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Abstract

The solutions of vacuum Einstein’s field equations, for the class of Riemannian metrics admitting a non-Abelian
bidimensional Lie algebra of Killing fields, are explicitly described. They are parametrized either by solutions of
a transcendental equation (thetortoise equation), or by solutions of a linear second order differential equation in
two independent variables. Metrics, corresponding to solutions of the tortoise equation, are characterized as those
that admit a 3-dimensional Lie algebra of Killing fields with bidimensional leaves. 2002 Elsevier Science B.V.
All rights reserved.
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1. Introduction

In this paper we describe in an exact form local solutions (metrics) of the vacuum Einstein equations
assuming that they admit a Lie algebraG of Killing vector fields such that:

I. the distributionD, generated by the vector fields belonging toG, is bidimensional,
II. the distributionD⊥, orthogonal toD, is completely integrable and transversal toD.
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Global, in a sense, solutions of the Einstein equations constructed on the basis of the local solutions
found in this paper are discussed in the subsequent one. There can occur two qualitatively different
cases according to whether the dimension ofG is 2 or 3. Both of them, however, have an important
feature in common, which makes reasonable to study them together. Namely, all manifolds satisfying the
assumptions I and II are in a sense fibered overζ -complex curves (see Section 7 and [10,11]).

dimG = 2 Recall that, up to isomorphisms, there are two bidimensional Lie algebras: Abelian and non-
Abelian, which in what follows will be denoted byA2 andG2 respectively.
A metric g satisfying the assumptions I and II, withG = A2 or G2, will be calledG-integrable.
The study ofA2-integrable metrics were started by Belinsky, Geroch, Khalatnikov, Zakharov
and others [3,4,7]. Some remarkable properties of the reduced, according to the above symmetry
assumptions, vacuum Einstein equations were discovered in 1978. In particular, a suitable
generalization of the Inverse Scattering Transform, allowed to integrate the equations and to obtain
solitary wave solutions [4]. Some physical consequences of these reduced equations were analyzed in
a number of works (see for instance [2,5]). This paper will be devoted to the analysis ofG2-integrable
metrics, for which some partial results can be found in [1,6,8].
In this case, the Killing fields “interact” non-trivially one another (for instance,[X, Y ] = Y , for a
suitable choice of the basis vectors inG), while in the Abelian case these fields are absolutely free
(i.e., [X, Y ] = 0). Hence, it is natural to expect that the former case is more rigid, with respect to the
latter, and, as such, it allows a more complete analysis. It occurs to be the case, namely, metrics in
question are parametrized by solutions of a linear equation in two independent variables, which, in
its turn, depends linearly on a choice of aζ -harmonic function. Thus, this class of solutions has a
“bilinear structure” and, hence, is subjected to two superposition laws.

dimG = 3 In this case, assumption II follows automatically from I and the local structure of this class
of Einstein metrics can be explicitly described. Some well known exact solutions [9], such as, for
instance, that of Schwarzschild, belong to this class.

Geometrical properties of solutions described in the paper will be discussed with more details
separately.

In the paper, as it is usual, everything is assumed to be ofC∞ class and the following terminological
and notational convention are adopted.

• manifolds are assumed to be connected andC∞,
• metricrefers to a non-degenerate symmetric(0, 2) tensor field,
• k-metric refers to a metric on ak-dimensional manifold,
• the Lie algebra of all Killing fields of a metricg is denoted byKil (g) while the termKilling algebra

refers to a subalgebra ofKil (g),
• integral submanifoldsof the distribution, generated by vector fields of a Killing algebraG, are called

Killing leaves,
• A2 stands for a bidimensional Abelian Lie algebra, whileG2 for a non-Abelian one,
• aG-integrablemetric is a metric satisfying the assumptions I and II, withG = A2 or G2,
• the elements of a matrix will be denoted with the corresponding lower case letter, for instance

A = (aij ).
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2. Metrics admitting a bidimensional Lie algebra G2 of Killing fields

For a givens ∈ R, s 	= 0, we fix a basis{e, ε} in G2 such that[e, ε] = sε. It is defined uniquely up to
transformations of the form

e �→ λe + µε, ε �→ λ−1ε, λ, µ ∈ R, λ 	= 0.

The parameters is introduced in order to include, into our subsequent analysis, the Abelian case(s = 0)

as well.
In what follows, it will be useful the following general fact.

Lemma 1. Letg be a metric on a differential manifoldM . If X 	= 0 andf X, f ∈ C∞(M), are two of its
Killing fields, thenf is constant.

Proof. The proof results from the formula

(1)Lf X(g) = f LX(g) + iX(g) df,

where the second term in the right hand side is thesymmetric productof two differential 1-forms,
and iX(g) the natural insertion ofX in g. Indeed,LX(g) = 0 and Lf X(g) = 0 imply, in view of
relation (1), iX(g) df = 0. This shows thatdf vanishes at those points whereiX(g) 	= 0. Sinceg

is non-degenerate,iX(g) vanishes exactly at the same points whereX does. Therefore,df = 0, on
suppX = {a ∈ M | Xa 	= 0}. On the other hand, if a Killing field vanishes on an open subset ofM , then,
obviously, it vanishes everywhere onM . For this reason suppX coincides withM and, so,df = 0
on M . ✷

Let g be a metric on a manifoldM admittingG2 as a Killing algebra. Then, for the Killing vector fields
X andY corresponding, respectively, toe andε, one has

(2)[X, Y ] = sY.

Denote byD the Frobenius distribution, possibly with singularities, generated byX andY .

Proposition 2. The distributionD is bidimensional and in a neighborhood of a non-singular point ofD
there exists a local chart(xα) in M such that

X = ∂n−1, Y = esxn−1∂n.

Proof. First of all, show that dimD = 2. Indeed, in view of the above lemma if locallyX = φY , thenφ is
constant andX andY commute, in contradiction with Eq. (2). Thus, the vectorYa andXa are independent
for almost all pointsa ∈ M , i.e., in an everywhere dense open subsetM0 of M . Choose now a function
φ such that the fields X andφY commute. In view of Eq. (2), this is equivalent toX(φ) + sφ = 0. This
equation admits, obviously, a solution in a neighborhood of any pointa ∈ M0.

In a local chart(yµ) in whichX = ∂
∂yn−1

, φY = ∂
∂yn

, the equalityX(φ)+sφ = 0 looks as ∂φ

∂yn−1
+sφ = 0

and hence,φ = e−syn−1+λ where the functionλ does not depend onyn−1. By passing now to coordinates
(xα) with xα = yα , α < n, andxn = β(y1, . . . , yn−2, yn) one finds the desired result withβ such that
∂β

∂yn
= e−λ. Indeed, sinceλ does not depend onyn−1, the last equation admits a solution not depending on

yn−1. ✷
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Definition 1. A chart of the kind introduced in the above proposition will be calledsemi-adapted(with
respect toX, Y ).

All metrics g admitting the {X, Y } Killing algebra, i.e., such thatLY (g) = LX(g) = 0, are
characterized by the following proposition.

Proposition 3. An n-metric g admits the vector fieldsX and Y as Killing fields iff in a semi-adapted
chart it has the following block matrix form

MC(g) =
(

(gij ) (smixn + li ) (−mi)

(smixn + li )
T s2λx2

n − 2sµxn + ν −sλxn + µ

(−mi)
T −sλxn + µ λ

)
whereC = {dxµ} , andgij , mi, li, λ, µ, ν, are functions ofxl , 1 � l � n − 2.

Proof. Indeed, the invariance with respect toX shows that the components of the metric do not depend
on xn−1 while the invariance with respect toY is equivalent to

(3)∂ngij = 0, ∀i, j � n − 2,

(4)∂ngn−1n−1 + sgnn−1 = 0,

(5)∂ngn−1n + sgnn = 0,

(6)∂ngnn = 0,

(7)∂ngin−1 + sgin = 0,

(8)∂ngin = 0.

Eq. (3) tells that, fori, j < n − 1, the componentsgij do not depend also onxn, while Eqs. (4), (5) and
(6), imply that, fora, b = n − 1, n

(9)(gab) =
(

s2λx2
n − 2sµxn + ν −sλxn + µ

−sλxn + µ λ

)
,

whereλ, µ andν depend only on the coordinatesxi .
Eqs. (7) and (8) have the solution

(gin−1, gin) = (
smixn + li (xj ), −mi(xj )

)
,

whereli andmi are arbitrary functions. ✷
For further computations it is more convenient to work with a basis, say{ei}, of vector fields invariant

with respect to the Killing algebra. It is easy to see that all such fields are linear combinations of

(10)ei = ∂i, en−1 = ∂n−1 + sxn∂n, en = −∂n

whose coefficients areG2-invariant functions, i.e., not depending onxn−1, xn. So, the set (10) can be taken
as such a basis. Obviously, the basis of differential 1-formsΘ = {ϑi} dual to{ei}

(11)ϑi = dxi, ϑn−1 = dxn−1, ϑn = sxndxn−1 − dxn
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is alsoG2-invariant. The bases (10), (11) are “slightly” non-holonomic because in the relations

[eµ, eν] = Cα
µνeα, dϑα = −1

2
Cα

µνϑµ ∧ ϑν,

all the structure constantsCα
µν are vanishing, exceptCn

n−1n, which equals−s. They will be callednon-
holonomic semi-adapted.

The expression of the metric of Proposition 3 in terms of the basis (11) is

g = gij ϑiϑj + λϑnϑn + ν ϑn−1ϑn−1 − 2µϑn−1ϑn + 2liϑ
iϑn−1 + 2miϑ

iϑn.

Corollary 4. An n-metric g admits the vector fieldsX and Y as Killing fields iff its components, in a
semi-adapted non-holonomic basisΘ , do not depend onxn−1 andxn. The matrix ofg with respect to the
basisΘ is

MΘ(g) =
(

(gij ) (li) (mi)

(li)
T ν −µ

(mi)
T −µ λ

)
.

3. Killing leaves

The assumption II of the introduction imposed on the metricsg considered in this paper allows,
obviously, to construct semi-adapted charts,{xi}, such that the fieldsei = ∂

∂xi
, i = 1, . . . , n−2, belong to

D⊥. In such a chart, called from now on,adapted, the componentsli ’s andmi ’s vanish. The corresponding
non-holonomic semi-adapted bases will be callednon-holonomic adapted.

We will call orthogonal leafan integral (bidimensional) submanifold ofD⊥. SinceD⊥ is assumed to
be transversal toD, the restriction ofg to any Killing leaf, sayS, is non-degenerate. So,(S, g|S) is a
homogeneous bidimensional Riemannian manifold. In particular, the Gauss curvatureK = K(S) of the
Killing leaves is constant. It can be easily computed by noticing that the matrix of the components ofg|S
with respect to the chart̃x = xn−1|S , ỹ = xn|S is

M(dx̃,dỹ)(g|S) =
(

s2λ̃ỹ2 − 2sµ̃ỹ + ν̃ −sλ̃ỹ + µ̃

−sλ̃ỹ + µ̃ λ̃

)
,

where the symbol “tilde” refers to the restriction toS and λ̃, µ̃, and ν̃ are constants according to
Proposition 3. The result is

K(S) = λ̃s2

µ̃2 − λ̃ν̃
, λ̃ν̃ − µ̃2 = detM(dx̃,dỹ)(g|S).

This shows that the following cases can occur for(S, g|S).

1. λ̃ > 0, λ̃ν̃ − µ̃2 > 0: (S, g|S) is a non-Euclidean plane, i.e., a bidimensional Riemannian manifold
of negative constant Gauss curvature.

2. λ̃ < 0, λ̃ν̃ − µ̃2 > 0: (S, g|S) is an “anti” non-Euclidean plane, i.e., is endowed with the metric of the
previous case multiplied by−1.

3. λ̃ν̃ − µ̃2 < 0: (S, g|S) is any indefinite bidimensional metric of constant Gauss curvature.
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Since the Killing leaves are parametrized byx1, x2, the function

K = K(x1, . . . , xn−2) = λs2

µ2 − λν

describes the behavior of the Gauss curvature when passing from one Killing leave to another.
It is worth to note that the Killing algebraG2 is a subalgebra of the algebraKil (g0), g0 being a

bidimensional metric of constant curvature (for instance,g0 = g|S ).
If g0 is positive (respectively, negative) definite and of positive (respectively, negative) Gauss

curvature, thenKil (g0) is isomorphic toso(3). But so(3) does not admit bidimensional subalgebras at
all. This explains whyg|S cannot be a positively (respectively, negative) curved metric in the case (1)
(respectively, (2)).

Similarly, if g0 is a positive or negative definite flat metric, thenKil (g0) admits only Abelian
bidimensional subalgebras. This explains why both positive and negative definite flat metrics are absent
in the above list forg|S .

In all other cases, the algebraKil (g0) admits bidimensional non-Abelian subalgebras.
More exactly, ifg0 is not flat, thenKil (g0) is isomorphic toso(2, 1). Let g be the Killing form of

so(2, 1). Then, the tangent planes to the isotropic cone ofg exhaust the bidimensional non-Abelian Lie
subalgebras ofso(2, 1). If g0 is flat and, thus, indefinite, then any bidimensional subspace of the algebra
Kil (g0) different from itscommutator, which is Abelian, is a non-Abelian subalgebra.

It is not difficult to describe the algebraKil (g|S) in the semi-adapted coordinates(x̃, ỹ). A direct
computation shows thatKil (g0) has the following basis:

X̃ = ∂x̃, Ỹ = esx̃∂ỹ, Z̃ = e−sx̃
[
2(sλ̃ỹ − µ̃)∂x̃ + (

s2λ̃ỹ2 − 2sµ̃ỹ + ν̃
)
∂ỹ

]
,[

X̃, Ỹ
]= sỸ ,

[
X̃, Z̃

]= −sZ̃,
[
Ỹ , Z̃

]= 2sλ̃X̃.

In the caseλ = 0, the metricg|S is flat indefinite and it is convenient to identify(S, g|S) with the
standard plane(R2, dξ2 − dη2), R

2 = {(ξ, η)}. To do that it is necessary to choose a bidimensional
non-commutative subalgebra inKil (dξ2 − dη2) (they are all equivalent). For instance, by choosing
Y0 = ∂ξ + ∂η, X0 = −η∂ξ − ξ∂η, we have[X0, Y0] = Y0 , X0, Y0 ∈Kil (dξ2 − dη2) and, fors 	= 0, one can
identify the quadruple(S, 2(dx̃ dỹ − ỹ dx̃2), X|S, Y |S) with (R2, dξ2 − dη2, X0, Y0).

The simply connected Lie groupG corresponding toG is isomorphic to the group of affine
transformations ofR. Then, bothS andR

2 are diffeomorphic toG as homogeneousG-spaces and the
above identification of them is an equivalence ofG-spaces.

The Killing form ofG determines naturally a symmetric covariant tensor field on theG-spaceG which
is identified withdx̃2 onS and with(

dξ−dη

ξ−η
)2 onR

2. We will continue to call itKilling form. Thus, in the
above identification the metricg|S for λ = 0 ands = 0 corresponds to

(12)µ̃
(
dξ2 − dη2)+ ν̃

(
dξ − dη

ξ − η

)2

.

This representation of the metricg|S will be used to describe global solutions of the Einstein equations
in Section 5.
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4. The Ricci tensor field

In the following we will consider 4-dimensional manifolds and will use the following convention for
the indices: Greek letters take values from 1 to 4; the first Latin letters take values from 3 to 4, whilei, j

from 1 to 2.
Let g be aG2-integrable 4-metric. The results of the previous sections allow to choose a non-holonomic

adapted basisΘ such that the matrixMΘ(g) associated tog is of the form

(13)MΘ(g) =
(

F 0
0 H

)
whereF andH are 2× 2 matrices whose elements depend only onx1 andx2. We will distinguish two
cases according to whetherF, i.e., the matrix associated to the metric restricted toD⊥, has negative or
positive determinant.

• detF < 0. In this case, owing to the bidimensionality ofD⊥, and the independence ofF on x3 and
x4, the coordinatesx1 andx2, can be further specified to be characteristic coordinates on any integral
submanifold ofD⊥, so that, without changing the properties ofMΘ(g) in (13),F takes the following
form

F =
(

0 f

f 0

)
.

• detF > 0. Similarly, in this case, in some isothermal coordinates, the matrixF gets the form

F =
(

f 0
0 f

)
.

Thus, we have:

Proposition 5. A 4-metric g, is G2-integrable iff there exists a non-holonomic adapted basisΘ such
that the matrixMΘ(g) of g takes one of the following block forms, according to whetherdetF < 0 or
detF > 0.

MΘ(g) =
 0 f

f 0
0

0 H

 , MΘ(g) =
 f 0

0 f
0

0 H

 , H =
(

ν −µ

−µ λ

)
λ, µ, ν being arbitrary functions ofxi . In the corresponding adapted holonomic basisC = {dxµ} we
have

MC(g) =
 0 f

f 0
0

0 H

 , MC(g) =
 f 0

0 f
0

0 H

 ,

where

H =
(

s2λx2
4 − 2sµx4 + ν −sλx4 + µ

−sλx4 + µ λ

)
.
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It is worth to observe that detH = detH = λν − µ2 is a functions ofxi ’s only.
In the following sections the explicit expressions of the componentsRµν of the Ricci tensor field in

terms of the functionf and of the elementshab of the matrixH in the adapted non-holonomic basis of
Proposition 5 are found.

Recall that

Rµν = R
β
µνβ = e[ν

(
γ

β

β]µ
)+ γ

β

[νργ
ρ

β]µ − C
ρ
νβγ β

ρµ

with the Christoffel symbols

γ α
µν = 1

2
gασ

(−eσ (gµν) + eµ(gσν) + eν(gσµ)
)− 1

2

(
Cα

νµ + gραgσµCσ
νρ + gραgσνCσ

µρ

)
.

It is easy too see that theγ α
µν ’s andRµν ’s are first order polynomials ins and it is convenient to single

out their constant termsΓ α
µν andSµν, respectively. More exactly, one has:

γµ = Γµ + Λµ = 1

2
g−1Gµ + Λµ

whereγµ, Γµ, Λµ, Gµ are matrices whose elementsγ α
µν, Γ α

µν, Λα
µν, Gµαν, are defined by

Γ α
µν = 1

2
gασ

(−eσ (gµν) + eµ(gσν) + eν(gσµ)
)
,

(14)Λα
µν = −1

2

(
Cα

νµ + gραgσµCσ
νρ + gραgσνCσ

µρ

)
,

Gµσν = −eσ (gµν) + eµ(gσν) + eν(gσν),

Rµν = Sµν + Tµν,

where

Sµν = e[νΓ
β

β]µ + Γ
β

[νρΓ
ρ

β]µ,

Tµν = e[νΛ
β

β]µ + (Γ[νΛβ])β
µ + (Λ[νΓβ])β

µ + (Λ[νΛβ])β
µ − C

ρ
νβγ β

ρµ.

Now we pass to the calculation of the Ricci tensor.

4.1. The Ricci tensor in the case detF < 0

Note that fors = 0 the adapted non-holonomic basis becomes holonomic and coincides with the
one used in [4]. This is why the expressions forSµν given below coincide with the expressions for the
components of the Ricci tensor found in [4]. Observe also that only the fieldse1 ande2 give nontrivial
contributions to expressions (14) for theΓ α

µν ’s and all componentsΛα
µν , except possiblyΛc

ba, vanish.

• ComponentsRij :
Let us note that

Tij = Λ
β
βρΓ

ρ

ji − C
ρ

jβγ
β

ρi = 0,

this is due to the fact thatCρ

jβ = 0, the componentsΛα
µν with an index equal to 1 or 2 vanish and

Γ a
ij = 0. So,

Rij = Sij = e[j
(
Γ

β

β]i
)+ Γ

β

[jρΓ
ρ

β]i .
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The first term of this expression gives,

e[j
(
Γ

β

β]i
)= ∂j ∂i(ln |f |) − δij ∂2

i (ln |f |) + ∂j ∂i(lnα),

whereα = √|detH| and the second term gives

Γ
β

[jρΓ
ρ

β]i = tr(Γj Γi) − (ΓβΓj)
β

i

= 1

4
tr
[
H−1∂j (H)H−1∂i(H)

]+ (∂if )2

f 2
δij + δij

(∂if )2

f 2
+ δij ∂i(ln |f |)∂i(lnα).

Finally, one has

Rij = ∂j ∂i(ln |f |) − δij ∂2
i (ln |f |) + ∂j ∂i(lnα) + 1

4
tr
[
H−1∂j(H)H−1∂i(H)

]
− δij ∂i(ln |f |)∂i(lnα).

• ComponentsRab = Sab + Tab:
For what concernsSab, it is more convenient to use the following expression

Sab = 1√|detg|∂ρ

(√|detg|Γ ρ

ab

)− ∂a∂b

(
ln
√|detg| )− Γ β

ρaΓ
ρ

βb

taking into account that|detg| ≡ |detF||detH| = f 2α2 andα = √|detH|.
The result is

(Sab) = 1

2f α
H
[(

αH−1∂1(H)
)

,2 + (
αH−1∂2(H)

)
,1

]
.

For Tab one finds

Tab = e[b
(
Λ

β

β]a
)+ (Γ[bΛβ])β

a + (Λ[bΓβ])β
a + (Λ[bΛβ])β

a − C
ρ

bβγ β
ρa = −C

ρ

bβγ β
ρa,

so that

(Tab) = s2h22
(
detH−1

)
H

and

(Rab) = 1

2f α
H
[(

αH−1∂2(H)
)

,1 + (
αH−1∂1(H)

)
,2 + 2s2

α
f h2212

]
,

where12 stands for the unit(2× 2)-matrix.
• ComponentsRai:

In this case,

Sai = e[i
(
Γ

β

β]a
)+ Γ

β

[iρΓ
ρ

β]a = 0.

Indeed, the first term vanishes sinceΓi ’s are diagonal andΓa are anti-diagonal. The second term also
vanishes since the matricesΓiΓj are diagonal whileΓiΓb or ΓbΓi anti-diagonal. Thus,

Rai = Tai

and

Tai = ei

(
Λb

ba

)+ (Γ[iΛβ])β
a + (Λ[iΓβ])β

a + (Λ[bΛβ])β
a − C

ρ

iβγ β
ρa = (ΓiΛb)b

a − (ΛbΓi)
b
a
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or, equivalently,(
T3i

T4i

)
= s

(
(H−1∂i(H))2

2 − (H−1∂i(H))1
1−2(H−1∂i(H))1

2

)
.

So, the final result is

(Ri3, Ri4) = s
((

H−1∂i(H)
)2

2 − (
H−1∂i(H)

)1
1,−2

(
H−1∂i(H)

)1
2

)
.

The above calculations are summarized in the following proposition

Proposition 6. Letg be aG2-integrable4-metric. IfdetF < 0, then the components of the Ricci tensor in
a non-holonomic adapted basis are

(Rab) = H
2f α

[(
αH−1∂1(H)

)
,2 + (

αH−1∂2(H)
)

,1 + 2s2

α
f h2212

]
,

R12 = ∂1∂2(ln |f | + lnα) + 1

4
tr
[
H−1∂1(H)H−1∂2(H)

]
,

Rii = −∂i(lnα)∂i(ln |f |) + ∂2
i (lnα) + 1

4
tr
[
H−1∂i(H)H−1∂i(H)

]
,(

Ri3

Ri4

)
= s

(
(H−1∂1(H))2

2 − (H−1∂1(H))1
1 −2(H−1∂1(H))1

2

(H−1∂2(H))2
2 − (H−1∂2(H))1

1 −2(H−1∂2(H))1
2

)
with α = √|detH| .

Remark 1. Note that fors = 0 the above expressions for the components of the Ricci tensor field coincide
with the ones given in [4]. In particular, the componentsRai vanish identically.

4.2. The Ricci tensor field in the caseF > 0

We use again the adapted non-holonomic basisΘ described in Proposition 2, so that the matrix ofg is

MΘ(g) =
 2f 0

0 2f
0

0 H

=
(

F 0
0 H

)
.

In this case essentially the same computation as before gives the following result.

Proposition 7. Letg be aG2-integrable4-metric. IfdetF > 0, then the components of the Ricci tensor in
a non-holonomic adapted basis are

(Ria) = s

(
(H−1∂1(H))2

2 − (H−1∂1(H))1
1 −2(H−1∂1(H))1

2

(H−1∂2(H))2
2 − (H−1∂2(H))1

1 −2(H−1∂2(H))1
2

)
;

(Rab) = H
2f α

[
1

2

[(
αH−1∂1(H)

)
,1 + (

αH−1∂2(H)
)

,2

]+ 2s2

α
f h2212

]
;
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R11 = 1

2

[
6(ln α ln |f |) + 1

2
tr
(
H−1∂1H

)2 − α,1

α
∂1(ln |f |)

]
+ 1

2

[
α,2

α
∂2(ln |f |) + ∂1

(
α,1

α

)
− ∂2

(
α,2

α

)]
;

R22 = 1

2

[
6(ln α ln |f |) + 1

2
tr
(
H−1∂2H

)2 + α,1

α
∂1(ln |f |)

]
− 1

2

[
α,2

α
∂2(ln |f |) − ∂1

(
α,1

α

)
+ ∂2

(
α,2

α

)]
;

R12 = 1

2

[
−α,1

α
∂2(ln |f |) − α,2

α
∂1(ln |f |) + 2∂1∂2(lnα)

]
+ 1

4
tr
[
H−1∂1(H)H−1∂2(H)

];
with

6 = ∂2

∂x2
1

+ ∂2

∂x2
2

.

Remark 2. Also in this case the componentsRai vanish identically fors = 0.

5. Solutions of vacuum Einstein field equations

In this section we will limit ourselves to discuss only the general form of local solutions of vacuum
Einstein equations

Rµν = 0

for G2-integrablenormal(see after) metrics.
Let us consider separately the cases characterized by detF < 0 and detF > 0.

5.1. Solutions of Einstein equations in the casedetF < 0

Note that, fors = 0 (Abelian case) the equationsRai = 0 become identities, while fors 	= 0 they
impose the following strong conditions on the metric:

(15)

{
(H−1∂i(H))2

2 = (H−1∂i(H))1
1,

(H−1∂i(H))1
2 = 0.

The two casesh22 	= 0 andh22 = 0 are qualitatively different and will be discussed separately.

5.1.1. The caseh22 	= 0
In this case Eqs. (15) imply that(H−1∂i(H))2

1 = 0 for any symmetric(2×2)-matrixH. This means that
H−1∂i(H) is a scalar matrix, i.e.,∂1(H) = ϕH, ∂2(H) = ψH for some functionsϕ = ϕ(xi), ψ = ψ(xi).

The compatibility condition∂2(ϕ) = ∂1(ψ) for the above system, implies the existence (locally) of
a functionγ (xi) such thatϕ = ∂1(γ ), ψ = ∂2(γ ). The functionγ can be chosen in such a way that
H = eγ M, M being a constant symmetric(2× 2)-matrix such that detM = ±1. Thus,

α = eγ .
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Then the equationsRab = 0 can be written as

(16)α,12+s2f m22 = 0,

or

f = cα,12 ,

α,i ≡ ∂i(α), α,ij ≡ ∂i∂j (α), and

c = − 1

s2m22
.

This brings Einstein equations to the form

(17)H = eγ M = αM,

(18)f = cα,12

(19)∂i(ln |f |) = ∂i

(
ln

|α,i |√
α

)
,

(20)∂1∂2(ln |f |) = − 1

α
α,12+ 1

2α2
α,1 α,2 .

For the two possible values of the indexi Eq. (19) gives

(21)f = H(x2)∂1
(√

α
)

(22)= K(x1)∂2
(√

α
)
,

whereH andK are arbitrary functions, or, equivalently,

(23)H∂1α = K∂2α.

From Eq. (18) one gets

α,1 = 1

c
K
(√

α − A
)
, α,2 = 1

c
H
(√

α − A
)
,

whereA is a constant, or, equivalently,

dα = 1

c

(√
α − A

)
(Kdx1 + Hdx2).

By settingβ2 = α the above equation integrates to the equality

β + A ln |β − A| = F(x1) + G(x2),

with F(x1) ≡ 1
2c

∫
Kdx1, G(x2) ≡ 1

2c

∫
Hdx2. The above equation will be called thetortoise equation.

Finally, the remaining Einstein equations show Eq. (20) to be an identity.
By summing up we give the components of the metric in the basisC = {dz1, dz2, dx, dy} with

z1 = 1
2(x1 + x2), z2 = 1

2(x1 − x2), x = x3, y = x4, where thexµ’s are the adapted coordinates mentioned
in Proposition 5.
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Proposition 8. Any G2-integrable4-metric g satisfying the vacuum Einstein equations, and such that
detF < 0 andh22 	= 0, has in the adapted coordinate(z1, z2, x, y) the following matrix form

MC(g) =


2f 0
0 −2f

0

0 β2

(
s2ky2 − 2sly + m −sky + l

−sky + l k

)


where

• k, l, m, are arbitrary constants such thatkm − l2 = ±1, k 	= 0,
•

(24)f = − 1

4s2k

(
∂2

∂z2
1

− ∂2

∂z2
2

)
β2,

• β is a solution of the tortoise equation

(25)β + A ln |β − A| = F(z1 + z2) + G(z1 − z2),

A, F , G being an arbitrary constant and arbitrary functions respectively.

Remark 3. As it will be clarified in [10,11], thetortoise equation(25) leads to a deeper understanding of
the so called Regge–Wheeler tortoise coordinate, which, apart from constant terms, is defined as its left
hand side.

Remark 4. Concerning the signature of the metric and the character of the Killing fields, we observe
that:

If detM = 1 (see Eq. (17)), thenH is either positive or negative definite according to the sign ofk and
g(Y, Y ), g(X, X) have the same sign ask. The signature ofg is equal to±2, so that these metrics are of
interest for general relativity;

If detM = −1, thenH is indefinite,g(Y, Y ) has again the same sign ask while the sign ofg(X, X)

varies depending on the values ofy. The signature ofg in this case is equal to 0.

By using the results of Section 3, we have:

Corollary 9. The metricg of the above proposition admits an additional Killing field

Z = e−sx
[
2(sky − l)∂x + (

s2ky2 − 2sly + m
)
∂y

]
,

which generates together withX = ∂x andY = esx∂y a 3-dimensional Lie algebra isomorphic to so(2, 1)

(assuming thats 	= 0):

[X, Y ] = sY, [X, Z] = −sZ, [Y, Z] = 2skX.

5.1.2. The caseh22 = 0
Now, Eqs. (15) are identically satisfied, while the remaining Einstein equations become

(26)
(
αH−1∂1H

)
,2 +(αH−1∂2H

)
,1 = 0,
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(27)∂1∂2(ln |f | + lnα) + 1

4
tr
[
H−1∂1(H)H−1∂2(H)

]= 0,

(28)−∂i ln |α|∂i ln |f | + ∂2
i lnα + 1

4
tr
[
H−1∂i(H)H−1∂i(H)

]= 0.

In terms of the componentsµ andν of H they reduce to

(29a)α,12= 0,

(29b)(αw,1),2 + (αw,2),1 = 0,

(29c)∂1∂2(ln |f |) = α,2 α,1

2α2
,

(29d)α,i ∂i(ln |f |) = α,ii −α,2
i

2α
,

with α = √|detH| = |µ| andw = ν/α.
The general solution of Eq. (29a) is

α = F(x1) + G(x2),

F andG being arbitrary functions such thatα is positive.
The general solution of Eq. (29c) is

f = ±α− 1
2 eP (x1)+Q(x2),

whereP andQ are arbitrary functions.
Now Eq. (29d) takes the form

P ′(x1)α,1 = α,11,

Q′(x2)α,2 = α,22

and are resolved as

F = C1

∫
eP dx1 + D1, G = C2

∫
eQ dx2 + D2.

Thus as the final result we see that the general solution of the differential system (29a), (29c), (29d) is
given by

α = C1

∫
eP dx1 + C2

∫
eQ dx2 + C,

f = ±α− 1
2 eP (x1)+Q(x2),

whereC, C1, C2, are arbitrary constants such thatα is positive.
Eq. (29b) is alinear second order partial differential equationand can be studied by standard methods.

We postpone this problem to a further publication.
As in Proposition 8 we summarize the obtained results by giving the components ofg in the frame

C = {dz1, dz2, dx, dy} wherez1 = 1
2(x1 + x2), z2 = 1

2(x1 − x2), x = x3, y = x4, andxµ’s are the adapted
coordinates introduced in Proposition 5.



G. Sparano et al. / Differential Geometry and its Applications 16 (2002) 95–120 109

Proposition 10. Any G2-integrable4-metric g satisfying the vacuum Einstein equations and such that
detF < 0 andh22 = 0, has the following matrix form in the adapted coordinates(z1, z2, x, y),

MC(g) =


2f 0
0 −2f

0

0 µ

(−2sy + w 1
1 0

)


where

•
(30)µ=C1F(z1 + z2) + C2G(z1 − z2) + C,

(31)f =|µ|− 1
2 F ′G′,

F , G andC, C1, C2 being arbitrary functions and arbitrary constants respectively, such thatµ and
f are everywhere nonvanishing;

• w is an arbitrary solution of the equation

µ

(
∂2

∂z2
1

− ∂2

∂z2
2

)
w + ∂µ

∂z1

∂w

∂z1
− ∂µ

∂z2

∂w

∂z2
= 0.

In this case, detH < 0 and the metricg has signature equal to 0. The Killing fieldY is isotropic, while
the sign ofg(X, X) varies as a function ofy. The curvatureK of the Killing leaves vanishes.

Remark 5. In contrast with the caseh22 	= 0 (see Section 5.1.1) an additional Killing field, sayZ, tangent
to the Killing leaves and independent onX andY exists only ifw is a constant, sayw0. In such a case

Z = e−sx
[−2∂x + (−2sy + w0)∂y

]
,

and generates together withX = ∂x andY = esx∂y a 3-dimensional Lie algebra isomorphic toKil (dx2 −
dy2):

[X, Y ] = sY, [X, Z] = −sZ, [Y, Z] = 0.

A canonical form for Eq. (29b) may be obtained by passing to coordinates

ξ = F(x1), η = G(x2)

in which Eq. (29b) becomes

2(ξ + η)
∂2w̃

∂ξ∂η
+ ∂w̃

∂ξ
+ ∂w̃

∂η
= 0,

with w̃(ξ, η) ≡ w(F −1(ξ), G−1(η)), or, alternatively,

∂2Z

∂ξ∂η
+ 1

4(ξ + η)2
Z = 0, Z =√

ξ + η w̃.

Its geometrical interpretation is given in [10,11].
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5.2. Solutions of Einstein equations in the casedetF > 0

As before, the equationsRai = 0 are satisfied trivially ifs = 0 while for s 	= 0 they coincide with (15):

(32)

{
(H−1∂i(H))2

2 = (H−1∂i(H))1
1,

(H−1∂i(H))2
3 = 0.

Again it is convenient to treat separately the casesh22 	= 0 andh22 = 0.

5.2.1. The caseh22 	= 0
As in Section 5.1.1, equationsRia = 0 are solved as

H = eγ M.

M being a constant symmetric(2 × 2)-matrix such that detM = ±1 andα = eγ . Because of the non-
degeneracy ofg the first derivatives ofα are non-vanishing, so that Einstein equations can be brought to
the following form

(33)H = αM,

(34)

(�(α)

4f
+ s2m22

)
M = 0,

(35)6(lnα|f |) − 1

αf
(α,1 f,1 −α,2 f,2 ) + (α,2 )2

α2
+ α,11−α,22

α
= 0,

(36)6(lnα|f |) + 1

αf
(α,1 f,1 −α,2 f,2 ) + (α,1 )2

α2
− α,11−α,22

α
= 0,

(37)
1

2αf
(α,1 f,2 +α,2 f,1 ) + α,2 α,1

2α2
− α,12

α
= 0.

In its turn the last system is equivalent to

H = αM,

f = c

4
6α,

∂1

[
ln |f | − 1

2

(
lnα + ln

|∇(α)|2
α2

)]
= −ϑ2,

∂2

[
ln |f | − 1

2

(
lnα + ln

|∇(α)|2
α2

)]
= ϑ1

wherec = − 1
s2m22

andϑ1 andϑ2 are the partial derivatives of

ϑ = arctan
α,2

α,1
.

These equations show thatϑ and ln
√

α|f |
|∇(α)| are conjugated harmonic functions so that the above system

can be brought to the form:

6(ϑ) = 0,
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(38)
α,2

α,1
= tanϑ,

(39)ln

√
α|6(α)|
|∇(α)| = Φ,

(40)f = c

4
6(α),

H = αM,

whereΦ is a harmonic function conjugated toϑ , that is a primitive of the exact differential 1-form
ω = ϑ1 dx2 − ϑ2 dx1. Now one can easily check that the above system is reduced to thetortoiseequation
(see Section 5.1.1)

β + A ln |β − A| = Ψ,

whereβ2 = α, Ψ is an arbitrary harmonic function andA is an arbitrary constant. The functionsϑ and
Φ are given, respectively, by

ϑ = arctan
Ψ,2

Ψ,1

Φ = ln |∇(Ψ )|.
By summing up we give the components of the metric in terms of the adapted holonomic frame
C = {dx1, dx2, dx, dy} with x = x3, y = x4, the xµ’s being the adapted coordinates introduced in
Proposition 5.

Proposition 11. AnyG2-integrable4-metric g satisfying the vacuum Einstein equations, and such that
detF > 0 andh22 	= 0, has the following matrix form in the adapted coordinates(xµ)

MC(g) =


2f 0
0 2f

0

0 β2

(
s2ky2 − 2sly + m −sky + l

−sky + l k

)


where

• k, l, m, are arbitrary constants such thatkm − l2 = ±1, k 	= 0,
•

(41)f = − 1

4s2k
6
(
β2
)
,

• β is a solution of the tortoise equation

(42)β + A ln |β − A| = Ψ,

such that6β2 ≡ ( ∂2

∂x2
1

+ ∂2

∂x2
2
)β2 is everywhere nonvanishing,A and Ψ being an arbitrary constant

and an arbitrary harmonic function.

Remark 6. Concerning the signature ofg and the character of the Killing fields, we remark that:
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If detM = 1 (see Eq. (33)), thenH is either positive or negative definite according to the sign ofk as
well asg(Y, Y ), andg(X, X). Since the sign of the constantc is opposite to the one ofk, the signature of
g is always equal to 0.

If detM = −1, thenH is indefinite,g(Y, Y ) has the same sign ask while the sign ofg(X, X) varies
with as a function ofy. The signature ofg is equal to±2, so that these metrics are of interest for General
Relativity.

Moreover, as in Section 5.1.1 we have:

Corollary 12. The metric of the above proposition admits a third Killing field

Z = αe−sx2
[
(m − sky)∂x + (

s2ky2 − 2smy + l
)
∂y

]
,

which together withX andY generate a3-dimensional Lie algebra isomorphic to so(2, 1)

[X, Y ] = sZ, [X, Z] = −sZ, [Y, Z] = −2skX.

5.2.2. The caseh22 = 0
In this case the equationsRia = 0 are satisfied automatically while the matrixH has the form

H =
(

ν µ

µ 0

)
,

andα = |µ|. The remaining Einstein equations reduce now to

(43)6(α) = 0,

(44)(α∂1w),1 + (α∂2w),2 = 0,

(45)6(ln |f |) = 1

2

[(
α,1

α

)2

+
(

α,2

α

)2]
,

(46)α,1 ∂1(ln |f |) − α,2 ∂2(ln |f |) = α,11−α,22−α,2
1 −α,2

2

2α
,

(47)α,2 ∂1(ln |f |) + α,1 ∂2(ln |f |) = 2α,12−α,2 α,1

α
,

where6 = ∂2

∂x2
1
+ ∂2

∂x2
2

andw = ν
α
. If α is a solution of Eq. (43), i.e., a harmonic function, then the general

solution of Eq. (45) is

f = ±α− 1
2 eψ

ψ being a harmonic function. Substituting this expression in Eqs. (46), (47) one gets

α,1 ψ,1 −α,2 ψ,2 = 2α,11,

α,2 ψ,1 +α,1 ψ,2 = 2α,12,

the last relations are locally equivalent to

|∇(α)|2 = ceψ
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c being a constant. Therefore,

(48)f = ± |∇(φ)|2√|Dφ + B| ,
whereα = |µ| = |Dφ+B|, A andB are constants andφ a harmonic function such thatα is nonvanishing.
Eq. (44) is alinear second order partial differential equationand can be analyzed with standard methods.

Thus, as the final result we have:

Proposition 13. AnyG2-integrable4-metric g satisfying the vacuum Einstein equations, and such that
detF > 0 andh22 = 0, has the following matrix form in the adapted coordinates(x1, x2, x.y)

MC(g) =
 ε

|∇(φ)|2√|Dφ+B| 12 0

0 (Dφ + B)

(−2sy + w 1
1 0

)
whereε = ±1, φ is a harmonic function,D andB are constants such thatµ = Dφ + B is everywhere
nonvanishing andw is a solution of the equation

(µw,1),1 + (µw,2),2 = 0.

In the considered case detH is negative and the signature ofg is equal to±2. The Killing vector field
Y is isotropic while the sign ofg(X, X) varies as a function ofy. The Gauss curvatureK of the Killing
leaves vanishes.

Remark 7. According to Section 3, an additional Killing field, sayZ, tangent to the Killing leaves and
independent ofX andY , exists iffw is a constant, sayw0. In such a case it is given by

Z = e−sx[−2∂x + (−2sy + w0)∂y],
which generates together withX = ∂x and Y = esx∂y a 3-dimensional Lie algebraisomorphic to
Kil (dx2 − dy2):

[X, Y ] = sY, [X, Z] = −sZ, [Y, Z] = 0.

A canonical form for Eq. (44) can be found by introducing new coordinates, namelyξ andη, by

ξ = α + α̃, η = α − α̃

in which Eq. (44) becomes

(ξ + η)

(
∂2

∂ξ2
+ ∂2

∂η2

)
(w̃) + ∂w̃

∂ξ
+ ∂w̃

∂η
= 0,

with w̃(ξ, η) ≡ w(x1(ξ, η), x2(ξ, η)), or, alternatively,(
∂2

∂ξ2
+ ∂2

∂η2

)
(Z) + 1

2(ξ + η)2
Z = 0

with

Z =√
ξ + η w̃.

For its geometrical meaning see [10,11].
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6. The Abelian limit (s = 0)

The solutions of the Einstein equations found in the previous section allow one to get exact solutions
of the Belinsky–Zahkarov case just by passing to the “Abelian limit”s = 0. Since the Abelian case
was extensively studied (see, for instance, [3,4,7]) we shall limit ourself here simply to describe these
solutions. In what follows we use the adapted coordinates to which the propositions refer and consider
separately the casesh22 	= 0 andh22 = 0.

The caseh22 	= 0. With this assumption Eqs. (15) and, which is the same (32) play the role of an
“ansatz” when passing to the Abelian limit: So, in that case as in Sections 5.1.1 and 5.1.2 one sees that
H = αM, M being a constant unimodular matrix.

• If detF < 0 then Eq. (16) becomes

α,12= 0

and the remaining Einstein equations coincide with Eqs. (29c) and (29d) as they appeared in the
analysis of the non-Abelian case withh22 = 0 and detF < 0 (see Section 5.1.2). Thus, the same
procedure leads us to the following result:

(49)MC(g) =
 2f 0

0 −2f
0

0 αM

 ,

whereα andf are given by

(50)α = C1F(z1 + z2) + C2G(z1 − z2) + C,

(51)f = F ′G′
√|α| ,

F andG being arbitrary functions,C, C1, C2, arbitrary constants such thatα andf are everywhere
nonvanishing.

• If detF > 0, then by referring to Eqs. (43)–(47) one finds that

MC(g) =
(

ε
|∇(φ)|2√|Dφ+B| 12 0

0 (Dφ + B)M

)
.

whereε = ±1, φ is a harmonic function, andD andB are constants such thatDφ + B is everywhere
nonvanishing andM is as above.

The caseh22 = 0. With this assumption the Abelian limit is, obviously, obtained from the
corresponding non-Abelian result (Propositions 10 and 13) just by puttings = 0. Namely:

• If detF < 0, then (Proposition 10)

(52)MC(g) =


−2f 0

0 2f
0

0 µ

(
w 1
1 0

)
 ,
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where

(53)µ = C1F(z1 + z2) + C2G(z1 − z2) + C,

(54)f = |µ|− 1
2 F ′G′,

F , G and C, C1, C2, being arbitrary functions and constants, respectively, such thatµ and f be
everywhere nonvanishing whilew is an arbitrary solution of the equation

(µw,1),2 + (µw,2),1 = 0.

• If detF > 0, then (Proposition 13)

(55)MC(g) =
 ε

|∇(φ)|2√|Dφ+B| 12 0

0 (Dφ + B)

(
w 1
1 0

) ,

whereε = ±1, φ is a harmonic function,D andB are arbitrary constants such thatµ = Dφ + B is
everywhere nonvanishing andw is an arbitrary solution of the equation

(µw,1),1 + (µw,2),2 = 0.

Remark 8. It is worth to note that in the Abelian case the Gauss curvature of the Killing leaves is equal
to zero.

7. Ricci-flat metrics admitting a 3-dimensional Killing algebra with bidimensional leaves

Let g be a metric andG be one of its Killing algebras. In what follows, the Killing algebraG will be
callednormal if the restrictions ofg to its Killing leaves are non-degenerate.

Obviously, a normal Killing algebraG is isomorphic to a subalgebra ofKil (g|S) whereS is a generic
Killing leaf of G. Thus, when dimG = 3 and the Killing leaves are bidimensional,G = Kil (g|S). As it is
easy to see, in this situation there are exactly five options forKil (g|S) and, therefore, forG. Namely, they
are:

(56)so(2, 1), Kil
(
dx2 − dy2

)
, so(3), Kil

(
dx2 + dy2

)
, A3,

whereA3 is a 3-dimensional Abelian Lie algebra. Since the Lie algebraA3 belongs to the case treated
in [4] it will not be considered in the following.

Only two of these algebras, namelyso(2, 1) and Kil (dx2 − dy2), possess a non-commutative
bidimensional subalgebra. Thus, one may expect that the corresponding Ricci flat 4-metrics are among
the solutions described in Section 5. It will be shown below that this is in fact true and that they belong
to one of the casesh22 	= 0, orh22 = 0 with w fixed to be constant (see Section 5).

As for the algebraKil (dx2 + dy2), it has only a bidimensional commutative subalgebra and we shall
see that the corresponding Ricci-flat 4-metrics are among the solutions described in the previous Section 6
(the Abelian limit withh22 	= 0).

The following assertion generalizes Lemma 1 (Section 2).
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Lemma 14. Let X1, X2 and f1X1 + f2X2, f1, f2 ∈ C∞(M), be Killing fields of a metricg. Then,
supposing thatX1 andX2 are independent, eitherf1 andf2 are functionally independent, orf1 andf2

are constant.

Proof. It results from relation (1) taking into accountLX1(g) = LX2(g) = 0 that

(57)0= Lf1X1+f2X2(g) = iX1(g) df1 + iX2(g) df2.

Assuming, say, thatf2 = ϕ(f1) we see that

0= Lf1X1+f2X2(g) = (
iX1(g) + ϕ′iX2(g)

)
df1 = iX1+ϕ′X2(g) df1.

If df1 	= 0, then the last equality implies, obviously,iX1+ϕ′X2(g) = 0. In that case,X1 + ϕ′X2 = 0 due to
the non-degeneracy ofg in contradiction with the assumed independence ofX1 andX2. If on the contrary
df1 = 0, thendf2 = 0 and the second alternative takes place.

Note that it cannot happen that on a connected manifoldM the first alternative takes place inU1 ⊂ M

and the second one inU2 ⊂ M if
⋂

i Ui 	= ∅. It results from the fact that if a Killing field vanishes on an
open subset ofM , then it vanishes everywhere.✷
Corollary 15. If G is a 3-dimensional Killing algebra having bidimensional Killing leaves and the fields
X1, X2, X3 generate it as a linear space, then almost everywhereX3 = f1X1 + f2X2 andf1 andf2 are
functionally independent.

Proof. The fields X1 and X2 are independent according to Lemma 1. So they generate almost
everywhere, say inU , the tangent spaces to the Killing leaves. Thus,X3 = f1X1 + f2X2, fi ∈ C∞(U).
The possibility thatf1 andf2 be constant offered by Lemma 1 cannot occur in this context sinceX1, X2

andX3 are supposed to be linearly independent.✷
Proposition 16. Any Killing algebra from the list(56) having bidimensional Killing leaves is normal.
Moreover, the distributionD⊥ orthogonal to its Killing leaves is integrable.

Proof. Below the notation of Corollary 15 is used. Sincedf1 anddf2 are almost everywhere point-wise
independent and one can deduce easily from (57) that

(58)iX1(g) = λ df2, iX2(g) = −λ df1,

beingg nondegenerate,λ is almost everywhere non-vanishing.
Let nowY be an almost everywhere nonvanishing vector field. Then the equality

iY (iX1(g) df1 + iX2(g) df2) = 0,

which is an obvious consequence of (57), is equivalent to

g(X1, Y ) df1 + g(X2, Y ) df2 = −Y (f1)iX1(g) − Y (f2)iX2(g).

In view of (58) it gives

g(X1, Y ) df1 + g(X2, Y ) df2 = −λY (f1) df2 + λY (f2) df1,

so that

g(X1, Y ) = λY (f2), g(X2, Y ) = −λY (f1).
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HenceY (f1) = Y (f2) = 0 iff g(X1, Y ) = g(X2, Y ) = 0, i.e., such fieldsY are orthogonal to the Killing
leaves andvice versa. If Y is tangent to the Killing leaves, then

Y (f1) = Y (f2) = 0 ⇐⇒ Y = 0,

since by the above corollary applied to the caseM = S, dfi|S is nondegenerate for a generic Killing
leaf S. This proves that the fieldsY such thatY (f1) = Y (f2) = 0 are transversal to the Killing leaves and
thatg|S is non-degenerate for a generic Killing leafS. ThusG is normal.

Finally note that the distributioñD spanned by the vector fieldsY such thatY (f1) = Y (f2) = 0 is
of co-dimension 2 sincedf1 and df2 are independent almost everywhere. Being both transversal and
orthogonal to the Killing leaves,̃D coincides withD⊥ by a dimension argument.✷
Corollary 17. The solutions found in Section5 exhaust all local Ricci-flat4-metrics admitting a Killing
algebra isomorphic to so(2, 1) or to Kil (dx2 − dy2).

Proof. As we already noticed, the first two algebras possess non-Abelian bidimensional subalgebras and
according to the previous proposition the distributionD⊥ orthogonal to Killing leaves is transversal to
them and integrable. ✷
7.1. Kil (dx2 + dy2)-invariant Ricci-flat metrics

As it has been already noticed, the algebraKil (dx2 + dy2) has a bidimensional commutative
subalgebra. We shall see that the corresponding Ricci-flat 4-metrics are among the solutions of previous
Section 6 (the Abelian limit withh22 	= 0).

First, letG be a Killing algebra isomorphic toKil (dx2 + dy2) and letXi, i = 1, 2, 3, be its standard
basis, i.e.,

[X1, X2] = 0, [X1, X3] = X2, [X2, X3] = −X1.

With the notation of Corollary 15, letX3 = f1X1 + f2X2. Then

X2 = [X1, X3] = [X1, f1X1 + f2X2] = X1(f1)X1 + X1(f2)X2

and

X1 = [X3, X2] = [f1X1 + f2X2, X2] = −X2(f1)X1 − X2(f2)X2,

so that, for the independence (Section 2, Lemma 1) ofX1 andX2, implies that we have

X1(f1) = 0, X1(f2) = 1,

X2(f1) = −1, X2(f2) = 0.

Joining tof1, f2 a couple of independent functionsz1, z2 such thatXi(zj ) = 0, ∀i, j , one gets a local
chart onM . Taking into account the above relations and passing to the standard coordinate notation
x = f1, y = f2, we see that in the chart(x, y, z1, z2)

X1 = ∂y, X2 = −∂x, X3 = x∂y − y∂x.

Introducing onS polar coordinates(r, ϕ), i.e.,x = r cosϕ, y = r sinϕ, the above fields read as

X1 = sinϕ∂r + cosϕ

r
∂ϕ, X2 = cosϕ∂r + sinϕ

r
∂ϕ, X3 = ∂ϕ.
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Then, in view of Proposition 16, a direct computation similar to the one of Section 2 shows that any
G-invariant metric has in the adapted local chart(z1, z2, r, ϕ) the form

g = 2f
(
dz2

1 + ε dz2
2

)+ µ(z1, z2)
[
dr2 + r2 dϕ2

]
,

and, therefore, belongs to the class of metrics considered in Section 6 with definiteH andh22 	= 0.
Thus, we have:

Corollary 18. The solutions found in Section6 exhaust all local Ricci-flat4-metrics admitting a Killing
algebra isomorphic toKil (dx2 + dy2).

7.2. so(3)-invariant Ricci-flat metrics

The above results lead to expect that Ricci-flat 4-metrics admitting a Killing algebra isomorphic to
so(3) with 2-dimensional leaves can be described essentially in the same way as it was done in Section 5
with respect to those admitting a Killing algebra isomorphic toso(2, 1). The details are as follows.

First, letG be a Killing algebra isomorphic toso(3) and letXi, i = 1, 2, 3, be its standard basis, i.e.,

[X1, X2] = X3, [X2, X3] = X1, [X3, X1] = X2.

In the notation of Corollary 15 letX3 = f1X1 + f2X2. Then

X1 = [X2, X3] = [X2, f1X1 + f2X2]
= X2(f1)X1 + f1[X2, X1] + X2(f2)X2

= (
X2(f1) − f 2

1

)
X1 + (X2(f2) − f1f2)X2.

SinceX1 andX2 are independent (Lemma 1)

(59)X2(f1) − f 2
1 = 1, X2(f2) − f1f2 = 0.

Similarly, from the relation[X3, X1] = X2 one finds

(60)X1(f1) + f1f2 = 0, X1(f2) + f 2
2 = −1.

Joining tof1, f2 a couple of independent functionsz1, z2 such thatXi(zj ) = 0, ∀i, j , one gets a local
chart onM . Taking into account relations (59) and (60) and passing to the standard coordinate notation
x = f1, y = f2, we see that in the chart(x, y, z1, z2)

X1 = −xy∂x − (
1+ y2)∂y, X2 = (

x2 + 1
)
∂x + xy∂y, X3 = y∂x − x∂y.

In thegeographic coordinates(r, ϕ), i.e.,x = tanϑ cosϕ, y = tanϑ sinϕ, the above fields read as

X1 = −cosϕ

tanϑ
∂ϕ − sinϕ∂ϑ, X2 = − sinϕ

tanϑ
∂ϕ + cosϕ∂ϑ, X3 = −∂ϕ.

Then, in view of Proposition 16, a direct computation similar to the one of Section 2 shows that any
G-invariant metric has in the adapted local chart(z1, z2, ϑ, ϕ) the form

(61)g = f
(
dz2

1 + ε dz2
2

)+ α(z1, z2)
[
dϑ2 + sin2 ϑ dϕ2

]
.

The Ricci tensor of the above metric can be easily computed as in Section 4 and the corresponding
Einstein equations lead to the same equations forf andα ≡ r2 as already found in Section 5 in the case
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h22 	= 0. Namely,

(62)f = −1

2

(
∂2

∂z2
1

+ ε
∂2

∂z2
2

)(
r2
)
,

(63)r + A ln |r − A| = u,

with ε = ±1, A being an arbitrary constant andu being an arbitrary function satisfying the equation(
∂2

∂z2
1

+ ε
∂2

∂z2
2

)
(u) = 0.

Additionally, f is required to be nonvanishing.

Remark 9. In the caseε = −1, these solutions are locally diffeomorphic to the Schwarzschild solution.
This will be discussed in [10,11].

Below, the graph of the left hand side of Eq. (63) is reported for the valuesA = 2 andA = −2.

u = r + 2 ln |r − 2| u = r − 2 ln |r + 2|
One can see that forA 	= 0 there exactly three possibilities forr = r(u) that correspond to the intervals

of monotonicity ofu(r). For instance, forA > 0 these are]−∞, 0[, ]0, A[ , and]A,∞[ . In these regions
the corresponding metric (61) is regular and has some singularities along the curvesr = 0 andr −A = 0.

Some geometrical peculiarities of the obtainedlocal solutions show how to match them together in
order to getglobal nonextendibleEinstein metrics. To this purpose, in [10,11] a formalism is developed
which allows to construct, starting from known solutions, “new” global ones and to describe their
singularities as well. For instance, by extracting thesquare rootof the Schwarzschild solution, one easily
finds an Einstein metric which describesparallel universes. Other examples which illustrate some aspects
of our approach can be found in [10,11]. We stress that it generalizes naturally to some other situations
as, for instance,cosmological Einstein metricssatisfying assumptions I and II (work in progress).

Acknowledgements

Two of the authors (G.S. and G.V.) wish to thank G. Bimonte, B. Dubrovin and G. Marmo for
interesting discussions.



120 G. Sparano et al. / Differential Geometry and its Applications 16 (2002) 95–120

References

[1] B.N. Aliev, A.N. Leznov, Exact solutions of the vacuum Einstein’s equations, J. Math. Phys. 33 (7) (1992) 2567–2573.
[2] V.A. Belinsky, Gravitational breather and topological properties of gravisolitons, Phys. Rev. D 44 (10) (1991) 3109–3115.
[3] V.A. Belinsky, I.M. Khalatnikov, General solution of the gravitational equations with a physical singularities, Soviet Phys.

JETP 30 (6) (1970).
[4] V.A. Belinsky, V.E. Zakharov, Integration of the Einstein equations by means of the inverse scattering problem technique

and construction of exact soliton solutions, Soviet Phys. JETP 48 (6) (1978).
[5] V.A. Belinsky, V.E. Zakharov, Stationary gravitational solitons with axial symmetry, Soviet Phys. JETP 50 (1) (1979).
[6] F.J. Chinea, New first integral for twisting type-N vacuum gravitational fields with two non-commuting Killing vectors,

Class. Quantum Grav. 15 (1998) 367–371.
[7] R. Geroch, A method for generating new solutions of Einstein’s equation. II, J. Math. Phys. 13 (3) (1972).
[8] M. Hallisoy, Studies in space-times admitting two spacelike Killing vectors, J. Math. Phys. 29 (2) (1988).
[9] A.Z. Petrov, Einstein Spaces, Pergamon Press, New York, 1969;

D. Kramer, H. Stephani, E. Herlt, M. MacCallum, Exact Solutions of Einstein Field Equations, Cambridge University
Press, 1980.

[10] G. Sparano, G. Vilasi, A.M. Vinogradov, Gravitational fields with a non-Abelian, bidimensional Lie algebra of symmetries,
Phys. Lett. B 513 (2001) 142–146.

[11] G. Sparano, G. Vilasi, A.M. Vinogradov, Vacuum Einstein metrics with bidimensional Killing leaves. II. Global aspects,
Differential Geometry and its Applications, to appear.


	Vacuum Einstein metrics with bidimensional Killing leaves.  I. Local aspects
	Introduction
	Metrics admitting a bidimensional Lie algebra G2 of Killing fields
	Killing leaves
	The Ricci tensor field
	The Ricci tensor in the case det F< 0
	The Ricci tensor field in the case F> 0

	Solutions of vacuum Einstein field equations
	Solutions of Einstein equations in the case detF<0
	The case h22<>0
	The case h22=0

	Solutions of Einstein equations in the case detF> 0
	The case h22<>0
	The case h22=0


	The Abelian limit (s=0)
	Ricci-flat metrics admitting a 3-dimensional Killing algebra with bidimensional leaves
	Kil( dx2+dy2) -invariant Ricci-flat metrics
	so( 3) -invariant Ricci-flat metrics

	Acknowledgements
	References


