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Abstract

In a finite dataset consisting of positive and negative observations represented as real valued n-vectors, a positive (negative)
pattern is an interval in Rn with the property that it contains sufficiently many positive (negative) observations, and sufficiently
few negative (positive) ones. A pattern is spanned if it does not include properly any other interval containing the same set of
observations. Although large collections of spanned patterns can provide highly accurate classification models within the framework
of the Logical Analysis of Data, no efficient method for their generation is currently known. We propose in this paper, an incrementally
polynomial time algorithm for the generation of all spanned patterns in a dataset, which runs in linear time in the output; the algorithm
resembles closely the Blake and Quine consensus method for finding the prime implicants of Boolean functions. The efficiency of
the proposed algorithm is tested on various publicly available datasets. In the last part of the paper, we present the results of a series
of computational experiments which show the high degree of robustness of spanned patterns.
© 2005 Published by Elsevier B.V.
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1. Introduction

Logical analysis of data (LAD) is a method based on combinatorics, optimization, and Boolean logic, for data
analysis. LAD was first introduced in [11,8] as a method for the analysis of binary data, and extended later in [6] to the
analysis of datasets having numerical independent variables and binary outcomes (positive and negative observations).
LAD produces highly accurate, completely reproducible, and robust classification models with high explanatory power,
along with novel information about observations and attributes. LAD has been successfully applied for the analysis of
datasets from different areas e.g., medicine, design of biomaterials, economics, finance, oil exploration and seismology.
Computational studies [7,3,14,2] show that the accuracy of the LAD models compares favorably with that of other
machine learning and statistical models.

A central problem in LAD, as well as in some other areas of artificial intelligence, machine learning, data mining,
etc., is the extraction of positive and negative rules (or patterns) from data, and their aggregation into a classification
model capable of distinguishing between positive and negative observations in the dataset. The two basic concepts used
in LAD are those of patterns and of models.

To clarify these concepts, let us consider two finite, disjoint sets �+ and �− of vectors of Rn, called, respectively,
positive and negative observations. LAD identifies two families F+ and F− of intervals in Rn, such that

(i) the union of intervals in F+, respectively F−, includes �+, respectively �−;
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(ii) the proportion of positive observations in each interval I in F+ exceeds a prescribed threshold, while the proportion
of negative observations is below a (possibly different) threshold; similarly, the proportion of negative observations
in each interval I in F− exceeds a prescribed threshold, while the proportion of positive observations is below a
(possibly different) threshold.

The intervals I in F+ (respectively, F−), are called positive (respectively, negative) patterns. The positive patterns
I with I ∩ �− = ∅ are called pure positive patterns. Pure negative patterns are defined in a similar way.

There are two important classes—those of prime and of spanned patterns—which are widely used in LAD models.An
interval I in F+ is called a positive prime (respectively, spanned) pattern, if it is the inclusionwise maximal (respectively,
minimal) positive pattern containing the observations covered by I . Negative prime and negative spanned patterns are
defined in a symmetric way.

The major criterion of usefulness of a category of patterns is reflected in its “robustness”, i.e., in the degree of
similarity or dissimilarity between its performance on the “training set” (i.e., the dataset on which it was learned) and
on another dataset called “test set”. It will be seen that in the case of spanned patterns, the basic performance measures
of patterns (especially their prevalence and homogeneity, to be defined in Section 2), remain relatively stable on new
datasets. This robustness of spanned patterns explains to a large extent their importance in LAD.

Given a dataset �, a collection of positive and negative patterns with the property that every positive (negative)
observation in the dataset belongs to at least one of the positive (negative) patterns in the collection, defines an LAD
model of the corresponding classification problem.

More precisely, a collection P of positive patterns Ph (h ∈ H ) and a collection N of negative patterns Nk (k ∈ K)
is called a LAD model if for any positive observation �+ ∈ �+, there exists a positive pattern Ph (h ∈ H ) which
covers it, and for any negative observation �− ∈ �− there exists a positive pattern Nk (k ∈ K) which covers it.
In certain applications, in order to increase the accuracy of the models the “mild” coverage requirement stated in
the definition is sharpened, so to require the coverage of each positive, respectively, negative observation by at least
t+ positive, respectively, at least t− negative, patterns. Of particular interest are models consisting of collections of
either prime or of spanned patterns. The comparative accuracy of such LAD models was analyzed in [12,2] through
extensive computational studies. In particular, in [12] it was shown that in general, models based on spanned patterns
make fewer classification errors, but leave more observations uncovered than those based on prime patterns. Moreover,
it was proved in [2] that models consisting of larger collections of patterns are usually more accurate than those
which consist of small subsets of patterns. Therefore, LAD models using large collections of spanned patterns play
an important role whenever classification errors can have substantial undesirable effects (e.g. in the case of medical
diagnosis).

Pattern generation is a central problem of LAD. In earlier implementations of LAD, pattern generation (in the binary
case) was carried out by using two enumeration techniques, called bottom-up and top-down [7]. The top-down approach
[7] starts by associating to every positive (negative) observation its “characteristic term” (which can be viewed as an
interval reduced to one point), and systematically removes literals (i.e. eliminates the corresponding restrictions on the
interval), until arriving to a prime (pure) positive (negative) pattern. The bottom-up approach [7] starts by intervals
defined by one non-redundant constraint, and systematically adds non-redundant constraints to each of them, until
generating a (pure) pattern. In practice, these two approaches are combined in a hybrid method, which applies the
bottom-up procedure until generating all the patterns defined by at most d (usually 4 or 5) non-redundant constraints,
and applies then the top-down procedure to cover those observations which remained uncovered after the bottom-up
step. All these procedures have an exponential complexity in both input and output, and can run only on datasets of
restricted size.

While an efficient algorithm for enumerating all prime patterns of a dataset [4], as well as a branch-and-bound
algorithm for constructing the positive and the negative pattern of maximum coverage [9] have been recently developed,
no specific method is yet available for the systematic enumeration of large collections of spanned patterns. In view
of the exponentially large number of spanned patterns, this task can only be accomplished with the help of efficient
algorithms running in total polynomial time. The description of such an algorithm, running in fact in incremental
polynomial time, and resembling the consensus method of Blake [5] and Quine [17] for finding the prime implicants
of a Boolean function, is the aim of this paper.

This paper is organized as follows. After introducing in Section 2 several definitions and notations, we present in
Sections 3 and 4 a consensus-type algorithm and an accelerated version of it for the generation of all spanned patterns
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associated to a dataset. Section 5 describes an implementation of the accelerated algorithm, and analyzes its efficiency.
Section 6 presents computational evidence showing the robustness of the class of spanned patterns.

2. Definitions and notations

Let � be a dataset consisting of m observations �1, . . . ,�m. Each observation is represented as a vector �i =
{ai

1, . . . , a
i
n} in Rn (indicating the values ai

j of the attributes A1, . . . , An), having an outcome which can be “positive”

or “negative”. The set of positive observations is denoted �+, and the set of negative observations �−. In this paper,
we shall assume that �+ and �− are disjoint.

For the sake of simplicity, we shall usually assume that all the ai
j ’s belong to the set {0, 1, . . . , kj }. As a matter of

fact, it is easy to note that this assumption is not restrictive, since every dataset can be brought to this form with the
help of a simple transformation. Such a transformation, called discretization, uses a set of cutpoints for partitioning the
domain of each attribute into a finite number of intervals (see e.g., [3]).

Let l and u be two vectors in Rn with lj �uj for j = 1, . . . , n. The set of all n-vectors (x1, . . . , xn) satisfying
lj �xj �uj will be called an interval and denoted I =[l1, u1]× · · · × [ln, un]. The coverage cov(I ) of the interval I is
the set of observations contained in I , i.e. cov(I ) = I ∩ �; we shall frequently distinguish between the positive and the
negative coverages of I , defined as cov+(I ) = I ∩ �+ and as cov−(I ) = I ∩ �−, respectively. The ratios |cov(I )|/|�|,
|cov+(I )|/|�+| and |cov−(I )|/|�−| will be called the prevalence, the positive prevalence, and the negative prevalence
of I , respectively, and will be denoted by �I , �

+
I , and �−

I . The degree of the interval I , denoted deg(I ), is the number
of attributes Ai for which at least one of the inequalities li �Ai or Ai �ui is non-redundant.

An interval P is called a pure positive pattern if �+
P > 0 and �−

P = 0, and it is called a pure negative pattern if �−
P > 0

and �+
P = 0. The ratio �+

P /�P is called the homogeneity �P of the pattern P . In most studies, we are only interested
in those positive patterns, whose homogeneity exceeds a certain fixed threshold �, usually equal to at least 0.8 or 0.9.
Similarly, in the case of negative patterns we usually require the homogeneity not to exceed 0.1 or 0.2.

A positive (negative) pattern P is called maximal (or strong [12]) if its positive (respectively, negative) coverage is
maximal with respect to set inclusion. Given a subset of observations T , the interval spanned by T , denoted Span(T ), is
the inclusionwise minimal interval containing T . If a pattern is spanned by a subset T , we shall simply call it a spanned
pattern. Clearly, every pattern spanned by a set of observations T can be represented as [u1, v1]× · · ·× [un, vn], where
for every j = 1, . . . , n, uj = mini a

j
i , vj = maxi ai

j , with i running over all the observations (ai
1, . . . , a

i
n) in T .

Given a dataset �, the spanned positive pattern generation (SPPG) problem consists in generating all the positive
pure patterns spanned by all the subsets of observations of �+. The spanned negative pattern generation (SNPG)
problem is defined similarly. Because of the perfect analogy between these problems, we shall discuss below only the
SPPG problem.

SPPG is a hard problem, since the number of pure spanned patterns may be exponential in the size of �+. For
example, if we assume that all the observations in � are positive, and that �+ consists of the set of m records
{(1, 0, . . . , 0), . . . , (0, . . . , 0, 1)}, where the ith record is simply the ith unit vector, then it is easy to see that there
are 2m − 1 distinct (pure) positive patterns spanned by the elements in �+. Another reason for which SPPG is a hard
problem is that determining the maximum size spanned pattern was shown [9] to be NPC.

3. SPAN—a consensus-type algorithm for generating all positive pure spanned patterns

In this section, we shall describe a consensus-type method for solving the SPPG problem, along with an implemen-
tation of it, which runs in incremental polynomial time. Since the introduction of the consensus method for finding the
prime implicants of a Boolean function [5,17], several other consensus methods appeared in the literature. Malgrange
[16] uses a consensus-type approach to find all the maximal submatrices consisting of ones of a 0–1 matrix. Another
consensus-type algorithm is developed in [1] for finding all maximal bicliques of a graph. A generalization of the
consensus method for pseudo-Boolean functions is presented in [10].

Consensus-type methods enumerate all the maximal objects of a certain collection, by starting from a sufficiently
large set of objects, and systematically completing it by the application of two simple operations. (i) The operation of
consensus adjunction associates to a pair of objects in the given collection one or more new objects, and adds them
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to the collection. (ii) The operation of absorption removes from the collection those objects which are “dominated”
by other objects in the collection. The two operations are repeated as many times as possible, leading eventually to a
collection consisting exactly of all the maximal objects.

The proposed consensus-type method for spanned pattern generation starts from a dataset � = �+ ∪ �−, and a
family of spanned (say, positive) patterns, the union of which includes �+. Let P = [a1, b1] × · · · × [an, bn] and
P ′ = [a′

1, b
′
1] × · · · × [a′

n, b
′
n] be a pair of positive pure spanned patterns, and let P ′′ be the (spanned!) pattern

[a′′
1 , b′′

1 ] × · · · × [a′′
n, b′′

n], where a′′
j = min{aj , a

′
j }, and b′′

j = max{bj , b
′j}, j = 1, . . . , n. If P ′′ is a positive pattern,

then it is called the consensus of the patterns P and P ′. In this way, a pair of positive pure spanned patterns may have at
most one consensus, which is the pattern spanned by the observations in cov(P ) ∪ cov(P ′). We have to remark that the
consensus adjunction operation of two patterns P and P ′ uses besides the information given by the positive patterns P

andP ′, the information given by the set �− of negative observations.
We say that the positive pure spanned pattern P absorbs the positive pure spanned pattern P ′ if simply P = P ′.
Let us consider the dataset � in Rn consisting of m+ positive and m− negative observations, and let us consider an

algorithm A for the SPPG problem, which outputs sequentially all the positive pure spanned patterns P1, . . . , P� of
�+. Let us denote by �(k) the running time of A until the output of Pk , for k = 1, 2, . . . , � and by �∗ the total running
time of A.

We recall that (according to [13]), an algorithm is said to run in polynomial total time if its total running time �∗ is
polynomially bounded in the size of the input and output. Similarly, an algorithm runs in incremental polynomial time
if it runs in polynomial total time, and the running time between any two consecutive outputs is polynomially bounded
in the size of the input and output.

3.1. Algorithm SPAN for generating all positive pure spanned patterns

1. Initiate the collection C with the m+ positive patterns spanned by each individual observation in �+.
2. Repeat the following two operations until the collection C cannot be enlarged anymore:

(i) Consensus adjunction: If there is a pair of patterns P, P ′ in C, having a consensus P ′′, add P ′′ to C.
(ii) Absorption: If there is a pair of patterns P, P ′ in C, such that P ′ absorbs (is the duplicate of) P , then eliminate

P ′ from C.

Clearly, the two transformations above can be replaced by the following equivalent one:

(*) If there is a pair of patterns P and P ′ in C, having a consensus P ′′ not already contained in C, add P ′′ to C.

Theorem 1. Algorithm SPAN terminates and at termination the final list C contains all the pure positive patterns
spanned by subsets of observations in �+.

Proof. The algorithm stops after a finite number of steps, since the number of spanned patterns is finite, and once a
spanned pattern is in C, it can never reenter this list.

Let us prove now that the final list C consists of all the positive pure spanned patterns. Assume that P is a positive
pure spanned pattern which is not contained in the list C when the algorithm stops. Let cov(P ) = {v1, . . . , vk}, and let
P1, . . . , Pk be the patterns spanned by each of the observations v1, . . . , vk , respectively.

We remark that the spanned patterns P1, . . . , Pk are contained in the initial list C, and they were never deleted from
C during the application of the algorithm, since the coverage cov(Pi) = 1 for each Pi , i = 1, . . . , k, and the coverage
of any pattern produced by consensus adjunction is at least 2.

We also remark that if S′ and S′′ are two arbitrary subsets of cov(P ), then the consensus of the patterns Span(S′)
and Span(S′′) exists and it is a spanned pattern included in P , and contained in the final list C.

Since algorithm SPAN performs the consensus adjunction transformation for every pair of patterns in the current list
C, eventually it must perform the consensus adjunction for the pair P1 and P2. Let P1,2 be the resulting consensus.
According to the second remark, P1,2 will be added to C, if not already there. Continuing in this way, the algorithm
performs eventually the consensus adjunction for the pair P1,2 and P3, producing the pattern P1,2,3, which will be
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added to C if not already there, and so on. Finally, the algorithm must perform the consensus adjunction for the pair
of patterns P1,...,k−1 and Pk , and the resulting pattern P1,...,k will be added to C if not already there. Since both P1,...,k

and P are spanned patterns, P1,...,k ⊆ P , and since obviously cov(P1,...,k) ⊇ cov(P ), it follows that P1,...,k = P . This
contradicts the assumption that P is not in the final list C. �

The size of the current list C during the execution of algorithm SPAN never exceeds � + 1. The complexity of this
algorithm can be seen to be O(�(m, n)�2), where �(m, n) is a polynomial in m and n.

4. SPIC—an accelerated generation algorithm of spanned patterns via input consensus

We shall describe below a variant of algorithm SPAN which runs in incremental polynomial time. In algorithm SPAN,
an input list C of patterns was updated step by step, and consensuses were systematically generated between pairs of
patterns in C. In the proposed accelerated algorithm spanned patterns via input consensus algorithm (SPIC), we shall
still update the list C, but shall restrict pattern formation to pairs of patterns consisting of one pattern belonging to
the initial list C0 (which remains unchanged during the execution of the algorithm), and one pattern belonging to the
updated list C. Clearly, the number of pairs to be examined for pattern formation is substantially reduced in this way.
It will be seen in Theorem 2 that SPIC produces all spanned patterns, with a substantial reduction in the worst case
running time. The computational experience in applying SPIC to several real life datasets, presented in Section 5 shows
the high efficiency of this algorithm.

4.1. Algorithm SPIC

Let C0 be the collection of patterns spanned individually by each one of the observations in �+.

Stage 0: Initiate i := 0, C : =C0, W0 := C0
Repeat the following operations

Stage i + 1 :
Wi+1 := ∅

For every pair of patterns P0 in C0 and P in Wi , having a consensus P ′ not contained in C, add P ′ to Wi+1
and to C.

i := i + 1
until Wi = ∅.

Theorem 2. Algorithm SPIC generates all positive pure spanned patterns, runs in incremental polynomial time with
�(k + 1) − �(k) = O(nmm+k), k = 1, . . . , � − 1, the total running time being O(�nmm+).

Proof. The correctness of algorithm SPIC follows directly from the proof of Theorem 1, in view of the fact that the
patterns P1, . . . , Pk are in C0. Let us prove now that SPIC runs in incremental polynomial time. Assume that the pure
spanned patterns are labeled P1, . . . , P�, in the order in which they are produced by the algorithm. For k=1, 2, . . . , �, the
pattern Pk is added to the list at time �(k). Note that at most O(km+) consensus adjunctions can be completed in the period
�(k + 1) − �(k). Each such transformation requires O(n) time for consensus formation (i.e., creation of the candidate
for consensus), O(nm−) time for checking if the candidate is a positive pattern, and O(n log2 k) time for checking by
binary search whether the candidate is in the list C (this requires a data structure which maintains {P1, P2, . . . , Pk} as
an ordered list throughout the algorithm, e.g., a sorted list). Therefore, �(k + 1)− �(k)= O(m+k(n+nm− +n log2 k))

for k = 1, 2, . . . , � − 1. Since k�2m+, it follows that �(k + 1) − �(k) = O(m+k(n + nm− + nm+)) = O(nmm+k).
Algorithm SPIC runs in at most m+ stages, since a pure positive spanned pattern may cover at most m+ positive

cases. In stage i, m+size(Wi) consensus adjunction operations are completed; each consensus adjunction requires O(n)

time for candidate creation, O(nm−) time for checking if the candidate is a positive pure pattern, and O(n log �) time for
checking if the candidate is in the list C. Therefore, the running time for stage i is m+size(Wi)O(n+ nm− +n log �)=
nmm+size(Wi). Since

∑
isize(Wi)=�, it follows that the total running time of the algorithm SPIC is O(�nmm+). �
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Example. Let us illustrate algorithm SPIC for the dataset �={v1=[1, 0, 2], v2=[0, 2, 0], v3=[3, 1, 1], v4=[2, 0, 2]},
all the observations of which, with the exception of v2, are positive.

• The input collection C0 is {P1 =[1, 1]× [0, 0]× [2, 2], P3 =[3, 3]× [1, 1]× [1, 1], P4 =[2, 2]× [0, 0]× [2, 2].
Initialize C := C0.

• Perform consensus adjunction for the pair of patterns P1 in C0 and P3 in C: the candidate for consensus is
P1,3 = [1, 3] × [0, 1] × [1, 2], having cov(P1,3) = {v1, v3, v4} = �+; since P1,3 is not contained in C, it is added
to C.

• Perform consensus adjunction for the pair of patterns P1 in C0 and P4 in C: the candidate for consensus is
P1,4 = [1, 2] × [0, 0] × [2, 2], having cov(P1,4) = {v1, v4} ⊆ �+; since P1,4 is not contained in C, it is added
to C.

• Perform consensus adjunction for the pair of patterns P3 in C0 and P4 in C: the candidate for consensus
is P3,4 = [2, 3] × [0, 1] × [1, 2], having cov(P3,4) = {v3, v4} ⊆ �+; since P3,4 is not contained in C, it is added
to C.

• The consensus of any other pair of patterns from C and C0 is contained in C. The algorithm stops and outputs
the family of all positive pure spanned patterns C = {P1, P3, P4, P1,3, P1,4, P3,4}.

Generation of all strong positive pure spanned patterns: The list L of all strong positive pure spanned patterns can be
easily obtained from the output collection C, by selecting from C the maximal elements with respect to set inclusion.
The list L can also be produced and updated gradually, during the consensus-type procedure: L is initialized with the
empty set, and whenever a consensus candidate, say P , is added to C, it is checked whether P is already contained
in a pattern in L. If the test fails, then P is added to L, and all patterns in L which are contained in P are deleted
from L. The selection of all strong pure spanned patterns can be performed in an additional time of order O(�2);
however, we are not able to guarantee yet a total polynomial-time for producing all strong spanned patterns. In fact, the
dualization problem of a monotone non-decreasing Boolean function can be reduced in quadratic time to the problem
of generating all strong spanned patterns of a certain dataset (see [12]). Thus, the existence of a total polynomial-time
algorithm for generating all strong spanned patterns would imply the existence of a total polynomial-time algorithm
for the dualization problem mentioned above; until now, the best known algorithms are pseudo-polynomial.

Example (continued). If we want to find all the maximal patterns in the previous Example, we shall modify the
procedure as follows. We create in the initial step a “current” list L of candidates for the collection of maximal patterns.
We initialize L with C0. In the next step, when P1,3 is added to C, we add it to L too, and we delete P1, P3 and P4
from L. In the following steps, the patterns P1,4 and P3,4 are added to C, but they cannot be added to L, since their
coverage is included in the coverage of P1,3. Thus, the final list of maximal patterns is L = {P1,3}.

5. Implementation and performance of SPIC

In its current implementation, algorithm SPIC consists in a sequence of (at most m+) successive stages. Stage k

starts with the list Wk−1 of pure spanned patterns produced at stage k − 1; in the initial stage, W0 consists simply in the
list C0 of individual positive observations, each being interpreted as the pattern spanned by a singleton. The algorithm
produces at stage k the consensus of each of the patterns P in Wk−1 with each of the patterns P0 in C0, whenever P0
is not included in P . If the resulting consensus candidate is not in C, it is added to C and to the new list Wk .

In all real-life applications encountered, accurate classification does not necessarily require the availability of the
entire collection of spanned patterns, and can be achieved by using a sufficiently large subset of high prevalence spanned
patterns. It is therefore important to apply various filtering mechanisms to restrict the number of patterns produced,
and to keep in this way both time and memory requirements at an acceptable level. The final list of spanned patterns
is obtained from the list C, based on several selection criteria, which include restrictions on the number of patterns
produced, the total time allocation, and the characteristic parameters (e.g., prevalence) of the retained patterns.

The implemented version of algorithm SPIC includes several accelerating heuristics. One of the most important pro-
cedures used for this purpose, randomly partitions the original dataset into several subsets, applies the input-consensus
algorithm separately to the subsets, and after eliminating redundancies in the union of these subsets, creates a final list of
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Table 1
Basic parameters of the datasets

Dataset # Observations # Attributes

Positive Negative Total Numerical Categorical Total

bcw 239 444 683 9 0 9
vot 267 168 435 0 16 16
hea 137 160 297 7 6 13
bld 200 145 345 6 0 6
pid 150 305 455 6 0 6

Table 2
Generation time (seconds) for spanned patterns with prevalence at least 5%

Dataset # Spanned patterns

1000 5000 10 000 16 000

bcw 3 25 47 93
vot 2 7 33 47
hea 8 26 94 197
bld 21 87 241 525
pid 24 94 142 206

spanned patterns. Another heuristic included in the current implementation of SPIC applies a preselection mechanism
along the process, eliminating from consideration those patterns whose parameters (prevalence, homogeneity, etc) are
not sufficiently high.

In order to verify experimentally the efficiency of algorithm SPIC, large collections of spanned patterns have been
generated for a series of well-known datasets, frequently used in the data mining literature. The five datasets used,
Breast Cancer (bcw), Liver Disease (bld), Diabetes (pid), Heart Disease (hea), Congressional Voting (vot), are publicly
available at the website of the University of California Irvine (http://www.ics.uci.edu/∼mlearn/MLRepository.html),
and their basic parameters are presented below and summarized in Table 1.

Wisconsin breast cancer (bcw). In this dataset 683 observations (obtained after the removal of 16 instances which
contain missing attributes) represent malignant or benign breast tissues, each observation being represented by 9
numerical attributes.

Congressional voting records (vot). This dataset contains the voting records of the 435 members of the U.S. House of
Representatives of the 98th Congress, each being classified as a Democrat or a Republican. The 16 attributes represent
the votes of the representatives on 16 issues, encoded as 1, 0 and 0.5, the latter corresponding to the absence of vote.

StatLog heart disease (hea). This dataset contains the records of 297 patients, indicating for each of them the
presence or absence of heart disease, together with the numerical results of 13 medical tests, 7 of which have numerical
expressions, the six other ones having binary outcomes.

BUPA liver disorders (bld). In this dataset 345 observations represent male patients, some of whom had liver disorder;
each patient is represented by 6 numerical attributes describing alcohol consumption, and results of several blood tests.

PIMA Indian diabetes (pid). This dataset contains the records of 455 females of Pima Indian heritage living near
Phoenix, Arizona, USA, of which 150 have the disease. Patients are characterized by the results of seven medical tests
and physiological measurements.

It should be noted that a detailed analysis of the performance of various classification methods applied to these
datasets is presented in [15]; while the average accuracy of various statistical classification methods was very high (in
the range 90%–96%) on the bcw and vot datasets, it was lower (between 70% and 85%) on the other three datasets.

Efficiency of SPIC: In order to illustrate the efficiency of algorithm SPIC, we present in Table 2 the computing time
needed for generating collections of positive and negative spanned patterns for the datasets described in Table 1. All the
experiments were carried out on a 1.7 GHz processor. We have restricted the search to pure positive and pure negative
patterns, and have required that the prevalences of the patterns to be generated exceed 5% (see Table 2), or 10% (see

http://www.ics.uci.edu/~mlearn/MLRepository.html
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Table 3
Generation time (seconds) for spanned patterns with prevalence at least 10%. Times exceeding 1000 s are marked “> 1000”

Dataset # Spanned patterns

1000 5000 10 000 16 000

bcw 4 28 51 99
vot 6 9 36 55
hea 14 49 101 311
bld > 1000 N/A N/A N/A
pid > 1000 N/A N/A N/A

Table 4
Generation time (seconds) for 1000 spanned patterns

Dataset # Attributes # Cutpoints/component

10 20 100

bcw 9 3 4 5
vot 16 9 N/A N/A
hea 13 15 20 23
bld 6 21 29 33
pid 6 82 88 92

Table 3). In these tables, the notation N/A means that the total number of maximal pure patterns with the desired
prevalence is below the required threshold.

Sensitivity of SPIC to discretization: We shall show next that the input consensus algorithm has another important
quality, namely, it has a very low sensitivity to the increase of the discretization grid resolution. Originally, LAD was
proposed [8] as a method for the analysis of binary (0–1) data. In [6], it was shown that the applicability of LAD can
be extended to the analysis of problems with numerical data, by replacing each numerical variable by several binary
ones. Also in [6] it was shown that the choice of a support set using a minimum number of 0–1 variables is an NP-hard
problem.

In [3] it was shown that “discretizing” a numerical variable (i.e., replacing it with a new variable taking only
the discrete values 0, 1, . . . , k, for some appropriately defined positive integer k) instead of binarizing it, has com-
putational advantages. The basic idea of discretization is quite simple. For the variable x taking real values, the
interval [min� x, max� x] is partitioned into the subintervals [x0, x1), [x1, x2), . . . , [xk, xk+1], where x0 = min� x,
xk+1 = max� x, and the original numerical variable x is replaced by a discretized variable x′, by considering x′ = h if
x ∈ [xh, xh+1).

A partitioning of Rn is feasible if each of the corresponding n dimensional subintervals is “homogeneous”, i.e. does
not contain both positive and negative observations. In order to arrive to homogeneous intervals in the discretization
process, it is frequently necessary to increase the number of cutpoints defining a finer partition. At the same time, it is
natural to try to keep the number of cutpoints reasonably small, in order to avoid both overfitting and computational
difficulties. This is not always an easy task, since the determination of a feasible partitioning with a minimum number
of subintervals is NP-hard, due to the result [6] mentioned above.

It is natural to assume that the complexity of finding patterns in a discretized space increases along with its refinement;
for example, in [3] it was shown that the complexity of finding all the prime patterns in a dataset is proportional to the
number of cutpoints used for discretization. A major advantage of the proposed SPIC algorithm for generating spanned
patterns over other known algorithms ([6,3], etc) is that its complexity does not increase with the number of cutpoints.
However, an increase in the number of cutpoints may slightly increase the computational time, due to the larger data
structures to be maintained, and the increase of allocated memory.

We show in Table 4 the time needed for generating 1000 spanned patterns in the five datasets discussed above, when
the number of subintervals in the partitioning of each of the numerical variables increases. It can be seen in the table
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that a 10 fold increase in the number of cutpoints (from 10 to 100) for each one of the components (which implies an
increase of between 690 and 1690 in the number of subintervals), increases the average running time required by the
algorithm SPIC by only 47%.

Table 4 illustrates clearly the high stability of running times versus the discretization’s degree of refinement.

6. Robustness of spanned patterns

In LAD, patterns are used as inference rules in the modeling process, and therefore, it is very desirable that their
qualities (e.g. prevalence, homogeneity) do not degrade when applied to test data. In this section, we show that the
spanned patterns—generated by algorithm SPIC—are highly robust, i.e., the deterioration of their qualities on test sets
is relatively small. In order to illustrate this fact, a series of computational experiments were carried out on the five
datasets described in Section 5, for analyzing these changes in prevalence and homogeneity.

The validation process consisted in “two-folding” experiments, in which the dataset was partitioned randomly into
a “training set” containing 50% of the observations, and a “test set” containing the other 50%. The observations in
the training set were used for finding lists of pure spanned patterns, which were validated on the test set. Afterwards,
the experience was repeated by using the old test set as training set, and validating the results on the old training set,
used as a test set. This procedure was applied for each of the datasets five times, providing in this way 10 validation
experiments. All the results reported in this section represent averages for the 10 experiments.

It can be seen in Table 5 that for the “separable” datasets bcw and vot (which are known to admit clean separations
into positive and negative observations), the average drops in prevalence and homogeneity for spanned patterns are
very low (at most 5%). While for the “inseparable” datasets hea, bld, and pid (which are known not to admit clean
separations), the average drops in prevalence and homogeneity are somewhat higher, they still remain in a reasonable
range (between 12% and 20%). Overall, the average drop in prevalence is 12.10%, and the average drop in homogeneity
is only 10.60%. These drops in prevalence and homogeneity are comparable or even lower than those found in the case
of prime patterns.

In order to check whether high robustness is a specific quality of spanned patterns, we repeated the above experiment
for prime patterns. More precisely, for each of the 5 datasets we generated 1000 spanned patterns, determined the
subsets of maximal spanned patterns, and using then a simple heuristic, we associated to each maximal spanned pattern
P the collection of all its “reduced” patterns, i.e., prime patterns having the same coverage as P .

For comparison, Table 6 shows the average drop in prevalence and homogeneity for the reduced patterns of low
and high degree. We remark that for the “inseparable” datasets hea, bld, and pid the average drop in prevalence is
significantly higher for the reduced patterns (22.88%) than for the spanned ones (17.33%), and the drop is even higher
for the low degree reduced patterns (25.00%). The “separable” datasets bcw and vot perform much better than the
“inseparable” ones, the average drop in prevalence and homogeneity being only 5.83% and 4.50%, respectively.

Overall, the reduced patterns have an average drop in prevalence and homogeneity of 15.57%, which is higher than
the corresponding average drop for the spanned patterns (11.35%).

Finally, Table 7 shows the percentage of reduced patterns of low degree (i.e. at most 3) and of high degree (i.e. at
least 4) obtained in this way. Generally, spanned patterns have high degrees (equal in average to about 75% of the
number of attributes in the dataset). From Table 7 we remark that while for the “separable” datasets the percentage of

Table 5
Spanned patterns: decrease of prevalence and homogeneity from training to test sets

Pattern Percentage of decrease

DataSet Prevalence Homogeneity

bcw 5 4
vot 4 5
hea 17 12
bld 20 19
pid 15 14
average 12.10 10.60
stdev 7.39 6.55
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Table 6
Decrease in prevalence and homogeneity of reduced patterns from training to test sets

Pattern Percentage of decrease

Dataset Prevalence Homogeneity

deg�3 deg = 4 deg�5 deg�3 deg = 4 deg�5

bcw 7 2 4 4 1 1
vot 8 8 6 6 7 8
hea 22 20 19 13 14 13
bld 25 24 22 28 27 26
pid 28 24 22 27 25 25
average 18 16 15 15 15 15
stdev 10 10 9 12 11 11

Table 7
Percentage of maximal and reduced patterns extracted from 1000 spanned patterns

Dataset # Attributes % of Maximal spanned patterns % of Reduced patterns

deg�3 deg = 4 deg�5

bcw 9 25 96 4 0
vot 16 9 90 6 4
hea 13 65 26 34 40
bld 6 77 19 40 41
pid 6 67 9 23 68

low degree reduced patterns is high (more than 90% for bcw and vot), for the “inseparable” datasets the percentage of
low degree reduced patterns is considerably smaller (up to 26% for hea, bld, and pid).

7. Conclusions

The main conclusions of this study concern:
A. The importance of spanned patterns in data analysis

(i) The class of spanned patterns is remarkably robust, i.e., the decrease in the prevalence and homogeneity of spanned
patterns in test sets compared to training sets is low, thus justifying their use in LAD models.

(ii) It is known from [12] that LAD models based on spanned patterns have fewer classification errors on test sets
than those based on prime patterns, although the number of unclassified observations may be somewhat higher
in the spanned pattern-based models.

(iii) Efficient methods are known for the enumeration of low degree prime patterns, but these methods are difficult
to apply for the generation of higher degree prime patterns. Since the prevalence of low degree prime patterns
in “inseparable” (i.e. low-quality) datasets is very low, LAD models for such datasets must be built on spanned
(rather than prime) patterns.

B. The efficiency of the proposed spanned pattern enumeration algorithms

(iv) SPAN and SPIC provide the first systematic enumeration methods of spanned patterns.
(v) The running time of both SPAN and SPIC is linear in the output. Moreover, SPIC runs in total polynomial time.

(vi) The reported computational experiments confirm the high efficiency of SPIC.
(vii) The computational experiments also show the remarkable stability of SPIC with respect to the number of cutpoints

used for discretizing continuous data.
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