or Celsior solutions in

each group regarding the resting force (group Ia: 2.5 � 0.2

mN vs 2.4 � 0.3 mN, P ¼ .10, 95% CI, –0.029–0.246;

group Ib: 2.7 � 0.2 mN vs 2.7 � 0.3 mN, P ¼ .95, 95%
CI, –0.131–0.123; group Ic: 2.6 � 0.5 mN vs 2.6 � 0.3

mN, P ¼ .97, 95% CI, –0.482–0.467).

U46619-induced precontraction. The concentration of

U46619 varied from –8 log M to –7.7 log M to maintain a sim-

ilar stable contraction force before and after exposure to Per-

fadex or Celsior solution in each group (group Ia 6.1 � 0.5

mN vs 6.4 � 0.7 mN, P ¼ .56, 95% CI, –1.077 to 0.632;

group Ib: 7.5 � 0.6 mN vs 8.0 � 0.7 mN, P ¼ .14, 95%
CI, –1.316 to 0.234; group Ic: 6.8 � 0.8 mN vs 7.3 � 0.8

mN, P ¼ .2, 95% CI, –1.465 to 0.335).

NNONPG (EDHF)-mediated Relaxation
Group Ia (control). No significant differences in the maxi-

mal NNONPG (EDHF)-mediated relaxation by BK were de-

tected before and after cold storage in Krebs solution

(66.2% � 6.1% vs 61.8% � 2.6%, P ¼ .36; 95%
CI, –6.32 to 15.1; Figure 1, A).

Group Ib. After cold storage in Perfadex solution, no sig-

nificant differences were detected in the maximal NNONPG

(EDHF)-mediated relaxation (63.3% � 5.5% vs 56.8% �
3.9%, P ¼ .17, 95% CI, –3.9% to 16.9%; Figure 1, B),

with no significant change of the EC50 (–7.86 � 0.09 vs

–7.81 � 0.1 log M, P ¼ .76, 95% CI, –0.45 to 0.34 log M).

Group Ic. In contrast, after incubation in Celsior solution,

the maximal NNONPG (EDHF)-mediated relaxation to

BK decreased from 59.7% � 7.7% to 37.3% � 7.2%,

P < .01; 95% CI, 11.5–33.4, (Figure 1, C). In addition,

the EC50 significantly increased from –7.75 � 0.06 to

–7.29 � 0.13 (P < .05, 95% CI, 0.08–0.84 log M).

Further, although there were no significant differences in

the relaxation before incubation between group Ib and group

Ic (63.3% � 5.5% vs 59.7% � 7.7%, 95% CI, –16.6% to

23.9%, P > .05), the NNONPG-mediated relaxation was

significantly higher after incubation in Perfadex (group Ib:

56.8% � 3.9%) than after incubation in Celsior (group Ic:

37.3% � 7.2%; P < .05, 95% CI, 2%–37.1%). This
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difference also suggests a protective effect of Perfadex solu-

tion on the NNONPG-mediated relaxation compared with

Celsior solution.

Electrophysiologic Study (Group II): The Resting
Cellular Membrane Potential of Single Smooth
Muscle Cell

In comparison with the vessel incubated in Perfadex

(group IIb: –56.7� 0.9 mV, n¼ 6) or Krebs solution (group

IIa: –58.7� 0.6 mV, n¼ 6), the resting membrane potential

of a single smooth muscle cell was depolarized after incuba-

tion in Celsior solution even within 30 minutes after washout

with Krebs solution (group IIc: –42.8 � 1.3 mV, P< .01

compared with group IIa or group IIb) (Figures 2 and 3).

NNONPG (EDHF)-mediated Cellular
Hyperpolarization

The NNONPG-mediated cellular hyperpolarization was

significantly reduced after incubation in Celsior solution

(group IIc: 4.5 � 0.2 mV, 95% CI, 2.0–4.4 mV) compared

with Krebs (6.6� 0.1 mV, P<.01) or Perfadex solution (6.3

� 0.3 mV, P< .01) (Figure 4). No significant differences

were detected on EDHF-mediated cellular hyperpolarization

between Perfadex and Krebs solution (P ¼ .36).

Cellular Hyperpolarization-associated Relaxation
During the measurement of the cellular membrane poten-

tial, the associated relaxation was simultaneously recorded.

Because hyperpolarization and relaxation were induced

from the resting status without precontraction tone, hyperpo-

larization-associated relaxation was in a small range (0.32�
0.02 mN in group IIa, Krebs solution). The relaxation after

incubation in Celsior solution (group IIc: 0.2 � 0.02 mN,

P< .01, 95% CI, –0.16 to –0.07 mN) was significantly re-

duced compared with Perfadex incubation (group IIb: 0.3 �
0.02 mN, P< .01). In contrast, no significant differences in

hyperpolarization-associated relaxation were detected after

incubation between Perfadex and Krebs (P>.05) (Figure 4).

DISCUSSION
This in vitro study demonstrates that the clinically used

lung preservation solution Perfadex is superior to Celsior so-

lution in terms of the vascular preservation of the pulmonary

resistance artery regarding the NNONPG pathway. This

FIGURE 1. Concentration-relaxation curves for BK (–10 to –6.5 log M) in

the U46619 (10 nM)–precontracted pulmonary microarteries in the presence

of Indo (7 mM), L-NNA (300 mM), and HbO (20 mM) before (control; solid

circles) and after (open circles) cold storage in Krebs (A; group Ia), Perfadex

(Vitrolife Sweden, Kungsbacka, Sweden) (B; group Ib), or Celsior (IMTIX

SangStat Company, Lyon, France) (C; group Ic) solution at 4�C for 4 hours.

Data are shown as mean � standard error of the mean. *P<.05. **P<.01

compared with the control group (n¼ 8, paired t test). NNONPG, Non-nitric

oxide and non-prostacyclin.

ardiovascular Surgery c Volume 137, Number 2 495
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finding may explain the superior clinical results in using Per-

fadex solution.

Celsior is well known as a relatively new preservation so-

lution for heart transplantation. In recent years, Celsior has

also been shown to improve the protection of pulmonary

grafts. As reported,9 compared with the low-potassium EC

solution (containing 40 mmol/L of potassium), Celsior solu-

tion provides a significantly increased oxygenation ability,

lower pulmonary vascular resistance, and decreased wet/

dry ratio during the lung preservation. Studies have reported

that Celsior solution improved the endothelial viability and

proliferative capability of endothelial cells in cultured hu-

man greater saphenous vein,27 and that endothelin and in-

ducible NO synthase gene expression were significantly

higher after cold storage in Celsior solution compared with

UW solution.28 On the other hand, Celsior solution contains

15 mmol/L Kþ that is still hyperkalemic, although the Kþ

concentration is relatively lower compared with UW or other

hyperkalemic solutions. We have demonstrated that in por-

cine resistance coronary arteries, Celsior solution19 impairs

EDHF-mediated endothelial function.

The present study clearly shows that Celsior solution de-

polarizes the resting cellular membrane potential of the pul-

monary smooth muscle cell (Figures 2 and 3) and reduces

the NNONPG (EDHF)-mediated hyperpolarization and as-

sociated relaxation (Figure 4) after cold storage at 4�C for

4 hours, and that the effect exists at least for 30 minutes after

washout with warm Krebs.

In contrast, Perfadex, as an almost normokalemic solution

containing only 6 mmol/L Kþ, has been reported to provide

sufficient lung preservation for 27 hours of cold ischemia

and significant functional and histologic improvement with

retrograde perfusion.29 However, the effect of Perfadex

solution on cellular membrane hyperpolarization related to

pulmonary endothelial function has not been investigated.

We hypothesized that because of the normokalemic

-60

-40

-20

0
Krebs Perfadex Celsior

R
es

tin
g 

M
em

br
an

e 
Po

te
nt

ia
l (

m
V)

**##

FIGURE 3. The resting membrane potential from small pulmonary arteries

after exposure to Krebs (control, group IIa), Perfadex (group IIb), or Celsior

(group IIc) solution at 4�C for 4 hours followed by washout with Krebs so-

lution within 30 minutes in the presence of Indo (7 mM), L-NNA (300 mM),

and HbO (20 mM). ** or ##P<.01 compared with control (Krebs**) or Per-

fadex (##) group. Data are shown as mean � standard error of the mean.

FIGURE 2. Original tracings of NNONPG(EDHF)-mediated hyperpolar-

ization induced by BK (–7 log M) in porcine pulmonary arteries in the pres-

ence of Indo (7 mM), L-NNA (300 mM), and HbO (20 mM) after incubation

in Krebs (control), Perfadex, or Celsior solution at 4�C for 4 hours. BK,

Bradykinin.
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components in Perfadex solution, it may maintain the cellular

membrane potential of the pulmonary smooth muscle cell at

the normal level, and this is why the NNONPG-mediated en-

dothelial function is preserved. The present study supports this

hypothesis and demonstrates that after cold storage at 4�C for 4

hours, unlike Celsior solution that depolarizes the membrane

potential, Perfadex does not alter the resting membrane poten-

tial of the pulmonary smooth muscle cell and NNONPG

(EDHF)-mediated endothelial function, including relaxation

and the associated cellular membrane hyperpolarization.

As discussed above, on the basis of the present and our

previous studies,13-21 the differences in the NNONPG
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FIGURE 4. The NNONPG (EDHF)-mediated hyperpolarization (A) and

associated relaxation (B) from small pulmonary arteries induced by BK sig-

nificantly after exposure to Perfadex solution (group IIb) or Celsior (group

IIc) solution at 4�C for 4 hours in the presence of Indo (7 mM), L-NNA (300

mM), and HbO (20 mM), followed by washout with Krebs solution within 30

minutes. Note that both hyperpolarization (A) and associated relaxation (B)

remain after exposure to Perfadex solution but decreased after exposure

to Celsior solution. ** or ##P < .01 compared with control (group IIa,

Krebs**) or Perfadex (##) group. Data are shown as mean� standard error

of the mean. NNONPG, Non-nitric oxide and non-prostacyclin.

The Journal of Thoracic and C
(EDHF)-mediated hyperpolarization and relaxation after

incubation with Perfadex and Celsior solutions are most

likely due to the difference in the potassium concentration

in these solutions.

Ischemia-reperfusion injury predominately injures the al-

veolar capillary endothelial cells, resulting in loss of barrier

function and alveolar edema accumulation. The present

study does not provide information on the endothelium at

the blood–air barrier because the study model concerns the

endothelium-smooth muscle interaction at the resistance ar-

tery level in the lung, that is, the present study investigates

the preservation of the pulmonary endothelium at the vascu-

lar level and not the alveolar level. The experimental model

in the present study is not suitable to investigate the alveolar

endothelium. However, a recent morphologic study demon-

strates that Perfadex effectively prevents intra-alveolar, sep-

tal, and peribronchovascular edema formation, as well as

injury of the blood–air barrier during ischemia-reperfusion.

Celsior was not effective in preserving the lung from mor-

phologic ischemia-reperfusion injury.30

On the other hand, an intact vasculature is an essential part

of normal lung function. A damaged vasculature, particularly

at the level of resistance vessel, would change the vascular

tone. For example, the mechanical and electronic change of

the endothelium-smooth muscle interaction at the resistance

vessel level seen in the present study—with damaged

NNONPGH function—would increase the vascular tone

and arterial resistance, which may affect the perfusion flow

to the transplanted lung after transplantation.30 In lung trans-

plantation, it has been demonstrated that the release of NO is

diminished31,32 because of the damage to the vascular endo-

thelium. The present study, from a new angle—the

NNONPG pathway—demonstrates the effect of the preser-

vation solutions. The NNONPG pathway (often referred to

as EDHF) is a backup mechanism for NO.12 Therefore, the

present study demonstrates that in addition to NO, the second

pathway to modulate the pulmonary vascular tone—

NNONPG (inhibited by smooth muscle depolarization)—is

damaged by Celsior but preserved by Perfadex solution.

The clinical relevance is therefore obvious that Perfadex

may protect the vascular endothelium in the lung to better

modulate the perfusion flow to the transplanted lung.

Table 1 shows a comparison of the compositions of these

2 preservation solutions with the normal physiologic solu-

tion (Krebs), which has simple physiologic compositions.

The composition of Perfadex is closer to Krebs in the con-

centration of Naþ, Kþ, Mg2þ, Cl–, SO4
2–, and H2PO4

–. The

major difference is its content of dextran (50 g/L). The addi-

tion of the large molecule dextran is believed to be important

in lung preservation. Dextran probably has a crucial role in

the preservation of vascular endothelial/smooth muscle cells

and pulmonary parenchymal cells. Krebs solution is not

used for heart or lung preservation most likely because phys-

iologic solutions do not sufficiently preserve parenchymal
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cells in the heart (cardiac myocytes) and lung; therefore, spe-

cific solutions are designed for this purpose.

Limitations
The present study is an in vitro experimental investigation

at the tissue (vascular) and cellular level. The observed effect

on the NNONPG function of the endothelium-dependent

smooth muscle relaxation and hyperpolarization of the pul-

monary arteries in vivo remains to be further defined. In ad-

dition, the lung tissue was first preserved in cold Krebs

solution for transportation and then subjected to exposure

to the preservation solutions, although the establishment of

the control group (Krebs) may eliminate this influence.

The study was performed in porcine pulmonary arteries,

and differences between this vasculature and human vascu-

lature should be kept in mind.

Conclusions
Both Perfadex and Celsior solutions have been used clin-

ically for lung transplantation and shown to decrease ische-

mia-reperfusion injury of the donor lung and to improve

lung function in lung transplantation. The present study

has provided evidence that in regard to the protection of pul-

monary endothelium-dependent smooth muscle relaxation

and hyperpolarization, Perfadex is superior to Celsior solu-

tion at both the cellular and vascular levels. Further investi-

gations are warranted to study these effects in patients.
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