Note

The computational complexity of distance functions of two-dimensional domains

Arthur W. Chou ${ }^{\text {a }}$, Ker-I Ko ${ }^{\text {b, }, ~}{ }^{\text {, }}$
${ }^{\text {a Department of Mathematics and Computer Science, Clark University, Worcester, MA 01610, USA }}$
${ }^{\mathrm{b}}$ Department of Computer Science, State University of New York at Stony Brook, Stony Brook, NY 11794-4400, USA

Received 31 August 2004; accepted 10 November 2004
Communicated by D.-Z. Du

Abstract

We study the computational complexity of the distance function associated with a polynomial-time computable two-dimensional domains, in the context of the Turing machine-based complexity theory of real functions. It is proved that the distance function is not necessarily computable even if a twodimensional domain is polynomial-time recognizable. On the other hand, if both the domain and its complement are strongly polynomial-time recognizable, then the distance function is polynomial-time computable if and only if $\mathrm{P}=\mathrm{NP}$. © 2004 Elsevier B.V. All rights reserved.

Keywords: Computational complexity; Polynomial-time computability; Two-dimensional domain; Distance function; NP

1. Introduction

Assume that $S \subseteq \mathbb{R}^{2}$ is a bounded two-dimensional domain (i.e., a bounded, connected open set). We let $\overline{\delta_{S}}(\mathbf{x})$ denote the distance between a point \mathbf{x} in \mathbb{R}^{2} and the boundary Γ_{S} of set S. Intuitively, the distance function δ_{S} is computable if the set S itself is computable: We can search for the nearest point $\mathbf{y} \notin S$ and output the distance between \mathbf{x} and \mathbf{y}. Indeed, Brattka and Weihrauch [1] showed that for several formulations of computable closed sets in \mathbb{R}^{2}, the associated distance function is also computable.

[^0]When we consider the computational complexity of the distance function δ_{S} with respect to the computational complexity of the set S, the situation is different. For instance, in the context of the Turing machine-based complexity theory, Chou and Ko [2] showed the following result: If $\mathrm{P} \neq \mathrm{NP}$, then there exists a simply connected domain $S \subseteq[0,1]^{2}$ whose boundary Γ_{S} is a polynomial-time computable Jordan curve (i.e., the image of a polynomial-time computable function f from $[0,1]$ to $[0,1]^{2}$, which is one-to-one except that $f(0)=f(1))$, but its distance function δ_{S} is not polynomial-time computable.

In this note, we continue the investigation of the computational complexity of the distance functions δ_{S} of polynomial-time computable sets $S \subseteq[0,1]^{2}$. We consider the following two formulations of polynomial-time computable two-dimensional regions [2]: A bounded two-dimensional domain S is called polynomial-time recognizable if there is a polynomialtime oracle Turing machine M such that, for any oracles ϕ_{1}, ϕ_{2} representing a point $\mathbf{x} \in$ \mathbb{R}^{2} and any input integer $n>0, M^{\phi_{1}, \phi_{2}}(n)$ correctly determines whether $x \in S$ for all points \mathbf{x} which have distance at least 2^{-n} away from the boundary of S. It is called strongly polynomial-time recognizable if, furthermore, $M^{\phi_{1}, \phi_{2}}(n)$ gives correct answers for all $\mathbf{x} \in S$ (thus, $M^{\phi_{1}, \phi_{2}}(n)$ can make mistakes only for those \mathbf{x} not in S but are within the distance of 2^{-n} of the boundary of S). The general question we ask is the following: What is the time complexity of δ_{S} if S is known to be polynomial-time recognizable, or strongly polynomial-time recognizable? Our main results can be summarized as follows:
(1) A polynomial-time recognizable two-dimensional domain S may have a noncomputable distance function δ_{S}, even if S is simply connected and its boundary is a Jordan curve.
(2) If both a bounded, simply connected two-dimensional domain and its complement are strongly polynomial-time recognizable, then the associated distance function must be polynomial-time computable relative to a set in NP.
(3) If $P \neq N P$, then there exists a bounded, simply connected two-dimensional domain S whose boundary is a Jordan curve such that both S and its complement are strongly polynomial-time recognizable, but the associated distance function δ_{S} is not polynomialtime computable.

The above result (1) seems to suggest that the notion of polynomial-time recognizability is too weak compared with other notions of computable two-dimensional sets. Results (2) and (3) agree with earlier results of Chou and Ko [2], and indicate that nondeterministic polynomial-time is the inherent complexity of distance functions.

Our basic computational model for real-valued functions and two-dimensional domains is the oracle Turing machine. For the theory of computational complexity of real functions based on this computational model, see $[2,3,7,8]$. We include a short summary of the definitions and notation of this theory in Section 2. For the general theory of computable analysis based on the Turing machine model, see, for instance, [9,10]. The complexity classes defined in this paper are the standard ones of the discrete theory of NP-completeness; see, for instance, [5].

2. Definitions and notation

The basic computational objects in continuous computation are dyadic rationals $\mathbb{D}=$ $\left\{m / 2^{n}: m \in \mathbb{Z}, n \in \mathbb{N}\right\}$. Each dyadic rational d has infinitely many binary representations,
with arbitrarily many trailing zeros. For each $n \in \mathbb{N}$, we let \mathbb{D}_{n} denote the class of dyadic rationals which have a binary representation of at most n bits to the right of the binary point; that is, $\mathbb{D}_{n}=\left\{m / 2^{n}: m \in \mathbb{Z}\right\}$.

We say a function $\phi: \mathbb{N} \rightarrow \mathbb{D}$ binary converges to a real number x, or represents a real number x, if (i) for all $n \geqslant 0, \phi(n) \in \mathbb{D}_{n}$, and (ii) for all $n \geqslant 0,|x-\phi(n)| \leqslant 2^{-n}$. For any $x \in \mathbb{R}$, there is a unique function $\phi_{x}: \mathbb{N} \rightarrow \mathbb{D}$ that binary converges to x and satisfies the condition $x-2^{-n}<\phi_{x}(n) \leqslant x$ for all $n \geqslant 0$. We call this function ϕ_{x} the standard Cauchy function for x.

To compute a real-valued function $f: \mathbb{R} \rightarrow \mathbb{R}$, we use oracle Turing machines (TMs) as the computational model. We say an oracle TM M computes a function $f: \mathbb{R} \rightarrow \mathbb{R}$ if, for a given oracle ϕ that binary converges to a real number x and for a given input $n>0$, $M^{\phi}(n)$ halts and outputs a dyadic rational e such that $|e-f(x)| \leqslant 2^{-n}$. When the oracle ϕ is the standard Cauchy function for x, we also write $M^{x}(n)$ to denote the computation of $M^{\phi}(n)$. We say a function $f: \mathbb{R} \rightarrow \mathbb{R}$ is polynomial-time computable if there exists a polynomial-time oracle TM that computes f.

We write \mathbf{x} or $\left\langle x_{1}, x_{2}\right\rangle$, where $x_{1}, x_{2} \in \mathbb{R}$, to denote a point in the two-dimensional plane \mathbb{R}^{2}. For any two points $\mathbf{x}=\left\langle x_{1}, x_{2}\right\rangle$ and $\mathbf{y}=\left\langle y_{1}, y_{2}\right\rangle$ in \mathbb{R}^{2}, we write $\operatorname{dist}(\mathbf{x}, \mathbf{y})$ or $|\mathbf{x}-\mathbf{y}|$ to denote the distance $\sqrt{\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}\right)^{2}}$ between them. For any point $\mathbf{x} \in \mathbb{R}^{2}$ and a closed set $A \subseteq \mathbb{R}^{2}$, we write $\operatorname{dist}(\mathbf{x}, A)=\operatorname{dist}(A, \mathbf{x})=\min \{\operatorname{dist}(\mathbf{x}, \mathbf{y}): \mathbf{y} \in A\}$. For any domain $S \subseteq \mathbb{R}^{2}$, let $\delta_{S}(\mathbf{x})=\operatorname{dist}\left(\mathbf{x}, \Gamma_{S}\right)$, where Γ_{S} is the boundary of S.

The notions of computable and polynomial-time computable real functions can be extended naturally to functions $f: \mathbb{R} \rightarrow \mathbb{R}^{2}$ and functions $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$. In particular, when an element of the domain of the function f is a point $\left\langle x_{1}, x_{2}\right\rangle$ in \mathbb{R}^{2}, the corresponding oracle TM uses two oracles ϕ_{1}, ϕ_{2} which binary converge to x_{1} and x_{2}, respectively.
For any set $S \subseteq \mathbb{R}^{2}$, let χ_{S} denote its characteristic function, i.e., $\chi_{S}(\mathbf{x})=1$ if $\mathbf{x} \in S$, and $\chi_{S}(\mathbf{x})=0$ otherwise. Intuitively, S is computable (or, polynomial-time computable) if the function χ_{S} is computable (or, respectively, polynomial-time computable). Since χ_{S} is discontinuous at the boundary of S, the definition based on this concept is too strict. That is, suppose that we define a set S to be polynomial-time computable if there is a polynomial time oracle TM computing χ_{S}; then, only two trivial sets, \mathbb{R}^{2} and \emptyset, are polynomial-time computable. Chou and Ko [2] considered two different ways to relax the computability requirements of this concept. One of them is the following:

Definition 2.1. (a) A set $S \subseteq \mathbb{R}^{2}$ is called polynomial-time recognizable if there exist an oracle TM M and a polynomial p such that $M^{\phi, \psi}(n)$ computes $\chi_{S}(\mathbf{z})$ in time $p(n)$ whenever (ϕ, ψ) represents a point \mathbf{z} in \mathbb{R}^{2} whose distance to the boundary Γ_{S} of S is greater than 2^{-n}, i.e., the error set

$$
E_{n}(M)=\left\{\mathbf{z} \in \mathbb{R}^{2}:(\exists(\phi, \psi) \text { representing } \mathbf{z})\left[M^{\phi, \psi}(n) \neq \chi_{S}(\mathbf{z})\right]\right\}
$$

is a subset of $\left\{\mathbf{z} \in \mathbb{R}^{2}: \operatorname{dist}\left(\mathbf{z}, \Gamma_{\mathrm{S}}\right) \leqslant 2^{-n}\right\}$.
(b) A set $S \subseteq \mathbb{R}^{2}$ is called strongly polynomial-time recognizable if there exist an oracle TM M and a polynomial p which satisfy the conditions of (a) above and, in addition, $E_{n}(M) \cap S=\emptyset$.

We note that if both S and its complement $S^{\text {c }}=\mathbb{R}^{2}-S$ are strongly polynomial-time recognizable, then we can combine the two underlying machine to determine, for any point \mathbf{x}, whether it is in S or is in S^{c}, or is within distance 2^{-n} of the boundary. This provides a stronger notion of polynomial-time computability of two-dimensional domains.

3. Distance function of a polynomial-time recognizable set

In this section, we show that polynomial-time recognizability of a two-dimensional domain S does not warrant even the computability of the associated distance function. We first show a simple example in which the boundary of the set S is not a Jordan curve.

Theorem 3.1. For any real number $r \in(0,1 / 2)$, there exists a bounded, simply connected open set $S \subseteq[0,1]^{2}$ such that S is polynomial-time recognizable, but $\delta_{S}(\langle 1 / 2,1 / 2\rangle)=r$.

Proof. Let $s=1 / 2-r$. Let L denote the line segment from $\langle 0,1 / 2\rangle$ to $\langle s, 1 / 2\rangle$. Define

$$
S=(0,1)^{2}-L
$$

It is clear that $\delta_{S}(\langle 1 / 2,1 / 2\rangle)=1 / 2-s=r$. We claim that S is polynomial-time recognizable. Indeed, as far as polynomial-time recognizability is concerned, there is no difference between set S and $[0,1]^{2}$. An oracle TM for S can determine whether a point \mathbf{x} represented by oracles $\left(\phi_{1}, \phi_{2}\right)$ is in S or not by checking whether an approximate dyadic point \mathbf{d} of \mathbf{x}, given by the oracle, is in $[0,1]^{2}$ or not. All the errors occur only near the boundary of the square $[0,1]^{2}$ or on the line segment L.

In the above example, the distance $\delta_{S}(\langle 1 / 2,1 / 2\rangle)$ could be an arbitrary real number in $(0,1 / 2)$. This seems due to the fact that the boundary of set S is not a Jordan curve, and hence the Turing machine M that recognizes S can essentially ignore the line segment L. Indeed, if we require that the boundary Γ_{S} be a Jordan curve then, for any computable point $\mathbf{x} \in[0,1]^{2}, \delta_{S}(\mathbf{x})$ cannot be an arbitrary real number any more, though it may still be a noncomputable real number.

We say that a real number r is a right r.e. real number if its right cut $R_{r}=\{d \in \mathbb{D}: d>r\}$ is an r.e. set. This means that there exists a TM M_{1} which enumerates the set $R_{r} \cap(0,1)$, i.e., M_{1} prints strings representing dyadic rationals d in $R_{r} \cap(0,1)$ one by one on its output tape. Similarly, we say that s is a left r.e. real number if its left cut $L_{s}=\{d \in \mathbb{D}: d<s\}$ is an r.e. set. We refer to Ko [6,7] for some basic discussions of these notions. (Note that in $[4,11]$ "right r.e." real numbers are called "r.e." real numbers or "left computable", and that "left r.e." real numbers are called "co-r.e." or "right computable".)

Theorem 3.2. Let $S \subseteq[0,1]^{2}$ be a simply connected open set whose boundary Γ_{S} is a Jordan curve. If S is polynomial-time recognizable, then for every computable point $\mathbf{x} \in$ $[0,1]^{2}, \delta_{S}(\mathbf{x})$ must be a right r.e. real number.

Proof. Let $T=\mathbb{R}^{2}-\left(S \cup \Gamma_{S}\right)$. Let \mathbf{x} be a fixed computable point in $[0,1]^{2}$. Then, there is a computable sequence $\left\{\mathbf{x}_{n}\right\}$ of dyadic rational points in $[0,1]^{2}$ that binary converges to
\mathbf{x} (thus, $\left|\mathbf{x}_{n}-\mathbf{x}\right| \leqslant 2^{-n}$). Let $r=\delta_{S}(\mathbf{x})$. Assume that M_{1} is a TM that polynomial-time recognizes set S. Consider the following TM M that halts on dyadic rationals d in the right cut of r :

Input: $d \in \mathbb{D}$.
For $m:=1$ to ∞ do

$$
\begin{aligned}
& \text { For } \mathbf{e}=\left\langle e_{1}, e_{2}\right\rangle \in\left(\mathbb{D}_{m+2}\right)^{2} \cap[0,1]^{2} \text { do } \\
& \quad \text { Simulate } M_{1}^{e_{1}, e_{2}}(m+2) ; \\
& \text { If } M_{1}^{e_{1}, e_{2}}(m+2)=0 \text { and }\left|\mathbf{x}_{m+2}-\mathbf{e}\right| \leqslant d-2^{-m} \text { then halt; }
\end{aligned}
$$

First, assume that $d>r=\delta_{S}(\mathbf{x})$. Then, there exists a point \mathbf{y} in Γ_{S} such that $|\mathbf{x}-\mathbf{y}|=r$. Since Γ_{S} is a Jordan curve, any open neighborhood of \mathbf{y} must contain a point in T; furthermore, it must contain a dyadic rational point in T, since \mathbb{D}^{2} is dense in \mathbb{R}^{2}. Let k be the least integer such that
(i) there exists a point $\mathbf{e} \in\left(\mathbb{D}_{k+2}\right)^{2} \cap T$ such that $|\mathbf{e}-\mathbf{y}| \leqslant 2^{-(k+2)}$, and
(ii) $d-2^{-k}>r$.

Fix a point $\mathbf{e}=\left\langle e_{1}, e_{2}\right\rangle$ satisfying condition (i), and let j be the least integer such that (iii) $\delta_{S}(\mathbf{e}) \geqslant 2^{-j}$.

Let $m=\max \{k, j\}+1$.
We claim that M will halt in the m th iteration if it did not halt before. In the m th iteration, when \mathbf{e} is equal to the above fixed point, from condition (iii), $M_{1}^{e_{1}, e_{2}}(m+2)$ must output 0 . In addition, we have

$$
\begin{aligned}
\left|\mathbf{x}_{m+2}-\mathbf{e}\right| & \leqslant\left|\mathbf{x}_{m+2}-\mathbf{x}\right|+|\mathbf{x}-\mathbf{y}|+|\mathbf{y}-\mathbf{e}| \\
& \leqslant 2^{-(m+2)}+r+2^{-(k+2)}<d-2^{-k}+2^{-(k+2)}+2^{-(m+2)} \\
& \leqslant d-2^{-(k+1)} \leqslant d-2^{-m} .
\end{aligned}
$$

Therefore, M will halt at this step.
Conversely, assume that M halts on input d with respect to integer m and point $\mathbf{e}=\left\langle e_{1}, e_{2}\right\rangle$. Since $M_{1}^{e_{1}, e_{2}}(m+2)=0$, we have either $\mathbf{e} \in T$ or $\delta_{S}(\mathbf{e}) \leqslant 2^{-(m+2)}$. In either case, we have

$$
\begin{aligned}
\delta_{S}(\mathbf{x}) & \leqslant|\mathbf{x}-\mathbf{e}|+2^{-(m+2)} \\
& \leqslant\left|\mathbf{x}-\mathbf{x}_{m+2}\right|+\left|\mathbf{x}_{m+2}-\mathbf{e}\right|+2^{-(m+2)} \\
& \leqslant 2^{-(m+2)}+d-2^{-m}+2^{-(m+2)}=d-2^{-(m+1)}<d .
\end{aligned}
$$

Therefore, M works correctly on d.
Theorem 3.3. For any right r.e. real number $r \in(0,1 / 2)$, there is a simply connected open set $S \subseteq[0,1]^{2}$ whose boundary Γ_{S} is a Jordan curve such that S is polynomial-time recognizable and $\delta_{S}(\langle 1 / 2,1 / 2\rangle)=r$.

Proof. Let $s=1 / 2-r$. Then, s is left r.e., i.e. its left cut $L_{s}=\{d \in \mathbb{D}: d<s\}$ is an r.e. set. This means that there exists a TM M_{1} that enumerates the set $L_{s} \cap(0,1)$, i.e., M_{1} prints strings representing dyadic rationals d in $L_{s} \cap(0,1)$ one by one on its output tape. Let s_{1} be the first dyadic rational printed by M_{1}, and, for $n>1, s_{n}=\max \left(\left\{d \in \mathbb{D}: M_{1}\right.\right.$ prints d within n moves $\left.\} \cup\left\{s_{1}\right\}\right)$. It is apparent that $s_{1} \leqslant s_{2} \leqslant \cdots$, and $\lim _{n \rightarrow \infty} s_{n}=s$. In addition, the sequence $\left\{s_{n}\right\}_{n=1}^{\infty}$ is polynomial-time computable.

Now, define rectangles S_{n} recursively as follows:
(i) S_{1} is the rectangle of width s_{1} and height 2^{-2}, whose upper left corner is $\langle 0,1 / 2\rangle$.
(ii) For $n \geqslant 2$, if $s_{n}=s_{n-1}$, then $S_{n-1}=S_{n}$.
(iii) If $n \geqslant 2$ and $s_{n}>s_{n-1}$, then S_{n} is the rectangle of width $s_{n}-s_{n-1}$ and height $2^{-(n+1)}$, whose upper left corner is $\left\langle s_{n-1}, 1 / 2\right\rangle$ (i.e., the upper left corner of S_{n} is the same as the upper right corner of S_{n-1}).
Define

$$
S=(0,1)^{2}-\bigcup_{n=1}^{\infty} S_{n}
$$

It is clear that $\delta_{S}(\langle 1 / 2,1 / 2\rangle)=1 / 2-s=r$. Since $\lim _{n \rightarrow \infty} s_{n}=s$, it follows that the boundary of S is a Jordan curve.

To see that S is polynomial-time recognizable, consider the following oracle TM M :
Oracles: $\left(\phi_{1}, \phi_{2}\right)$, representing a point $\mathbf{x} \in \mathbb{R}^{2}$.
Input: $n>0$.
(1) Ask the oracles to get a dyadic rational point $\mathbf{d} \in \mathbb{R}^{2}$ such that $|\mathbf{d}-\mathbf{x}| \leqslant 2^{-n}$.
(2) Compute $s_{1}, s_{2}, \ldots, s_{n}$, and construct S_{1}, \ldots, S_{n}.
(3) If $\mathbf{d} \notin[0,1]^{2}$ or if $\mathbf{d} \in \bigcup_{i=1}^{n} S_{i}$, then output 0 , else output 1 .

Without loss of generality, assume that both \mathbf{x} and \mathbf{d} are in $[0,1]^{2}$. Then, the answer given by M can be wrong only if (a) $\mathbf{d} \notin \bigcup_{i=1}^{n} S_{i}$ but $\mathbf{x} \in \bigcup_{i=1}^{n} S_{i}$, or (b) $\mathbf{d} \in \bigcup_{i=1}^{n} S_{i}$ but $\mathbf{x} \notin \bigcup_{i=1}^{\infty} S_{i}$, or (c) $\mathbf{x} \in S_{k}$ for some $k>n$ with $s_{k}>s_{k-1} \geqslant s_{n}$. In cases (a) and (b), \mathbf{x} and \mathbf{d} lie in the opposite sides of the boundary Γ_{S} and so \mathbf{x} is within distance 2^{-n} of the boundary. In case (c), the condition $s_{k}>s_{n}$ implies that S_{k} is different from S_{n} and the height of S_{k} is $2^{-(k+1)}<2^{-n}$, and so \mathbf{x} must be within distance 2^{-n} of the boundary Γ_{S}. Therefore, M recognizes set S.

Corollary 3.4. There exists a simply connected open set $S \subseteq[0,1]^{2}$ whose boundary Γ_{S} is a Jordan curve such that S is polynomial-time recognizable and δ_{S} is not a computable real function.

Proof. A computable real function must map a computable point \mathbf{x} to a computable real number. It is known (see, e.g., [7]) that there are right r.e. real numbers which are not computable.

4. Distance function of a strongly polynomial-time recognizable set

We have seen, in the last section, that for a polynomial-time recognizable set S, the distance function may not even be computable. In this section, we consider sets S with the property that both S and its complement S^{c} are strongly polynomial-time recognizable. For such sets, we show that the associated distance functions are polynomial-time computable if and only if $\mathrm{P}=\mathrm{NP}$.

Recall that P is the class of sets (of binary strings) that are acceptable by polynomialtime deterministic TMs, and NP is the class of sets (of binary strings) that are acceptable by polynomial-time nondeterministic TMs.

Theorem 4.1. Assume that $S \subseteq[0,1]^{2}$ is a simply connected open set. If both S and $S^{\mathrm{c}}=$ $\mathbb{R}^{2}-S$ are strongly polynomial-time recognizable, then δ_{S} is polynomial-time computable relative to an oracle set $A \in \mathrm{NP}$.

Proof. Let M_{1} and M_{0} be the oracle TMs that strongly polynomial-time recognize sets S and S^{c}, respectively. Let $p(n)$ be a polynomial function that bounds the running time of both M_{1} and M_{0}. Define

$$
\begin{aligned}
A= & \left\{\left\langle d_{1}, d_{2}, L, n, i\right\rangle: d_{1}, d_{2}, L \in \mathbb{D}_{n}, n \geqslant 1, i \in\{0,1\},\right. \\
& \left.\left(\exists e_{1}, e_{2} \in \mathbb{D}_{p(n)}\right)\left[M_{i}^{e_{1}, e_{2}}(n)=1,\left|\left\langle d_{1}, d_{2}\right\rangle-\left\langle e_{1}, e_{2}\right\rangle\right| \leqslant L\right]\right\} .
\end{aligned}
$$

It follows immediately from the existential quantifier characterization of NP (see, e.g., [5]) that A is in NP. The following TM M computes δ_{S} using oracle A.

Oracles: Set A; functions ϕ_{1}, ϕ_{2} representing a point $\mathbf{x} \in \mathbb{R}^{2}$. (Without loss of generality, assume that $\mathbf{x} \in[0,1]^{2}$.)
Input: $n>0$.
(1) Ask oracles ϕ_{1}, ϕ_{2} to find a point $\mathbf{d}=\left\langle d_{1}, d_{2}\right\rangle \in\left(\mathbb{D}_{n+1}\right)^{2}$ such that $\mid \mathbf{d}-$ $\mathbf{x} \mid \leqslant 2^{-(n+1)}$.
(2) Simulate M_{1} and M_{0} to get $a=M_{1}^{\phi_{1}, \phi_{2}}(n+1)$ and $b=M_{0}^{\phi_{1}, \phi_{2}}(n+1)$.
(3) If $a=1$ and $b=0$, then binary search for $L \in \mathbb{D}_{n+1} \cap[0,2]$ such that $\left\langle d_{1}, d_{2}, L, n+1,0\right\rangle \in A$ but $\left\langle d_{1}, d_{2}, L+2^{-(n+1)}, n+1,0\right\rangle \notin A$; output L.
(4) If $a=0$ and $b=1$, then binary search for $L \in \mathbb{D}_{n+1} \cap[0,2]$ such that $\left\langle d_{1}, d_{2}, L, n+1,1\right\rangle \in A$ but $\left\langle d_{1}, d_{2}, L+2^{-(n+1)}, n+1,1\right\rangle \notin A$; output L.
(5) If $a=1$ and $b=1$, then output 0 .

First, we note that for any \mathbf{x}, the simulation of step (2) cannot output $a=b=0$, since \mathbf{x} is either in S or in S^{c}. Thus, the above algorithm for machine M is well defined.

Next, we verify that machine M computes δ_{S} correctly. If M reaches step (5), then one of M_{1} or M_{0} must have made a mistake. That means \mathbf{x} must be within distance $2^{-(n+1)}$ of the boundary Γ_{S} of S. So, the output 0 is correct within error $2^{-(n+1)}$.

Assume that M reaches step (3). Then, we must have $\mathbf{x} \in S$. Suppose M outputs L. Then, we have $\left\langle d_{1}, d_{2}, L, n+1,0\right\rangle \in A$, which implies that there exists a point $\mathbf{e}=\left\langle e_{1}, e_{2}\right\rangle$ in $\left(\mathbb{D}_{p(n+1)}\right)^{2}$ such that $M_{0}^{e_{1}, e_{2}}(n+1)=1$ and $|\mathbf{e}-\mathbf{d}| \leqslant L$. From $M_{0}^{e_{1}, e_{2}}(n+1)=1$, we know that either $\mathbf{e} \in S^{\mathrm{c}}$ or $\delta_{S}(\mathbf{e}) \leqslant 2^{-(n+1)}$. Either way, we get

$$
\delta_{S}(\mathbf{x}) \leqslant|\mathbf{x}-\mathbf{d}|+|\mathbf{d}-\mathbf{e}|+2^{-(n+1)} \leqslant L+2^{-n} .
$$

On the other hand, let \mathbf{y} be any point in Γ_{S}. Then, for the standard Cauchy functions ψ_{1}, ψ_{2} for \mathbf{y}, we must have $M_{0}^{\psi_{1}, \psi_{2}}(n+1)=1$. Let $e_{1}=\psi_{1}(p(n+1))$ and $e_{2}=\psi_{2}(p(n+1))$. We must also have $M_{0}^{e_{1}, e_{2}}(n+1)=1$ because M_{0} cannot distinguish between \mathbf{y} and $\mathbf{e}=\left\langle e_{1}, e_{2}\right\rangle$ within $p(n+1)$ moves. Now, $\left\langle d_{1}, d_{2}, L+2^{-(n+1)}, n+1,0\right\rangle \notin A$ implies that $|\mathbf{d}-\mathbf{e}|>L+2^{-(n+1)}$; or

$$
|\mathbf{x}-\mathbf{y}| \geqslant|\mathbf{d}-\mathbf{e}|-|\mathbf{x}-\mathbf{d}|-|\mathbf{y}-\mathbf{e}|>L-2^{-(n+1)} .
$$

Since \mathbf{y} is an arbitrary point in Γ_{S}, we get $\delta_{S}(\mathbf{x})>L-2^{-(n+1)}$. Together, we get $\left|L-\delta_{S}(\mathbf{x})\right| \leqslant 2^{-n}$.

The case of M reaching step (4) is similar to the above case. To be more precise, if M reaches step (4), we must have $\mathbf{x} \in S^{\mathrm{c}}$. Suppose M outputs L. Then, using the same argument, we can prove that $\left\langle d_{1}, d_{2}, L, n+1,1\right\rangle \in A$ implies $\delta_{S}(\mathbf{x}) \leqslant L+2^{-n}$. For the second half of the proof, we note that for any point $\mathbf{z} \in \Gamma_{S}$, we can find a point $\mathbf{y} \in S$ with $|\mathbf{y}-\mathbf{z}| \leqslant 2^{-(n+1)}$. Now, using this point \mathbf{y}, we can show, by the same argument, that $\left\langle d_{1}, d_{2}, L+2^{-(n+1)}, n+1,1\right\rangle \notin A$ implies $|\mathbf{x}-\mathbf{y}|>L-2^{-(n+1)}$ and, hence, $|\mathbf{x}-\mathbf{z}|>$ $L-2^{-n}$. Together, we get $\left|L-\delta_{S}(\mathbf{x})\right| \leqslant 2^{-n}$.

Finally, we check that, in steps (3) and (4), the binary search needs to ask the oracles at most $n+2$ times, and so the machine M runs in polynomial time. Thus, δ_{S} is polynomial-time computable relative to an oracle in NP.

When the boundary Γ_{S} of set S is a Jordan curve, a TM that strongly polynomial-time recognizes set $T=\mathbb{R}^{2}-\left(S \cup \Gamma_{S}\right)$ works almost the same as one that strongly polynomialtime recognizes S^{c}. So, we get the following stronger result.

Corollary 4.2. Assume that $S \subseteq[0,1]^{2}$ is a simply connected open set whose boundary Γ_{S} is a Jordan curve. If both S and $T=\mathbb{R}^{2}-\left(S \cup \Gamma_{S}\right)$ are strongly polynomial-time recognizable, then δ_{S} is polynomial-time computable relative to a set $A \in \mathrm{NP}$.

We note that the set S in the proof of Theorem 3.1 has the property that both S and $T=\mathbb{R}^{2}-\left(S \cup \Gamma_{S}\right)$ are strongly polynomial-time recognizable. Thus, the condition in Corollary 4.2 that the boundary Γ_{S} is a Jordan curve is necessary.

Next, we show that the oracle set A in NP in Theorem 4.1 for the computation of δ_{S} is necessary.

Theorem 4.3. Assume that $\mathrm{P} \neq \mathrm{NP}$. Then, there exists a simply connected open set $S \subseteq$ $[0,1]^{2}$ whose boundary Γ_{S} is a Jordan curve, such that both S and $T=\mathbb{R}^{2}-\left(S \cup \Gamma_{S}\right)$ are strongly polynomial-time recognizable, but δ_{S} is not polynomial-time computable.

Proof. Assume that $A \subseteq\{0,1\}^{*}$ is a set in $\mathrm{NP}-\mathrm{P}$. Then, from the existential quantifier characterization of NP , we know that there exist a set $B \in \mathrm{P}$ and a polynomial function p such that, for every string $w \in\{0,1\}^{*}$ of length n,

$$
w \in A \Longleftrightarrow(\exists u,|u|=p(n))\langle w, u\rangle \in B
$$

For each string $t \in\{0,1\}^{*}$ of length m, we write i_{t} to denote the unique integer between 0 and $2^{m}-1$ whose m-bit binary expansion (with possible leading zeroes) is equal to t.

For each $n>0$, let $a_{n}=1-2^{-(n-1)}$. We divide the interval $\left[a_{n}, a_{n+1}\right]$ into 2^{n} subintervals of equal length, each corresponding to a string $w \in\{0,1\}^{n}$. To be more precise, for each string $w \in\{0,1\}^{n}$, we let $r_{w}=a_{n}+i_{w} \cdot 2^{-2 n}$, and let $I_{w}=\left[r_{w}, r_{w}+2^{-2 n}\right]$. We further divide I_{w} into $2^{p(n)}$ subintervals of equal length, each corresponding to a string u of length $p(n)$. That is, for each string u of length $p(n)$, we let $s_{w, u}=r_{w}+i_{u} \cdot 2^{-p(n)-2 n}$, and $J_{w, u}=\left[s_{w, u}, s_{w, u}+2^{-p(n)-2 n}\right]$. For each u of length $p(n)$, we also define

$$
h_{u}= \begin{cases}\left(2^{p(n)-1}-i_{u}\right) \cdot 2^{-p(n)-2 n} & \text { if } i_{u}<2^{p(n)-1}, \\ \left(i_{u}-2^{p(n)-1}+1\right) \cdot 2^{-p(n)-2 n} & \text { if } i_{u} \geqslant 2^{p(n)-1} .\end{cases}
$$

Fig. 1. Set S within the square $I_{w} \times\left[0,2^{-2 n}\right]$.

Then, we define a rectangle $T_{w, u}$ as follows: the rectangle $T_{w, u}$ has width $2^{-p(n)-2 n}$, height h_{u}, and its lower left corner is $\left\langle s_{w, u}, 0\right\rangle$.

Finally, define set

$$
S=(0,1)^{2}-\bigcup_{\langle w, u\rangle \in B} T_{w, u} .
$$

Fig. 1 shows set $S \cap I_{w} \times\left[0,2^{-2 n}\right]$, when, for instance, $p(n)=3$, and $\langle w, 000\rangle,\langle w, 010\rangle$, $\langle w, 011\rangle,\langle w, 110\rangle$ are the only pairs $\langle w, u\rangle$ in B. The above limiting process clearly shows that the boundary of S is a Jordan curve.

Define $\mathbf{x}_{w}=\left\langle r_{w}+2^{-2 n-1}, 2^{-2 n-1}\right\rangle$. Then, we can see easily that if $w \notin A$, then $\delta_{S}\left(\mathbf{x}_{w}\right)$ is equal to $2^{-2 n-1}$. If $w \notin A$, then we remove at least one $T_{w, u}$ from S and so $\delta_{S}\left(\mathbf{x}_{w}\right)$ is less than $2^{-2 n-1}-2^{-p(n)-2 n-1}$ (cf. Fig. 1). Thus, whether $w \in A$ can be determined from an approximation d to $\delta_{S}\left(\mathbf{x}_{w}\right)$ within error $2^{-p(n)-2 n-3}$. This means that δ_{S} is not polynomial-time computable, since we assumed that $A \notin \mathrm{P}$.

It is left to show that both sets S and $T=\mathbb{R}^{2}-\left(S \cup \Gamma_{S}\right)$ are strongly polynomial-time recognizable. In the following, we show an oracle TM M that strongly polynomial-time recognizes set S. The machine for set T is similar, and we omit it. Let M_{B} be the TM that determines whether $\langle w, u\rangle \in B$ in polynomial time.

Oracles: ϕ_{1}, ϕ_{2} representing a point $\mathbf{x} \in \mathbb{R}^{2}$.
Input: $n>0$.
(1) Let $d_{1}=\phi_{1}(p(n)+2 n)$ and $d_{2}=\phi_{2}(p(n)+2 n)$. If $d_{1} \notin(0,1)$, then output 0 and halt.
(2) Find integer k such that $a_{k} \leqslant d_{1}<a_{k+1}$. If $k>n$, then output 1 if and only if $0<d_{2}<1$, and halt.
(3) If $k \leqslant n$, then find $w, u \in\{0,1\}^{*}$ of length n and $p(n)$, respectively, such that $d_{1} \in J_{w, u}$.
(4) Simulate M_{B} on $\langle w, u\rangle$. If $\langle w, u\rangle \notin B$, then output 1 if and only if $0<d_{2}<1$; otherwise, output 1 if and only if $h_{u}<d_{2}<1$.
The correctness of the machine M is clear. In particular, if it gets $k>n$ in step (2), then we know that the line segment from $\left\langle a_{k}, 0\right\rangle$ to $\langle 1,0\rangle$ is within distance $2^{-2 n}$ of the lower bottom of the boundary of S, and so the answer based on the condition $0<d_{2}<1$ is either correct or incorrect but acceptable. We also observe that the computation of M runs obviously in polynomial time. Thus, S is strongly polynomial-time recognizable.

Corollary 4.4. The following are equivalent:

(a) $\mathrm{P}=\mathrm{NP}$.
(b) For every simply connected open set $S \subseteq[0,1]^{2}$, if both S and S^{c} are strongly polynomial-time recognizable, then δ_{S} is polynomial-time computable.
(c) For every simply connected open set $S \subseteq[0,1]^{2}$ whose boundary is a Jordan curve, if both S and $T=\mathbb{R}^{2}-\left(S \cup \Gamma_{S}\right)$ are strongly polynomial-time recognizable, then δ_{S} is polynomial-time computable.

References

[1] V. Brattka, K. Weihrauch, Computability on subsets of Euclidean space I: closed and compact subsets, Theoret. Comput. Sci. 219 (1999) 65-93.
[2] A.W. Chou, K. Ko, Computational complexity of two-dimensional regions, SIAM J. Comput. 24 (1995) 923-947.
[3] A.W. Chou, K. Ko, On the complexity of finding paths in a two-dimensional domain I: shortest paths, Math. Logic Quart. 50 (2004) 551-572; preliminary version in Proc. Internat. Conf. on Computability and Complexity in Analysis, Hagen, Germany, 2003.
[4] R.G. Downey, Some computability-theoretical aspects of real and randomness, preprint, September 2001.
[5] D.-Z. Du, K. Ko, Theory of Computational Complexity, Wiley, New York, 2000.
[6] K. Ko, On the definitions of some complexity classes of real numbers, Math. System Theory 16 (1983) 95-109.
[7] K. Ko, Complexity Theory of Real Functions, Birkhäuser, Boston, 1991.
[8] K. Ko, Polynomial-time computability in analysis, in: Yu. L. Ershov, et al. (Eds.), Handbook of Recursive Mathematics, Vol. 2: Recursive Algebra, Analysis and Combinatorics, Studies in Logic and the Foundations of Mathematics, Vol. 139, Elsevier, Amsterdam, 1998, pp. 1271-1317.
[9] M. Pour-El, I. Richards, Computability in Analysis and Physics, Springer, Berlin, 1989.
[10] K. Weihrauch, Computable Analysis, Springer, Heidelberg, 2000.
[11] X. Zheng, Recursive approximability of real numbers, Math. Logic Quart. 48 (Suppl. 1) (2002) S131-S156.

[^0]: * Corresponding author.

 E-mail addresses: achou@clarku.edu (A.W. Chou), keriko@cs.sunysb.edu (K. Ko)
 ${ }^{1}$ The research of this author was supported in part by National Science Foundation grant CCF 0430124.

