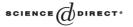


Available online at www.sciencedirect.com



Theoretical Computer Science 337 (2005) 360-369

Theoretical Computer Science

www.elsevier.com/locate/tcs

Note

The computational complexity of distance functions of two-dimensional domains

Arthur W. Chou^a, Ker-I Ko^{b,*,1}

^a Department of Mathematics and Computer Science, Clark University, Worcester, MA 01610, USA ^bDepartment of Computer Science, State University of New York at Stony Brook, Stony Brook, NY 11794-4400, USA

Received 31 August 2004; accepted 10 November 2004

Communicated by D.-Z. Du

Abstract

We study the computational complexity of the distance function associated with a polynomial-time computable two-dimensional domains, in the context of the Turing machine-based complexity theory of real functions. It is proved that the distance function is not necessarily computable even if a two-dimensional domain is polynomial-time recognizable. On the other hand, if both the domain and its complement are strongly polynomial-time recognizable, then the distance function is polynomial-time computable if and only if P = NP.

© 2004 Elsevier B.V. All rights reserved.

Keywords: Computational complexity; Polynomial-time computability; Two-dimensional domain; Distance function; NP

1. Introduction

Assume that $S \subseteq \mathbb{R}^2$ is a bounded two-dimensional domain (i.e., a bounded, connected open set). We let $\delta_S(\mathbf{x})$ denote the distance between a point \mathbf{x} in \mathbb{R}^2 and the boundary Γ_S of set *S*. Intuitively, the distance function δ_S is computable if the set *S* itself is computable: We can search for the nearest point $\mathbf{y} \notin S$ and output the distance between \mathbf{x} and \mathbf{y} . Indeed, Brattka and Weihrauch [1] showed that for several formulations of computable closed sets in \mathbb{R}^2 , the associated distance function is also computable.

^{*} Corresponding author.

E-mail addresses: achou@clarku.edu (A.W. Chou), keriko@cs.sunysb.edu (K. Ko)

¹ The research of this author was supported in part by National Science Foundation grant CCF 0430124.

^{0304-3975/\$ -} see front matter © 2004 Elsevier B.V. All rights reserved. doi:10.1016/j.tcs.2004.11.016

When we consider the computational complexity of the distance function δ_S with respect to the computational complexity of the set *S*, the situation is different. For instance, in the context of the Turing machine-based complexity theory, Chou and Ko [2] showed the following result: If $P \neq NP$, then there exists a simply connected domain $S \subseteq [0, 1]^2$ whose boundary Γ_S is a polynomial-time computable Jordan curve (i.e., the image of a polynomial-time computable function *f* from [0, 1] to [0, 1]², which is one-to-one except that f(0) = f(1), but its distance function δ_S is not polynomial-time computable.

In this note, we continue the investigation of the computational complexity of the distance functions δ_S of polynomial-time computable sets $S \subseteq [0, 1]^2$. We consider the following two formulations of polynomial-time computable two-dimensional regions [2]: A bounded two-dimensional domain *S* is called *polynomial-time recognizable* if there is a polynomialtime oracle Turing machine *M* such that, for any oracles ϕ_1 , ϕ_2 representing a point $\mathbf{x} \in \mathbb{R}^2$ and any input integer n > 0, $M^{\phi_1, \phi_2}(n)$ correctly determines whether $x \in S$ for all points \mathbf{x} which have distance at least 2^{-n} away from the boundary of *S*. It is called *strongly polynomial-time recognizable* if, furthermore, $M^{\phi_1, \phi_2}(n)$ gives correct answers for all $\mathbf{x} \in S$ (thus, $M^{\phi_1, \phi_2}(n)$ can make mistakes only for those \mathbf{x} not in *S* but are within the distance of 2^{-n} of the boundary of *S*). The general question we ask is the following: What is the time complexity of δ_S if *S* is known to be polynomial-time recognizable, or strongly polynomial-time recognizable? Our main results can be summarized as follows:

(1) A polynomial-time recognizable two-dimensional domain S may have a noncomputable distance function δ_S , even if S is simply connected and its boundary is a Jordan curve.

(2) If both a bounded, simply connected two-dimensional domain and its complement are strongly polynomial-time recognizable, then the associated distance function must be polynomial-time computable relative to a set in NP.

(3) If $P \neq NP$, then there exists a bounded, simply connected two-dimensional domain *S* whose boundary is a Jordan curve such that both *S* and its complement are strongly polynomial-time recognizable, but the associated distance function δ_S is not polynomial-time computable.

The above result (1) seems to suggest that the notion of polynomial-time recognizability is too weak compared with other notions of computable two-dimensional sets. Results (2) and (3) agree with earlier results of Chou and Ko [2], and indicate that nondeterministic polynomial-time is the inherent complexity of distance functions.

Our basic computational model for real-valued functions and two-dimensional domains is the oracle Turing machine. For the theory of computational complexity of real functions based on this computational model, see [2,3,7,8]. We include a short summary of the definitions and notation of this theory in Section 2. For the general theory of computable analysis based on the Turing machine model, see, for instance, [9,10]. The complexity classes defined in this paper are the standard ones of the discrete theory of NP-completeness; see, for instance, [5].

2. Definitions and notation

The basic computational objects in continuous computation are dyadic rationals $\mathbb{D} = \{m/2^n : m \in \mathbb{Z}, n \in \mathbb{N}\}$. Each dyadic rational *d* has infinitely many binary representations,

with arbitrarily many trailing zeros. For each $n \in \mathbb{N}$, we let \mathbb{D}_n denote the class of dyadic rationals which have a binary representation of at most *n* bits to the right of the binary point; that is, $\mathbb{D}_n = \{m/2^n : m \in \mathbb{Z}\}.$

We say a function $\phi: \mathbb{N} \to \mathbb{D}$ binary converges to a real number x, or represents a real number x, if (i) for all $n \ge 0$, $\phi(n) \in \mathbb{D}_n$, and (ii) for all $n \ge 0$, $|x - \phi(n)| \le 2^{-n}$. For any $x \in \mathbb{R}$, there is a unique function $\phi_x: \mathbb{N} \to \mathbb{D}$ that binary converges to x and satisfies the condition $x - 2^{-n} < \phi_x(n) \le x$ for all $n \ge 0$. We call this function ϕ_x the standard Cauchy function for x.

To compute a real-valued function $f: \mathbb{R} \to \mathbb{R}$, we use oracle Turing machines (TMs) as the computational model. We say an oracle TM *M* computes a function $f: \mathbb{R} \to \mathbb{R}$ if, for a given oracle ϕ that binary converges to a real number *x* and for a given input n > 0, $M^{\phi}(n)$ halts and outputs a dyadic rational *e* such that $|e - f(x)| \leq 2^{-n}$. When the oracle ϕ is the standard Cauchy function for *x*, we also write $M^{x}(n)$ to denote the computation of $M^{\phi}(n)$. We say a function $f: \mathbb{R} \to \mathbb{R}$ is *polynomial-time computable* if there exists a polynomial-time oracle TM that computes *f*.

We write \mathbf{x} or $\langle x_1, x_2 \rangle$, where $x_1, x_2 \in \mathbb{R}$, to denote a point in the two-dimensional plane \mathbb{R}^2 . For any two points $\mathbf{x} = \langle x_1, x_2 \rangle$ and $\mathbf{y} = \langle y_1, y_2 \rangle$ in \mathbb{R}^2 , we write dist (\mathbf{x}, \mathbf{y}) or $|\mathbf{x} - \mathbf{y}|$ to denote the distance $\sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2}$ between them. For any point $\mathbf{x} \in \mathbb{R}^2$ and a closed set $A \subseteq \mathbb{R}^2$, we write dist $(\mathbf{x}, A) = \text{dist}(A, \mathbf{x}) = \min\{\text{dist}(\mathbf{x}, \mathbf{y}): \mathbf{y} \in A\}$. For any domain $S \subseteq \mathbb{R}^2$, let $\delta_S(\mathbf{x}) = \text{dist}(\mathbf{x}, \Gamma_S)$, where Γ_S is the boundary of *S*.

The notions of computable and polynomial-time computable real functions can be extended naturally to functions $f: \mathbb{R} \to \mathbb{R}^2$ and functions $f: \mathbb{R}^2 \to \mathbb{R}^2$. In particular, when an element of the domain of the function f is a point $\langle x_1, x_2 \rangle$ in \mathbb{R}^2 , the corresponding oracle TM uses two oracles ϕ_1, ϕ_2 which binary converge to x_1 and x_2 , respectively.

For any set $S \subseteq \mathbb{R}^2$, let χ_S denote its characteristic function, i.e., $\chi_S(\mathbf{x}) = 1$ if $\mathbf{x} \in S$, and $\chi_S(\mathbf{x}) = 0$ otherwise. Intuitively, *S* is computable (or, polynomial-time computable) if the function χ_S is computable (or, respectively, polynomial-time computable). Since χ_S is discontinuous at the boundary of *S*, the definition based on this concept is too strict. That is, suppose that we define a set *S* to be polynomial-time computable if there is a polynomial time oracle TM computing χ_S ; then, only two trivial sets, \mathbb{R}^2 and \emptyset , are polynomial-time computable. Chou and Ko [2] considered two different ways to relax the computability requirements of this concept. One of them is the following:

Definition 2.1. (a) A set $S \subseteq \mathbb{R}^2$ is called *polynomial-time recognizable* if there exist an oracle TM *M* and a polynomial *p* such that $M^{\phi,\psi}(n)$ computes $\chi_S(\mathbf{z})$ in time p(n) whenever (ϕ, ψ) represents a point \mathbf{z} in \mathbb{R}^2 whose distance to the boundary Γ_S of *S* is greater than 2^{-n} , i.e., the error set

$$E_n(M) = \{ \mathbf{z} \in \mathbb{R}^2 : (\exists (\phi, \psi) \text{ representing } \mathbf{z}) [M^{\phi, \psi}(n) \neq \chi_S(\mathbf{z})] \}$$

is a subset of $\{\mathbf{z} \in \mathbb{R}^2 : \operatorname{dist}(\mathbf{z}, \Gamma_{\mathrm{S}}) \leq 2^{-n}\}.$

(b) A set $S \subseteq \mathbb{R}^2$ is called *strongly polynomial-time recognizable* if there exist an oracle TM *M* and a polynomial *p* which satisfy the conditions of (a) above and, in addition, $E_n(M) \cap S = \emptyset$.

We note that if both *S* and its complement $S^c = \mathbb{R}^2 - S$ are strongly polynomial-time recognizable, then we can combine the two underlying machine to determine, for any point **x**, whether it is in *S* or is in S^c , or is within distance 2^{-n} of the boundary. This provides a stronger notion of polynomial-time computability of two-dimensional domains.

3. Distance function of a polynomial-time recognizable set

In this section, we show that polynomial-time recognizability of a two-dimensional domain *S* does not warrant even the computability of the associated distance function. We first show a simple example in which the boundary of the set *S* is not a Jordan curve.

Theorem 3.1. For any real number $r \in (0, 1/2)$, there exists a bounded, simply connected open set $S \subseteq [0, 1]^2$ such that S is polynomial-time recognizable, but $\delta_S(\langle 1/2, 1/2 \rangle) = r$.

Proof. Let s = 1/2 - r. Let *L* denote the line segment from (0, 1/2) to (s, 1/2). Define

$$S = (0, 1)^2 - L.$$

It is clear that $\delta_S(\langle 1/2, 1/2 \rangle) = 1/2 - s = r$. We claim that *S* is polynomial-time recognizable. Indeed, as far as polynomial-time recognizability is concerned, there is no difference between set *S* and $[0, 1]^2$. An oracle TM for *S* can determine whether a point **x** represented by oracles (ϕ_1, ϕ_2) is in *S* or not by checking whether an approximate dyadic point **d** of **x**, given by the oracle, is in $[0, 1]^2$ or not. All the errors occur only near the boundary of the square $[0, 1]^2$ or on the line segment *L*. \Box

In the above example, the distance $\delta_S(\langle 1/2, 1/2 \rangle)$ could be an arbitrary real number in (0, 1/2). This seems due to the fact that the boundary of set *S* is not a Jordan curve, and hence the Turing machine *M* that recognizes *S* can essentially ignore the line segment *L*. Indeed, if we require that the boundary Γ_S be a Jordan curve then, for any computable point $\mathbf{x} \in [0, 1]^2$, $\delta_S(\mathbf{x})$ cannot be an arbitrary real number any more, though it may still be a noncomputable real number.

We say that a real number *r* is a *right r.e.* real number if its right cut $R_r = \{d \in \mathbb{D}: d > r\}$ is an r.e. set. This means that there exists a TM M_1 which enumerates the set $R_r \cap (0, 1)$, i.e., M_1 prints strings representing dyadic rationals d in $R_r \cap (0, 1)$ one by one on its output tape. Similarly, we say that *s* is a *left r.e.* real number if its left cut $L_s = \{d \in \mathbb{D}: d < s\}$ is an r.e. set. We refer to Ko [6,7] for some basic discussions of these notions. (Note that in [4,11] "right r.e." real numbers are called "r.e." real numbers or "left computable", and that "left r.e." real numbers are called "co-r.e." or "right computable".)

Theorem 3.2. Let $S \subseteq [0, 1]^2$ be a simply connected open set whose boundary Γ_S is a Jordan curve. If S is polynomial-time recognizable, then for every computable point $\mathbf{x} \in [0, 1]^2$, $\delta_S(\mathbf{x})$ must be a right r.e. real number.

Proof. Let $T = \mathbb{R}^2 - (S \cup \Gamma_S)$. Let **x** be a fixed computable point in $[0, 1]^2$. Then, there is a computable sequence $\{\mathbf{x}_n\}$ of dyadic rational points in $[0, 1]^2$ that binary converges to

x (thus, $|\mathbf{x}_n - \mathbf{x}| \leq 2^{-n}$). Let $r = \delta_S(\mathbf{x})$. Assume that M_1 is a TM that polynomial-time recognizes set *S*. Consider the following TM *M* that halts on dyadic rationals *d* in the right cut of *r*:

Input:
$$d \in \mathbb{D}$$
.
For $m := 1$ to ∞ do
For $\mathbf{e} = \langle e_1, e_2 \rangle \in (\mathbb{D}_{m+2})^2 \cap [0, 1]^2$ do
Simulate $M_1^{e_1, e_2}(m+2)$;
If $M_1^{e_1, e_2}(m+2) = 0$ and $|\mathbf{x}_{m+2} - \mathbf{e}| \leq d - 2^{-m}$ then halt;

First, assume that $d > r = \delta_S(\mathbf{x})$. Then, there exists a point \mathbf{y} in Γ_S such that $|\mathbf{x} - \mathbf{y}| = r$. Since Γ_S is a Jordan curve, any open neighborhood of \mathbf{y} must contain a point in T; furthermore, it must contain a dyadic rational point in T, since \mathbb{D}^2 is dense in \mathbb{R}^2 . Let k be the least integer such that

(i) there exists a point $\mathbf{e} \in (\mathbb{D}_{k+2})^2 \cap T$ such that $|\mathbf{e} - \mathbf{y}| \leq 2^{-(k+2)}$, and (ii) $d - 2^{-k} > r$.

Fix a point $\mathbf{e} = \langle e_1, e_2 \rangle$ satisfying condition (i), and let *j* be the least integer such that (iii) $\delta_S(\mathbf{e}) \ge 2^{-j}$.

Let $m = \max\{k, j\} + 1$.

We claim that *M* will halt in the *m*th iteration if it did not halt before. In the *m*th iteration, when **e** is equal to the above fixed point, from condition (iii), $M_1^{e_1,e_2}(m+2)$ must output 0. In addition, we have

$$\begin{aligned} |\mathbf{x}_{m+2} - \mathbf{e}| &\leq |\mathbf{x}_{m+2} - \mathbf{x}| + |\mathbf{x} - \mathbf{y}| + |\mathbf{y} - \mathbf{e}| \\ &\leq 2^{-(m+2)} + r + 2^{-(k+2)} < d - 2^{-k} + 2^{-(k+2)} + 2^{-(m+2)} \\ &\leq d - 2^{-(k+1)} \leq d - 2^{-m}. \end{aligned}$$

Therefore, M will halt at this step.

Conversely, assume that *M* halts on input *d* with respect to integer *m* and point $\mathbf{e} = \langle e_1, e_2 \rangle$. Since $M_1^{e_1, e_2}(m+2) = 0$, we have either $\mathbf{e} \in T$ or $\delta_S(\mathbf{e}) \leq 2^{-(m+2)}$. In either case, we have

$$\begin{split} \delta_{S}(\mathbf{x}) &\leqslant |\mathbf{x} - \mathbf{e}| + 2^{-(m+2)} \\ &\leqslant |\mathbf{x} - \mathbf{x}_{m+2}| + |\mathbf{x}_{m+2} - \mathbf{e}| + 2^{-(m+2)} \\ &\leqslant 2^{-(m+2)} + d - 2^{-m} + 2^{-(m+2)} = d - 2^{-(m+1)} < d. \end{split}$$

Therefore, *M* works correctly on *d*. \Box

Theorem 3.3. For any right r.e. real number $r \in (0, 1/2)$, there is a simply connected open set $S \subseteq [0, 1]^2$ whose boundary Γ_S is a Jordan curve such that S is polynomial-time recognizable and $\delta_S(\langle 1/2, 1/2 \rangle) = r$.

Proof. Let s = 1/2 - r. Then, *s* is left r.e., i.e. its left cut $L_s = \{d \in \mathbb{D}: d < s\}$ is an r.e. set. This means that there exists a TM M_1 that enumerates the set $L_s \cap (0, 1)$, i.e., M_1 prints strings representing dyadic rationals *d* in $L_s \cap (0, 1)$ one by one on its output tape. Let s_1 be the first dyadic rational printed by M_1 , and, for n > 1, $s_n = \max(\{d \in \mathbb{D}: M_1 \text{ prints } d \text{ within } n \text{ moves}\} \cup \{s_1\})$. It is apparent that $s_1 \leq s_2 \leq \cdots$, and $\lim_{n \to \infty} s_n = s$. In addition, the sequence $\{s_n\}_{n=1}^{\infty}$ is polynomial-time computable.

364

Now, define rectangles S_n recursively as follows:

- (i) S_1 is the rectangle of width s_1 and height 2^{-2} , whose upper left corner is (0, 1/2).
- (ii) For $n \ge 2$, if $s_n = s_{n-1}$, then $S_{n-1} = S_n$.
- (iii) If $n \ge 2$ and $s_n > s_{n-1}$, then S_n is the rectangle of width $s_n s_{n-1}$ and height $2^{-(n+1)}$, whose upper left corner is $\langle s_{n-1}, 1/2 \rangle$ (i.e., the upper left corner of S_n is the same as the upper right corner of S_{n-1}).

Define

$$S = (0, 1)^2 - \bigcup_{n=1}^{\infty} S_n.$$

It is clear that $\delta_S((1/2, 1/2)) = 1/2 - s = r$. Since $\lim_{n\to\infty} s_n = s$, it follows that the boundary of *S* is a Jordan curve.

To see that S is polynomial-time recognizable, consider the following oracle TM M:

- *Oracles*: (ϕ_1, ϕ_2) , representing a point $\mathbf{x} \in \mathbb{R}^2$.
- Input: n > 0.
- (1) Ask the oracles to get a dyadic rational point $\mathbf{d} \in \mathbb{R}^2$ such that $|\mathbf{d} \mathbf{x}| \leq 2^{-n}$.
- (2) Compute s_1, s_2, \ldots, s_n , and construct S_1, \ldots, S_n .
- (3) If $\mathbf{d} \notin [0, 1]^2$ or if $\mathbf{d} \in \bigcup_{i=1}^n S_i$, then output 0, else output 1.

Without loss of generality, assume that both **x** and **d** are in $[0, 1]^2$. Then, the answer given by *M* can be wrong only if (a) $\mathbf{d} \notin \bigcup_{i=1}^{n} S_i$ but $\mathbf{x} \in \bigcup_{i=1}^{n} S_i$, or (b) $\mathbf{d} \in \bigcup_{i=1}^{n} S_i$ but $\mathbf{x} \notin \bigcup_{i=1}^{\infty} S_i$, or (c) $\mathbf{x} \in S_k$ for some k > n with $s_k > s_{k-1} \ge s_n$. In cases (a) and (b), **x** and **d** lie in the opposite sides of the boundary Γ_S and so **x** is within distance 2^{-n} of the boundary. In case (c), the condition $s_k > s_n$ implies that S_k is different from S_n and the height of S_k is $2^{-(k+1)} < 2^{-n}$, and so **x** must be within distance 2^{-n} of the boundary Γ_S . Therefore, *M* recognizes set *S*.

Corollary 3.4. There exists a simply connected open set $S \subseteq [0, 1]^2$ whose boundary Γ_S is a Jordan curve such that S is polynomial-time recognizable and δ_S is not a computable real function.

Proof. A computable real function must map a computable point **x** to a computable real number. It is known (see, e.g., [7]) that there are right r.e. real numbers which are not computable. \Box

4. Distance function of a strongly polynomial-time recognizable set

We have seen, in the last section, that for a polynomial-time recognizable set *S*, the distance function may not even be computable. In this section, we consider sets *S* with the property that both *S* and its complement S^c are strongly polynomial-time recognizable. For such sets, we show that the associated distance functions are polynomial-time computable if and only if P = NP.

Recall that P is the class of sets (of binary strings) that are acceptable by polynomialtime deterministic TMs, and NP is the class of sets (of binary strings) that are acceptable by polynomial-time nondeterministic TMs. **Theorem 4.1.** Assume that $S \subseteq [0, 1]^2$ is a simply connected open set. If both S and $S^c = \mathbb{R}^2 - S$ are strongly polynomial-time recognizable, then δ_S is polynomial-time computable relative to an oracle set $A \in NP$.

Proof. Let M_1 and M_0 be the oracle TMs that strongly polynomial-time recognize sets S and S^c, respectively. Let p(n) be a polynomial function that bounds the running time of both M_1 and M_0 . Define

$$A = \{ \langle d_1, d_2, L, n, i \rangle : d_1, d_2, L \in \mathbb{D}_n, n \ge 1, i \in \{0, 1\}, \\ (\exists e_1, e_2 \in \mathbb{D}_{p(n)}) [M_i^{e_1, e_2}(n) = 1, |\langle d_1, d_2 \rangle - \langle e_1, e_2 \rangle | \le L] \}.$$

It follows immediately from the existential quantifier characterization of NP (see, e.g., [5]) that A is in NP. The following TM M computes δ_S using oracle A.

Oracles: Set *A*; functions ϕ_1, ϕ_2 representing a point $\mathbf{x} \in \mathbb{R}^2$. (Without loss of generality, assume that $\mathbf{x} \in [0, 1]^2$.)

Input: n > 0.

- (1) Ask oracles ϕ_1, ϕ_2 to find a point $\mathbf{d} = \langle d_1, d_2 \rangle \in (\mathbb{D}_{n+1})^2$ such that $|\mathbf{d} \mathbf{x}| \leq 2^{-(n+1)}$.
- (2) Simulate M_1 and M_0 to get $a = M_1^{\phi_1, \phi_2}(n+1)$ and $b = M_0^{\phi_1, \phi_2}(n+1)$.
- (3) If a = 1 and b = 0, then binary search for $L \in \mathbb{D}_{n+1} \cap [0, 2]$ such that $\langle d_1, d_2, L, n+1, 0 \rangle \in A$ but $\langle d_1, d_2, L+2^{-(n+1)}, n+1, 0 \rangle \notin A$; output L.
- (4) If a = 0 and b = 1, then binary search for $L \in \mathbb{D}_{n+1} \cap [0, 2]$ such that $\langle d_1, d_2, L, n+1, 1 \rangle \in A$ but $\langle d_1, d_2, L+2^{-(n+1)}, n+1, 1 \rangle \notin A$; output L.
- (5) If a = 1 and b = 1, then output 0.

First, we note that for any **x**, the simulation of step (2) cannot output a = b = 0, since **x** is either in *S* or in *S*^c. Thus, the above algorithm for machine *M* is well defined.

Next, we verify that machine M computes δ_S correctly. If M reaches step (5), then one of M_1 or M_0 must have made a mistake. That means **x** must be within distance $2^{-(n+1)}$ of the boundary Γ_S of S. So, the output 0 is correct within error $2^{-(n+1)}$.

Assume that *M* reaches step (3). Then, we must have $\mathbf{x} \in S$. Suppose *M* outputs *L*. Then, we have $\langle d_1, d_2, L, n + 1, 0 \rangle \in A$, which implies that there exists a point $\mathbf{e} = \langle e_1, e_2 \rangle$ in $(\mathbb{D}_{p(n+1)})^2$ such that $M_0^{e_1, e_2}(n+1) = 1$ and $|\mathbf{e} - \mathbf{d}| \leq L$. From $M_0^{e_1, e_2}(n+1) = 1$, we know that either $\mathbf{e} \in S^c$ or $\delta_S(\mathbf{e}) \leq 2^{-(n+1)}$. Either way, we get

$$\delta_{S}(\mathbf{x}) \leq |\mathbf{x} - \mathbf{d}| + |\mathbf{d} - \mathbf{e}| + 2^{-(n+1)} \leq L + 2^{-n}.$$

On the other hand, let **y** be any point in Γ_S . Then, for the standard Cauchy functions ψ_1, ψ_2 for **y**, we must have $M_0^{\psi_1,\psi_2}(n+1) = 1$. Let $e_1 = \psi_1(p(n+1))$ and $e_2 = \psi_2(p(n+1))$. We must also have $M_0^{e_1,e_2}(n+1) = 1$ because M_0 cannot distinguish between **y** and $\mathbf{e} = \langle e_1, e_2 \rangle$ within p(n+1) moves. Now, $\langle d_1, d_2, L + 2^{-(n+1)}, n+1, 0 \rangle \notin A$ implies that $|\mathbf{d} - \mathbf{e}| > L + 2^{-(n+1)}$; or

$$|\mathbf{x} - \mathbf{y}| \ge |\mathbf{d} - \mathbf{e}| - |\mathbf{x} - \mathbf{d}| - |\mathbf{y} - \mathbf{e}| > L - 2^{-(n+1)}$$

Since y is an arbitrary point in Γ_S , we get $\delta_S(\mathbf{x}) > L - 2^{-(n+1)}$. Together, we get $|L - \delta_S(\mathbf{x})| \leq 2^{-n}$.

The case of *M* reaching step (4) is similar to the above case. To be more precise, if *M* reaches step (4), we must have $\mathbf{x} \in S^c$. Suppose *M* outputs *L*. Then, using the same argument, we can prove that $\langle d_1, d_2, L, n+1, 1 \rangle \in A$ implies $\delta_S(\mathbf{x}) \leq L + 2^{-n}$. For the second half of the proof, we note that for any point $\mathbf{z} \in \Gamma_S$, we can find a point $\mathbf{y} \in S$ with $|\mathbf{y} - \mathbf{z}| \leq 2^{-(n+1)}$. Now, using this point \mathbf{y} , we can show, by the same argument, that $\langle d_1, d_2, L + 2^{-(n+1)}, n+1, 1 \rangle \notin A$ implies $|\mathbf{x} - \mathbf{y}| > L - 2^{-(n+1)}$ and, hence, $|\mathbf{x} - \mathbf{z}| > L - 2^{-n}$. Together, we get $|L - \delta_S(\mathbf{x})| \leq 2^{-n}$.

Finally, we check that, in steps (3) and (4), the binary search needs to ask the oracles at most n+2 times, and so the machine *M* runs in polynomial time. Thus, δ_S is polynomial-time computable relative to an oracle in NP. \Box

When the boundary Γ_S of set *S* is a Jordan curve, a TM that strongly polynomial-time recognizes set $T = \mathbb{R}^2 - (S \cup \Gamma_S)$ works almost the same as one that strongly polynomial-time recognizes S^c . So, we get the following stronger result.

Corollary 4.2. Assume that $S \subseteq [0, 1]^2$ is a simply connected open set whose boundary Γ_S is a Jordan curve. If both S and $T = \mathbb{R}^2 - (S \cup \Gamma_S)$ are strongly polynomial-time recognizable, then δ_S is polynomial-time computable relative to a set $A \in NP$.

We note that the set S in the proof of Theorem 3.1 has the property that both S and $T = \mathbb{R}^2 - (S \cup \Gamma_S)$ are strongly polynomial-time recognizable. Thus, the condition in Corollary 4.2 that the boundary Γ_S is a Jordan curve is necessary.

Next, we show that the oracle set *A* in NP in Theorem 4.1 for the computation of δ_S is necessary.

Theorem 4.3. Assume that $P \neq NP$. Then, there exists a simply connected open set $S \subseteq [0, 1]^2$ whose boundary Γ_S is a Jordan curve, such that both S and $T = \mathbb{R}^2 - (S \cup \Gamma_S)$ are strongly polynomial-time recognizable, but δ_S is not polynomial-time computable.

Proof. Assume that $A \subseteq \{0, 1\}^*$ is a set in NP – P. Then, from the existential quantifier characterization of NP, we know that there exist a set $B \in P$ and a polynomial function p such that, for every string $w \in \{0, 1\}^*$ of length n,

 $w \in A \iff (\exists u, |u| = p(n)) \langle w, u \rangle \in B.$

For each string $t \in \{0, 1\}^*$ of length m, we write i_t to denote the unique integer between 0 and $2^m - 1$ whose m-bit binary expansion (with possible leading zeroes) is equal to t.

For each n > 0, let $a_n = 1 - 2^{-(n-1)}$. We divide the interval $[a_n, a_{n+1}]$ into 2^n subintervals of equal length, each corresponding to a string $w \in \{0, 1\}^n$. To be more precise, for each string $w \in \{0, 1\}^n$, we let $r_w = a_n + i_w \cdot 2^{-2n}$, and let $I_w = [r_w, r_w + 2^{-2n}]$. We further divide I_w into $2^{p(n)}$ subintervals of equal length, each corresponding to a string u of length p(n). That is, for each string u of length p(n), we let $s_{w,u} = r_w + i_u \cdot 2^{-p(n)-2n}$, and $J_{w,u} = [s_{w,u}, s_{w,u} + 2^{-p(n)-2n}]$. For each u of length p(n), we also define

$$h_u = \begin{cases} (2^{p(n)-1} - i_u) \cdot 2^{-p(n)-2n} & \text{if } i_u < 2^{p(n)-1}, \\ (i_u - 2^{p(n)-1} + 1) \cdot 2^{-p(n)-2n} & \text{if } i_u \ge 2^{p(n)-1}. \end{cases}$$

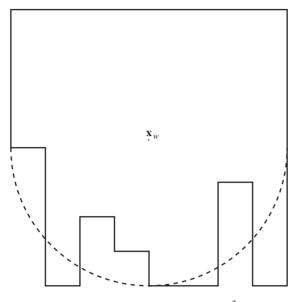


Fig. 1. Set S within the square $I_w \times [0, 2^{-2n}]$.

Then, we define a rectangle $T_{w,u}$ as follows: the rectangle $T_{w,u}$ has width $2^{-p(n)-2n}$, height h_u , and its lower left corner is $\langle s_{w,u}, 0 \rangle$.

Finally, define set

$$S = (0, 1)^2 - \bigcup_{\langle w, u \rangle \in B} T_{w, u}.$$

Fig. 1 shows set $S \cap I_w \times [0, 2^{-2n}]$, when, for instance, p(n) = 3, and $\langle w, 000 \rangle$, $\langle w, 010 \rangle$, $\langle w, 011 \rangle$, $\langle w, 110 \rangle$ are the only pairs $\langle w, u \rangle$ in *B*. The above limiting process clearly shows that the boundary of *S* is a Jordan curve.

Define $\mathbf{x}_w = \langle r_w + 2^{-2n-1}, 2^{-2n-1} \rangle$. Then, we can see easily that if $w \notin A$, then $\delta_S(\mathbf{x}_w)$ is equal to 2^{-2n-1} . If $w \notin A$, then we remove at least one $T_{w,u}$ from S and so $\delta_S(\mathbf{x}_w)$ is less than $2^{-2n-1} - 2^{-p(n)-2n-1}$ (cf. Fig. 1). Thus, whether $w \in A$ can be determined from an approximation d to $\delta_S(\mathbf{x}_w)$ within error $2^{-p(n)-2n-3}$. This means that δ_S is not polynomial-time computable, since we assumed that $A \notin P$.

It is left to show that both sets *S* and $T = \mathbb{R}^2 - (S \cup \Gamma_S)$ are strongly polynomial-time recognizable. In the following, we show an oracle TM *M* that strongly polynomial-time recognizes set *S*. The machine for set *T* is similar, and we omit it. Let M_B be the TM that determines whether $\langle w, u \rangle \in B$ in polynomial time.

Oracles: ϕ_1, ϕ_2 representing a point $\mathbf{x} \in \mathbb{R}^2$. *Input*: n > 0.

(1) Let $d_1 = \phi_1(p(n) + 2n)$ and $d_2 = \phi_2(p(n) + 2n)$. If $d_1 \notin (0, 1)$, then output 0 and halt.

- (2) Find integer k such that $a_k \leq d_1 < a_{k+1}$. If k > n, then output 1 if and only if $0 < d_2 < 1$, and halt.
- (3) If $k \leq n$, then find $w, u \in \{0, 1\}^*$ of length *n* and p(n), respectively, such that $d_1 \in J_{w,u}$.
- (4) Simulate M_B on $\langle w, u \rangle$. If $\langle w, u \rangle \notin B$, then output 1 if and only if $0 < d_2 < 1$; otherwise, output 1 if and only if $h_u < d_2 < 1$.

The correctness of the machine M is clear. In particular, if it gets k > n in step (2), then we know that the line segment from $\langle a_k, 0 \rangle$ to $\langle 1, 0 \rangle$ is within distance 2^{-2n} of the lower bottom of the boundary of S, and so the answer based on the condition $0 < d_2 < 1$ is either correct or incorrect but acceptable. We also observe that the computation of M runs obviously in polynomial time. Thus, S is strongly polynomial-time recognizable. \Box

Corollary 4.4. *The following are equivalent:*

- (a) P = NP.
- (b) For every simply connected open set $S \subseteq [0, 1]^2$, if both S and S^c are strongly polynomial-time recognizable, then δ_S is polynomial-time computable.
- (c) For every simply connected open set $S \subseteq [0, 1]^2$ whose boundary is a Jordan curve, if both S and $T = \mathbb{R}^2 (S \cup \Gamma_S)$ are strongly polynomial-time recognizable, then δ_S is polynomial-time computable.

References

- V. Brattka, K. Weihrauch, Computability on subsets of Euclidean space I: closed and compact subsets, Theoret. Comput. Sci. 219 (1999) 65–93.
- [2] A.W. Chou, K. Ko, Computational complexity of two-dimensional regions, SIAM J. Comput. 24 (1995) 923–947.
- [3] A.W. Chou, K. Ko, On the complexity of finding paths in a two-dimensional domain I: shortest paths, Math. Logic Quart. 50 (2004) 551–572; preliminary version in Proc. Internat. Conf. on Computability and Complexity in Analysis, Hagen, Germany, 2003.
- [4] R.G. Downey, Some computability-theoretical aspects of real and randomness, preprint, September 2001.
- [5] D.-Z. Du, K. Ko, Theory of Computational Complexity, Wiley, New York, 2000.
- [6] K. Ko, On the definitions of some complexity classes of real numbers, Math. System Theory 16 (1983) 95–109.
- [7] K. Ko, Complexity Theory of Real Functions, Birkhäuser, Boston, 1991.
- [8] K. Ko, Polynomial-time computability in analysis, in: Yu. L. Ershov, et al. (Eds.), Handbook of Recursive Mathematics, Vol. 2: Recursive Algebra, Analysis and Combinatorics, Studies in Logic and the Foundations of Mathematics, Vol. 139, Elsevier, Amsterdam, 1998, pp. 1271–1317.
- [9] M. Pour-El, I. Richards, Computability in Analysis and Physics, Springer, Berlin, 1989.
- [10] K. Weihrauch, Computable Analysis, Springer, Heidelberg, 2000.
- [11] X. Zheng, Recursive approximability of real numbers, Math. Logic Quart. 48 (Suppl. 1) (2002) S131–S156.