
Theoretical Computer Science 337 (2005) 360–369
www.elsevier.com/locate/tcs

Note

The computational complexity of distance functions
of two-dimensional domains

Arthur W. Choua, Ker-I Kob,∗,1
aDepartment of Mathematics and Computer Science, Clark University, Worcester, MA 01610, USA
bDepartment of Computer Science, State University of NewYork at Stony Brook, Stony Brook,

NY 11794-4400, USA

Received 31 August 2004; accepted 10 November 2004

Communicated by D.-Z. Du

Abstract

We study the computational complexity of the distance function associated with a polynomial-time
computable two-dimensional domains, in the context of the Turing machine-based complexity theory
of real functions. It is proved that the distance function is not necessarily computable even if a two-
dimensional domain is polynomial-time recognizable. On the other hand, if both the domain and its
complement are strongly polynomial-time recognizable, then the distance function is polynomial-time
computable if and only if P= NP.
© 2004 Elsevier B.V. All rights reserved.

Keywords:Computational complexity; Polynomial-time computability; Two-dimensional domain; Distance
function; NP

1. Introduction

Assume thatS ⊆ R2 is a bounded two-dimensional domain (i.e., a bounded, connected
open set). We let�S(x) denote the distance between a pointx in R2 and the boundary�S

of setS. Intuitively, the distance function�S is computable if the setS itself is computable:
We can search for the nearest pointy /∈ S and output the distance betweenx andy. Indeed,
Brattka andWeihrauch[1] showed that for several formulations of computable closed sets
in R2, the associated distance function is also computable.

∗ Corresponding author.
E-mail addresses:achou@clarku.edu(A.W. Chou),keriko@cs.sunysb.edu(K. Ko)
1 The research of this author was supported in part by National Science Foundation grant CCF 0430124.

0304-3975/$ - see front matter © 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2004.11.016

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82436786?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/tcs
mailto:achou@clarku.edu
mailto:keriko@cs.sunysb.edu

A.W. Chou, K. Ko / Theoretical Computer Science 337 (2005) 360–369 361

When we consider the computational complexity of the distance function�S with respect
to the computational complexity of the setS, the situation is different. For instance, in
the context of the Turing machine-based complexity theory, Chou and Ko[2] showed the
following result: If P �= NP, then there exists a simply connected domainS ⊆ [0,1]2
whose boundary�S is a polynomial-time computable Jordan curve (i.e., the image of a
polynomial-time computable functionf from [0,1] to [0,1]2, which is one-to-one except
thatf (0) = f (1)), but its distance function�S is not polynomial-time computable.
In this note, we continue the investigation of the computational complexity of the distance

functions�S of polynomial-time computable setsS ⊆ [0,1]2. We consider the following
two formulations of polynomial-time computable two-dimensional regions[2]: A bounded
two-dimensional domainSis calledpolynomial-time recognizableif there is a polynomial-
time oracle Turing machineM such that, for any oracles�1,�2 representing a pointx ∈
R2 and any input integern > 0, M�1,�2(n) correctly determines whetherx ∈ S for
all pointsx which have distance at least 2−n away from the boundary ofS. It is called
strongly polynomial-time recognizableif, furthermore,M�1,�2(n) gives correct answers
for all x ∈ S (thus,M�1,�2(n) can make mistakes only for thosex not inSbut are within
the distance of 2−n of the boundary ofS). The general question we ask is the following:
What is the time complexity of�S if S is known to be polynomial-time recognizable, or
strongly polynomial-time recognizable? Our main results can be summarized as follows:
(1) A polynomial-time recognizable two-dimensional domainS may have a non-

computable distance function�S , even ifSis simply connected and its boundary is a Jordan
curve.
(2) If both a bounded, simply connected two-dimensional domain and its complement

are strongly polynomial-time recognizable, then the associated distance function must be
polynomial-time computable relative to a set in NP.
(3) If P �= NP, then there exists a bounded, simply connected two-dimensional domain

Swhose boundary is a Jordan curve such that bothS and its complement are strongly
polynomial-time recognizable, but the associated distance function�S is not polynomial-
time computable.
The above result (1) seems to suggest that the notion of polynomial-time recognizability

is too weak compared with other notions of computable two-dimensional sets. Results (2)
and (3) agree with earlier results of Chou and Ko[2], and indicate that nondeterministic
polynomial-time is the inherent complexity of distance functions.
Our basic computational model for real-valued functions and two-dimensional domains

is the oracle Turing machine. For the theory of computational complexity of real functions
based on this computational model, see[2,3,7,8].We include a short summary of the defini-
tions and notation of this theory in Section2. For the general theory of computable analysis
based on the Turing machine model, see, for instance,[9,10]. The complexity classes de-
fined in this paper are the standard ones of the discrete theory of NP-completeness; see, for
instance,[5].

2. Definitions and notation

The basic computational objects in continuous computation are dyadic rationalsD =
{m/2n:m ∈ Z, n ∈ N}. Each dyadic rationald has infinitely many binary representations,

362 A.W. Chou, K. Ko / Theoretical Computer Science 337 (2005) 360–369

with arbitrarily many trailing zeros. For eachn ∈ N, we letDn denote the class of dyadic
rationals which have a binary representation of at mostnbits to the right of the binary point;
that is,Dn = {m/2n:m ∈ Z}.
We say a function�: N → D binary convergesto a real numberx, or represents a real

number x, if (i) for all n�0,�(n) ∈ Dn, and (ii) for alln�0, |x − �(n)|�2−n. For any
x ∈ R, there is a unique function�x : N → D that binary converges tox and satisfies the
conditionx − 2−n < �x(n)�x for all n�0.We call this function�x thestandard Cauchy
functionfor x.
To compute a real-valued functionf : R → R, we use oracle Turing machines (TMs)

as the computational model. We say an oracle TMM computesa functionf : R → R if,
for a given oracle� that binary converges to a real numberx and for a given inputn > 0,
M�(n) halts and outputs a dyadic rationale such that|e − f (x)|�2−n. When the oracle
� is the standard Cauchy function forx, we also writeMx(n) to denote the computation
of M�(n). We say a functionf : R → R is polynomial-time computableif there exists a
polynomial-time oracle TM that computesf.
We writex or 〈x1, x2〉, wherex1, x2 ∈ R, to denote a point in the two-dimensional plane

R2. For any two pointsx = 〈x1, x2〉 andy = 〈y1, y2〉 in R2, we write dist(x, y) or |x − y|
to denote the distance

√
(x1 − y1)2 + (x2 − y2)2 between them. For any pointx ∈ R2 and

a closed setA ⊆ R2, we write dist(x, A) = dist(A, x) = min{dist(x, y): y ∈ A}. For any
domainS ⊆ R2, let �S(x) = dist(x,�S), where�S is the boundary ofS.
The notions of computable and polynomial-time computable real functions can be ex-

tended naturally to functionsf : R → R2 and functionsf : R2 → R2. In particular, when
an element of the domain of the functionf is a point〈x1, x2〉 inR2, the corresponding oracle
TM uses two oracles�1,�2 which binary converge tox1 andx2, respectively.
For any setS ⊆ R2, let �S denote its characteristic function, i.e.,�S(x) = 1 if x ∈ S,

and�S(x) = 0 otherwise. Intuitively,S is computable (or, polynomial-time computable) if
the function�S is computable (or, respectively, polynomial-time computable). Since�S is
discontinuous at the boundary ofS, the definition based on this concept is too strict. That
is, suppose that we define a setSto be polynomial-time computable if there is a polynomial
time oracle TM computing�S ; then, only two trivial sets,R

2 and∅, are polynomial-time
computable. Chou and Ko[2] considered two different ways to relax the computability
requirements of this concept. One of them is the following:

Definition 2.1. (a) A setS ⊆ R2 is calledpolynomial-time recognizableif there exist an
oracle TMM and a polynomialpsuch thatM�,�(n) computes�S(z) in timep(n)whenever
(�,�) represents a pointz in R2 whose distance to the boundary�S of S is greater than
2−n, i.e., the error set

En(M) = {z ∈ R2: (∃ (�,�) representingz) [M�,�(n) �= �S(z)]}

is a subset of{z ∈ R2: dist(z,�S)�2−n}.
(b) A setS ⊆ R2 is calledstrongly polynomial-time recognizableif there exist an oracle

TM M and a polynomialp which satisfy the conditions of (a) above and, in addition,
En(M) ∩ S = ∅.

A.W. Chou, K. Ko / Theoretical Computer Science 337 (2005) 360–369 363

We note that if bothSand its complementSc = R2 − S are strongly polynomial-time
recognizable, then we can combine the two underlying machine to determine, for any point
x, whether it is inSor is in Sc, or is within distance 2−n of the boundary. This provides a
stronger notion of polynomial-time computability of two-dimensional domains.

3. Distance function of a polynomial-time recognizable set

In this section, we show that polynomial-time recognizability of a two-dimensional do-
mainSdoes not warrant even the computability of the associated distance function.We first
show a simple example in which the boundary of the setS is not a Jordan curve.

Theorem 3.1. For any real numberr ∈ (0,1/2), there exists a bounded, simply connected
open setS ⊆ [0,1]2 such that S is polynomial-time recognizable, but�S(〈1/2,1/2〉) = r.

Proof. Let s = 1/2− r. LetL denote the line segment from〈0,1/2〉 to 〈s,1/2〉. Define
S = (0,1)2 − L.

It is clear that�S(〈1/2,1/2〉) = 1/2− s = r.We claim thatSis polynomial-time recogniz-
able. Indeed, as far as polynomial-time recognizability is concerned, there is no difference
between setSand[0,1]2. An oracle TM forScan determine whether a pointx represented
by oracles(�1,�2) is inSor not by checking whether an approximate dyadic pointd of x,
given by the oracle, is in[0,1]2 or not. All the errors occur only near the boundary of the
square[0,1]2 or on the line segmentL. �

In the above example, the distance�S(〈1/2,1/2〉) could be an arbitrary real number in
(0,1/2). This seems due to the fact that the boundary of setS is not a Jordan curve, and
hence the Turing machineM that recognizesScan essentially ignore the line segmentL.
Indeed, if we require that the boundary�S be a Jordan curve then, for any computable point
x ∈ [0,1]2, �S(x) cannot be an arbitrary real number any more, though it may still be a
noncomputable real number.
We say that a real numberr is aright r.e.real number if its right cutRr = {d ∈ D: d > r}

is an r.e. set. This means that there exists a TMM1 which enumerates the setRr ∩ (0,1),
i.e.,M1 prints strings representing dyadic rationalsd in Rr ∩ (0,1) one by one on its output
tape. Similarly, we say thats is a left r.e. real number if its left cutLs = {d ∈ D: d < s}
is an r.e. set. We refer to Ko[6,7] for some basic discussions of these notions. (Note that
in [4,11] “right r.e.” real numbers are called “r.e.” real numbers or “left computable”, and
that “left r.e.” real numbers are called “co-r.e.” or “right computable”.)

Theorem 3.2. Let S ⊆ [0,1]2 be a simply connected open set whose boundary�S is a
Jordan curve. If S is polynomial-time recognizable, then for every computable pointx ∈
[0,1]2, �S(x) must be a right r.e. real number.

Proof. Let T = R2 − (S ∪ �S). Let x be a fixed computable point in[0,1]2. Then, there
is a computable sequence{xn} of dyadic rational points in[0,1]2 that binary converges to

364 A.W. Chou, K. Ko / Theoretical Computer Science 337 (2005) 360–369

x (thus,|xn − x|�2−n). Let r = �S(x). Assume thatM1 is a TM that polynomial-time
recognizes setS. Consider the following TMM that halts on dyadic rationalsd in the right
cut of r:

Input: d ∈ D.
Form := 1 to∞ do

Fore = 〈e1, e2〉 ∈ (Dm+2)2 ∩ [0,1]2 do
SimulateMe1,e2

1 (m + 2);
If Me1,e2

1 (m + 2) = 0 and|xm+2 − e|�d − 2−m then halt;

First, assume thatd > r = �S(x). Then, there exists a pointy in�S such that|x−y| = r.
Since�S is a Jordan curve, any open neighborhood ofymust contain a point inT; further-
more, it must contain a dyadic rational point inT, sinceD2 is dense inR2. Letkbe the least
integer such that
(i) there exists a pointe ∈ (Dk+2)2 ∩ T such that|e− y|�2−(k+2), and
(ii) d − 2−k > r.
Fix a pointe = 〈e1, e2〉 satisfying condition (i), and letj be the least integer such that
(iii) �S(e)�2−j .
Letm = max{k, j} + 1.
We claim thatMwill halt in themth iteration if it did not halt before. In themth iteration,

whene is equal to the above fixed point, from condition (iii),Me1,e2
1 (m+ 2)must output 0.

In addition, we have

|xm+2 − e| � |xm+2 − x| + |x − y| + |y − e|
�2−(m+2) + r + 2−(k+2) < d − 2−k + 2−(k+2) + 2−(m+2)
�d − 2−(k+1)�d − 2−m.

Therefore,M will halt at this step.
Conversely, assume thatMhalts on inputdwith respect to integermandpointe = 〈e1, e2〉.

SinceMe1,e2
1 (m+2) = 0, we have eithere ∈ T or �S(e)�2−(m+2). In either case, we have

�S(x) � |x − e| + 2−(m+2)
� |x − xm+2| + |xm+2 − e| + 2−(m+2)
�2−(m+2) + d − 2−m + 2−(m+2) = d − 2−(m+1) < d.

Therefore,M works correctly ond. �

Theorem 3.3. For any right r.e. real numberr ∈ (0,1/2), there is a simply connected
open setS ⊆ [0,1]2 whose boundary�S is a Jordan curve such that S is polynomial-time
recognizable and�S(〈1/2,1/2〉) = r.

Proof. Let s = 1/2− r. Then,s is left r.e., i.e. its left cutLs = {d ∈ D: d < s} is an r.e.
set. This means that there exists a TMM1 that enumerates the setLs ∩ (0,1), i.e.,M1 prints
strings representing dyadic rationalsd in Ls ∩ (0,1) one by one on its output tape. Lets1
be the first dyadic rational printed byM1, and, forn > 1, sn = max({d ∈ D: M1 printsd
within nmoves} ∪ {s1}). It is apparent thats1�s2� · · · , and limn→∞ sn = s. In addition,
the sequence{sn}∞n=1 is polynomial-time computable.

A.W. Chou, K. Ko / Theoretical Computer Science 337 (2005) 360–369 365

Now, define rectanglesSn recursively as follows:
(i) S1 is the rectangle of widths1 and height 2−2, whose upper left corner is〈0,1/2〉.
(ii) For n�2, if sn = sn−1, thenSn−1 = Sn.
(iii) If n�2 andsn > sn−1, thenSn is the rectangle of widthsn − sn−1 and height 2−(n+1),

whose upper left corner is〈sn−1,1/2〉 (i.e., the upper left corner ofSn is the same as
the upper right corner ofSn−1).

Define

S = (0,1)2 −
∞⋃
n=1

Sn.

It is clear that�S(〈1/2,1/2〉) = 1/2− s = r. Since limn→∞ sn = s, it follows that the
boundary ofS is a Jordan curve.
To see thatS is polynomial-time recognizable, consider the following oracle TMM:

Oracles: (�1,�2), representing a pointx ∈ R2.
Input: n > 0.
(1) Ask the oracles to get a dyadic rational pointd ∈ R2 such that|d − x|�2−n.
(2) Computes1, s2, . . . , sn, and constructS1, . . . , Sn.
(3) If d /∈ [0,1]2 or if d ∈ ⋃n

i=1 Si , then output 0, else output 1.

Without loss of generality, assume that bothx andd are in [0,1]2. Then, the answer
given byM can be wrong only if (a)d /∈ ⋃n

i=1 Si but x ∈ ⋃n
i=1 Si , or (b)d ∈ ⋃n

i=1 Si
but x /∈ ⋃∞

i=1 Si , or (c)x ∈ Sk for somek > n with sk > sk−1�sn. In cases (a) and (b),
x andd lie in the opposite sides of the boundary�S and sox is within distance 2−n of the
boundary. In case (c), the conditionsk > sn implies thatSk is different fromSn and the
height ofSk is 2−(k+1) < 2−n, and sox must be within distance 2−n of the boundary�S .
Therefore,M recognizes setS. �

Corollary 3.4. There exists a simply connected open setS ⊆ [0,1]2 whose boundary�S

is a Jordan curve such that S is polynomial-time recognizable and�S is not a computable
real function.

Proof. A computable real function must map a computable pointx to a computable real
number. It is known (see, e.g.,[7]) that there are right r.e. real numbers which are not
computable. �

4. Distance function of a strongly polynomial-time recognizable set

We have seen, in the last section, that for a polynomial-time recognizable setS, the
distance function may not even be computable. In this section, we consider setsSwith the
property that bothSand its complementSc are strongly polynomial-time recognizable. For
such sets, we show that the associated distance functions are polynomial-time computable
if and only if P= NP.
Recall that P is the class of sets (of binary strings) that are acceptable by polynomial-

time deterministic TMs, and NP is the class of sets (of binary strings) that are acceptable
by polynomial-time nondeterministic TMs.

366 A.W. Chou, K. Ko / Theoretical Computer Science 337 (2005) 360–369

Theorem 4.1. Assume thatS ⊆ [0,1]2 is a simply connected open set. If both S andSc =
R2− S are strongly polynomial-time recognizable, then�S is polynomial-time computable
relative to an oracle setA ∈ NP.

Proof. LetM1 andM0 be the oracle TMs that strongly polynomial-time recognize setsS
andSc, respectively. Letp(n) be a polynomial function that bounds the running time of
bothM1 andM0. Define

A = {〈d1, d2, L, n, i〉: d1, d2, L ∈ Dn, n�1, i ∈ {0,1},
(∃e1, e2 ∈ Dp(n))[Me1,e2

i (n) = 1, |〈d1, d2〉 − 〈e1, e2〉|�L]}.
It follows immediately from the existential quantifier characterization of NP (see, e.g.,[5])
thatA is in NP. The following TMM computes�S using oracleA.

Oracles: SetA; functions�1,�2 representing a pointx ∈ R2. (Without loss of gener-
ality, assume thatx ∈ [0,1]2.)
Input: n > 0.
(1) Ask oracles�1,�2 to find a pointd = 〈d1, d2〉 ∈ (Dn+1)2 such that|d −

x|�2−(n+1).
(2) SimulateM1 andM0 to geta = M

�1,�2
1 (n + 1) andb = M

�1,�2
0 (n + 1).

(3) If a = 1 and b = 0, then binary search forL ∈ Dn+1 ∩ [0,2] such that
〈d1, d2, L, n + 1,0〉 ∈ A but 〈d1, d2, L + 2−(n+1), n + 1,0〉 /∈ A; outputL.

(4) If a = 0 and b = 1, then binary search forL ∈ Dn+1 ∩ [0,2] such that
〈d1, d2, L, n + 1,1〉 ∈ A but 〈d1, d2, L + 2−(n+1), n + 1,1〉 /∈ A; outputL.

(5) If a = 1 andb = 1, then output 0.

First, we note that for anyx, the simulation of step (2) cannot outputa = b = 0, sincex
is either inSor in Sc. Thus, the above algorithm for machineM is well defined.
Next, we verify that machineM computes�S correctly. IfM reaches step (5), then one

ofM1 orM0 must have made a mistake. That meansx must be within distance 2−(n+1) of
the boundary�S of S. So, the output 0 is correct within error 2−(n+1).
Assume thatM reaches step (3). Then, we must havex ∈ S. SupposeM outputsL. Then,

we have〈d1, d2, L, n + 1,0〉 ∈ A, which implies that there exists a pointe = 〈e1, e2〉 in
(Dp(n+1))2 such thatMe1,e2

0 (n + 1) = 1 and|e − d|�L. FromM
e1,e2
0 (n + 1) = 1, we

know that eithere ∈ Sc or �S(e)�2−(n+1). Either way, we get

�S(x)� |x − d| + |d − e| + 2−(n+1)�L + 2−n.

On theother hand, letybeanypoint in�S . Then, for the standardCauchy functions�1,�2
for y, we must haveM�1,�2

0 (n + 1) = 1. Lete1 = �1(p(n + 1)) ande2 = �2(p(n + 1)).
We must also haveMe1,e2

0 (n + 1) = 1 becauseM0 cannot distinguish betweeny and
e = 〈e1, e2〉 within p(n+ 1)moves. Now,〈d1, d2, L+ 2−(n+1), n+ 1,0〉 /∈ A implies that
|d − e| > L + 2−(n+1); or

|x − y|� |d − e| − |x − d| − |y − e| > L − 2−(n+1).

Since y is an arbitrary point in�S , we get�S(x) > L − 2−(n+1). Together, we get
|L − �S(x)|�2−n.

A.W. Chou, K. Ko / Theoretical Computer Science 337 (2005) 360–369 367

The case ofM reaching step (4) is similar to the above case. To be more precise, if
M reaches step (4), we must havex ∈ Sc. SupposeM outputsL. Then, using the same
argument, we can prove that〈d1, d2, L, n + 1,1〉 ∈ A implies�S(x)�L + 2−n. For the
second half of the proof, we note that for any pointz ∈ �S , we can find a pointy ∈ S

with |y − z|�2−(n+1). Now, using this pointy, we can show, by the same argument, that
〈d1, d2, L + 2−(n+1), n + 1,1〉 /∈ A implies |x − y| > L − 2−(n+1) and, hence,|x − z| >
L − 2−n. Together, we get|L − �S(x)|�2−n.
Finally, we check that, in steps (3) and (4), the binary search needs to ask the oracles at

mostn+2 times, andso themachineM runs in polynomial time.Thus,�S is polynomial-time
computable relative to an oracle in NP.�

When the boundary�S of setS is a Jordan curve, a TM that strongly polynomial-time
recognizes setT = R2− (S ∪�S) works almost the same as one that strongly polynomial-
time recognizesSc. So, we get the following stronger result.

Corollary 4.2. Assume thatS ⊆ [0,1]2 is a simply connected open set whose boundary
�S is a Jordan curve. If both S andT = R2 − (S ∪ �S) are strongly polynomial-time
recognizable, then�S is polynomial-time computable relative to a setA ∈ NP.

We note that the setS in the proof of Theorem3.1 has the property that bothS and
T = R2 − (S ∪ �S) are strongly polynomial-time recognizable. Thus, the condition in
Corollary4.2that the boundary�S is a Jordan curve is necessary.
Next, we show that the oracle setA in NP in Theorem4.1 for the computation of�S is

necessary.

Theorem 4.3. Assume thatP �= NP.Then, there exists a simply connected open setS ⊆
[0,1]2 whose boundary�S is a Jordan curve, such that both S andT = R2− (S ∪�S) are
strongly polynomial-time recognizable, but�S is not polynomial-time computable.

Proof. Assume thatA ⊆ {0,1}∗ is a set inNP− P.Then, from the existential quantifier
characterization ofNP,we know that there exist a setB ∈ P and a polynomial function p
such that, for every stringw ∈ {0,1}∗ of length n,

w ∈ A ⇐⇒ (∃u, |u| = p(n)) 〈w, u〉 ∈ B.

For each stringt ∈ {0,1}∗ of length m, we writeit to denote the unique integer between
0 and2m − 1whose m-bit binary expansion(with possible leading zeroes) is equal to t.
For eachn > 0, letan = 1−2−(n−1).Wedivide the interval[an, an+1] into2n subintervals

of equal length, each corresponding to a stringw ∈ {0,1}n. To be more precise, for each
stringw ∈ {0,1}n, we letrw = an + iw · 2−2n, and letIw = [rw, rw + 2−2n]. We further
divideIw into 2p(n) subintervals of equal length, each corresponding to a stringu of length
p(n). That is, for each stringu of lengthp(n), we let sw,u = rw + iu · 2−p(n)−2n, and
Jw,u = [sw,u, sw,u + 2−p(n)−2n]. For eachu of lengthp(n), we also define

hu =
{
(2p(n)−1 − iu) · 2−p(n)−2n if iu < 2p(n)−1,
(iu − 2p(n)−1 + 1) · 2−p(n)−2n if iu�2p(n)−1.

368 A.W. Chou, K. Ko / Theoretical Computer Science 337 (2005) 360–369

. xw

Fig. 1. SetSwithin the squareIw × [0,2−2n].

Then, we define a rectangleTw,u as follows: the rectangleTw,u has width 2−p(n)−2n, height
hu, and its lower left corner is〈sw,u,0〉.
Finally, define set

S = (0,1)2 − ⋃
〈w,u〉∈B

Tw,u.

Fig. 1 shows setS ∩ Iw × [0,2−2n], when, for instance,p(n) = 3, and〈w,000〉, 〈w,010〉,
〈w,011〉, 〈w,110〉 are the only pairs〈w, u〉 in B. The above limiting process clearly shows
that the boundary ofS is a Jordan curve.
Definexw = 〈rw +2−2n−1,2−2n−1〉. Then, we can see easily that ifw /∈ A, then�S(xw)

is equal to 2−2n−1. If w /∈ A, then we remove at least oneTw,u from S and so�S(xw)
is less than 2−2n−1 − 2−p(n)−2n−1 (cf. Fig. 1). Thus, whetherw ∈ A can be determined
from an approximationd to �S(xw) within error 2−p(n)−2n−3. This means that�S is not
polynomial-time computable, since we assumed thatA /∈ P.
It is left to show that both setsSandT = R2 − (S ∪ �S) are strongly polynomial-time

recognizable. In the following, we show an oracle TMM that strongly polynomial-time
recognizes setS. The machine for setT is similar, and we omit it. LetMB be the TM that
determines whether〈w, u〉 ∈ B in polynomial time.

Oracles: �1,�2 representing a pointx ∈ R2.
Input: n > 0.
(1) Let d1 = �1(p(n) + 2n) andd2 = �2(p(n) + 2n). If d1 /∈ (0,1), then output

0 and halt.

A.W. Chou, K. Ko / Theoretical Computer Science 337 (2005) 360–369 369

(2) Find integerk such thatak�d1 < ak+1. If k > n, then output 1 if and only if
0< d2 < 1, and halt.

(3) If k�n, then findw, u ∈ {0,1}∗ of lengthn andp(n), respectively, such that
d1 ∈ Jw,u.

(4) SimulateMB on 〈w, u〉. If 〈w, u〉 /∈ B, then output 1 if and only if 0< d2 < 1;
otherwise, output 1 if and only ifhu < d2 < 1.

The correctness of the machineM is clear. In particular, if it getsk > n in step (2), then
we know that the line segment from〈ak,0〉 to 〈1,0〉 is within distance 2−2n of the lower
bottom of the boundary ofS, and so the answer based on the condition 0< d2 < 1 is
either correct or incorrect but acceptable. We also observe that the computation ofM runs
obviously in polynomial time. Thus,S is strongly polynomial-time recognizable.�

Corollary 4.4. The following are equivalent:
(a) P= NP.
(b) For every simply connected open setS ⊆ [0,1]2, if both S andSc are strongly

polynomial-time recognizable, then�S is polynomial-time computable.
(c) For every simply connected open setS ⊆ [0,1]2 whose boundary is a Jordan curve, if

both S andT = R2 − (S ∪ �S) are strongly polynomial-time recognizable, then�S is
polynomial-time computable.

References

[1] V.Brattka,K.Weihrauch,Computability onsubsets ofEuclideanspace I: closedandcompact subsets,Theoret.
Comput. Sci. 219 (1999) 65–93.

[2] A.W. Chou, K. Ko, Computational complexity of two-dimensional regions, SIAM J. Comput. 24 (1995)
923–947.

[3] A.W. Chou, K. Ko, On the complexity of finding paths in a two-dimensional domain I: shortest paths,
Math. Logic Quart. 50 (2004) 551–572; preliminary version in Proc. Internat. Conf. on Computability and
Complexity in Analysis, Hagen, Germany, 2003.

[4] R.G. Downey, Some computability-theoretical aspects of real and randomness, preprint, September 2001.
[5] D.-Z. Du, K. Ko, Theory of Computational Complexity, Wiley, NewYork, 2000.
[6] K. Ko, On the definitions of some complexity classes of real numbers, Math. System Theory 16 (1983)

95–109.
[7] K. Ko, Complexity Theory of Real Functions, Birkhäuser, Boston, 1991.
[8] K. Ko, Polynomial-time computability in analysis, in: Yu. L. Ershov, et al. (Eds.), Handbook of Recursive

Mathematics, Vol. 2: Recursive Algebra, Analysis and Combinatorics, Studies in Logic and the Foundations
of Mathematics, Vol. 139, Elsevier, Amsterdam, 1998, pp. 1271–1317.

[9] M. Pour-El, I. Richards, Computability in Analysis and Physics, Springer, Berlin, 1989.
[10] K. Weihrauch, Computable Analysis, Springer, Heidelberg, 2000.
[11] X. Zheng, Recursive approximability of real numbers, Math. Logic Quart. 48 (Suppl. 1) (2002) S131–S156.

	The computational complexity of distance functionsof two-dimensional domains
	Introduction
	Definitions and notation
	Distance function of a polynomial-time recognizable set
	Distance function of a strongly polynomial-time recognizable set
	References

